Control of Soft Wearable Robots for Elbow Assistance and Rehabilitation: A Simplified Solution Using Disturbance Observer and Nonsmooth Feedback
Soft wearable robots present a promising approach for elbow assistance and rehabilitation. However, most existing devices rely on open-loop control strategies, which renders individual customization cumbersome and incapable of adapting to dynamic interactions. The challenges in implementing closed-l...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 33; pp. 2988 - 2999 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soft wearable robots present a promising approach for elbow assistance and rehabilitation. However, most existing devices rely on open-loop control strategies, which renders individual customization cumbersome and incapable of adapting to dynamic interactions. The challenges in implementing closed-loop control arise from the complex nonlinearities of soft robots and the unpredictable external disturbances encountered during human-robot interactions. To achieve closed-loop control of elbow soft wearable robots, this paper proposes a disturbance observer (DO)-based nonsmooth feedback (NSF) method. Specifically, a tailored DO is designed to enhance feedforward compensation by analyzing the unique characteristics of the disturbances encountered in practical systems. A nonrecursive NSF is employed to suppress residual disturbances and nonlinearities, with the finite-time stability of the closed-loop system rigorously guaranteed. The proposed method balances efficacy and simplicity by leveraging the concise models of both the system and disturbances to enhance performance while avoiding intricate modeling. Moreover, its nonrecursive design results in a straightforward control law and facilitates implementation. Extensive comparison and ablation experiments validate the superiority of the proposed method over existing approaches. Human trials involving 8 healthy subjects and 7 stroke patients demonstrate that our method enhances task performance, reduces muscle strain during elbow assistance scenarios, and significantly improves elbow motor function in rehabilitation training. |
---|---|
AbstractList | Soft wearable robots present a promising approach for elbow assistance and rehabilitation. However, most existing devices rely on open-loop control strategies, which renders individual customization cumbersome and incapable of adapting to dynamic interactions. The challenges in implementing closed-loop control arise from the complex nonlinearities of soft robots and the unpredictable external disturbances encountered during human-robot interactions. To achieve closed-loop control of elbow soft wearable robots, this paper proposes a disturbance observer (DO)-based nonsmooth feedback (NSF) method. Specifically, a tailored DO is designed to enhance feedforward compensation by analyzing the unique characteristics of the disturbances encountered in practical systems. A nonrecursive NSF is employed to suppress residual disturbances and nonlinearities, with the finite-time stability of the closed-loop system rigorously guaranteed. The proposed method balances efficacy and simplicity by leveraging the concise models of both the system and disturbances to enhance performance while avoiding intricate modeling. Moreover, its nonrecursive design results in a straightforward control law and facilitates implementation. Extensive comparison and ablation experiments validate the superiority of the proposed method over existing approaches. Human trials involving 8 healthy subjects and 7 stroke patients demonstrate that our method enhances task performance, reduces muscle strain during elbow assistance scenarios, and significantly improves elbow motor function in rehabilitation training. Soft wearable robots present a promising approach for elbow assistance and rehabilitation. However, most existing devices rely on open-loop control strategies, which renders individual customization cumbersome and incapable of adapting to dynamic interactions. The challenges in implementing closed-loop control arise from the complex nonlinearities of soft robots and the unpredictable external disturbances encountered during human-robot interactions. To achieve closed-loop control of elbow soft wearable robots, this paper proposes a disturbance observer (DO)-based nonsmooth feedback (NSF) method. Specifically, a tailored DO is designed to enhance feedforward compensation by analyzing the unique characteristics of the disturbances encountered in practical systems. A nonrecursive NSF is employed to suppress residual disturbances and nonlinearities, with the finite-time stability of the closed-loop system rigorously guaranteed. The proposed method balances efficacy and simplicity by leveraging the concise models of both the system and disturbances to enhance performance while avoiding intricate modeling. Moreover, its nonrecursive design results in a straightforward control law and facilitates implementation. Extensive comparison and ablation experiments validate the superiority of the proposed method over existing approaches. Human trials involving 8 healthy subjects and 7 stroke patients demonstrate that our method enhances task performance, reduces muscle strain during elbow assistance scenarios, and significantly improves elbow motor function in rehabilitation training.Soft wearable robots present a promising approach for elbow assistance and rehabilitation. However, most existing devices rely on open-loop control strategies, which renders individual customization cumbersome and incapable of adapting to dynamic interactions. The challenges in implementing closed-loop control arise from the complex nonlinearities of soft robots and the unpredictable external disturbances encountered during human-robot interactions. To achieve closed-loop control of elbow soft wearable robots, this paper proposes a disturbance observer (DO)-based nonsmooth feedback (NSF) method. Specifically, a tailored DO is designed to enhance feedforward compensation by analyzing the unique characteristics of the disturbances encountered in practical systems. A nonrecursive NSF is employed to suppress residual disturbances and nonlinearities, with the finite-time stability of the closed-loop system rigorously guaranteed. The proposed method balances efficacy and simplicity by leveraging the concise models of both the system and disturbances to enhance performance while avoiding intricate modeling. Moreover, its nonrecursive design results in a straightforward control law and facilitates implementation. Extensive comparison and ablation experiments validate the superiority of the proposed method over existing approaches. Human trials involving 8 healthy subjects and 7 stroke patients demonstrate that our method enhances task performance, reduces muscle strain during elbow assistance scenarios, and significantly improves elbow motor function in rehabilitation training. |
Author | Wang, Jiajin Song, Aiguo Wei, Xiangshan Wang, Xin Lai, Jianwei Zhao, Zishuo Shen, Ying Xu, Baoguo Lu, Ye Wang, Hongxing |
Author_xml | – sequence: 1 givenname: Jiajin orcidid: 0000-0002-5146-1638 surname: Wang fullname: Wang, Jiajin organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 2 givenname: Baoguo orcidid: 0000-0001-7714-9645 surname: Xu fullname: Xu, Baoguo email: xubaoguo@seu.edu.cn organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 3 givenname: Xin orcidid: 0009-0007-8549-8133 surname: Wang fullname: Wang, Xin organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 4 givenname: Jianwei orcidid: 0009-0007-4447-9139 surname: Lai fullname: Lai, Jianwei organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 5 givenname: Xiangshan surname: Wei fullname: Wei, Xiangshan organization: Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China – sequence: 6 givenname: Zishuo orcidid: 0000-0002-9611-7750 surname: Zhao fullname: Zhao, Zishuo organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 7 givenname: Ye orcidid: 0000-0002-0572-4046 surname: Lu fullname: Lu, Ye organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 8 givenname: Ying surname: Shen fullname: Shen, Ying organization: Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China – sequence: 9 givenname: Hongxing surname: Wang fullname: Wang, Hongxing organization: Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China – sequence: 10 givenname: Aiguo orcidid: 0000-0002-1982-6780 surname: Song fullname: Song, Aiguo organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40748816$$D View this record in MEDLINE/PubMed |
BookMark | eNpFkctu1DAUhiNURC_wAgghL9lk8DVx2I2GKVSqWmmmFUvLl-PWJRMPdgLiLXhkPBfKykfH3_9Z8n9enQxxgKp6S_CMENx9vLtZr5YziqmYMdHxVuAX1RkRQtaYEnyymxmvOaP4tDrP-Qlj0jaifVWdctxyKUlzVv1ZxGFMsUfRo3X0I_oGOmnTA1pFE8eMfExo2Zv4C81zDnnUgwWkB4dW8KhN6MOoxxCHT2iO1mGz7YMP4Iqqn3ZrdJ_D8IA-l-CUzD57azKkn5D2kps45E2M4yO6BHBG2--vq5de9xneHM-L6v5yebf4Wl_ffrlazK9ryzDFtW2E4do1pnOMCm87X0bZMdoBl0RqZoxvebnA0kommWNWOoalt7yzlAC7qK4OXhf1k9qmsNHpt4o6qP0ipgel0xhsD8p5R4huJZhWckFp8TW8fHfXNsYb2hTXh4Nrm-KPCfKoNiFb6Hs9QJyyYpSJltKuZQV9f0QnswH3_PC_RgpAD4BNMecE_hkhWO1qV_va1a52day9hN4dQgEA_gcK3nAp2F95pKlI |
CODEN | ITNSB3 |
Cites_doi | 10.1016/0167-6911(92)90078-7 10.1016/j.mechatronics.2022.102782 10.1109/TMECH.2024.3515084 10.1109/TNSRE.2023.3302612 10.1109/TNSRE.2023.3306201 10.1109/TSMC.2017.2757966 10.1016/j.automatica.2004.11.036 10.1109/TCYB.2022.3211925 10.1088/1361-665X/ad315e 10.1109/LRA.2020.2980990 10.1109/LRA.2023.3322072 10.1109/TMECH.2019.2909099 10.1109/TIE.2015.2478397 10.1109/LRA.2024.3384039 10.1088/1361-665X/abd4b0 10.1109/TCST.2022.3222728 10.1016/S0167-6911(02)00130-5 10.1126/scirobotics.add6864 10.1631/jzus.A2100076 10.1109/IROS.2015.7354133 10.1109/ACCESS.2022.3179589 10.1109/TMECH.2020.3042774 10.1109/LRA.2024.3366012 10.1201/b16570 10.1109/LRA.2024.3455947 10.1109/TMECH.2022.3155790 10.1177/02783649241272114 10.1016/j.mechatronics.2022.102871 10.1109/TMECH.2024.3521888 10.1109/LRA.2021.3095268 10.1007/s11431-022-2233-3 10.1109/9.935058 10.1089/soro.2017.0125 10.1109/ICORR58425.2023.10304679 10.1109/LRA.2022.3229235 10.1016/j.robot.2017.10.010 10.1109/LRA.2019.2907433 10.1109/TMRB.2024.3407374 10.1089/soro.2019.0065 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1109/TNSRE.2025.3594750 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 2999 |
ExternalDocumentID | oai_doaj_org_article_dfd11a78eb78452283864475976bfb26 40748816 10_1109_TNSRE_2025_3594750 11106485 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2022YFC2405602 funderid: 10.13039/501100012166 – fundername: Postgraduate Research and Practice Innovation Program of Jiangsu Province grantid: KYCX22_0293 – fundername: National Natural Science Foundation of China grantid: 92148205 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20221464 funderid: 10.13039/501100004608 – fundername: Jiangsu Province Hospital Clinical Diagnosis and Treatment of Technological Innovation “Open bidding for selecting the best candidates” grantid: JBGS202414 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c3020-c65b4ad6b9d325fc9f6b989329e4818a3bbf745fc08c8383d3c8d308fc49c21e3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:31:52 EDT 2025 Sat Aug 02 17:30:38 EDT 2025 Tue Aug 12 01:37:31 EDT 2025 Thu Aug 14 00:10:04 EDT 2025 Wed Aug 20 06:20:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3020-c65b4ad6b9d325fc9f6b989329e4818a3bbf745fc08c8383d3c8d308fc49c21e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0572-4046 0009-0007-8549-8133 0000-0002-5146-1638 0000-0001-7714-9645 0000-0002-1982-6780 0000-0002-9611-7750 0009-0007-4447-9139 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11106485 |
PMID | 40748816 |
PQID | 3235722973 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmed_primary_40748816 proquest_miscellaneous_3235722973 crossref_primary_10_1109_TNSRE_2025_3594750 doaj_primary_oai_doaj_org_article_dfd11a78eb78452283864475976bfb26 ieee_primary_11106485 |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref37 doi: 10.1016/0167-6911(92)90078-7 – ident: ref27 doi: 10.1016/j.mechatronics.2022.102782 – ident: ref22 doi: 10.1109/TMECH.2024.3515084 – ident: ref11 doi: 10.1109/TNSRE.2023.3302612 – ident: ref3 doi: 10.1109/TNSRE.2023.3306201 – ident: ref28 doi: 10.1109/TSMC.2017.2757966 – ident: ref26 doi: 10.1016/j.automatica.2004.11.036 – ident: ref36 doi: 10.1109/TCYB.2022.3211925 – ident: ref14 doi: 10.1088/1361-665X/ad315e – ident: ref8 doi: 10.1109/LRA.2020.2980990 – ident: ref15 doi: 10.1109/LRA.2023.3322072 – ident: ref31 doi: 10.1109/TMECH.2019.2909099 – ident: ref21 doi: 10.1109/TIE.2015.2478397 – ident: ref23 doi: 10.1109/LRA.2024.3384039 – ident: ref30 doi: 10.1088/1361-665X/abd4b0 – ident: ref35 doi: 10.1109/TCST.2022.3222728 – ident: ref39 doi: 10.1016/S0167-6911(02)00130-5 – ident: ref19 doi: 10.1126/scirobotics.add6864 – ident: ref32 doi: 10.1631/jzus.A2100076 – ident: ref2 doi: 10.1109/IROS.2015.7354133 – ident: ref5 doi: 10.1109/ACCESS.2022.3179589 – ident: ref33 doi: 10.1109/TMECH.2020.3042774 – ident: ref9 doi: 10.1109/LRA.2024.3366012 – ident: ref20 doi: 10.1201/b16570 – ident: ref4 doi: 10.1109/LRA.2024.3455947 – ident: ref16 doi: 10.1109/TMECH.2022.3155790 – ident: ref17 doi: 10.1177/02783649241272114 – ident: ref25 doi: 10.1016/j.mechatronics.2022.102871 – ident: ref24 doi: 10.1109/TMECH.2024.3521888 – ident: ref34 doi: 10.1109/LRA.2021.3095268 – ident: ref7 doi: 10.1007/s11431-022-2233-3 – ident: ref38 doi: 10.1109/9.935058 – ident: ref12 doi: 10.1089/soro.2017.0125 – ident: ref6 doi: 10.1109/ICORR58425.2023.10304679 – ident: ref18 doi: 10.1109/LRA.2022.3229235 – ident: ref29 doi: 10.1016/j.robot.2017.10.010 – ident: ref10 doi: 10.1109/LRA.2019.2907433 – ident: ref1 doi: 10.1109/TMRB.2024.3407374 – ident: ref13 doi: 10.1089/soro.2019.0065 |
SSID | ssj0017657 |
Score | 2.4383276 |
Snippet | Soft wearable robots present a promising approach for elbow assistance and rehabilitation. However, most existing devices rely on open-loop control strategies,... |
SourceID | doaj proquest pubmed crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 2988 |
SubjectTerms | Actuators Adult Algorithms Analytical models Bending Biomechanical Phenomena composite controller Computer Simulation disturbance observer Elbow Elbow Joint Equipment Design Exoskeleton Device Feedback Feedforward systems Humans Male Medical diagnostic imaging Nonlinear Dynamics Pneumatic systems rehabilitation robotics Robot sensing systems Robotics - instrumentation Soft robotics Stroke Rehabilitation - instrumentation Wearable Electronic Devices Wearable robotics Wearable robots |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQjwKBggYJuKDQJHYcm1spu6qQWKTdregtyji2VAFJtd0Vf4OfzIyTlBYJceEWJfEj-T57Zvz4LMRLni_EoPK0KHmakWx6aoLSqXJ58N4YVBVvFP600Cen6uNZeXbtqC9eEzbIAw8_7rANbZ43lfFYGVb_NtLoKFJXaQxYRLFtsnlTMDXOH1Q6anxSc1apkkU2bZfJ7OF6sVrOKDAsyreytJRTdsMkReX-8aiVv3ud0frM74o7o9sIR0N174lbvrsvXl2XCIb1oA8Ar2F5Q337gfh5PKxHhz7Airpd-EL05i1TsOyx314COa4w-4b9DyC02KEkJkDTtX_k9A6OYHXOS9ADOa4wjahBXHYAHyjhboMx7WfkwV6_iZksiNjfe2IEzMlUYuO-7ovT-Wx9fJKOJzGkTnJ86XSJqmk12lYWZXA20CV5OoX1iix-IxFDpehBZhwBJFvpTCszE5yyrsi9fCj2ur7zjwU48uYxo_RotbJtoHxD6WWQebCqwSoRbyYw6otBcKOOgUpm6whdzdDVI3SJeM94Xb3JYtnxBlGoHilU_4tCidhntH8XR4Vpom0iXkzw19ToeCal6Xy_u6wliwQVfOxXIh4NvLhKTREydYq5fvI_qvZU3ObPHcZ8DsTedrPzz8gL2uLzSPhf3bIBUQ priority: 102 providerName: Directory of Open Access Journals |
Title | Control of Soft Wearable Robots for Elbow Assistance and Rehabilitation: A Simplified Solution Using Disturbance Observer and Nonsmooth Feedback |
URI | https://ieeexplore.ieee.org/document/11106485 https://www.ncbi.nlm.nih.gov/pubmed/40748816 https://www.proquest.com/docview/3235722973 https://doaj.org/article/dfd11a78eb78452283864475976bfb26 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD5ie0B7YVwGhMtkJOAFpUtiJ7F5G6PVhESR2k7szYodW0KDZOoaIfEr-Mmc4yRlTJrEW9TGbqLznZ77Z4DXVC80XqRxllOZEW16LL0oYmFT75yURpQ0KPx5XpyeiU_n-fkwrB5mYZxzofnMTegy1PLr1naUKjtCvUQLKvMd2MHIrR_W2pYMyiLQeqIGi1jwLBknZBJ1tJovF1OMBbN8wnMl0EjuwV2MZBC8dM75NYMUePuHg1Zu9zmD7Zntw3x86r7l5GLSbczE_rpB6Pjfr3Uf7g1eKDvuYfMA7rjmIby5zjjMVj3dAHvLFv-QeT-C3yd9eztrPVvivzj7itpCE1hs0Zp2c8XQD2bT76b9yVD45J8isFjV1Dd2es-O2fIbdbR79IPZmKBjoYuBfcSF3dqEtV8M5Y7dOmwyRz350SLA2Awtr6nsxQGczaark9N4ONghtpzCVVvkRlR1YVTNs9xb5fESHadMOYEORMWN8aXALxJpJYbQNbey5on0ViibpY4_ht2mbdxTYBaDA5PgeqMKoWqP-_rccc9Tr0RlygjejdLVlz1_hw5xT6J0gIUmWOgBFhF8IABs7yTu7fAByksPqqxrX6dpVUpnSkl89PiERaBNLAvjTVZEcEAy_vtzg3gjeDXiSaMOU2GmalzbXWlOnEMZnSIWwZMeaNvVI0yf3bLrc9ijN-izQi9gd7Pu3Ev0kzbmMOQXDoOW_AETFQ7a |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkaAXnoWGp5GAC8o2iZ3E5lbKrhZog7S7Fb1FsWNLqGWDthsh8Sv4ycw4yVIqVeIWJbGTaL7JzHhmPgO8onyhdiIOk5TSjGjTQ-lEFgoTO2ul1CKnRuGjIpsei08n6UnfrO57Yay1vvjMjujQ5_LrxrS0VLaHeokWVKbX4QYa_jTp2rU2SYM888SeqMMiFDyJhh6ZSO0tivlsjNFgko54qgSayW24ibEMwpd2Or9gkjxzf7_VytVep7c-kztQDO_dFZ2cjtq1Hplflygd__vD7sLt3g9l-x1w7sE1u7wPry9yDrNFRzjA3rDZP3TeD-D3QVfgzhrH5vgfZ19RX6gHi80a3azPGXrCbHymm58MxU8eKkKLVcv60kzv2D6bf6OadoeeMBuW6JivY2AfcGC70n7sF02rx3blJylQU743CDE2QdurK3O6A8eT8eJgGvZbO4SGU8BqslSLqs60qnmSOqMcHqLrlCgr0IWouNYuF3ghkkZiEF1zI2seSWeEMkls-UPYWjZLuwvMYHigIxyvVSZU7XBel1rueOyUqHQewNtBuuWPjsGj9JFPpEoPi5JgUfawCOA9AWBzJ7Fv-xMor7JX5rJ2dRxXubQ6l8RIj2-YeeLEPNNOJ1kAOyTjv4_rxRvAywFPJWoxpWaqpW3a85IT61BC-4gF8KgD2mb0ANPHV8z6Am5NF0eH5eHH4vMT2Kav6daInsLWetXaZ-g1rfVzryt_APE-ES8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+Soft+Wearable+Robots+for+Elbow+Assistance+and+Rehabilitation%3A+A+Simplified+Solution+Using+Disturbance+Observer+and+Nonsmooth+Feedback&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Wang%2C+Jiajin&rft.au=Xu%2C+Baoguo&rft.au=Wang%2C+Xin&rft.au=Lai%2C+Jianwei&rft.date=2025&rft.issn=1558-0210&rft.eissn=1558-0210&rft.volume=PP&rft_id=info:doi/10.1109%2FTNSRE.2025.3594750&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |