Control of Soft Wearable Robots for Elbow Assistance and Rehabilitation: A Simplified Solution Using Disturbance Observer and Nonsmooth Feedback

Soft wearable robots present a promising approach for elbow assistance and rehabilitation. However, most existing devices rely on open-loop control strategies, which renders individual customization cumbersome and incapable of adapting to dynamic interactions. The challenges in implementing closed-l...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 33; pp. 2988 - 2999
Main Authors Wang, Jiajin, Xu, Baoguo, Wang, Xin, Lai, Jianwei, Wei, Xiangshan, Zhao, Zishuo, Lu, Ye, Shen, Ying, Wang, Hongxing, Song, Aiguo
Format Journal Article
LanguageEnglish
Published United States IEEE 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soft wearable robots present a promising approach for elbow assistance and rehabilitation. However, most existing devices rely on open-loop control strategies, which renders individual customization cumbersome and incapable of adapting to dynamic interactions. The challenges in implementing closed-loop control arise from the complex nonlinearities of soft robots and the unpredictable external disturbances encountered during human-robot interactions. To achieve closed-loop control of elbow soft wearable robots, this paper proposes a disturbance observer (DO)-based nonsmooth feedback (NSF) method. Specifically, a tailored DO is designed to enhance feedforward compensation by analyzing the unique characteristics of the disturbances encountered in practical systems. A nonrecursive NSF is employed to suppress residual disturbances and nonlinearities, with the finite-time stability of the closed-loop system rigorously guaranteed. The proposed method balances efficacy and simplicity by leveraging the concise models of both the system and disturbances to enhance performance while avoiding intricate modeling. Moreover, its nonrecursive design results in a straightforward control law and facilitates implementation. Extensive comparison and ablation experiments validate the superiority of the proposed method over existing approaches. Human trials involving 8 healthy subjects and 7 stroke patients demonstrate that our method enhances task performance, reduces muscle strain during elbow assistance scenarios, and significantly improves elbow motor function in rehabilitation training.
AbstractList Soft wearable robots present a promising approach for elbow assistance and rehabilitation. However, most existing devices rely on open-loop control strategies, which renders individual customization cumbersome and incapable of adapting to dynamic interactions. The challenges in implementing closed-loop control arise from the complex nonlinearities of soft robots and the unpredictable external disturbances encountered during human-robot interactions. To achieve closed-loop control of elbow soft wearable robots, this paper proposes a disturbance observer (DO)-based nonsmooth feedback (NSF) method. Specifically, a tailored DO is designed to enhance feedforward compensation by analyzing the unique characteristics of the disturbances encountered in practical systems. A nonrecursive NSF is employed to suppress residual disturbances and nonlinearities, with the finite-time stability of the closed-loop system rigorously guaranteed. The proposed method balances efficacy and simplicity by leveraging the concise models of both the system and disturbances to enhance performance while avoiding intricate modeling. Moreover, its nonrecursive design results in a straightforward control law and facilitates implementation. Extensive comparison and ablation experiments validate the superiority of the proposed method over existing approaches. Human trials involving 8 healthy subjects and 7 stroke patients demonstrate that our method enhances task performance, reduces muscle strain during elbow assistance scenarios, and significantly improves elbow motor function in rehabilitation training.
Soft wearable robots present a promising approach for elbow assistance and rehabilitation. However, most existing devices rely on open-loop control strategies, which renders individual customization cumbersome and incapable of adapting to dynamic interactions. The challenges in implementing closed-loop control arise from the complex nonlinearities of soft robots and the unpredictable external disturbances encountered during human-robot interactions. To achieve closed-loop control of elbow soft wearable robots, this paper proposes a disturbance observer (DO)-based nonsmooth feedback (NSF) method. Specifically, a tailored DO is designed to enhance feedforward compensation by analyzing the unique characteristics of the disturbances encountered in practical systems. A nonrecursive NSF is employed to suppress residual disturbances and nonlinearities, with the finite-time stability of the closed-loop system rigorously guaranteed. The proposed method balances efficacy and simplicity by leveraging the concise models of both the system and disturbances to enhance performance while avoiding intricate modeling. Moreover, its nonrecursive design results in a straightforward control law and facilitates implementation. Extensive comparison and ablation experiments validate the superiority of the proposed method over existing approaches. Human trials involving 8 healthy subjects and 7 stroke patients demonstrate that our method enhances task performance, reduces muscle strain during elbow assistance scenarios, and significantly improves elbow motor function in rehabilitation training.Soft wearable robots present a promising approach for elbow assistance and rehabilitation. However, most existing devices rely on open-loop control strategies, which renders individual customization cumbersome and incapable of adapting to dynamic interactions. The challenges in implementing closed-loop control arise from the complex nonlinearities of soft robots and the unpredictable external disturbances encountered during human-robot interactions. To achieve closed-loop control of elbow soft wearable robots, this paper proposes a disturbance observer (DO)-based nonsmooth feedback (NSF) method. Specifically, a tailored DO is designed to enhance feedforward compensation by analyzing the unique characteristics of the disturbances encountered in practical systems. A nonrecursive NSF is employed to suppress residual disturbances and nonlinearities, with the finite-time stability of the closed-loop system rigorously guaranteed. The proposed method balances efficacy and simplicity by leveraging the concise models of both the system and disturbances to enhance performance while avoiding intricate modeling. Moreover, its nonrecursive design results in a straightforward control law and facilitates implementation. Extensive comparison and ablation experiments validate the superiority of the proposed method over existing approaches. Human trials involving 8 healthy subjects and 7 stroke patients demonstrate that our method enhances task performance, reduces muscle strain during elbow assistance scenarios, and significantly improves elbow motor function in rehabilitation training.
Author Wang, Jiajin
Song, Aiguo
Wei, Xiangshan
Wang, Xin
Lai, Jianwei
Zhao, Zishuo
Shen, Ying
Xu, Baoguo
Lu, Ye
Wang, Hongxing
Author_xml – sequence: 1
  givenname: Jiajin
  orcidid: 0000-0002-5146-1638
  surname: Wang
  fullname: Wang, Jiajin
  organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 2
  givenname: Baoguo
  orcidid: 0000-0001-7714-9645
  surname: Xu
  fullname: Xu, Baoguo
  email: xubaoguo@seu.edu.cn
  organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 3
  givenname: Xin
  orcidid: 0009-0007-8549-8133
  surname: Wang
  fullname: Wang, Xin
  organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 4
  givenname: Jianwei
  orcidid: 0009-0007-4447-9139
  surname: Lai
  fullname: Lai, Jianwei
  organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 5
  givenname: Xiangshan
  surname: Wei
  fullname: Wei, Xiangshan
  organization: Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
– sequence: 6
  givenname: Zishuo
  orcidid: 0000-0002-9611-7750
  surname: Zhao
  fullname: Zhao, Zishuo
  organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 7
  givenname: Ye
  orcidid: 0000-0002-0572-4046
  surname: Lu
  fullname: Lu, Ye
  organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 8
  givenname: Ying
  surname: Shen
  fullname: Shen, Ying
  organization: Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
– sequence: 9
  givenname: Hongxing
  surname: Wang
  fullname: Wang, Hongxing
  organization: Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
– sequence: 10
  givenname: Aiguo
  orcidid: 0000-0002-1982-6780
  surname: Song
  fullname: Song, Aiguo
  organization: State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40748816$$D View this record in MEDLINE/PubMed
BookMark eNpFkctu1DAUhiNURC_wAgghL9lk8DVx2I2GKVSqWmmmFUvLl-PWJRMPdgLiLXhkPBfKykfH3_9Z8n9enQxxgKp6S_CMENx9vLtZr5YziqmYMdHxVuAX1RkRQtaYEnyymxmvOaP4tDrP-Qlj0jaifVWdctxyKUlzVv1ZxGFMsUfRo3X0I_oGOmnTA1pFE8eMfExo2Zv4C81zDnnUgwWkB4dW8KhN6MOoxxCHT2iO1mGz7YMP4Iqqn3ZrdJ_D8IA-l-CUzD57azKkn5D2kps45E2M4yO6BHBG2--vq5de9xneHM-L6v5yebf4Wl_ffrlazK9ryzDFtW2E4do1pnOMCm87X0bZMdoBl0RqZoxvebnA0kommWNWOoalt7yzlAC7qK4OXhf1k9qmsNHpt4o6qP0ipgel0xhsD8p5R4huJZhWckFp8TW8fHfXNsYb2hTXh4Nrm-KPCfKoNiFb6Hs9QJyyYpSJltKuZQV9f0QnswH3_PC_RgpAD4BNMecE_hkhWO1qV_va1a52day9hN4dQgEA_gcK3nAp2F95pKlI
CODEN ITNSB3
Cites_doi 10.1016/0167-6911(92)90078-7
10.1016/j.mechatronics.2022.102782
10.1109/TMECH.2024.3515084
10.1109/TNSRE.2023.3302612
10.1109/TNSRE.2023.3306201
10.1109/TSMC.2017.2757966
10.1016/j.automatica.2004.11.036
10.1109/TCYB.2022.3211925
10.1088/1361-665X/ad315e
10.1109/LRA.2020.2980990
10.1109/LRA.2023.3322072
10.1109/TMECH.2019.2909099
10.1109/TIE.2015.2478397
10.1109/LRA.2024.3384039
10.1088/1361-665X/abd4b0
10.1109/TCST.2022.3222728
10.1016/S0167-6911(02)00130-5
10.1126/scirobotics.add6864
10.1631/jzus.A2100076
10.1109/IROS.2015.7354133
10.1109/ACCESS.2022.3179589
10.1109/TMECH.2020.3042774
10.1109/LRA.2024.3366012
10.1201/b16570
10.1109/LRA.2024.3455947
10.1109/TMECH.2022.3155790
10.1177/02783649241272114
10.1016/j.mechatronics.2022.102871
10.1109/TMECH.2024.3521888
10.1109/LRA.2021.3095268
10.1007/s11431-022-2233-3
10.1109/9.935058
10.1089/soro.2017.0125
10.1109/ICORR58425.2023.10304679
10.1109/LRA.2022.3229235
10.1016/j.robot.2017.10.010
10.1109/LRA.2019.2907433
10.1109/TMRB.2024.3407374
10.1089/soro.2019.0065
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1109/TNSRE.2025.3594750
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 2999
ExternalDocumentID oai_doaj_org_article_dfd11a78eb78452283864475976bfb26
40748816
10_1109_TNSRE_2025_3594750
11106485
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2022YFC2405602
  funderid: 10.13039/501100012166
– fundername: Postgraduate Research and Practice Innovation Program of Jiangsu Province
  grantid: KYCX22_0293
– fundername: National Natural Science Foundation of China
  grantid: 92148205
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20221464
  funderid: 10.13039/501100004608
– fundername: Jiangsu Province Hospital Clinical Diagnosis and Treatment of Technological Innovation “Open bidding for selecting the best candidates”
  grantid: JBGS202414
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3020-c65b4ad6b9d325fc9f6b989329e4818a3bbf745fc08c8383d3c8d308fc49c21e3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:31:52 EDT 2025
Sat Aug 02 17:30:38 EDT 2025
Tue Aug 12 01:37:31 EDT 2025
Thu Aug 14 00:10:04 EDT 2025
Wed Aug 20 06:20:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3020-c65b4ad6b9d325fc9f6b989329e4818a3bbf745fc08c8383d3c8d308fc49c21e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0572-4046
0009-0007-8549-8133
0000-0002-5146-1638
0000-0001-7714-9645
0000-0002-1982-6780
0000-0002-9611-7750
0009-0007-4447-9139
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11106485
PMID 40748816
PQID 3235722973
PQPubID 23479
PageCount 12
ParticipantIDs pubmed_primary_40748816
proquest_miscellaneous_3235722973
crossref_primary_10_1109_TNSRE_2025_3594750
doaj_primary_oai_doaj_org_article_dfd11a78eb78452283864475976bfb26
ieee_primary_11106485
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref37
  doi: 10.1016/0167-6911(92)90078-7
– ident: ref27
  doi: 10.1016/j.mechatronics.2022.102782
– ident: ref22
  doi: 10.1109/TMECH.2024.3515084
– ident: ref11
  doi: 10.1109/TNSRE.2023.3302612
– ident: ref3
  doi: 10.1109/TNSRE.2023.3306201
– ident: ref28
  doi: 10.1109/TSMC.2017.2757966
– ident: ref26
  doi: 10.1016/j.automatica.2004.11.036
– ident: ref36
  doi: 10.1109/TCYB.2022.3211925
– ident: ref14
  doi: 10.1088/1361-665X/ad315e
– ident: ref8
  doi: 10.1109/LRA.2020.2980990
– ident: ref15
  doi: 10.1109/LRA.2023.3322072
– ident: ref31
  doi: 10.1109/TMECH.2019.2909099
– ident: ref21
  doi: 10.1109/TIE.2015.2478397
– ident: ref23
  doi: 10.1109/LRA.2024.3384039
– ident: ref30
  doi: 10.1088/1361-665X/abd4b0
– ident: ref35
  doi: 10.1109/TCST.2022.3222728
– ident: ref39
  doi: 10.1016/S0167-6911(02)00130-5
– ident: ref19
  doi: 10.1126/scirobotics.add6864
– ident: ref32
  doi: 10.1631/jzus.A2100076
– ident: ref2
  doi: 10.1109/IROS.2015.7354133
– ident: ref5
  doi: 10.1109/ACCESS.2022.3179589
– ident: ref33
  doi: 10.1109/TMECH.2020.3042774
– ident: ref9
  doi: 10.1109/LRA.2024.3366012
– ident: ref20
  doi: 10.1201/b16570
– ident: ref4
  doi: 10.1109/LRA.2024.3455947
– ident: ref16
  doi: 10.1109/TMECH.2022.3155790
– ident: ref17
  doi: 10.1177/02783649241272114
– ident: ref25
  doi: 10.1016/j.mechatronics.2022.102871
– ident: ref24
  doi: 10.1109/TMECH.2024.3521888
– ident: ref34
  doi: 10.1109/LRA.2021.3095268
– ident: ref7
  doi: 10.1007/s11431-022-2233-3
– ident: ref38
  doi: 10.1109/9.935058
– ident: ref12
  doi: 10.1089/soro.2017.0125
– ident: ref6
  doi: 10.1109/ICORR58425.2023.10304679
– ident: ref18
  doi: 10.1109/LRA.2022.3229235
– ident: ref29
  doi: 10.1016/j.robot.2017.10.010
– ident: ref10
  doi: 10.1109/LRA.2019.2907433
– ident: ref1
  doi: 10.1109/TMRB.2024.3407374
– ident: ref13
  doi: 10.1089/soro.2019.0065
SSID ssj0017657
Score 2.4383276
Snippet Soft wearable robots present a promising approach for elbow assistance and rehabilitation. However, most existing devices rely on open-loop control strategies,...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 2988
SubjectTerms Actuators
Adult
Algorithms
Analytical models
Bending
Biomechanical Phenomena
composite controller
Computer Simulation
disturbance observer
Elbow
Elbow Joint
Equipment Design
Exoskeleton Device
Feedback
Feedforward systems
Humans
Male
Medical diagnostic imaging
Nonlinear Dynamics
Pneumatic systems
rehabilitation robotics
Robot sensing systems
Robotics - instrumentation
Soft robotics
Stroke Rehabilitation - instrumentation
Wearable Electronic Devices
Wearable robotics
Wearable robots
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQjwKBggYJuKDQJHYcm1spu6qQWKTdregtyji2VAFJtd0Vf4OfzIyTlBYJceEWJfEj-T57Zvz4LMRLni_EoPK0KHmakWx6aoLSqXJ58N4YVBVvFP600Cen6uNZeXbtqC9eEzbIAw8_7rANbZ43lfFYGVb_NtLoKFJXaQxYRLFtsnlTMDXOH1Q6anxSc1apkkU2bZfJ7OF6sVrOKDAsyreytJRTdsMkReX-8aiVv3ud0frM74o7o9sIR0N174lbvrsvXl2XCIb1oA8Ar2F5Q337gfh5PKxHhz7Airpd-EL05i1TsOyx314COa4w-4b9DyC02KEkJkDTtX_k9A6OYHXOS9ADOa4wjahBXHYAHyjhboMx7WfkwV6_iZksiNjfe2IEzMlUYuO-7ovT-Wx9fJKOJzGkTnJ86XSJqmk12lYWZXA20CV5OoX1iix-IxFDpehBZhwBJFvpTCszE5yyrsi9fCj2ur7zjwU48uYxo_RotbJtoHxD6WWQebCqwSoRbyYw6otBcKOOgUpm6whdzdDVI3SJeM94Xb3JYtnxBlGoHilU_4tCidhntH8XR4Vpom0iXkzw19ToeCal6Xy_u6wliwQVfOxXIh4NvLhKTREydYq5fvI_qvZU3ObPHcZ8DsTedrPzz8gL2uLzSPhf3bIBUQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Control of Soft Wearable Robots for Elbow Assistance and Rehabilitation: A Simplified Solution Using Disturbance Observer and Nonsmooth Feedback
URI https://ieeexplore.ieee.org/document/11106485
https://www.ncbi.nlm.nih.gov/pubmed/40748816
https://www.proquest.com/docview/3235722973
https://doaj.org/article/dfd11a78eb78452283864475976bfb26
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD5ie0B7YVwGhMtkJOAFpUtiJ7F5G6PVhESR2k7szYodW0KDZOoaIfEr-Mmc4yRlTJrEW9TGbqLznZ77Z4DXVC80XqRxllOZEW16LL0oYmFT75yURpQ0KPx5XpyeiU_n-fkwrB5mYZxzofnMTegy1PLr1naUKjtCvUQLKvMd2MHIrR_W2pYMyiLQeqIGi1jwLBknZBJ1tJovF1OMBbN8wnMl0EjuwV2MZBC8dM75NYMUePuHg1Zu9zmD7Zntw3x86r7l5GLSbczE_rpB6Pjfr3Uf7g1eKDvuYfMA7rjmIby5zjjMVj3dAHvLFv-QeT-C3yd9eztrPVvivzj7itpCE1hs0Zp2c8XQD2bT76b9yVD45J8isFjV1Dd2es-O2fIbdbR79IPZmKBjoYuBfcSF3dqEtV8M5Y7dOmwyRz350SLA2Awtr6nsxQGczaark9N4ONghtpzCVVvkRlR1YVTNs9xb5fESHadMOYEORMWN8aXALxJpJYbQNbey5on0ViibpY4_ht2mbdxTYBaDA5PgeqMKoWqP-_rccc9Tr0RlygjejdLVlz1_hw5xT6J0gIUmWOgBFhF8IABs7yTu7fAByksPqqxrX6dpVUpnSkl89PiERaBNLAvjTVZEcEAy_vtzg3gjeDXiSaMOU2GmalzbXWlOnEMZnSIWwZMeaNvVI0yf3bLrc9ijN-izQi9gd7Pu3Ev0kzbmMOQXDoOW_AETFQ7a
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkaAXnoWGp5GAC8o2iZ3E5lbKrhZog7S7Fb1FsWNLqGWDthsh8Sv4ycw4yVIqVeIWJbGTaL7JzHhmPgO8onyhdiIOk5TSjGjTQ-lEFgoTO2ul1CKnRuGjIpsei08n6UnfrO57Yay1vvjMjujQ5_LrxrS0VLaHeokWVKbX4QYa_jTp2rU2SYM888SeqMMiFDyJhh6ZSO0tivlsjNFgko54qgSayW24ibEMwpd2Or9gkjxzf7_VytVep7c-kztQDO_dFZ2cjtq1Hplflygd__vD7sLt3g9l-x1w7sE1u7wPry9yDrNFRzjA3rDZP3TeD-D3QVfgzhrH5vgfZ19RX6gHi80a3azPGXrCbHymm58MxU8eKkKLVcv60kzv2D6bf6OadoeeMBuW6JivY2AfcGC70n7sF02rx3blJylQU743CDE2QdurK3O6A8eT8eJgGvZbO4SGU8BqslSLqs60qnmSOqMcHqLrlCgr0IWouNYuF3ghkkZiEF1zI2seSWeEMkls-UPYWjZLuwvMYHigIxyvVSZU7XBel1rueOyUqHQewNtBuuWPjsGj9JFPpEoPi5JgUfawCOA9AWBzJ7Fv-xMor7JX5rJ2dRxXubQ6l8RIj2-YeeLEPNNOJ1kAOyTjv4_rxRvAywFPJWoxpWaqpW3a85IT61BC-4gF8KgD2mb0ANPHV8z6Am5NF0eH5eHH4vMT2Kav6daInsLWetXaZ-g1rfVzryt_APE-ES8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+Soft+Wearable+Robots+for+Elbow+Assistance+and+Rehabilitation%3A+A+Simplified+Solution+Using+Disturbance+Observer+and+Nonsmooth+Feedback&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Wang%2C+Jiajin&rft.au=Xu%2C+Baoguo&rft.au=Wang%2C+Xin&rft.au=Lai%2C+Jianwei&rft.date=2025&rft.issn=1558-0210&rft.eissn=1558-0210&rft.volume=PP&rft_id=info:doi/10.1109%2FTNSRE.2025.3594750&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon