Sulfoxaflor induces immunotoxicity in zebrafish (Danio rerio) by activating TLR4/NF-κB signaling pathway

Sulfoxaflor is an insecticide that is widely used and affects the nervous system of sucking pests. However, studies on the molecular mechanism of the toxicity of sulfoxaflor to non-target species are limited. Zebrafish (Danio rerio) was used as an experimental subject in this study. Zebrafish embryo...

Full description

Saved in:
Bibliographic Details
Published inFish & shellfish immunology Vol. 137; p. 108743
Main Authors Wang, Kexin, Huang, Yong, Cheng, Bo, Guo, Jing, Peng, Yuyang, Zeng, Suwen, Zhang, June, Lu, Huiqiang
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sulfoxaflor is an insecticide that is widely used and affects the nervous system of sucking pests. However, studies on the molecular mechanism of the toxicity of sulfoxaflor to non-target species are limited. Zebrafish (Danio rerio) was used as an experimental subject in this study. Zebrafish embryos were exposed to 20, 25, and 30 mg/L sulfoxaflor solution to detect hatchability, mortality, heart rate, neutrophil count, oxidative stress, and expression of genes related to apoptosis and immune inflammation. The results showed that zebrafish embryos exposed to sulfoxaflor solution increased mortality and growth retardation, and the number of innate immune cells decreased significantly. In addition, the expression levels of apoptotic and proapoptotic genes increased significantly, and oxidative stress-related indexes changed significantly. Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway was further studied, and the interleukin 6 (IL-6), interleukin 1 beta (IL-1β), cyclooxygenase-2 (COX2), tumor necrosis factor-alpha (TNF-α), TLR4, and myeloid differentiation primary response 88 (MYD88) gene expression levels were significantly up-regulated. We used small molecule inhibitor QNZ for the rescue experiment and detected the expression of relevant target proteins in the QNZ signaling pathway. QNZ reduced the expression of TLR4/NF-κB signaling pathway-related protein NF-κB p65 in the cytoplasm and nucleus and rescued the number of innate immune cells. In summary, sulfoxaflor may induce developmental toxicity and immunotoxicity in zebrafish by activating the TLR4/NF-κB signaling pathway, which provides a basis for further studies on the molecular mechanism of sulfoxaflor action in the aquatic ecosystem and the development and utilization of QNZ. [Display omitted] •Sulfoxaflor induced the immune toxicity of zebrafish embryos.•Sulfoxaflor activated the TLR4/NF-κB signaling pathway.•QNZ increased the number of neutrophils and macrophages in zebrafish.•QNZ inhibited the activation of the TLR4/NF-κB signaling pathway.
AbstractList Sulfoxaflor is an insecticide that is widely used and affects the nervous system of sucking pests. However, studies on the molecular mechanism of the toxicity of sulfoxaflor to non-target species are limited. Zebrafish (Danio rerio) was used as an experimental subject in this study. Zebrafish embryos were exposed to 20, 25, and 30 mg/L sulfoxaflor solution to detect hatchability, mortality, heart rate, neutrophil count, oxidative stress, and expression of genes related to apoptosis and immune inflammation. The results showed that zebrafish embryos exposed to sulfoxaflor solution increased mortality and growth retardation, and the number of innate immune cells decreased significantly. In addition, the expression levels of apoptotic and proapoptotic genes increased significantly, and oxidative stress-related indexes changed significantly. Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway was further studied, and the interleukin 6 (IL-6), interleukin 1 beta (IL-1β), cyclooxygenase-2 (COX2), tumor necrosis factor-alpha (TNF-α), TLR4, and myeloid differentiation primary response 88 (MYD88) gene expression levels were significantly up-regulated. We used small molecule inhibitor QNZ for the rescue experiment and detected the expression of relevant target proteins in the QNZ signaling pathway. QNZ reduced the expression of TLR4/NF-κB signaling pathway-related protein NF-κB p65 in the cytoplasm and nucleus and rescued the number of innate immune cells. In summary, sulfoxaflor may induce developmental toxicity and immunotoxicity in zebrafish by activating the TLR4/NF-κB signaling pathway, which provides a basis for further studies on the molecular mechanism of sulfoxaflor action in the aquatic ecosystem and the development and utilization of QNZ.
Sulfoxaflor is an insecticide that is widely used and affects the nervous system of sucking pests. However, studies on the molecular mechanism of the toxicity of sulfoxaflor to non-target species are limited. Zebrafish (Danio rerio) was used as an experimental subject in this study. Zebrafish embryos were exposed to 20, 25, and 30 mg/L sulfoxaflor solution to detect hatchability, mortality, heart rate, neutrophil count, oxidative stress, and expression of genes related to apoptosis and immune inflammation. The results showed that zebrafish embryos exposed to sulfoxaflor solution increased mortality and growth retardation, and the number of innate immune cells decreased significantly. In addition, the expression levels of apoptotic and proapoptotic genes increased significantly, and oxidative stress-related indexes changed significantly. Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway was further studied, and the interleukin 6 (IL-6), interleukin 1 beta (IL-1β), cyclooxygenase-2 (COX2), tumor necrosis factor-alpha (TNF-α), TLR4, and myeloid differentiation primary response 88 (MYD88) gene expression levels were significantly up-regulated. We used small molecule inhibitor QNZ for the rescue experiment and detected the expression of relevant target proteins in the QNZ signaling pathway. QNZ reduced the expression of TLR4/NF-κB signaling pathway-related protein NF-κB p65 in the cytoplasm and nucleus and rescued the number of innate immune cells. In summary, sulfoxaflor may induce developmental toxicity and immunotoxicity in zebrafish by activating the TLR4/NF-κB signaling pathway, which provides a basis for further studies on the molecular mechanism of sulfoxaflor action in the aquatic ecosystem and the development and utilization of QNZ.Sulfoxaflor is an insecticide that is widely used and affects the nervous system of sucking pests. However, studies on the molecular mechanism of the toxicity of sulfoxaflor to non-target species are limited. Zebrafish (Danio rerio) was used as an experimental subject in this study. Zebrafish embryos were exposed to 20, 25, and 30 mg/L sulfoxaflor solution to detect hatchability, mortality, heart rate, neutrophil count, oxidative stress, and expression of genes related to apoptosis and immune inflammation. The results showed that zebrafish embryos exposed to sulfoxaflor solution increased mortality and growth retardation, and the number of innate immune cells decreased significantly. In addition, the expression levels of apoptotic and proapoptotic genes increased significantly, and oxidative stress-related indexes changed significantly. Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway was further studied, and the interleukin 6 (IL-6), interleukin 1 beta (IL-1β), cyclooxygenase-2 (COX2), tumor necrosis factor-alpha (TNF-α), TLR4, and myeloid differentiation primary response 88 (MYD88) gene expression levels were significantly up-regulated. We used small molecule inhibitor QNZ for the rescue experiment and detected the expression of relevant target proteins in the QNZ signaling pathway. QNZ reduced the expression of TLR4/NF-κB signaling pathway-related protein NF-κB p65 in the cytoplasm and nucleus and rescued the number of innate immune cells. In summary, sulfoxaflor may induce developmental toxicity and immunotoxicity in zebrafish by activating the TLR4/NF-κB signaling pathway, which provides a basis for further studies on the molecular mechanism of sulfoxaflor action in the aquatic ecosystem and the development and utilization of QNZ.
Sulfoxaflor is an insecticide that is widely used and affects the nervous system of sucking pests. However, studies on the molecular mechanism of the toxicity of sulfoxaflor to non-target species are limited. Zebrafish (Danio rerio) was used as an experimental subject in this study. Zebrafish embryos were exposed to 20, 25, and 30 mg/L sulfoxaflor solution to detect hatchability, mortality, heart rate, neutrophil count, oxidative stress, and expression of genes related to apoptosis and immune inflammation. The results showed that zebrafish embryos exposed to sulfoxaflor solution increased mortality and growth retardation, and the number of innate immune cells decreased significantly. In addition, the expression levels of apoptotic and proapoptotic genes increased significantly, and oxidative stress-related indexes changed significantly. Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway was further studied, and the interleukin 6 (IL-6), interleukin 1 beta (IL-1β), cyclooxygenase-2 (COX2), tumor necrosis factor-alpha (TNF-α), TLR4, and myeloid differentiation primary response 88 (MYD88) gene expression levels were significantly up-regulated. We used small molecule inhibitor QNZ for the rescue experiment and detected the expression of relevant target proteins in the QNZ signaling pathway. QNZ reduced the expression of TLR4/NF-κB signaling pathway-related protein NF-κB p65 in the cytoplasm and nucleus and rescued the number of innate immune cells. In summary, sulfoxaflor may induce developmental toxicity and immunotoxicity in zebrafish by activating the TLR4/NF-κB signaling pathway, which provides a basis for further studies on the molecular mechanism of sulfoxaflor action in the aquatic ecosystem and the development and utilization of QNZ. [Display omitted] •Sulfoxaflor induced the immune toxicity of zebrafish embryos.•Sulfoxaflor activated the TLR4/NF-κB signaling pathway.•QNZ increased the number of neutrophils and macrophages in zebrafish.•QNZ inhibited the activation of the TLR4/NF-κB signaling pathway.
Sulfoxaflor is an insecticide that is widely used and affects the nervous system of sucking pests. However, studies on the molecular mechanism of the toxicity of sulfoxaflor to non-target species are limited. Zebrafish (Danio rerio) was used as an experimental subject in this study. Zebrafish embryos were exposed to 20, 25, and 30 mg/L sulfoxaflor solution to detect hatchability, mortality, heart rate, neutrophil count, oxidative stress, and expression of genes related to apoptosis and immune inflammation. The results showed that zebrafish embryos exposed to sulfoxaflor solution increased mortality and growth retardation, and the number of innate immune cells decreased significantly. In addition, the expression levels of apoptotic and proapoptotic genes increased significantly, and oxidative stress-related indexes changed significantly. Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway was further studied, and the interleukin 6 (IL-6), interleukin 1 beta (IL-1β), cyclooxygenase-2 (COX2), tumor necrosis factor-alpha (TNF-α), TLR4, and myeloid differentiation primary response 88 (MYD88) gene expression levels were significantly up-regulated. We used small molecule inhibitor QNZ for the rescue experiment and detected the expression of relevant target proteins in the QNZ signaling pathway. QNZ reduced the expression of TLR4/NF-κB signaling pathway-related protein NF-κB p65 in the cytoplasm and nucleus and rescued the number of innate immune cells. In summary, sulfoxaflor may induce developmental toxicity and immunotoxicity in zebrafish by activating the TLR4/NF-κB signaling pathway, which provides a basis for further studies on the molecular mechanism of sulfoxaflor action in the aquatic ecosystem and the development and utilization of QNZ.
ArticleNumber 108743
Author Zeng, Suwen
Huang, Yong
Peng, Yuyang
Wang, Kexin
Cheng, Bo
Lu, Huiqiang
Zhang, June
Guo, Jing
Author_xml – sequence: 1
  givenname: Kexin
  surname: Wang
  fullname: Wang, Kexin
  organization: Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
– sequence: 2
  givenname: Yong
  surname: Huang
  fullname: Huang, Yong
  organization: Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
– sequence: 3
  givenname: Bo
  surname: Cheng
  fullname: Cheng, Bo
  organization: Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
– sequence: 4
  givenname: Jing
  surname: Guo
  fullname: Guo, Jing
  organization: Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
– sequence: 5
  givenname: Yuyang
  surname: Peng
  fullname: Peng, Yuyang
  organization: Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
– sequence: 6
  givenname: Suwen
  surname: Zeng
  fullname: Zeng, Suwen
  organization: Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
– sequence: 7
  givenname: June
  surname: Zhang
  fullname: Zhang, June
  email: 452963665@qq.com
  organization: College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
– sequence: 8
  givenname: Huiqiang
  surname: Lu
  fullname: Lu, Huiqiang
  email: luhq2@126.com
  organization: Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37062434$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1DAUhi1URG88ABvkZVlkaseOk4gVLRSQRiD1srYc57g9o8QebKd0eDQegmcio2k3LCpWPj76vrP4_0Oy54MHQt5wtuCMq9PVwiVclKwU87-ppXhBDjhrq6JtZb23nStWSCWbfXKY0ooxpoRir8i-qJkqpZAHBK-mwYUH44YQKfp-spAojuPkQw4PaDFv5jX9BV00DtMdPfloPAYaIWJ4R7sNNTbjvcnob-n18lKefrso_vw-owlvvRm227XJdz_N5pi8dGZI8PrxPSI3F5-uz78Uy--fv55_WBZWMJ4LANVZJxomuBJ9z8A10HYN50zISqrOOFc5DraUtZJWWWkAWt4J18u-cn0jjsjJ7u46hh8TpKxHTBaGwXgIU9JlI2RZqbbi_4GyUpaKVXJG3z6iUzdCr9cRRxM3-inJGah3gI0hpQhOz9nNsQSfo8FBc6a3nemVnjvT2870rrPZ5P-YT8efc97vHJiTvEeIOlkEb6HHCDbrPuAz9l867K-L
CitedBy_id crossref_primary_10_1016_j_ecoenv_2024_116023
crossref_primary_10_1016_j_scitotenv_2024_176975
crossref_primary_10_1039_D4EM00798K
crossref_primary_10_1016_j_pestbp_2023_105526
crossref_primary_10_1016_j_pestbp_2023_105625
crossref_primary_10_1016_j_envres_2023_118010
Cites_doi 10.1089/ars.2013.5278
10.1111/1365-2664.13519
10.1093/toxsci/kfy044
10.1002/tox.23323
10.1007/s12282-021-01224-1
10.1182/blood.V98.10.3087
10.1007/978-1-4614-0106-3_15
10.1016/j.chemosphere.2020.125870
10.1016/j.arcmed.2021.03.005
10.1002/wsbm.1331
10.1530/JOE-18-0459
10.1016/j.chemosphere.2020.125941
10.1016/j.cub.2014.03.034
10.3389/fimmu.2019.00705
10.3109/10409238.2013.790873
10.1021/acs.jafc.8b04633
10.1007/s11010-019-03667-9
10.1101/cshperspect.a001651
10.1016/j.freeradbiomed.2009.05.018
10.1177/00368504211028361
10.1016/j.ceb.2014.09.010
10.1016/j.pestbp.2019.04.009
10.1016/j.pestbp.2021.104924
10.3109/10408444.2014.910750
10.1007/s10753-016-0447-7
10.1016/j.scitotenv.2021.148680
10.1042/BSR20180459
10.1021/acs.jmedchem.8b00124
10.3390/ijerph17051740
10.1016/j.pbi.2011.12.002
10.1016/j.stem.2020.01.017
10.3390/biom11040589
10.1093/jxb/erw080
10.1038/nature12111
10.1002/ps.3413
10.1113/jphysiol.2003.049478
10.1089/ars.2013.5662
10.1002/jat.4031
10.32471/exp-oncology.2312-8852.vol-41-no-1.12414
10.1021/acs.jafc.6b00285
10.1007/s00011-018-1151-x
10.1016/j.biocel.2014.07.010
10.1002/bmc.4101
10.1016/bs.ctdb.2016.10.007
10.1016/j.semcdb.2017.05.023
10.1007/s00428-005-1264-9
10.3390/biology10121234
10.1002/ps.5282
10.1016/j.tplants.2016.08.002
10.1089/ars.2011.3999
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier Ltd.
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.fsi.2023.108743
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
EISSN 1095-9947
ExternalDocumentID 37062434
10_1016_j_fsi_2023_108743
S1050464823002292
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AAAJQ
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATLK
AAXUO
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CAG
CBWCG
CJTIS
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG5
LUGTX
LW8
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SNL
SPCBC
SSA
SSH
SSI
SSZ
T5K
TEORI
TN5
UHS
UNMZH
WUQ
XPP
ZMT
ZU3
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c301t-ee6bcf3803163dd0ef8e9b811034546baff5f1ec24764c6c4aee91b3fd4d5fd83
IEDL.DBID .~1
ISSN 1050-4648
1095-9947
IngestDate Thu Jul 10 22:50:30 EDT 2025
Fri Jul 11 11:32:20 EDT 2025
Wed Feb 19 02:24:06 EST 2025
Tue Jul 01 01:09:44 EDT 2025
Thu Apr 24 23:08:13 EDT 2025
Fri Feb 23 02:38:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sulfoxaflor
Zebrafish
Inflammatory response
TLR4/NF-κB signal pathway
Immunotoxicity
Cell apoptosis
Language English
License Copyright © 2023. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c301t-ee6bcf3803163dd0ef8e9b811034546baff5f1ec24764c6c4aee91b3fd4d5fd83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37062434
PQID 2802426054
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2834256951
proquest_miscellaneous_2802426054
pubmed_primary_37062434
crossref_citationtrail_10_1016_j_fsi_2023_108743
crossref_primary_10_1016_j_fsi_2023_108743
elsevier_sciencedirect_doi_10_1016_j_fsi_2023_108743
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
2023-Jun
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Fish & shellfish immunology
PublicationTitleAlternate Fish Shellfish Immunol
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Deng, Zhang, Cheng, Huang, Meng, Lu (bib23) 2021; 36
Bambino, Chu (bib13) 2017; 124
Mignolet-Spruyt, Xu, Idanheimo, Hoeberichts, Muhlenbock, Brosche, Kangasjarvi (bib32) 2016; 67
Lawrence (bib18) 2009; 1
Zhang, Chen, Ma, Wu, Hao, Jiang (bib43) 2018; 61
Cutler, Slater, Edmunds, Maienfisch, Hall, Earley, Crossthwaite (bib24) 2013; 69
Foyer, Noctor (bib30) 2013; 18
Truong, Carroll (bib37) 2013; 48
Cheng, Zhang, Hu, Peng, Yang, Liao, Lu (bib21) 2020; 247
Tang, Sun, Wang, Chen, Luo (bib48) 2018; 19
Mitchell, Vargas, Hoffmann (bib19) 2016; 8
Linguadoca, Rizzi, Villa, Brown (bib11) 2021; 795
Keightley, Wang, Pazhakh, Lieschke (bib27) 2014; 56
Waza, Hamid, Ali, Bhat, Bhat (bib45) 2018; 67
Turrens (bib29) 2003; 552
Lieschke, Oates, Crowhurst, Ward, Layton (bib1) 2001; 98
Katoch, Patial (bib15) 2021; 41
Dorrington, Fraser (bib49) 2019; 10
Konig, Muthuramalingam, Dietz (bib31) 2012; 15
Zhang, Wang, Liu, Fang, Liu (bib4) 2020; 17
Solyanik (bib50) 2019; 41
Miao, St Clair (bib41) 2009; 47
Mohammad Jafari, Shayesteh, Ala, Yousefi-Manesh, Rashidian, Hashemian, Dehpour (bib17) 2021; 52
de Laval, Maurizio, Kandalla, Brisou, Simonnet, Huber, Sieweke (bib28) 2020; 26
Kabir, Abd El-Aty, Rahman, Chung, Lee, Kim, Shim (bib6) 2018; 32
Reczek, Chandel (bib35) 2015; 33
Rasoulpour, Terry, LeBaron, Stebbins, Ellis-Hutchings, Billington (bib25) 2014; 44
Fang, Zhang, You, Sun, Qiu, Kong (bib10) 2018; 66
Horzmann, Freeman (bib14) 2018; 163
Jia, Cheng, Huang, Xiao, Bai, Liao, Lu (bib22) 2020; 248
Dolcet, Llobet, Pallares, Matias-Guiu (bib47) 2005; 446
Ma, Tang, Xia, Lv, Gao (bib2) 2019; 158
Yang, Lian (bib39) 2020; 467
Howe, Clark, Torroja, Torrance, Berthelot, Muffato, Stemple (bib16) 2013; 496
Novoa, Figueras (bib26) 2012; 946
Vaahtera, Brosche, Wrzaczek, Kangasjarvi (bib33) 2014; 21
Consoli, Sorrenti, Grosso, Vanella (bib44) 2021; 11
Pey, Megarity, Timson (bib42) 2019; 39
Teng, Hayashida, Murata, Nagayama, Seki, Takahashi, Kitagawa (bib51) 2021; 28
Liao, Jin, Zhang, Ali, Mao, Xu, Wan (bib5) 2019; 75
Fukai, Ushio-Fukai (bib40) 2011; 15
Tian, Xu, Dong, Liu, Wu, Zhao, Zheng (bib7) 2016; 64
Schieber, Chandel (bib36) 2014; 24
Lai, Liu, Liu, Qi, Liu, Zhu, Hu (bib46) 2017; 40
Shukla, Kaushal, Sankhwar, Manohar, Dwivedi (bib20) 2019; 240
Moloney, Cotter (bib38) 2018; 80
Piner Benli, Celik (bib12) 2021; 104
Mittler (bib34) 2017; 22
Siviter, Horner, Brown, Leadbeater (bib3) 2020; 57
Damasceno, Rato, Simoes, Morao, Meireles, Novais, Lemos (bib9) 2021; 10
Watson, Siebert, Wang, Loso, Sparks (bib8) 2021; 178
Keightley (10.1016/j.fsi.2023.108743_bib27) 2014; 56
Turrens (10.1016/j.fsi.2023.108743_bib29) 2003; 552
Kabir (10.1016/j.fsi.2023.108743_bib6) 2018; 32
Reczek (10.1016/j.fsi.2023.108743_bib35) 2015; 33
Mitchell (10.1016/j.fsi.2023.108743_bib19) 2016; 8
Fang (10.1016/j.fsi.2023.108743_bib10) 2018; 66
Wang (10.1016/j.fsi.2023.108743_bib23) 2021; 36
Mignolet-Spruyt (10.1016/j.fsi.2023.108743_bib32) 2016; 67
Fukai (10.1016/j.fsi.2023.108743_bib40) 2011; 15
Waza (10.1016/j.fsi.2023.108743_bib45) 2018; 67
Zhang (10.1016/j.fsi.2023.108743_bib4) 2020; 17
Piner Benli (10.1016/j.fsi.2023.108743_bib12) 2021; 104
Dolcet (10.1016/j.fsi.2023.108743_bib47) 2005; 446
Rasoulpour (10.1016/j.fsi.2023.108743_bib25) 2014; 44
Konig (10.1016/j.fsi.2023.108743_bib31) 2012; 15
Horzmann (10.1016/j.fsi.2023.108743_bib14) 2018; 163
Bambino (10.1016/j.fsi.2023.108743_bib13) 2017; 124
de Laval (10.1016/j.fsi.2023.108743_bib28) 2020; 26
Pey (10.1016/j.fsi.2023.108743_bib42) 2019; 39
Lawrence (10.1016/j.fsi.2023.108743_bib18) 2009; 1
Consoli (10.1016/j.fsi.2023.108743_bib44) 2021; 11
Vaahtera (10.1016/j.fsi.2023.108743_bib33) 2014; 21
Lai (10.1016/j.fsi.2023.108743_bib46) 2017; 40
Siviter (10.1016/j.fsi.2023.108743_bib3) 2020; 57
Zhang (10.1016/j.fsi.2023.108743_bib43) 2018; 61
Howe (10.1016/j.fsi.2023.108743_bib16) 2013; 496
Tang (10.1016/j.fsi.2023.108743_bib48) 2018; 19
Schieber (10.1016/j.fsi.2023.108743_bib36) 2014; 24
Damasceno (10.1016/j.fsi.2023.108743_bib9) 2021; 10
Foyer (10.1016/j.fsi.2023.108743_bib30) 2013; 18
Yang (10.1016/j.fsi.2023.108743_bib39) 2020; 467
Ma (10.1016/j.fsi.2023.108743_bib2) 2019; 158
Moloney (10.1016/j.fsi.2023.108743_bib38) 2018; 80
Tian (10.1016/j.fsi.2023.108743_bib7) 2016; 64
Cheng (10.1016/j.fsi.2023.108743_bib21) 2020; 247
Katoch (10.1016/j.fsi.2023.108743_bib15) 2021; 41
Mittler (10.1016/j.fsi.2023.108743_bib34) 2017; 22
Truong (10.1016/j.fsi.2023.108743_bib37) 2013; 48
Linguadoca (10.1016/j.fsi.2023.108743_bib11) 2021; 795
Teng (10.1016/j.fsi.2023.108743_bib51) 2021; 28
Novoa (10.1016/j.fsi.2023.108743_bib26) 2012; 946
Miao (10.1016/j.fsi.2023.108743_bib41) 2009; 47
Dorrington (10.1016/j.fsi.2023.108743_bib49) 2019; 10
Watson (10.1016/j.fsi.2023.108743_bib8) 2021; 178
Jia (10.1016/j.fsi.2023.108743_bib22) 2020; 248
Liao (10.1016/j.fsi.2023.108743_bib5) 2019; 75
Solyanik (10.1016/j.fsi.2023.108743_bib50) 2019; 41
Lieschke (10.1016/j.fsi.2023.108743_bib1) 2001; 98
Shukla (10.1016/j.fsi.2023.108743_bib20) 2019; 240
Mohammad Jafari (10.1016/j.fsi.2023.108743_bib17) 2021; 52
Cutler (10.1016/j.fsi.2023.108743_bib24) 2013; 69
References_xml – volume: 11
  start-page: 589
  year: 2021
  ident: bib44
  article-title: Heme oxygenase-1 signaling and redox homeostasis in physiopathological conditions
  publication-title: Biomolecules
– volume: 446
  start-page: 475
  year: 2005
  end-page: 482
  ident: bib47
  article-title: NF-kB in development and progression of human cancer
  publication-title: Virchows Arch.
– volume: 75
  start-page: 1646
  year: 2019
  end-page: 1654
  ident: bib5
  article-title: Characterization of sulfoxaflor resistance in the brown planthopper, Nilaparvata lugens (Stal)
  publication-title: Pest Manag. Sci.
– volume: 104
  year: 2021
  ident: bib12
  article-title: Glutathione and its dependent enzymes' modulatory responses to neonicotinoid insecticide sulfoxaflor induced oxidative damage in zebrafish in vivo
  publication-title: Sci. Prog.
– volume: 248
  year: 2020
  ident: bib22
  article-title: Thiophanate-methyl induces severe hepatotoxicity in zebrafish
  publication-title: Chemosphere
– volume: 552
  start-page: 335
  year: 2003
  end-page: 344
  ident: bib29
  article-title: Mitochondrial formation of reactive oxygen species
  publication-title: J. Physiol.
– volume: 15
  start-page: 261
  year: 2012
  end-page: 268
  ident: bib31
  article-title: Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets
  publication-title: Curr. Opin. Plant Biol.
– volume: 57
  start-page: 160
  year: 2020
  end-page: 169
  ident: bib3
  article-title: Sulfoxaflor exposure reduces egg laying in bumblebees Bombus terrestris
  publication-title: J. Appl. Ecol.
– volume: 66
  start-page: 11902
  year: 2018
  end-page: 11908
  ident: bib10
  article-title: Lethal toxicity and sublethal metabolic interference effects of sulfoxaflor on the earthworm (Eisenia fetida)
  publication-title: J. Agric. Food Chem.
– volume: 47
  start-page: 344
  year: 2009
  end-page: 356
  ident: bib41
  article-title: Regulation of superoxide dismutase genes: implications in disease
  publication-title: Free Radic. Biol. Med.
– volume: 26
  start-page: 657
  year: 2020
  end-page: 674 e658
  ident: bib28
  article-title: C/EBPbeta-Dependent epigenetic memory induces trained immunity in hematopoietic stem cells
  publication-title: Cell Stem Cell
– volume: 41
  start-page: 3
  year: 2019
  end-page: 6
  ident: bib50
  article-title: Quinazoline compounds for antitumor treatment
  publication-title: Exp. Oncol.
– volume: 8
  start-page: 227
  year: 2016
  end-page: 241
  ident: bib19
  article-title: Signaling via the NFkappaB system
  publication-title: Wiley Interdiscip.Rev.Syst.Biol.Med.
– volume: 41
  start-page: 33
  year: 2021
  end-page: 51
  ident: bib15
  article-title: Zebrafish: an emerging model system to study liver diseases and related drug discovery
  publication-title: J. Appl. Toxicol.
– volume: 17
  start-page: 1740
  year: 2020
  ident: bib4
  article-title: The toxic effects of sulfoxaflor induced in earthworms (Eisenia fetida) under effective concentrations
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 158
  start-page: 40
  year: 2019
  end-page: 46
  ident: bib2
  article-title: Fitness costs of sulfoxaflor resistance in the cotton aphid, Aphis gossypii Glover
  publication-title: Pestic. Biochem. Physiol.
– volume: 67
  start-page: 579
  year: 2018
  end-page: 588
  ident: bib45
  article-title: A review on heme oxygenase-1 induction: is it a necessary evil
  publication-title: Inflamm. Res.
– volume: 61
  start-page: 6983
  year: 2018
  end-page: 7003
  ident: bib43
  article-title: NAD(P)H:Quinone oxidoreductase 1 (NQO1) as a therapeutic and diagnostic target in cancer
  publication-title: J. Med. Chem.
– volume: 1
  year: 2009
  ident: bib18
  article-title: The nuclear factor NF-kappaB pathway in inflammation
  publication-title: Cold Spring Harbor Perspect. Biol.
– volume: 467
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib39
  article-title: ROS and diseases: role in metabolism and energy supply
  publication-title: Mol. Cell. Biochem.
– volume: 56
  start-page: 92
  year: 2014
  end-page: 106
  ident: bib27
  article-title: Delineating the roles of neutrophils and macrophages in zebrafish regeneration models
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 10
  start-page: 705
  year: 2019
  ident: bib49
  article-title: NF-kappaB signaling in macrophages: dynamics, crosstalk, and signal integration
  publication-title: Front. Immunol.
– volume: 19
  start-page: 172
  year: 2018
  end-page: 178
  ident: bib48
  article-title: RUNX1: a regulator of NF-kB signaling in pulmonary diseases
  publication-title: Curr. Protein Pept. Sci.
– volume: 33
  start-page: 8
  year: 2015
  end-page: 13
  ident: bib35
  article-title: ROS-dependent signal transduction
  publication-title: Curr. Opin. Cell Biol.
– volume: 64
  start-page: 2641
  year: 2016
  end-page: 2646
  ident: bib7
  article-title: Determination of sulfoxaflor in animal origin foods using dispersive solid-phase extraction and multiplug filtration cleanup method based on multiwalled carbon nanotubes by ultraperformance liquid chromatography/tandem mass spectrometry
  publication-title: J. Agric. Food Chem.
– volume: 44
  start-page: 25
  year: 2014
  end-page: 44
  ident: bib25
  article-title: Mode-of-action and human relevance framework analysis for rat Leydig cell tumors associated with sulfoxaflor
  publication-title: Crit. Rev. Toxicol.
– volume: 48
  start-page: 332
  year: 2013
  end-page: 356
  ident: bib37
  article-title: Redox regulation of protein kinases
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– volume: 32
  year: 2018
  ident: bib6
  article-title: Chromatographic determination, decline dynamic and risk assessment of sulfoxaflor in Asian pear and oriental melon
  publication-title: Biomed. Chromatogr.
– volume: 163
  start-page: 5
  year: 2018
  end-page: 12
  ident: bib14
  article-title: Making waves: new developments in toxicology with the zebrafish
  publication-title: Toxicol. Sci.
– volume: 21
  start-page: 1422
  year: 2014
  end-page: 1441
  ident: bib33
  article-title: Specificity in ROS signaling and transcript signatures
  publication-title: Antioxidants Redox Signal.
– volume: 39
  year: 2019
  ident: bib42
  article-title: NAD(P)H quinone oxidoreductase (NQO1): an enzyme which needs just enough mobility, in just the right places
  publication-title: Biosci. Rep.
– volume: 795
  year: 2021
  ident: bib11
  article-title: Sulfoxaflor and nutritional deficiency synergistically reduce survival and fecundity in bumblebees
  publication-title: Sci. Total Environ.
– volume: 52
  start-page: 595
  year: 2021
  end-page: 602
  ident: bib17
  article-title: Dapsone ameliorates colitis through TLR4/NF-kB pathway in TNBS induced colitis model in rat
  publication-title: Arch. Med. Res.
– volume: 69
  start-page: 607
  year: 2013
  end-page: 619
  ident: bib24
  article-title: Investigating the mode of action of sulfoxaflor: a fourth-generation neonicotinoid
  publication-title: Pest Manag. Sci.
– volume: 10
  start-page: 1234
  year: 2021
  ident: bib9
  article-title: Exposure to the insecticide sulfoxaflor affects behaviour and biomarkers responses of Carcinus maenas (Crustacea: Decapoda)
  publication-title: Biology
– volume: 40
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib46
  article-title: Indirubin inhibits LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways
  publication-title: Inflammation
– volume: 80
  start-page: 50
  year: 2018
  end-page: 64
  ident: bib38
  article-title: ROS signalling in the biology of cancer
  publication-title: Semin. Cell Dev. Biol.
– volume: 98
  start-page: 3087
  year: 2001
  end-page: 3096
  ident: bib1
  article-title: Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish
  publication-title: Blood
– volume: 24
  start-page: R453
  year: 2014
  end-page: R462
  ident: bib36
  article-title: ROS function in redox signaling and oxidative stress
  publication-title: Curr. Biol.
– volume: 240
  start-page: 417
  year: 2019
  end-page: 429
  ident: bib20
  article-title: Inhibition of TPPP3 attenuates β-catenin/NF-κB/COX-2 signaling in endometrial stromal cells and impairs decidualization
  publication-title: J. Endocrinol.
– volume: 946
  start-page: 253
  year: 2012
  end-page: 275
  ident: bib26
  article-title: Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases
  publication-title: Adv. Exp. Med. Biol.
– volume: 22
  start-page: 11
  year: 2017
  end-page: 19
  ident: bib34
  article-title: ROS are good
  publication-title: Trends Plant Sci.
– volume: 28
  start-page: 884
  year: 2021
  end-page: 895
  ident: bib51
  article-title: A transposon screen identifies enhancement of NF-kappaB pathway as a mechanism of resistance to eribulin
  publication-title: Breast Cancer
– volume: 496
  start-page: 498
  year: 2013
  end-page: 503
  ident: bib16
  article-title: The zebrafish reference genome sequence and its relationship to the human genome
  publication-title: Nature
– volume: 178
  year: 2021
  ident: bib8
  article-title: Sulfoxaflor - a sulfoximine insecticide: review and analysis of mode of action, resistance and cross-resistance
  publication-title: Pestic. Biochem. Physiol.
– volume: 18
  start-page: 2087
  year: 2013
  end-page: 2090
  ident: bib30
  article-title: Redox signaling in plants
  publication-title: Antioxidants Redox Signal.
– volume: 124
  start-page: 331
  year: 2017
  end-page: 367
  ident: bib13
  article-title: Zebrafish in toxicology and environmental health
  publication-title: Curr. Top. Dev. Biol.
– volume: 247
  year: 2020
  ident: bib21
  article-title: The immunotoxicity and neurobehavioral toxicity of zebrafish induced by famoxadone-cymoxanil
  publication-title: Chemosphere
– volume: 36
  start-page: 2062
  year: 2021
  end-page: 2072
  ident: bib23
  article-title: Toxicity of thioacetamide and protective effects of quercetin in zebrafish (Danio rerio) larvae
  publication-title: Environ. Toxicol.
– volume: 67
  start-page: 3831
  year: 2016
  end-page: 3844
  ident: bib32
  article-title: Spreading the news: subcellular and organellar reactive oxygen species production and signalling
  publication-title: J. Exp. Bot.
– volume: 15
  start-page: 1583
  year: 2011
  end-page: 1606
  ident: bib40
  article-title: Superoxide dismutases: role in redox signaling, vascular function, and diseases
  publication-title: Antioxidants Redox Signal.
– volume: 18
  start-page: 2087
  issue: 16
  year: 2013
  ident: 10.1016/j.fsi.2023.108743_bib30
  article-title: Redox signaling in plants
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2013.5278
– volume: 57
  start-page: 160
  issue: 1
  year: 2020
  ident: 10.1016/j.fsi.2023.108743_bib3
  article-title: Sulfoxaflor exposure reduces egg laying in bumblebees Bombus terrestris
  publication-title: J. Appl. Ecol.
  doi: 10.1111/1365-2664.13519
– volume: 163
  start-page: 5
  issue: 1
  year: 2018
  ident: 10.1016/j.fsi.2023.108743_bib14
  article-title: Making waves: new developments in toxicology with the zebrafish
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfy044
– volume: 36
  start-page: 2062
  issue: 10
  year: 2021
  ident: 10.1016/j.fsi.2023.108743_bib23
  article-title: Toxicity of thioacetamide and protective effects of quercetin in zebrafish (Danio rerio) larvae
  publication-title: Environ. Toxicol.
  doi: 10.1002/tox.23323
– volume: 28
  start-page: 884
  issue: 4
  year: 2021
  ident: 10.1016/j.fsi.2023.108743_bib51
  article-title: A transposon screen identifies enhancement of NF-kappaB pathway as a mechanism of resistance to eribulin
  publication-title: Breast Cancer
  doi: 10.1007/s12282-021-01224-1
– volume: 98
  start-page: 3087
  issue: 10
  year: 2001
  ident: 10.1016/j.fsi.2023.108743_bib1
  article-title: Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish
  publication-title: Blood
  doi: 10.1182/blood.V98.10.3087
– volume: 946
  start-page: 253
  year: 2012
  ident: 10.1016/j.fsi.2023.108743_bib26
  article-title: Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4614-0106-3_15
– volume: 247
  year: 2020
  ident: 10.1016/j.fsi.2023.108743_bib21
  article-title: The immunotoxicity and neurobehavioral toxicity of zebrafish induced by famoxadone-cymoxanil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.125870
– volume: 52
  start-page: 595
  issue: 6
  year: 2021
  ident: 10.1016/j.fsi.2023.108743_bib17
  article-title: Dapsone ameliorates colitis through TLR4/NF-kB pathway in TNBS induced colitis model in rat
  publication-title: Arch. Med. Res.
  doi: 10.1016/j.arcmed.2021.03.005
– volume: 8
  start-page: 227
  issue: 3
  year: 2016
  ident: 10.1016/j.fsi.2023.108743_bib19
  article-title: Signaling via the NFkappaB system
  publication-title: Wiley Interdiscip.Rev.Syst.Biol.Med.
  doi: 10.1002/wsbm.1331
– volume: 240
  start-page: 417
  issue: 3
  year: 2019
  ident: 10.1016/j.fsi.2023.108743_bib20
  article-title: Inhibition of TPPP3 attenuates β-catenin/NF-κB/COX-2 signaling in endometrial stromal cells and impairs decidualization
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-18-0459
– volume: 248
  year: 2020
  ident: 10.1016/j.fsi.2023.108743_bib22
  article-title: Thiophanate-methyl induces severe hepatotoxicity in zebrafish
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.125941
– volume: 24
  start-page: R453
  issue: 10
  year: 2014
  ident: 10.1016/j.fsi.2023.108743_bib36
  article-title: ROS function in redox signaling and oxidative stress
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.03.034
– volume: 10
  start-page: 705
  issue: 9
  year: 2019
  ident: 10.1016/j.fsi.2023.108743_bib49
  article-title: NF-kappaB signaling in macrophages: dynamics, crosstalk, and signal integration
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00705
– volume: 48
  start-page: 332
  issue: 4
  year: 2013
  ident: 10.1016/j.fsi.2023.108743_bib37
  article-title: Redox regulation of protein kinases
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409238.2013.790873
– volume: 66
  start-page: 11902
  issue: 45
  year: 2018
  ident: 10.1016/j.fsi.2023.108743_bib10
  article-title: Lethal toxicity and sublethal metabolic interference effects of sulfoxaflor on the earthworm (Eisenia fetida)
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.8b04633
– volume: 467
  start-page: 1
  issue: 1–2
  year: 2020
  ident: 10.1016/j.fsi.2023.108743_bib39
  article-title: ROS and diseases: role in metabolism and energy supply
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-019-03667-9
– volume: 1
  issue: 6
  year: 2009
  ident: 10.1016/j.fsi.2023.108743_bib18
  article-title: The nuclear factor NF-kappaB pathway in inflammation
  publication-title: Cold Spring Harbor Perspect. Biol.
  doi: 10.1101/cshperspect.a001651
– volume: 47
  start-page: 344
  issue: 4
  year: 2009
  ident: 10.1016/j.fsi.2023.108743_bib41
  article-title: Regulation of superoxide dismutase genes: implications in disease
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2009.05.018
– volume: 104
  issue: 2
  year: 2021
  ident: 10.1016/j.fsi.2023.108743_bib12
  article-title: Glutathione and its dependent enzymes' modulatory responses to neonicotinoid insecticide sulfoxaflor induced oxidative damage in zebrafish in vivo
  publication-title: Sci. Prog.
  doi: 10.1177/00368504211028361
– volume: 33
  start-page: 8
  year: 2015
  ident: 10.1016/j.fsi.2023.108743_bib35
  article-title: ROS-dependent signal transduction
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2014.09.010
– volume: 158
  start-page: 40
  year: 2019
  ident: 10.1016/j.fsi.2023.108743_bib2
  article-title: Fitness costs of sulfoxaflor resistance in the cotton aphid, Aphis gossypii Glover
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2019.04.009
– volume: 178
  year: 2021
  ident: 10.1016/j.fsi.2023.108743_bib8
  article-title: Sulfoxaflor - a sulfoximine insecticide: review and analysis of mode of action, resistance and cross-resistance
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2021.104924
– volume: 44
  start-page: 25
  issue: Suppl 2
  year: 2014
  ident: 10.1016/j.fsi.2023.108743_bib25
  article-title: Mode-of-action and human relevance framework analysis for rat Leydig cell tumors associated with sulfoxaflor
  publication-title: Crit. Rev. Toxicol.
  doi: 10.3109/10408444.2014.910750
– volume: 40
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.fsi.2023.108743_bib46
  article-title: Indirubin inhibits LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways
  publication-title: Inflammation
  doi: 10.1007/s10753-016-0447-7
– volume: 795
  year: 2021
  ident: 10.1016/j.fsi.2023.108743_bib11
  article-title: Sulfoxaflor and nutritional deficiency synergistically reduce survival and fecundity in bumblebees
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.148680
– volume: 39
  issue: 1
  year: 2019
  ident: 10.1016/j.fsi.2023.108743_bib42
  article-title: NAD(P)H quinone oxidoreductase (NQO1): an enzyme which needs just enough mobility, in just the right places
  publication-title: Biosci. Rep.
  doi: 10.1042/BSR20180459
– volume: 61
  start-page: 6983
  issue: 16
  year: 2018
  ident: 10.1016/j.fsi.2023.108743_bib43
  article-title: NAD(P)H:Quinone oxidoreductase 1 (NQO1) as a therapeutic and diagnostic target in cancer
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.8b00124
– volume: 17
  start-page: 1740
  issue: 5
  year: 2020
  ident: 10.1016/j.fsi.2023.108743_bib4
  article-title: The toxic effects of sulfoxaflor induced in earthworms (Eisenia fetida) under effective concentrations
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph17051740
– volume: 15
  start-page: 261
  issue: 3
  year: 2012
  ident: 10.1016/j.fsi.2023.108743_bib31
  article-title: Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2011.12.002
– volume: 26
  start-page: 657
  issue: 5
  year: 2020
  ident: 10.1016/j.fsi.2023.108743_bib28
  article-title: C/EBPbeta-Dependent epigenetic memory induces trained immunity in hematopoietic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2020.01.017
– volume: 11
  start-page: 589
  issue: 4
  year: 2021
  ident: 10.1016/j.fsi.2023.108743_bib44
  article-title: Heme oxygenase-1 signaling and redox homeostasis in physiopathological conditions
  publication-title: Biomolecules
  doi: 10.3390/biom11040589
– volume: 67
  start-page: 3831
  issue: 13
  year: 2016
  ident: 10.1016/j.fsi.2023.108743_bib32
  article-title: Spreading the news: subcellular and organellar reactive oxygen species production and signalling
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw080
– volume: 496
  start-page: 498
  issue: 7446
  year: 2013
  ident: 10.1016/j.fsi.2023.108743_bib16
  article-title: The zebrafish reference genome sequence and its relationship to the human genome
  publication-title: Nature
  doi: 10.1038/nature12111
– volume: 69
  start-page: 607
  issue: 5
  year: 2013
  ident: 10.1016/j.fsi.2023.108743_bib24
  article-title: Investigating the mode of action of sulfoxaflor: a fourth-generation neonicotinoid
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.3413
– volume: 552
  start-page: 335
  issue: Pt 2
  year: 2003
  ident: 10.1016/j.fsi.2023.108743_bib29
  article-title: Mitochondrial formation of reactive oxygen species
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2003.049478
– volume: 21
  start-page: 1422
  issue: 9
  year: 2014
  ident: 10.1016/j.fsi.2023.108743_bib33
  article-title: Specificity in ROS signaling and transcript signatures
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2013.5662
– volume: 41
  start-page: 33
  issue: 1
  year: 2021
  ident: 10.1016/j.fsi.2023.108743_bib15
  article-title: Zebrafish: an emerging model system to study liver diseases and related drug discovery
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.4031
– volume: 41
  start-page: 3
  issue: 1
  year: 2019
  ident: 10.1016/j.fsi.2023.108743_bib50
  article-title: Quinazoline compounds for antitumor treatment
  publication-title: Exp. Oncol.
  doi: 10.32471/exp-oncology.2312-8852.vol-41-no-1.12414
– volume: 64
  start-page: 2641
  issue: 12
  year: 2016
  ident: 10.1016/j.fsi.2023.108743_bib7
  article-title: Determination of sulfoxaflor in animal origin foods using dispersive solid-phase extraction and multiplug filtration cleanup method based on multiwalled carbon nanotubes by ultraperformance liquid chromatography/tandem mass spectrometry
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.6b00285
– volume: 67
  start-page: 579
  issue: 7
  year: 2018
  ident: 10.1016/j.fsi.2023.108743_bib45
  article-title: A review on heme oxygenase-1 induction: is it a necessary evil
  publication-title: Inflamm. Res.
  doi: 10.1007/s00011-018-1151-x
– volume: 56
  start-page: 92
  year: 2014
  ident: 10.1016/j.fsi.2023.108743_bib27
  article-title: Delineating the roles of neutrophils and macrophages in zebrafish regeneration models
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2014.07.010
– volume: 32
  issue: 3
  year: 2018
  ident: 10.1016/j.fsi.2023.108743_bib6
  article-title: Chromatographic determination, decline dynamic and risk assessment of sulfoxaflor in Asian pear and oriental melon
  publication-title: Biomed. Chromatogr.
  doi: 10.1002/bmc.4101
– volume: 124
  start-page: 331
  year: 2017
  ident: 10.1016/j.fsi.2023.108743_bib13
  article-title: Zebrafish in toxicology and environmental health
  publication-title: Curr. Top. Dev. Biol.
  doi: 10.1016/bs.ctdb.2016.10.007
– volume: 80
  start-page: 50
  year: 2018
  ident: 10.1016/j.fsi.2023.108743_bib38
  article-title: ROS signalling in the biology of cancer
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2017.05.023
– volume: 446
  start-page: 475
  issue: 5
  year: 2005
  ident: 10.1016/j.fsi.2023.108743_bib47
  article-title: NF-kB in development and progression of human cancer
  publication-title: Virchows Arch.
  doi: 10.1007/s00428-005-1264-9
– volume: 19
  start-page: 172
  issue: 2
  year: 2018
  ident: 10.1016/j.fsi.2023.108743_bib48
  article-title: RUNX1: a regulator of NF-kB signaling in pulmonary diseases
  publication-title: Curr. Protein Pept. Sci.
– volume: 10
  start-page: 1234
  issue: 12
  year: 2021
  ident: 10.1016/j.fsi.2023.108743_bib9
  article-title: Exposure to the insecticide sulfoxaflor affects behaviour and biomarkers responses of Carcinus maenas (Crustacea: Decapoda)
  publication-title: Biology
  doi: 10.3390/biology10121234
– volume: 75
  start-page: 1646
  issue: 6
  year: 2019
  ident: 10.1016/j.fsi.2023.108743_bib5
  article-title: Characterization of sulfoxaflor resistance in the brown planthopper, Nilaparvata lugens (Stal)
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.5282
– volume: 22
  start-page: 11
  issue: 1
  year: 2017
  ident: 10.1016/j.fsi.2023.108743_bib34
  article-title: ROS are good
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.08.002
– volume: 15
  start-page: 1583
  issue: 6
  year: 2011
  ident: 10.1016/j.fsi.2023.108743_bib40
  article-title: Superoxide dismutases: role in redox signaling, vascular function, and diseases
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2011.3999
SSID ssj0006360
Score 2.3801725
Snippet Sulfoxaflor is an insecticide that is widely used and affects the nervous system of sucking pests. However, studies on the molecular mechanism of the toxicity...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108743
SubjectTerms Animals
apoptosis
aquatic ecosystems
Cell apoptosis
cytoplasm
Danio rerio
developmental toxicity
Ecosystem
gene expression
growth retardation
heart rate
Immunotoxicity
inflammation
Inflammatory response
interleukin-1
interleukin-6
mortality
Myeloid Differentiation Factor 88 - metabolism
nervous system
neutrophils
NF-kappa B - genetics
NF-kappa B - metabolism
nontarget organisms
oxidative stress
prostaglandin synthase
shellfish
Signal Transduction
Sulfoxaflor
TLR4/NF-κB signal pathway
Toll-like receptor 4
Toll-Like Receptor 4 - genetics
tumor necrosis factor-alpha
Tumor Necrosis Factor-alpha - metabolism
Zebrafish
Title Sulfoxaflor induces immunotoxicity in zebrafish (Danio rerio) by activating TLR4/NF-κB signaling pathway
URI https://dx.doi.org/10.1016/j.fsi.2023.108743
https://www.ncbi.nlm.nih.gov/pubmed/37062434
https://www.proquest.com/docview/2802426054
https://www.proquest.com/docview/2834256951
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqokpcEFB-tkDlShwAyd107TjOsVSslgJ7oK1UcbFiewypqqTq7opuD30wHoJnYiY_RRy6B26JZUuOv_HM58yMh7HXiQpGgpfCKA8CKXUUeZ6BiFJCBDSoPlBy8pepnpyow9P0dI0d9LkwFFbZ6f5WpzfaumsZdqs5vCjL4REyA_LLkacIDVFOelipjKR89-ZvmAfdh9V4PNNEUO_es9nEeMVZuUv1wynSLlPyLtt0F_dsbND4IXvQkUe-387vEVuD6jHbaMtJLvHpW908bbLyaHEe66si4mmc46kb8ZvxklJB6nl9VXqk3tjMr8lrHMvZD_6GUs1rfonyWL_lbskp34H-1lbf-fHnr2o4HYvfv95zCvcoKIOdUynjn8XyCTsZfzg-mIiuqILwuJfnAkA7H6XBzaxlCAlEA7kzyAKkSpV2RYxp3AM_wqVUXntVAOR7TsagQhoR2KdsvaoreM54GoLJTeJSOsS5LDgY5SFoXwQlVdBmwJJ-Oa3vbhynwhfntg8tO7OIgCUEbIvAgL27HXLRXrexqrPqMbL_yIxFc7Bq2E6Pp8W9RA6SooJ6MbMj0zAWZLGr-khUcxqJ6YA9a4XhdqYyS_QIv33r_yb2gt2ntzYQ7SVbn18u4BVSnrnbbmR6m93b__hpMv0DizEAgg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZQEGovqKUP0gJ1pR7aSm6W2Ov1HikiChByKEFCvVjrV7sI7SKSqISf1h_R38TMPiL1QA7cLK8teT3jmc-eFyGfIuEU95YzJaxnAKkDS9PEs8C5Dx4UqnUYnHw2lsMLcXIZX66RwzYWBt0qG9lfy_RKWjc9vWY3ezd53jsHZIB2ObQUgSJKQQ6vY3aquEPWD45Ph-OlQMaUWJXRM44YTmiNm5WbV5jm37CEODrbJYI_pp4eg5-VGhq8IJsNfqQH9RJfkjVfbJGNuqLkAlo_y6r1iuTn8-tQ3mUBLuQULt5AwinNMRqknJV3uQX0Dd30Hg3HIZ_-pp8x2rykt8CS5RdqFhRDHvDBtvhFJ6MfojcesH9_v1P0-MgwiJ1iNeM_2eI1uRgcTQ6HrKmrwCwc5xnzXhobuILzLLlzkQ_Kp0YBEOCwgdJkIcRh39u-SKSw0orM-3Tf8OCEiwPQ9g3pFGXhtwmNnVOpikyM9ziTOOP7qXPSZk5w4aTqkqjdTm2bpONY--Jat95lVxoooJECuqZAl3xdTrmpM26sGixaGun_2EaDRlg17WNLTw3HCW0kWeHL-VT3VQVaAMiuGsNB0knApl3ytmaG5Up5Esk-_Pu7py3sA3k2nJyN9Oh4fPqePMcvtV_aDunMbud-FxDQzOw1HP4AUPcDMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulfoxaflor+induces+immunotoxicity+in+zebrafish+%28Danio+rerio%29+by+activating+TLR4%2FNF-%CE%BAB+signaling+pathway&rft.jtitle=Fish+%26+shellfish+immunology&rft.au=Wang%2C+Kexin&rft.au=Huang%2C+Yong&rft.au=Cheng%2C+Bo&rft.au=Guo%2C+Jing&rft.date=2023-06-01&rft.issn=1095-9947&rft.eissn=1095-9947&rft.volume=137&rft.spage=108743&rft_id=info:doi/10.1016%2Fj.fsi.2023.108743&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-4648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-4648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-4648&client=summon