On constraining cosmology and the halo mass function with weak gravitational lensing

ABSTRACT The discrepancy between the weak lensing (WL) and the Planck measurements of S8 has been a subject of several studies. Assuming that residual systematics are not the cause, these studies tend to show that a strong suppression of the amplitude of the mass power spectrum P(k) in the late Univ...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 525; no. 4; pp. 4871 - 4886
Main Authors Dor, Marc-Antoine, van Waerbeke, Ludovic, Asgari, Marika, Mead, Alexander, Tröster, Tilman
Format Journal Article
LanguageEnglish
Published London Oxford University Press 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT The discrepancy between the weak lensing (WL) and the Planck measurements of S8 has been a subject of several studies. Assuming that residual systematics are not the cause, these studies tend to show that a strong suppression of the amplitude of the mass power spectrum P(k) in the late Universe at high k could resolve it. The WL signal at the small scale is sensitive to various effects not related to lensing, such as baryonic effects and intrinsic alignment. These effects are still poorly understood therefore the accuracy of P(k) depends on the modelling precision of these effects. A common approach for calculating P(k) relies on a halo model. Among the various components necessary for the construction of P(k) in the halo model framework, the halo mass function (HMF) is an important one. Traditionally, the HMF has been assumed to follow a fixed model, motivated by dark matter-only numerical simulations. Recent literature shows that baryonic physics, among several other factors, could affect the HMF. In this study, we investigate the impact of allowing the HMF to vary. This provides a way of testing the validity of the halo model-HMF calibration using data. In the context of the aforementioned S8 discrepancy, we find that the Planck cosmology is not compatible with the vanilla HMF for both the DES-y3 and the KiDS-1000 data. Moreover, when the cosmology and the HMF parameters are allowed to vary, the Planck cosmology is no longer in tension. The modified HMF predicts a matter power spectrum with a $\sim 25~{{\ \rm per\ cent}}$ power loss at k ∼ 1 h Mpc−1, in agreement with the recent studies that try to mitigate the S8 tension with modifications in P(k). We show that stage IV surveys will be able to measure the HMF parameters with a few per cent accuracy.
AbstractList The discrepancy between the weak lensing (WL) and the Planck measurements of S8 has been a subject of several studies. Assuming that residual systematics are not the cause, these studies tend to show that a strong suppression of the amplitude of the mass power spectrum P(k) in the late Universe at high k could resolve it. The WL signal at the small scale is sensitive to various effects not related to lensing, such as baryonic effects and intrinsic alignment. These effects are still poorly understood therefore the accuracy of P(k) depends on the modelling precision of these effects. A common approach for calculating P(k) relies on a halo model. Among the various components necessary for the construction of P(k) in the halo model framework, the halo mass function (HMF) is an important one. Traditionally, the HMF has been assumed to follow a fixed model, motivated by dark matter-only numerical simulations. Recent literature shows that baryonic physics, among several other factors, could affect the HMF. In this study, we investigate the impact of allowing the HMF to vary. This provides a way of testing the validity of the halo model-HMF calibration using data. In the context of the aforementioned S8 discrepancy, we find that the Planck cosmology is not compatible with the vanilla HMF for both the DES-y3 and the KiDS-1000 data. Moreover, when the cosmology and the HMF parameters are allowed to vary, the Planck cosmology is no longer in tension. The modified HMF predicts a matter power spectrum with a $\sim 25~{{\ \rm per\ cent}}$ power loss at k ∼ 1 h Mpc−1, in agreement with the recent studies that try to mitigate the S8 tension with modifications in P(k). We show that stage IV surveys will be able to measure the HMF parameters with a few per cent accuracy.
The discrepancy between the weak lensing (WL) and the Planck measurements of S8 has been a subject of several studies. Assuming that residual systematics are not the cause, these studies tend to show that a strong suppression of the amplitude of the mass power spectrum P(k) in the late Universe at high k could resolve it. The WL signal at the small scale is sensitive to various effects not related to lensing, such as baryonic effects and intrinsic alignment. These effects are still poorly understood therefore the accuracy of P(k) depends on the modelling precision of these effects. A common approach for calculating P(k) relies on a halo model. Among the various components necessary for the construction of P(k) in the halo model framework, the halo mass function (HMF) is an important one. Traditionally, the HMF has been assumed to follow a fixed model, motivated by dark matter-only numerical simulations. Recent literature shows that baryonic physics, among several other factors, could affect the HMF. In this study, we investigate the impact of allowing the HMF to vary. This provides a way of testing the validity of the halo model-HMF calibration using data. In the context of the aforementioned S8 discrepancy, we find that the Planck cosmology is not compatible with the vanilla HMF for both the DES-y3 and the KiDS-1000 data. Moreover, when the cosmology and the HMF parameters are allowed to vary, the Planck cosmology is no longer in tension. The modified HMF predicts a matter power spectrum with a $\sim 25~{{\ \rm per\ cent}}$ power loss at k ∼ 1 h Mpc−1, in agreement with the recent studies that try to mitigate the S8 tension with modifications in P(k). We show that stage IV surveys will be able to measure the HMF parameters with a few per cent accuracy.
ABSTRACT The discrepancy between the weak lensing (WL) and the Planck measurements of S8 has been a subject of several studies. Assuming that residual systematics are not the cause, these studies tend to show that a strong suppression of the amplitude of the mass power spectrum P(k) in the late Universe at high k could resolve it. The WL signal at the small scale is sensitive to various effects not related to lensing, such as baryonic effects and intrinsic alignment. These effects are still poorly understood therefore the accuracy of P(k) depends on the modelling precision of these effects. A common approach for calculating P(k) relies on a halo model. Among the various components necessary for the construction of P(k) in the halo model framework, the halo mass function (HMF) is an important one. Traditionally, the HMF has been assumed to follow a fixed model, motivated by dark matter-only numerical simulations. Recent literature shows that baryonic physics, among several other factors, could affect the HMF. In this study, we investigate the impact of allowing the HMF to vary. This provides a way of testing the validity of the halo model-HMF calibration using data. In the context of the aforementioned S8 discrepancy, we find that the Planck cosmology is not compatible with the vanilla HMF for both the DES-y3 and the KiDS-1000 data. Moreover, when the cosmology and the HMF parameters are allowed to vary, the Planck cosmology is no longer in tension. The modified HMF predicts a matter power spectrum with a $\sim 25~{{\ \rm per\ cent}}$ power loss at k ∼ 1 h Mpc−1, in agreement with the recent studies that try to mitigate the S8 tension with modifications in P(k). We show that stage IV surveys will be able to measure the HMF parameters with a few per cent accuracy.
Author Dor, Marc-Antoine
Tröster, Tilman
Mead, Alexander
Asgari, Marika
van Waerbeke, Ludovic
Author_xml – sequence: 2
  givenname: Marc-Antoine
  surname: Dor
  fullname: Dor, Marc-Antoine
– sequence: 3
  givenname: Ludovic
  surname: van Waerbeke
  fullname: van Waerbeke, Ludovic
  email: waerbeke@phas.ubc.ca
– sequence: 4
  givenname: Marika
  surname: Asgari
  fullname: Asgari, Marika
– sequence: 5
  givenname: Alexander
  orcidid: 0000-0003-3794-581X
  surname: Mead
  fullname: Mead, Alexander
– sequence: 6
  givenname: Tilman
  orcidid: 0000-0003-3520-2406
  surname: Tröster
  fullname: Tröster, Tilman
BookMark eNqFkL1rwzAQxUVJoUnatbOgUwcn-rJsjyX0CwJZ0tlcZClxakupJDfkv6_TpEuhdDrueL_HuzdCA-usRuiWkgklBZ-21kOYhggVEzS7QEPKZZqwQsoBGhLC0yTPKL1CoxC2hBDBmRyi5cJi5WyIHmpb23W_hNY1bn3AYCscNxpvoHG4hRCw6ayKtbN4X8cN3mt4x2sPn3WE4xUa3GgbepNrdGmgCfrmPMfo7elxOXtJ5ovn19nDPFGc0JhoKXOWM56aTAGFykgjFM2NIILBalVlTGua5UYVXHBiWJbmlTGrAgzPcm4kH6O7k-_Ou49Oh1huXef7IKHklPNUMNGTYyROKuVdCF6bUp0TH59uSkrKY3_ld3_lT389NvmF7Xzdgj_8DdyfANft_tN-AZVEh1o
CitedBy_id crossref_primary_10_1093_mnras_stad3987
crossref_primary_10_1051_0004_6361_202346539
crossref_primary_10_1103_PhysRevD_109_023535
crossref_primary_10_1088_1475_7516_2024_01_023
Cites_doi 10.1051/0004-6361/202039805
10.1088/1475-7516/2020/04/019
10.1086/589982
10.3847/2041-8213/ab53e6
10.1051/0004-6361/202142197
10.1103/PhysRevD.75.063512
10.3847/1538-4365/aab4f5
10.1093/mnras/stx1261
10.1088/0004-637X/797/2/102
10.1086/149378
10.1111/j.1365-2966.2011.18858.x
10.1016/j.ascom.2015.05.005
10.1093/mnras/stv138
10.1007/978-3-642-56927-2
10.1093/mnras/stab1515
10.1086/186803
10.1093/mnras/stw681
10.1051/0004-6361/201730747
10.1111/j.1365-2966.2012.21952.x
10.48550/arXiv.2303.08752
10.1088/1475-7516/2013/12/012
10.1093/mnras/staa1726
10.1103/PhysRevD.105.083529
10.1111/j.1365-2966.2011.20222.x
10.1088/0067-0049/208/2/19
10.1046/j.1365-8711.1999.02692.x
10.1051/0004-6361/202142083
10.48550/arXiv.2306.04024
10.3847/1538-4365/ab1658
10.1046/j.1365-8711.2003.06503.x
10.1103/PhysRevD.105.023520
10.1051/0004-6361/202039063
10.3847/1538-4365/abeb66
10.1103/PhysRevD.102.023509
10.1093/mnrasl/slaa005
10.1086/308947
10.48550/arXiv.0908.2702
10.1038/s41586-020-2649-2
10.1088/0004-637X/761/2/152
10.1103/PhysRevD.73.063520
10.1051/0004-6361/201834878
10.1103/PhysRevLett.91.141302
10.1038/s41592-019-0686-2
10.1046/j.1365-8711.2001.04029.x
10.1086/170483
10.1093/mnras/stab3311
10.1111/j.1365-2966.2011.19913.x
10.1051/0004-6361/201731205
10.1109/MCSE.2007.55
10.1051/0004-6361/202039070
10.1093/mnras/sty2319
10.1051/0004-6361/202038850
10.1093/mnras/stab3055
10.1103/PhysRevD.105.023514
10.1093/mnras/stz3199
10.1093/mnras/staa3473
10.1046/j.1365-8711.1998.01545.x
10.1093/mnras/stv2140
10.1051/0004-6361/201322068
10.1088/0004-637X/726/1/48
10.1093/mnras/stv2842
10.1088/1475-7516/2015/12/049
10.1093/mnras/sty2093
10.1051/0004-6361/201834918
10.1093/mnras/stv1708
10.1093/mnras/sty3427
10.1093/mnras/stw2805
10.48550/arXiv.2305.17173
10.3847/1538-3881/aabc4f
10.1093/pasj/psx066
10.1111/j.1365-2966.2009.14548.x
10.1093/mnras/stab3520
10.1051/0004-6361/202038308
10.1093/mnras/stab3337
10.1103/PhysRevD.100.103506
10.1093/mnras/stu2464
10.1051/0004-6361/201833910
10.1093/mnras/stv2036
10.1093/mnras/stab082
10.1046/j.1365-8711.2001.04068.x
10.1093/mnras/stv2657
10.1093/mnras/stz1949
10.3847/1538-4357/abd947
10.1088/0004-6256/150/5/150
10.1088/1475-7516/2014/04/029
10.1051/0004-6361/202038389
10.1046/j.1365-8711.2000.03071.x
10.1103/PhysRevD.91.123520
10.48550/arXiv.1910.13970
10.1093/mnras/stx258
10.1086/145672
10.1093/mnras/stv794
10.1103/PhysRevD.105.023515
10.1093/mnras/stw2072
10.1046/j.1365-8711.2000.03779.x
10.1046/j.1365-8711.2001.04006.x
10.1086/152650
10.1093/mnras/251.4.600
ContentType Journal Article
Copyright 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023
2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society
Copyright_xml – notice: 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023
– notice: 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1093/mnras/stad2417
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 4886
ExternalDocumentID 10_1093_mnras_stad2417
10.1093/mnras/stad2417
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AANHP
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABAZT
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABFSI
ABGNP
ABIXL
ABNGD
ABNKS
ABPEJ
ABPTD
ABQLI
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACRPL
ACSCC
ACUFI
ACUKT
ACUTJ
ACUXJ
ACXQS
ACYRX
ACYTK
ACYXJ
ADEYI
ADGZP
ADHKW
ADHZD
ADNMO
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APJGH
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EBS
EE~
EJD
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RNS
ROL
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABVLG
AHGBF
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c301t-e66828235f7ca1adf6f4c18f4042abbd72ee178fc93430f2758dffb9af3783f63
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Mon Jun 30 14:05:59 EDT 2025
Tue Jul 01 03:32:37 EDT 2025
Thu Apr 24 23:12:12 EDT 2025
Wed Apr 02 07:04:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords gravitational lensing: weak
cosmological parameters
dark matter
large-scale structure of Universe
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c301t-e66828235f7ca1adf6f4c18f4042abbd72ee178fc93430f2758dffb9af3783f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3794-581X
0000-0003-3520-2406
0000-0001-8043-5378
0000-0002-7058-7412
PQID 3133542434
PQPubID 42411
PageCount 16
ParticipantIDs proquest_journals_3133542434
crossref_citationtrail_10_1093_mnras_stad2417
crossref_primary_10_1093_mnras_stad2417
oup_primary_10_1093_mnras_stad2417
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Ondaro-Mallea (2023091215142592000_bib83) 2022; 509
Asgari (2023091215142592000_bib7) 2021; 645
Despali (2023091215142592000_bib33) 2016; 456
Flaugher (2023091215142592000_bib39) 2015; 150
Crocce (2023091215142592000_bib30) 2015; 453
Hoekstra (2023091215142592000_bib56) 2011; 726
Sheth (2023091215142592000_bib95) 2001; 323
Aihara (2023091215142592000_bib2) 2018; 70
Kulkarni (2023091215142592000_bib68) 2022; 510
Blazek (2023091215142592000_bib19) 2019; 100
Costanzi (2023091215142592000_bib27) 2013; 2013
Knebe (2023091215142592000_bib62) 2011; 415
Hildebrandt (2023091215142592000_bib53) 2017; 465
Jenkins (2023091215142592000_bib60) 2001; 321
Takahashi (2023091215142592000_bib98) 2012; 761
Smith (2023091215142592000_bib96) 2003; 341
Press (2023091215142592000_bib86) 1974; 187
van den Busch (2023091215142592000_bib109) 2022; 664
Astropy Collaboration (2023091215142592000_bib10) 2018; 156
Li (2023091215142592000_bib73) 2019; 886
Giblin (2023091215142592000_bib44) 2021; 645
Abbott (2023091215142592000_bib1) 2020; 102
Schneider (2023091215142592000_bib91) 2020; 2020
Aiola (2023091215142592000_bib3) 2020
Beltz-Mohrmann (2023091215142592000_bib15) 2021
Limber (2023091215142592000_bib74) 1953; 117
Lewis (2023091215142592000_bib71) 2019
Castro (2023091215142592000_bib24) 2021; 500
van Daalen (2023091215142592000_bib108) 2020; 491
Gatti (2023091215142592000_bib42) 2022; 510
Sheth (2023091215142592000_bib94) 1999; 308
Kuijken (2023091215142592000_bib66) 2015; 454
Castro (2023091215142592000_bib23) 2016; 463
Asgari (2023091215142592000_bib8) 2023
Kohonen (2023091215142592000_bib63) 2001
Baugh (2023091215142592000_bib14) 2019; 483
Peacock (2023091215142592000_bib84) 2000; 318
Amon (2023091215142592000_bib4) 2022
Chisari (2023091215142592000_bib26) 2019; 242
Barreira (2023091215142592000_bib13) 2014; 2014
Böhringer (2023091215142592000_bib21) 2017; 608
Costanzi (2023091215142592000_bib28) 2019; 488
Bagla (2023091215142592000_bib11) 2009
Sevilla-Noarbe (2023091215142592000_bib93) 2021; 254
Mead (2023091215142592000_bib78) 2016; 459
Edge (2023091215142592000_bib36) 2013; 154
Hildebrandt (2023091215142592000_bib54) 2020; 633
Fosalba (2023091215142592000_bib40) 2015; 447
Heymans (2023091215142592000_bib51) 2012; 427
Bullock (2023091215142592000_bib22) 2001; 321
Amon (2023091215142592000_bib5) 2022
Tröster (2023091215142592000_bib101) 2022; 660
Planck Collaboration VI (2023091215142592000_bib85) 2020; 641
Tormen (2023091215142592000_bib99) 1998; 297
Krause (2023091215142592000_bib64) 2017; 470
Myles (2023091215142592000_bib81) 2021; 505
DES Collaboration (2023091215142592000_bib31) 2022; 105
Blandford (2023091215142592000_bib18) 1991; 251
Harnois-Déraps (2023091215142592000_bib47) 2015; 450
Bocquet (2023091215142592000_bib20) 2016; 456
Sánchez (2023091215142592000_bib88) 2022; 105
Marsh (2023091215142592000_bib76) 2015; 91
Drlica-Wagner (2023091215142592000_bib35) 2018; 235
Leauthaud (2023091215142592000_bib69) 2017; 467
Amon (2023091215142592000_bib6) 2022; 105
Lovell (2023091215142592000_bib75) 2020; 493
Fang (2023091215142592000_bib37) 2020; 497
Bird (2023091215142592000_bib17) 2012; 420
Fosalba (2023091215142592000_bib41) 2015; 448
Virtanen (2023091215142592000_bib102) 2020; 17
Hunter (2023091215142592000_bib58) 2007; 9
Newman (2023091215142592000_bib82) 2008; 684
White (2023091215142592000_bib103) 1991; 379
de Jong (2023091215142592000_bib106) 2017; 604
Bahcall (2023091215142592000_bib12) 1993; 407
Raichoor (2023091215142592000_bib87) 2014; 797
Kuijken (2023091215142592000_bib67) 2019; 625
Mead (2023091215142592000_bib80) 2021; 502
Mead (2023091215142592000_bib77) 2015; 454
DES and KiDS Collaboration (2023091215142592000_bib32) 2023
Mead (2023091215142592000_bib79) 2020; 641
Heymans (2023091215142592000_bib52) 2021; 646
Hartley (2023091215142592000_bib50) 2022; 509
Harnois-Déraps (2023091215142592000_bib48) 2018; 481
Hinshaw (2023091215142592000_bib55) 2013; 208
Joachimi (2023091215142592000_bib61) 2021
Hamilton (2023091215142592000_bib46) 2000; 312
Jain (2023091215142592000_bib59) 2003; 91
Feroz (2023091215142592000_bib38) 2009; 398
Lemos (2023091215142592000_bib70) 2022
Harris (2023091215142592000_bib49) 2020; 585
Secco (2023091215142592000_bib92) 2022; 105
Schneider (2023091215142592000_bib90) 2015; 2015
Benítez (2023091215142592000_bib16) 2000; 536
Lewis (2023091215142592000_bib72) 2011
Crocce (2023091215142592000_bib29) 2006; 73
Astropy Collaboration (2023091215142592000_bib9) 2013; 558
Smith (2023091215142592000_bib97) 2007; 75
Tröster (2023091215142592000_bib100) 2021; 649
eBOSS Collaboration (2023091215142592000_bib107) 2020
Gunn (2023091215142592000_bib45) 1967; 150
Wright (2023091215142592000_bib104) 2020; 640
Chisari (2023091215142592000_bib25) 2018; 480
Diemer (2023091215142592000_bib34) 2021; 909
Schaye (2023091215142592000_bib89) 2023
Zuntz (2023091215142592000_bib105) 2015; 12
Hubble (2023091215142592000_bib57) 1936
Geach (2023091215142592000_bib43) 2012; 419
Kuijken (2023091215142592000_bib65) 2011; 146
References_xml – volume: 649
  start-page: A88
  year: 2021
  ident: 2023091215142592000_bib100
  publication-title: A&A
  doi: 10.1051/0004-6361/202039805
– volume: 2020
  start-page: 019
  year: 2020
  ident: 2023091215142592000_bib91
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2020/04/019
– volume: 684
  start-page: 88
  year: 2008
  ident: 2023091215142592000_bib82
  publication-title: ApJ
  doi: 10.1086/589982
– volume: 886
  start-page: L11
  year: 2019
  ident: 2023091215142592000_bib73
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab53e6
– volume: 660
  start-page: A27
  year: 2022
  ident: 2023091215142592000_bib101
  publication-title: A&A
  doi: 10.1051/0004-6361/202142197
– year: 2022
  ident: 2023091215142592000_bib70
  publication-title: MNRAS
– volume: 75
  start-page: 063512
  year: 2007
  ident: 2023091215142592000_bib97
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.75.063512
– volume: 235
  start-page: 33
  year: 2018
  ident: 2023091215142592000_bib35
  publication-title: ApJS
  doi: 10.3847/1538-4365/aab4f5
– start-page: 477
  volume-title: MNRAS
  year: 2022
  ident: 2023091215142592000_bib5
– volume: 470
  start-page: 2100
  year: 2017
  ident: 2023091215142592000_bib64
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1261
– volume: 797
  start-page: 102
  year: 2014
  ident: 2023091215142592000_bib87
  publication-title: ApJ
  doi: 10.1088/0004-637X/797/2/102
– volume: 150
  start-page: 737
  year: 1967
  ident: 2023091215142592000_bib45
  publication-title: ApJ
  doi: 10.1086/149378
– volume: 415
  start-page: 2293
  year: 2011
  ident: 2023091215142592000_bib62
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18858.x
– volume: 12
  start-page: 45
  year: 2015
  ident: 2023091215142592000_bib105
  publication-title: Astron. Comput.
  doi: 10.1016/j.ascom.2015.05.005
– volume: 448
  start-page: 2987
  year: 2015
  ident: 2023091215142592000_bib41
  publication-title: MNRAS
  doi: 10.1093/mnras/stv138
– volume-title: Self-Organizing Maps
  year: 2001
  ident: 2023091215142592000_bib63
  doi: 10.1007/978-3-642-56927-2
– volume: 505
  start-page: 4249
  year: 2021
  ident: 2023091215142592000_bib81
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1515
– volume: 407
  start-page: L49
  year: 1993
  ident: 2023091215142592000_bib12
  publication-title: ApJ
  doi: 10.1086/186803
– volume: 459
  start-page: 1468
  year: 2016
  ident: 2023091215142592000_bib78
  publication-title: MNRAS
  doi: 10.1093/mnras/stw681
– volume: 604
  start-page: A134
  year: 2017
  ident: 2023091215142592000_bib106
  publication-title: A&A
  doi: 10.1051/0004-6361/201730747
– volume: 427
  start-page: 146
  year: 2012
  ident: 2023091215142592000_bib51
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21952.x
– year: 2023
  ident: 2023091215142592000_bib8
  doi: 10.48550/arXiv.2303.08752
– volume: 2013
  start-page: 012
  year: 2013
  ident: 2023091215142592000_bib27
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2013/12/012
– start-page: 5355
  volume-title: MNRAS
  year: 2022
  ident: 2023091215142592000_bib4
– volume: 497
  start-page: 2699
  year: 2020
  ident: 2023091215142592000_bib37
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1726
– volume: 105
  start-page: 083529
  year: 2022
  ident: 2023091215142592000_bib88
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.083529
– volume: 420
  start-page: 2551
  year: 2012
  ident: 2023091215142592000_bib17
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.20222.x
– volume: 208
  start-page: 19
  year: 2013
  ident: 2023091215142592000_bib55
  publication-title: ApJS
  doi: 10.1088/0067-0049/208/2/19
– volume: 308
  start-page: 119
  year: 1999
  ident: 2023091215142592000_bib94
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02692.x
– volume: 664
  start-page: A170
  year: 2022
  ident: 2023091215142592000_bib109
  publication-title: A&A
  doi: 10.1051/0004-6361/202142083
– year: 2023
  ident: 2023091215142592000_bib89
  doi: 10.48550/arXiv.2306.04024
– volume: 242
  start-page: 2
  year: 2019
  ident: 2023091215142592000_bib26
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab1658
– volume: 154
  start-page: 32
  year: 2013
  ident: 2023091215142592000_bib36
  publication-title: Messenger
– volume: 341
  start-page: 1311
  year: 2003
  ident: 2023091215142592000_bib96
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06503.x
– volume: 105
  start-page: 023520
  year: 2022
  ident: 2023091215142592000_bib31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.023520
– volume-title: Realm of the Nebulae
  year: 1936
  ident: 2023091215142592000_bib57
– volume: 646
  start-page: A140
  year: 2021
  ident: 2023091215142592000_bib52
  publication-title: A&A
  doi: 10.1051/0004-6361/202039063
– volume: 254
  start-page: 24
  year: 2021
  ident: 2023091215142592000_bib93
  publication-title: ApJS
  doi: 10.3847/1538-4365/abeb66
– volume: 102
  start-page: 023509
  year: 2020
  ident: 2023091215142592000_bib1
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.023509
– volume: 493
  start-page: L11
  year: 2020
  ident: 2023091215142592000_bib75
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slaa005
– volume: 536
  start-page: 571
  year: 2000
  ident: 2023091215142592000_bib16
  publication-title: ApJ
  doi: 10.1086/308947
– year: 2009
  ident: 2023091215142592000_bib11
  doi: 10.48550/arXiv.0908.2702
– volume: 585
  start-page: 357
  year: 2020
  ident: 2023091215142592000_bib49
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 761
  start-page: 152
  year: 2012
  ident: 2023091215142592000_bib98
  publication-title: ApJ
  doi: 10.1088/0004-637X/761/2/152
– year: 2020
  ident: 2023091215142592000_bib107
– start-page: 047
  volume-title: J. Cosmol. Astropart. Phys.
  year: 2020
  ident: 2023091215142592000_bib3
– volume: 73
  start-page: 063520
  year: 2006
  ident: 2023091215142592000_bib29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.73.063520
– volume: 633
  start-page: A69
  year: 2020
  ident: 2023091215142592000_bib54
  publication-title: A&A
  doi: 10.1051/0004-6361/201834878
– volume: 91
  start-page: 141302
  year: 2003
  ident: 2023091215142592000_bib59
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.141302
– volume: 17
  start-page: 261
  year: 2020
  ident: 2023091215142592000_bib102
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 321
  start-page: 372
  year: 2001
  ident: 2023091215142592000_bib60
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04029.x
– volume: 379
  start-page: 52
  year: 1991
  ident: 2023091215142592000_bib103
  publication-title: ApJ
  doi: 10.1086/170483
– volume: 510
  start-page: 1223
  year: 2022
  ident: 2023091215142592000_bib42
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3311
– volume: 419
  start-page: 2633
  year: 2012
  ident: 2023091215142592000_bib43
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19913.x
– start-page: 112
  volume-title: ApJ
  year: 2021
  ident: 2023091215142592000_bib15
– start-page: A129
  volume-title: A&A
  year: 2021
  ident: 2023091215142592000_bib61
– volume: 608
  start-page: A65
  year: 2017
  ident: 2023091215142592000_bib21
  publication-title: A&A
  doi: 10.1051/0004-6361/201731205
– volume: 9
  start-page: 90
  year: 2007
  ident: 2023091215142592000_bib58
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 645
  start-page: A104
  year: 2021
  ident: 2023091215142592000_bib7
  publication-title: A&A
  doi: 10.1051/0004-6361/202039070
– volume: 481
  start-page: 1337
  year: 2018
  ident: 2023091215142592000_bib48
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2319
– volume: 645
  start-page: A105
  year: 2021
  ident: 2023091215142592000_bib44
  publication-title: A&A
  doi: 10.1051/0004-6361/202038850
– volume: 509
  start-page: 3547
  year: 2022
  ident: 2023091215142592000_bib50
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3055
– volume: 105
  start-page: 023514
  year: 2022
  ident: 2023091215142592000_bib6
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.023514
– volume: 491
  start-page: 2424
  year: 2020
  ident: 2023091215142592000_bib108
  publication-title: MNRAS
  doi: 10.1093/mnras/stz3199
– volume: 500
  start-page: 2316
  year: 2021
  ident: 2023091215142592000_bib24
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3473
– volume: 297
  start-page: 648
  year: 1998
  ident: 2023091215142592000_bib99
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1998.01545.x
– volume: 454
  start-page: 3500
  year: 2015
  ident: 2023091215142592000_bib66
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2140
– volume: 558
  start-page: A33
  year: 2013
  ident: 2023091215142592000_bib9
  publication-title: A&A
  doi: 10.1051/0004-6361/201322068
– volume: 726
  start-page: 48
  year: 2011
  ident: 2023091215142592000_bib56
  publication-title: ApJ
  doi: 10.1088/0004-637X/726/1/48
– volume: 456
  start-page: 2486
  year: 2016
  ident: 2023091215142592000_bib33
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2842
– volume: 2015
  start-page: 049
  year: 2015
  ident: 2023091215142592000_bib90
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2015/12/049
– volume: 480
  start-page: 3962
  year: 2018
  ident: 2023091215142592000_bib25
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2093
– volume: 625
  start-page: A2
  year: 2019
  ident: 2023091215142592000_bib67
  publication-title: A&A
  doi: 10.1051/0004-6361/201834918
– volume: 453
  start-page: 1513
  year: 2015
  ident: 2023091215142592000_bib30
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1708
– volume: 483
  start-page: 4922
  year: 2019
  ident: 2023091215142592000_bib14
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3427
– volume: 465
  start-page: 1454
  year: 2017
  ident: 2023091215142592000_bib53
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2805
– year: 2023
  ident: 2023091215142592000_bib32
  doi: 10.48550/arXiv.2305.17173
– volume: 156
  start-page: 123
  year: 2018
  ident: 2023091215142592000_bib10
  publication-title: AJ
  doi: 10.3847/1538-3881/aabc4f
– volume: 70
  start-page: S4
  year: 2018
  ident: 2023091215142592000_bib2
  publication-title: PASJ
  doi: 10.1093/pasj/psx066
– volume: 398
  start-page: 1601
  year: 2009
  ident: 2023091215142592000_bib38
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14548.x
– volume: 510
  start-page: 1425
  year: 2022
  ident: 2023091215142592000_bib68
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3520
– volume: 641
  start-page: A130
  year: 2020
  ident: 2023091215142592000_bib79
  publication-title: A&A
  doi: 10.1051/0004-6361/202038308
– volume: 509
  start-page: 6077
  year: 2022
  ident: 2023091215142592000_bib83
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3337
– volume: 100
  start-page: 103506
  year: 2019
  ident: 2023091215142592000_bib19
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.103506
– volume: 447
  start-page: 1319
  year: 2015
  ident: 2023091215142592000_bib40
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2464
– volume: 641
  start-page: A6
  year: 2020
  ident: 2023091215142592000_bib85
  publication-title: A&A
  doi: 10.1051/0004-6361/201833910
– volume: 454
  start-page: 1958
  year: 2015
  ident: 2023091215142592000_bib77
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2036
– volume: 502
  start-page: 1401
  year: 2021
  ident: 2023091215142592000_bib80
  publication-title: MNRAS
  doi: 10.1093/mnras/stab082
– volume: 321
  start-page: 559
  year: 2001
  ident: 2023091215142592000_bib22
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04068.x
– volume: 456
  start-page: 2361
  year: 2016
  ident: 2023091215142592000_bib20
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2657
– volume: 488
  start-page: 4779
  year: 2019
  ident: 2023091215142592000_bib28
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1949
– volume: 909
  start-page: 112
  year: 2021
  ident: 2023091215142592000_bib34
  publication-title: ApJ
  doi: 10.3847/1538-4357/abd947
– volume: 150
  start-page: 150
  year: 2015
  ident: 2023091215142592000_bib39
  publication-title: AJ
  doi: 10.1088/0004-6256/150/5/150
– volume: 2014
  start-page: 029
  year: 2014
  ident: 2023091215142592000_bib13
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/04/029
– volume: 146
  start-page: 8
  year: 2011
  ident: 2023091215142592000_bib65
  publication-title: Messenger
– volume: 640
  start-page: L14
  year: 2020
  ident: 2023091215142592000_bib104
  publication-title: A&A
  doi: 10.1051/0004-6361/202038389
– volume: 312
  start-page: 257
  year: 2000
  ident: 2023091215142592000_bib46
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03071.x
– volume: 91
  start-page: 123520
  year: 2015
  ident: 2023091215142592000_bib76
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.123520
– year: 2019
  ident: 2023091215142592000_bib71
  doi: 10.48550/arXiv.1910.13970
– volume: 467
  start-page: 3024
  year: 2017
  ident: 2023091215142592000_bib69
  publication-title: MNRAS
  doi: 10.1093/mnras/stx258
– volume: 117
  start-page: 134
  year: 1953
  ident: 2023091215142592000_bib74
  publication-title: ApJ
  doi: 10.1086/145672
– volume: 450
  start-page: 2857
  year: 2015
  ident: 2023091215142592000_bib47
  publication-title: MNRAS
  doi: 10.1093/mnras/stv794
– volume: 105
  start-page: 023515
  year: 2022
  ident: 2023091215142592000_bib92
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.023515
– volume-title: Astrophysics Source Code Library
  year: 2011
  ident: 2023091215142592000_bib72
– volume: 463
  start-page: 1666
  year: 2016
  ident: 2023091215142592000_bib23
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2072
– volume: 318
  start-page: 1144
  year: 2000
  ident: 2023091215142592000_bib84
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03779.x
– volume: 323
  start-page: 1
  year: 2001
  ident: 2023091215142592000_bib95
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04006.x
– volume: 187
  start-page: 425
  year: 1974
  ident: 2023091215142592000_bib86
  publication-title: ApJ
  doi: 10.1086/152650
– volume: 251
  start-page: 600
  year: 1991
  ident: 2023091215142592000_bib18
  publication-title: MNRAS
  doi: 10.1093/mnras/251.4.600
SSID ssj0004326
Score 2.4756095
Snippet ABSTRACT The discrepancy between the weak lensing (WL) and the Planck measurements of S8 has been a subject of several studies. Assuming that residual...
The discrepancy between the weak lensing (WL) and the Planck measurements of S8 has been a subject of several studies. Assuming that residual systematics are...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4871
SubjectTerms Accuracy
Baryons
Cosmology
Dark matter
Gravitational lenses
Parameter modification
Title On constraining cosmology and the halo mass function with weak gravitational lensing
URI https://www.proquest.com/docview/3133542434
Volume 525
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-yJ19Ep7LpHEFEn8raJP16HMMxhDmQDfZW0jRRsR-yVsT_3kvaTiaKvjX0WtK7Xu53l9wdQleuUratmD49xcFBCYSyQMzMkoEXiFDo_BkdGpjfe7MVu1u766ZYdPnDFn5IR1m-4eUIsFIC1kbnjYMF1lXyl4v1VwYkNY3VTAFGcAGcbXnG74_vmJ-dlLZ2DTaGZXqIDhpEiMe1CI_Qnsy7qDcudYy6yD7wNTbXdQii7KL-HHBusTHhcLg5SZ8BdJrRMVouciw04msaP8CgzGpKnicYwB5-4mmBM4DMWJs0LRasY7H4XfIXrJsRNUW7YUqpPtyeP56g1fR2OZlZTd8ES4C6Vpb0PPCjCHWVL7jDE-UpJpxAMVBQHseJT6R0_ECJkDJqKwIuQ6JUHHJF_YAqj56iTl7ksocwUTYHhwd4xz2WkBiWRsFYEju-Q0jAwz6yWnZGopmf_sQ0qje3aWTYH7Xs76ObLf1rXU7jV8pLkM6fRINWeFGje2VEwe12GWGUnf3nHedoX7eQr_MLB6hTbd7kBQCNKh4CxH4gQ_OnfQLfAtTJ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+constraining+cosmology+and+the+halo+mass+function+with+weak+gravitational+lensing&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Gu%2C+Shiming&rft.au=Dor%2C+Marc-Antoine&rft.au=van%C2%A0Waerbeke%2C+Ludovic&rft.au=Asgari%2C+Marika&rft.date=2023-11-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=525&rft.issue=4&rft.spage=4871&rft.epage=4886&rft_id=info:doi/10.1093%2Fmnras%2Fstad2417&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stad2417
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon