On constraining cosmology and the halo mass function with weak gravitational lensing
ABSTRACT The discrepancy between the weak lensing (WL) and the Planck measurements of S8 has been a subject of several studies. Assuming that residual systematics are not the cause, these studies tend to show that a strong suppression of the amplitude of the mass power spectrum P(k) in the late Univ...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 525; no. 4; pp. 4871 - 4886 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Oxford University Press
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
The discrepancy between the weak lensing (WL) and the Planck measurements of S8 has been a subject of several studies. Assuming that residual systematics are not the cause, these studies tend to show that a strong suppression of the amplitude of the mass power spectrum P(k) in the late Universe at high k could resolve it. The WL signal at the small scale is sensitive to various effects not related to lensing, such as baryonic effects and intrinsic alignment. These effects are still poorly understood therefore the accuracy of P(k) depends on the modelling precision of these effects. A common approach for calculating P(k) relies on a halo model. Among the various components necessary for the construction of P(k) in the halo model framework, the halo mass function (HMF) is an important one. Traditionally, the HMF has been assumed to follow a fixed model, motivated by dark matter-only numerical simulations. Recent literature shows that baryonic physics, among several other factors, could affect the HMF. In this study, we investigate the impact of allowing the HMF to vary. This provides a way of testing the validity of the halo model-HMF calibration using data. In the context of the aforementioned S8 discrepancy, we find that the Planck cosmology is not compatible with the vanilla HMF for both the DES-y3 and the KiDS-1000 data. Moreover, when the cosmology and the HMF parameters are allowed to vary, the Planck cosmology is no longer in tension. The modified HMF predicts a matter power spectrum with a $\sim 25~{{\ \rm per\ cent}}$ power loss at k ∼ 1 h Mpc−1, in agreement with the recent studies that try to mitigate the S8 tension with modifications in P(k). We show that stage IV surveys will be able to measure the HMF parameters with a few per cent accuracy. |
---|---|
AbstractList | The discrepancy between the weak lensing (WL) and the Planck measurements of S8 has been a subject of several studies. Assuming that residual systematics are not the cause, these studies tend to show that a strong suppression of the amplitude of the mass power spectrum P(k) in the late Universe at high k could resolve it. The WL signal at the small scale is sensitive to various effects not related to lensing, such as baryonic effects and intrinsic alignment. These effects are still poorly understood therefore the accuracy of P(k) depends on the modelling precision of these effects. A common approach for calculating P(k) relies on a halo model. Among the various components necessary for the construction of P(k) in the halo model framework, the halo mass function (HMF) is an important one. Traditionally, the HMF has been assumed to follow a fixed model, motivated by dark matter-only numerical simulations. Recent literature shows that baryonic physics, among several other factors, could affect the HMF. In this study, we investigate the impact of allowing the HMF to vary. This provides a way of testing the validity of the halo model-HMF calibration using data. In the context of the aforementioned S8 discrepancy, we find that the Planck cosmology is not compatible with the vanilla HMF for both the DES-y3 and the KiDS-1000 data. Moreover, when the cosmology and the HMF parameters are allowed to vary, the Planck cosmology is no longer in tension. The modified HMF predicts a matter power spectrum with a $\sim 25~{{\ \rm per\ cent}}$ power loss at k ∼ 1 h Mpc−1, in agreement with the recent studies that try to mitigate the S8 tension with modifications in P(k). We show that stage IV surveys will be able to measure the HMF parameters with a few per cent accuracy. The discrepancy between the weak lensing (WL) and the Planck measurements of S8 has been a subject of several studies. Assuming that residual systematics are not the cause, these studies tend to show that a strong suppression of the amplitude of the mass power spectrum P(k) in the late Universe at high k could resolve it. The WL signal at the small scale is sensitive to various effects not related to lensing, such as baryonic effects and intrinsic alignment. These effects are still poorly understood therefore the accuracy of P(k) depends on the modelling precision of these effects. A common approach for calculating P(k) relies on a halo model. Among the various components necessary for the construction of P(k) in the halo model framework, the halo mass function (HMF) is an important one. Traditionally, the HMF has been assumed to follow a fixed model, motivated by dark matter-only numerical simulations. Recent literature shows that baryonic physics, among several other factors, could affect the HMF. In this study, we investigate the impact of allowing the HMF to vary. This provides a way of testing the validity of the halo model-HMF calibration using data. In the context of the aforementioned S8 discrepancy, we find that the Planck cosmology is not compatible with the vanilla HMF for both the DES-y3 and the KiDS-1000 data. Moreover, when the cosmology and the HMF parameters are allowed to vary, the Planck cosmology is no longer in tension. The modified HMF predicts a matter power spectrum with a $\sim 25~{{\ \rm per\ cent}}$ power loss at k ∼ 1 h Mpc−1, in agreement with the recent studies that try to mitigate the S8 tension with modifications in P(k). We show that stage IV surveys will be able to measure the HMF parameters with a few per cent accuracy. ABSTRACT The discrepancy between the weak lensing (WL) and the Planck measurements of S8 has been a subject of several studies. Assuming that residual systematics are not the cause, these studies tend to show that a strong suppression of the amplitude of the mass power spectrum P(k) in the late Universe at high k could resolve it. The WL signal at the small scale is sensitive to various effects not related to lensing, such as baryonic effects and intrinsic alignment. These effects are still poorly understood therefore the accuracy of P(k) depends on the modelling precision of these effects. A common approach for calculating P(k) relies on a halo model. Among the various components necessary for the construction of P(k) in the halo model framework, the halo mass function (HMF) is an important one. Traditionally, the HMF has been assumed to follow a fixed model, motivated by dark matter-only numerical simulations. Recent literature shows that baryonic physics, among several other factors, could affect the HMF. In this study, we investigate the impact of allowing the HMF to vary. This provides a way of testing the validity of the halo model-HMF calibration using data. In the context of the aforementioned S8 discrepancy, we find that the Planck cosmology is not compatible with the vanilla HMF for both the DES-y3 and the KiDS-1000 data. Moreover, when the cosmology and the HMF parameters are allowed to vary, the Planck cosmology is no longer in tension. The modified HMF predicts a matter power spectrum with a $\sim 25~{{\ \rm per\ cent}}$ power loss at k ∼ 1 h Mpc−1, in agreement with the recent studies that try to mitigate the S8 tension with modifications in P(k). We show that stage IV surveys will be able to measure the HMF parameters with a few per cent accuracy. |
Author | Dor, Marc-Antoine Tröster, Tilman Mead, Alexander Asgari, Marika van Waerbeke, Ludovic |
Author_xml | – sequence: 2 givenname: Marc-Antoine surname: Dor fullname: Dor, Marc-Antoine – sequence: 3 givenname: Ludovic surname: van Waerbeke fullname: van Waerbeke, Ludovic email: waerbeke@phas.ubc.ca – sequence: 4 givenname: Marika surname: Asgari fullname: Asgari, Marika – sequence: 5 givenname: Alexander orcidid: 0000-0003-3794-581X surname: Mead fullname: Mead, Alexander – sequence: 6 givenname: Tilman orcidid: 0000-0003-3520-2406 surname: Tröster fullname: Tröster, Tilman |
BookMark | eNqFkL1rwzAQxUVJoUnatbOgUwcn-rJsjyX0CwJZ0tlcZClxakupJDfkv6_TpEuhdDrueL_HuzdCA-usRuiWkgklBZ-21kOYhggVEzS7QEPKZZqwQsoBGhLC0yTPKL1CoxC2hBDBmRyi5cJi5WyIHmpb23W_hNY1bn3AYCscNxpvoHG4hRCw6ayKtbN4X8cN3mt4x2sPn3WE4xUa3GgbepNrdGmgCfrmPMfo7elxOXtJ5ovn19nDPFGc0JhoKXOWM56aTAGFykgjFM2NIILBalVlTGua5UYVXHBiWJbmlTGrAgzPcm4kH6O7k-_Ou49Oh1huXef7IKHklPNUMNGTYyROKuVdCF6bUp0TH59uSkrKY3_ld3_lT389NvmF7Xzdgj_8DdyfANft_tN-AZVEh1o |
CitedBy_id | crossref_primary_10_1093_mnras_stad3987 crossref_primary_10_1051_0004_6361_202346539 crossref_primary_10_1103_PhysRevD_109_023535 crossref_primary_10_1088_1475_7516_2024_01_023 |
Cites_doi | 10.1051/0004-6361/202039805 10.1088/1475-7516/2020/04/019 10.1086/589982 10.3847/2041-8213/ab53e6 10.1051/0004-6361/202142197 10.1103/PhysRevD.75.063512 10.3847/1538-4365/aab4f5 10.1093/mnras/stx1261 10.1088/0004-637X/797/2/102 10.1086/149378 10.1111/j.1365-2966.2011.18858.x 10.1016/j.ascom.2015.05.005 10.1093/mnras/stv138 10.1007/978-3-642-56927-2 10.1093/mnras/stab1515 10.1086/186803 10.1093/mnras/stw681 10.1051/0004-6361/201730747 10.1111/j.1365-2966.2012.21952.x 10.48550/arXiv.2303.08752 10.1088/1475-7516/2013/12/012 10.1093/mnras/staa1726 10.1103/PhysRevD.105.083529 10.1111/j.1365-2966.2011.20222.x 10.1088/0067-0049/208/2/19 10.1046/j.1365-8711.1999.02692.x 10.1051/0004-6361/202142083 10.48550/arXiv.2306.04024 10.3847/1538-4365/ab1658 10.1046/j.1365-8711.2003.06503.x 10.1103/PhysRevD.105.023520 10.1051/0004-6361/202039063 10.3847/1538-4365/abeb66 10.1103/PhysRevD.102.023509 10.1093/mnrasl/slaa005 10.1086/308947 10.48550/arXiv.0908.2702 10.1038/s41586-020-2649-2 10.1088/0004-637X/761/2/152 10.1103/PhysRevD.73.063520 10.1051/0004-6361/201834878 10.1103/PhysRevLett.91.141302 10.1038/s41592-019-0686-2 10.1046/j.1365-8711.2001.04029.x 10.1086/170483 10.1093/mnras/stab3311 10.1111/j.1365-2966.2011.19913.x 10.1051/0004-6361/201731205 10.1109/MCSE.2007.55 10.1051/0004-6361/202039070 10.1093/mnras/sty2319 10.1051/0004-6361/202038850 10.1093/mnras/stab3055 10.1103/PhysRevD.105.023514 10.1093/mnras/stz3199 10.1093/mnras/staa3473 10.1046/j.1365-8711.1998.01545.x 10.1093/mnras/stv2140 10.1051/0004-6361/201322068 10.1088/0004-637X/726/1/48 10.1093/mnras/stv2842 10.1088/1475-7516/2015/12/049 10.1093/mnras/sty2093 10.1051/0004-6361/201834918 10.1093/mnras/stv1708 10.1093/mnras/sty3427 10.1093/mnras/stw2805 10.48550/arXiv.2305.17173 10.3847/1538-3881/aabc4f 10.1093/pasj/psx066 10.1111/j.1365-2966.2009.14548.x 10.1093/mnras/stab3520 10.1051/0004-6361/202038308 10.1093/mnras/stab3337 10.1103/PhysRevD.100.103506 10.1093/mnras/stu2464 10.1051/0004-6361/201833910 10.1093/mnras/stv2036 10.1093/mnras/stab082 10.1046/j.1365-8711.2001.04068.x 10.1093/mnras/stv2657 10.1093/mnras/stz1949 10.3847/1538-4357/abd947 10.1088/0004-6256/150/5/150 10.1088/1475-7516/2014/04/029 10.1051/0004-6361/202038389 10.1046/j.1365-8711.2000.03071.x 10.1103/PhysRevD.91.123520 10.48550/arXiv.1910.13970 10.1093/mnras/stx258 10.1086/145672 10.1093/mnras/stv794 10.1103/PhysRevD.105.023515 10.1093/mnras/stw2072 10.1046/j.1365-8711.2000.03779.x 10.1046/j.1365-8711.2001.04006.x 10.1086/152650 10.1093/mnras/251.4.600 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society |
Copyright_xml | – notice: 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023 – notice: 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1093/mnras/stad2417 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 4886 |
ExternalDocumentID | 10_1093_mnras_stad2417 10.1093/mnras/stad2417 |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AANHP AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABAZT ABCQN ABCQX ABEJV ABEML ABEUO ABFSI ABGNP ABIXL ABNGD ABNKS ABPEJ ABPTD ABQLI ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACRPL ACSCC ACUFI ACUKT ACUTJ ACUXJ ACXQS ACYRX ACYTK ACYXJ ADEYI ADGZP ADHKW ADHZD ADNMO ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APJGH ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EBS EE~ EJD F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF JXSIZ K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RNS ROL ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX ABVLG AHGBF CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c301t-e66828235f7ca1adf6f4c18f4042abbd72ee178fc93430f2758dffb9af3783f63 |
IEDL.DBID | TOX |
ISSN | 0035-8711 |
IngestDate | Mon Jun 30 14:05:59 EDT 2025 Tue Jul 01 03:32:37 EDT 2025 Thu Apr 24 23:12:12 EDT 2025 Wed Apr 02 07:04:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | gravitational lensing: weak cosmological parameters dark matter large-scale structure of Universe |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c301t-e66828235f7ca1adf6f4c18f4042abbd72ee178fc93430f2758dffb9af3783f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3794-581X 0000-0003-3520-2406 0000-0001-8043-5378 0000-0002-7058-7412 |
PQID | 3133542434 |
PQPubID | 42411 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3133542434 crossref_citationtrail_10_1093_mnras_stad2417 crossref_primary_10_1093_mnras_stad2417 oup_primary_10_1093_mnras_stad2417 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Ondaro-Mallea (2023091215142592000_bib83) 2022; 509 Asgari (2023091215142592000_bib7) 2021; 645 Despali (2023091215142592000_bib33) 2016; 456 Flaugher (2023091215142592000_bib39) 2015; 150 Crocce (2023091215142592000_bib30) 2015; 453 Hoekstra (2023091215142592000_bib56) 2011; 726 Sheth (2023091215142592000_bib95) 2001; 323 Aihara (2023091215142592000_bib2) 2018; 70 Kulkarni (2023091215142592000_bib68) 2022; 510 Blazek (2023091215142592000_bib19) 2019; 100 Costanzi (2023091215142592000_bib27) 2013; 2013 Knebe (2023091215142592000_bib62) 2011; 415 Hildebrandt (2023091215142592000_bib53) 2017; 465 Jenkins (2023091215142592000_bib60) 2001; 321 Takahashi (2023091215142592000_bib98) 2012; 761 Smith (2023091215142592000_bib96) 2003; 341 Press (2023091215142592000_bib86) 1974; 187 van den Busch (2023091215142592000_bib109) 2022; 664 Astropy Collaboration (2023091215142592000_bib10) 2018; 156 Li (2023091215142592000_bib73) 2019; 886 Giblin (2023091215142592000_bib44) 2021; 645 Abbott (2023091215142592000_bib1) 2020; 102 Schneider (2023091215142592000_bib91) 2020; 2020 Aiola (2023091215142592000_bib3) 2020 Beltz-Mohrmann (2023091215142592000_bib15) 2021 Limber (2023091215142592000_bib74) 1953; 117 Lewis (2023091215142592000_bib71) 2019 Castro (2023091215142592000_bib24) 2021; 500 van Daalen (2023091215142592000_bib108) 2020; 491 Gatti (2023091215142592000_bib42) 2022; 510 Sheth (2023091215142592000_bib94) 1999; 308 Kuijken (2023091215142592000_bib66) 2015; 454 Castro (2023091215142592000_bib23) 2016; 463 Asgari (2023091215142592000_bib8) 2023 Kohonen (2023091215142592000_bib63) 2001 Baugh (2023091215142592000_bib14) 2019; 483 Peacock (2023091215142592000_bib84) 2000; 318 Amon (2023091215142592000_bib4) 2022 Chisari (2023091215142592000_bib26) 2019; 242 Barreira (2023091215142592000_bib13) 2014; 2014 Böhringer (2023091215142592000_bib21) 2017; 608 Costanzi (2023091215142592000_bib28) 2019; 488 Bagla (2023091215142592000_bib11) 2009 Sevilla-Noarbe (2023091215142592000_bib93) 2021; 254 Mead (2023091215142592000_bib78) 2016; 459 Edge (2023091215142592000_bib36) 2013; 154 Hildebrandt (2023091215142592000_bib54) 2020; 633 Fosalba (2023091215142592000_bib40) 2015; 447 Heymans (2023091215142592000_bib51) 2012; 427 Bullock (2023091215142592000_bib22) 2001; 321 Amon (2023091215142592000_bib5) 2022 Tröster (2023091215142592000_bib101) 2022; 660 Planck Collaboration VI (2023091215142592000_bib85) 2020; 641 Tormen (2023091215142592000_bib99) 1998; 297 Krause (2023091215142592000_bib64) 2017; 470 Myles (2023091215142592000_bib81) 2021; 505 DES Collaboration (2023091215142592000_bib31) 2022; 105 Blandford (2023091215142592000_bib18) 1991; 251 Harnois-Déraps (2023091215142592000_bib47) 2015; 450 Bocquet (2023091215142592000_bib20) 2016; 456 Sánchez (2023091215142592000_bib88) 2022; 105 Marsh (2023091215142592000_bib76) 2015; 91 Drlica-Wagner (2023091215142592000_bib35) 2018; 235 Leauthaud (2023091215142592000_bib69) 2017; 467 Amon (2023091215142592000_bib6) 2022; 105 Lovell (2023091215142592000_bib75) 2020; 493 Fang (2023091215142592000_bib37) 2020; 497 Bird (2023091215142592000_bib17) 2012; 420 Fosalba (2023091215142592000_bib41) 2015; 448 Virtanen (2023091215142592000_bib102) 2020; 17 Hunter (2023091215142592000_bib58) 2007; 9 Newman (2023091215142592000_bib82) 2008; 684 White (2023091215142592000_bib103) 1991; 379 de Jong (2023091215142592000_bib106) 2017; 604 Bahcall (2023091215142592000_bib12) 1993; 407 Raichoor (2023091215142592000_bib87) 2014; 797 Kuijken (2023091215142592000_bib67) 2019; 625 Mead (2023091215142592000_bib80) 2021; 502 Mead (2023091215142592000_bib77) 2015; 454 DES and KiDS Collaboration (2023091215142592000_bib32) 2023 Mead (2023091215142592000_bib79) 2020; 641 Heymans (2023091215142592000_bib52) 2021; 646 Hartley (2023091215142592000_bib50) 2022; 509 Harnois-Déraps (2023091215142592000_bib48) 2018; 481 Hinshaw (2023091215142592000_bib55) 2013; 208 Joachimi (2023091215142592000_bib61) 2021 Hamilton (2023091215142592000_bib46) 2000; 312 Jain (2023091215142592000_bib59) 2003; 91 Feroz (2023091215142592000_bib38) 2009; 398 Lemos (2023091215142592000_bib70) 2022 Harris (2023091215142592000_bib49) 2020; 585 Secco (2023091215142592000_bib92) 2022; 105 Schneider (2023091215142592000_bib90) 2015; 2015 Benítez (2023091215142592000_bib16) 2000; 536 Lewis (2023091215142592000_bib72) 2011 Crocce (2023091215142592000_bib29) 2006; 73 Astropy Collaboration (2023091215142592000_bib9) 2013; 558 Smith (2023091215142592000_bib97) 2007; 75 Tröster (2023091215142592000_bib100) 2021; 649 eBOSS Collaboration (2023091215142592000_bib107) 2020 Gunn (2023091215142592000_bib45) 1967; 150 Wright (2023091215142592000_bib104) 2020; 640 Chisari (2023091215142592000_bib25) 2018; 480 Diemer (2023091215142592000_bib34) 2021; 909 Schaye (2023091215142592000_bib89) 2023 Zuntz (2023091215142592000_bib105) 2015; 12 Hubble (2023091215142592000_bib57) 1936 Geach (2023091215142592000_bib43) 2012; 419 Kuijken (2023091215142592000_bib65) 2011; 146 |
References_xml | – volume: 649 start-page: A88 year: 2021 ident: 2023091215142592000_bib100 publication-title: A&A doi: 10.1051/0004-6361/202039805 – volume: 2020 start-page: 019 year: 2020 ident: 2023091215142592000_bib91 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2020/04/019 – volume: 684 start-page: 88 year: 2008 ident: 2023091215142592000_bib82 publication-title: ApJ doi: 10.1086/589982 – volume: 886 start-page: L11 year: 2019 ident: 2023091215142592000_bib73 publication-title: ApJ doi: 10.3847/2041-8213/ab53e6 – volume: 660 start-page: A27 year: 2022 ident: 2023091215142592000_bib101 publication-title: A&A doi: 10.1051/0004-6361/202142197 – year: 2022 ident: 2023091215142592000_bib70 publication-title: MNRAS – volume: 75 start-page: 063512 year: 2007 ident: 2023091215142592000_bib97 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.75.063512 – volume: 235 start-page: 33 year: 2018 ident: 2023091215142592000_bib35 publication-title: ApJS doi: 10.3847/1538-4365/aab4f5 – start-page: 477 volume-title: MNRAS year: 2022 ident: 2023091215142592000_bib5 – volume: 470 start-page: 2100 year: 2017 ident: 2023091215142592000_bib64 publication-title: MNRAS doi: 10.1093/mnras/stx1261 – volume: 797 start-page: 102 year: 2014 ident: 2023091215142592000_bib87 publication-title: ApJ doi: 10.1088/0004-637X/797/2/102 – volume: 150 start-page: 737 year: 1967 ident: 2023091215142592000_bib45 publication-title: ApJ doi: 10.1086/149378 – volume: 415 start-page: 2293 year: 2011 ident: 2023091215142592000_bib62 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.18858.x – volume: 12 start-page: 45 year: 2015 ident: 2023091215142592000_bib105 publication-title: Astron. Comput. doi: 10.1016/j.ascom.2015.05.005 – volume: 448 start-page: 2987 year: 2015 ident: 2023091215142592000_bib41 publication-title: MNRAS doi: 10.1093/mnras/stv138 – volume-title: Self-Organizing Maps year: 2001 ident: 2023091215142592000_bib63 doi: 10.1007/978-3-642-56927-2 – volume: 505 start-page: 4249 year: 2021 ident: 2023091215142592000_bib81 publication-title: MNRAS doi: 10.1093/mnras/stab1515 – volume: 407 start-page: L49 year: 1993 ident: 2023091215142592000_bib12 publication-title: ApJ doi: 10.1086/186803 – volume: 459 start-page: 1468 year: 2016 ident: 2023091215142592000_bib78 publication-title: MNRAS doi: 10.1093/mnras/stw681 – volume: 604 start-page: A134 year: 2017 ident: 2023091215142592000_bib106 publication-title: A&A doi: 10.1051/0004-6361/201730747 – volume: 427 start-page: 146 year: 2012 ident: 2023091215142592000_bib51 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21952.x – year: 2023 ident: 2023091215142592000_bib8 doi: 10.48550/arXiv.2303.08752 – volume: 2013 start-page: 012 year: 2013 ident: 2023091215142592000_bib27 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2013/12/012 – start-page: 5355 volume-title: MNRAS year: 2022 ident: 2023091215142592000_bib4 – volume: 497 start-page: 2699 year: 2020 ident: 2023091215142592000_bib37 publication-title: MNRAS doi: 10.1093/mnras/staa1726 – volume: 105 start-page: 083529 year: 2022 ident: 2023091215142592000_bib88 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.083529 – volume: 420 start-page: 2551 year: 2012 ident: 2023091215142592000_bib17 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.20222.x – volume: 208 start-page: 19 year: 2013 ident: 2023091215142592000_bib55 publication-title: ApJS doi: 10.1088/0067-0049/208/2/19 – volume: 308 start-page: 119 year: 1999 ident: 2023091215142592000_bib94 publication-title: MNRAS doi: 10.1046/j.1365-8711.1999.02692.x – volume: 664 start-page: A170 year: 2022 ident: 2023091215142592000_bib109 publication-title: A&A doi: 10.1051/0004-6361/202142083 – year: 2023 ident: 2023091215142592000_bib89 doi: 10.48550/arXiv.2306.04024 – volume: 242 start-page: 2 year: 2019 ident: 2023091215142592000_bib26 publication-title: ApJS doi: 10.3847/1538-4365/ab1658 – volume: 154 start-page: 32 year: 2013 ident: 2023091215142592000_bib36 publication-title: Messenger – volume: 341 start-page: 1311 year: 2003 ident: 2023091215142592000_bib96 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06503.x – volume: 105 start-page: 023520 year: 2022 ident: 2023091215142592000_bib31 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.023520 – volume-title: Realm of the Nebulae year: 1936 ident: 2023091215142592000_bib57 – volume: 646 start-page: A140 year: 2021 ident: 2023091215142592000_bib52 publication-title: A&A doi: 10.1051/0004-6361/202039063 – volume: 254 start-page: 24 year: 2021 ident: 2023091215142592000_bib93 publication-title: ApJS doi: 10.3847/1538-4365/abeb66 – volume: 102 start-page: 023509 year: 2020 ident: 2023091215142592000_bib1 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.023509 – volume: 493 start-page: L11 year: 2020 ident: 2023091215142592000_bib75 publication-title: MNRAS doi: 10.1093/mnrasl/slaa005 – volume: 536 start-page: 571 year: 2000 ident: 2023091215142592000_bib16 publication-title: ApJ doi: 10.1086/308947 – year: 2009 ident: 2023091215142592000_bib11 doi: 10.48550/arXiv.0908.2702 – volume: 585 start-page: 357 year: 2020 ident: 2023091215142592000_bib49 publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 761 start-page: 152 year: 2012 ident: 2023091215142592000_bib98 publication-title: ApJ doi: 10.1088/0004-637X/761/2/152 – year: 2020 ident: 2023091215142592000_bib107 – start-page: 047 volume-title: J. Cosmol. Astropart. Phys. year: 2020 ident: 2023091215142592000_bib3 – volume: 73 start-page: 063520 year: 2006 ident: 2023091215142592000_bib29 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.73.063520 – volume: 633 start-page: A69 year: 2020 ident: 2023091215142592000_bib54 publication-title: A&A doi: 10.1051/0004-6361/201834878 – volume: 91 start-page: 141302 year: 2003 ident: 2023091215142592000_bib59 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.141302 – volume: 17 start-page: 261 year: 2020 ident: 2023091215142592000_bib102 publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 321 start-page: 372 year: 2001 ident: 2023091215142592000_bib60 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.04029.x – volume: 379 start-page: 52 year: 1991 ident: 2023091215142592000_bib103 publication-title: ApJ doi: 10.1086/170483 – volume: 510 start-page: 1223 year: 2022 ident: 2023091215142592000_bib42 publication-title: MNRAS doi: 10.1093/mnras/stab3311 – volume: 419 start-page: 2633 year: 2012 ident: 2023091215142592000_bib43 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19913.x – start-page: 112 volume-title: ApJ year: 2021 ident: 2023091215142592000_bib15 – start-page: A129 volume-title: A&A year: 2021 ident: 2023091215142592000_bib61 – volume: 608 start-page: A65 year: 2017 ident: 2023091215142592000_bib21 publication-title: A&A doi: 10.1051/0004-6361/201731205 – volume: 9 start-page: 90 year: 2007 ident: 2023091215142592000_bib58 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 645 start-page: A104 year: 2021 ident: 2023091215142592000_bib7 publication-title: A&A doi: 10.1051/0004-6361/202039070 – volume: 481 start-page: 1337 year: 2018 ident: 2023091215142592000_bib48 publication-title: MNRAS doi: 10.1093/mnras/sty2319 – volume: 645 start-page: A105 year: 2021 ident: 2023091215142592000_bib44 publication-title: A&A doi: 10.1051/0004-6361/202038850 – volume: 509 start-page: 3547 year: 2022 ident: 2023091215142592000_bib50 publication-title: MNRAS doi: 10.1093/mnras/stab3055 – volume: 105 start-page: 023514 year: 2022 ident: 2023091215142592000_bib6 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.023514 – volume: 491 start-page: 2424 year: 2020 ident: 2023091215142592000_bib108 publication-title: MNRAS doi: 10.1093/mnras/stz3199 – volume: 500 start-page: 2316 year: 2021 ident: 2023091215142592000_bib24 publication-title: MNRAS doi: 10.1093/mnras/staa3473 – volume: 297 start-page: 648 year: 1998 ident: 2023091215142592000_bib99 publication-title: MNRAS doi: 10.1046/j.1365-8711.1998.01545.x – volume: 454 start-page: 3500 year: 2015 ident: 2023091215142592000_bib66 publication-title: MNRAS doi: 10.1093/mnras/stv2140 – volume: 558 start-page: A33 year: 2013 ident: 2023091215142592000_bib9 publication-title: A&A doi: 10.1051/0004-6361/201322068 – volume: 726 start-page: 48 year: 2011 ident: 2023091215142592000_bib56 publication-title: ApJ doi: 10.1088/0004-637X/726/1/48 – volume: 456 start-page: 2486 year: 2016 ident: 2023091215142592000_bib33 publication-title: MNRAS doi: 10.1093/mnras/stv2842 – volume: 2015 start-page: 049 year: 2015 ident: 2023091215142592000_bib90 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2015/12/049 – volume: 480 start-page: 3962 year: 2018 ident: 2023091215142592000_bib25 publication-title: MNRAS doi: 10.1093/mnras/sty2093 – volume: 625 start-page: A2 year: 2019 ident: 2023091215142592000_bib67 publication-title: A&A doi: 10.1051/0004-6361/201834918 – volume: 453 start-page: 1513 year: 2015 ident: 2023091215142592000_bib30 publication-title: MNRAS doi: 10.1093/mnras/stv1708 – volume: 483 start-page: 4922 year: 2019 ident: 2023091215142592000_bib14 publication-title: MNRAS doi: 10.1093/mnras/sty3427 – volume: 465 start-page: 1454 year: 2017 ident: 2023091215142592000_bib53 publication-title: MNRAS doi: 10.1093/mnras/stw2805 – year: 2023 ident: 2023091215142592000_bib32 doi: 10.48550/arXiv.2305.17173 – volume: 156 start-page: 123 year: 2018 ident: 2023091215142592000_bib10 publication-title: AJ doi: 10.3847/1538-3881/aabc4f – volume: 70 start-page: S4 year: 2018 ident: 2023091215142592000_bib2 publication-title: PASJ doi: 10.1093/pasj/psx066 – volume: 398 start-page: 1601 year: 2009 ident: 2023091215142592000_bib38 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14548.x – volume: 510 start-page: 1425 year: 2022 ident: 2023091215142592000_bib68 publication-title: MNRAS doi: 10.1093/mnras/stab3520 – volume: 641 start-page: A130 year: 2020 ident: 2023091215142592000_bib79 publication-title: A&A doi: 10.1051/0004-6361/202038308 – volume: 509 start-page: 6077 year: 2022 ident: 2023091215142592000_bib83 publication-title: MNRAS doi: 10.1093/mnras/stab3337 – volume: 100 start-page: 103506 year: 2019 ident: 2023091215142592000_bib19 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.103506 – volume: 447 start-page: 1319 year: 2015 ident: 2023091215142592000_bib40 publication-title: MNRAS doi: 10.1093/mnras/stu2464 – volume: 641 start-page: A6 year: 2020 ident: 2023091215142592000_bib85 publication-title: A&A doi: 10.1051/0004-6361/201833910 – volume: 454 start-page: 1958 year: 2015 ident: 2023091215142592000_bib77 publication-title: MNRAS doi: 10.1093/mnras/stv2036 – volume: 502 start-page: 1401 year: 2021 ident: 2023091215142592000_bib80 publication-title: MNRAS doi: 10.1093/mnras/stab082 – volume: 321 start-page: 559 year: 2001 ident: 2023091215142592000_bib22 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.04068.x – volume: 456 start-page: 2361 year: 2016 ident: 2023091215142592000_bib20 publication-title: MNRAS doi: 10.1093/mnras/stv2657 – volume: 488 start-page: 4779 year: 2019 ident: 2023091215142592000_bib28 publication-title: MNRAS doi: 10.1093/mnras/stz1949 – volume: 909 start-page: 112 year: 2021 ident: 2023091215142592000_bib34 publication-title: ApJ doi: 10.3847/1538-4357/abd947 – volume: 150 start-page: 150 year: 2015 ident: 2023091215142592000_bib39 publication-title: AJ doi: 10.1088/0004-6256/150/5/150 – volume: 2014 start-page: 029 year: 2014 ident: 2023091215142592000_bib13 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/04/029 – volume: 146 start-page: 8 year: 2011 ident: 2023091215142592000_bib65 publication-title: Messenger – volume: 640 start-page: L14 year: 2020 ident: 2023091215142592000_bib104 publication-title: A&A doi: 10.1051/0004-6361/202038389 – volume: 312 start-page: 257 year: 2000 ident: 2023091215142592000_bib46 publication-title: MNRAS doi: 10.1046/j.1365-8711.2000.03071.x – volume: 91 start-page: 123520 year: 2015 ident: 2023091215142592000_bib76 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.123520 – year: 2019 ident: 2023091215142592000_bib71 doi: 10.48550/arXiv.1910.13970 – volume: 467 start-page: 3024 year: 2017 ident: 2023091215142592000_bib69 publication-title: MNRAS doi: 10.1093/mnras/stx258 – volume: 117 start-page: 134 year: 1953 ident: 2023091215142592000_bib74 publication-title: ApJ doi: 10.1086/145672 – volume: 450 start-page: 2857 year: 2015 ident: 2023091215142592000_bib47 publication-title: MNRAS doi: 10.1093/mnras/stv794 – volume: 105 start-page: 023515 year: 2022 ident: 2023091215142592000_bib92 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.023515 – volume-title: Astrophysics Source Code Library year: 2011 ident: 2023091215142592000_bib72 – volume: 463 start-page: 1666 year: 2016 ident: 2023091215142592000_bib23 publication-title: MNRAS doi: 10.1093/mnras/stw2072 – volume: 318 start-page: 1144 year: 2000 ident: 2023091215142592000_bib84 publication-title: MNRAS doi: 10.1046/j.1365-8711.2000.03779.x – volume: 323 start-page: 1 year: 2001 ident: 2023091215142592000_bib95 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.04006.x – volume: 187 start-page: 425 year: 1974 ident: 2023091215142592000_bib86 publication-title: ApJ doi: 10.1086/152650 – volume: 251 start-page: 600 year: 1991 ident: 2023091215142592000_bib18 publication-title: MNRAS doi: 10.1093/mnras/251.4.600 |
SSID | ssj0004326 |
Score | 2.4756095 |
Snippet | ABSTRACT
The discrepancy between the weak lensing (WL) and the Planck measurements of S8 has been a subject of several studies. Assuming that residual... The discrepancy between the weak lensing (WL) and the Planck measurements of S8 has been a subject of several studies. Assuming that residual systematics are... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4871 |
SubjectTerms | Accuracy Baryons Cosmology Dark matter Gravitational lenses Parameter modification |
Title | On constraining cosmology and the halo mass function with weak gravitational lensing |
URI | https://www.proquest.com/docview/3133542434 |
Volume | 525 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-yJ19Ep7LpHEFEn8raJP16HMMxhDmQDfZW0jRRsR-yVsT_3kvaTiaKvjX0WtK7Xu53l9wdQleuUratmD49xcFBCYSyQMzMkoEXiFDo_BkdGpjfe7MVu1u766ZYdPnDFn5IR1m-4eUIsFIC1kbnjYMF1lXyl4v1VwYkNY3VTAFGcAGcbXnG74_vmJ-dlLZ2DTaGZXqIDhpEiMe1CI_Qnsy7qDcudYy6yD7wNTbXdQii7KL-HHBusTHhcLg5SZ8BdJrRMVouciw04msaP8CgzGpKnicYwB5-4mmBM4DMWJs0LRasY7H4XfIXrJsRNUW7YUqpPtyeP56g1fR2OZlZTd8ES4C6Vpb0PPCjCHWVL7jDE-UpJpxAMVBQHseJT6R0_ECJkDJqKwIuQ6JUHHJF_YAqj56iTl7ksocwUTYHhwd4xz2WkBiWRsFYEju-Q0jAwz6yWnZGopmf_sQ0qje3aWTYH7Xs76ObLf1rXU7jV8pLkM6fRINWeFGje2VEwe12GWGUnf3nHedoX7eQr_MLB6hTbd7kBQCNKh4CxH4gQ_OnfQLfAtTJ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+constraining+cosmology+and+the+halo+mass+function+with+weak+gravitational+lensing&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Gu%2C+Shiming&rft.au=Dor%2C+Marc-Antoine&rft.au=van%C2%A0Waerbeke%2C+Ludovic&rft.au=Asgari%2C+Marika&rft.date=2023-11-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=525&rft.issue=4&rft.spage=4871&rft.epage=4886&rft_id=info:doi/10.1093%2Fmnras%2Fstad2417&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stad2417 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |