Energy Efficient COGnitive-MAC for Sensor Networks Under WLAN Co-existence
Energy efficiency has been the driving force behind the design of communication protocols for battery-constrained wireless sensor networks (WSNs). The energy efficiency and the performance of the proposed protocol stacks, however, degrade dramatically in case the low-powered WSNS are subject to inte...
Saved in:
Published in | IEEE transactions on wireless communications Vol. 14; no. 7; pp. 4075 - 4089 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.07.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Energy efficiency has been the driving force behind the design of communication protocols for battery-constrained wireless sensor networks (WSNs). The energy efficiency and the performance of the proposed protocol stacks, however, degrade dramatically in case the low-powered WSNS are subject to interference from high-power wireless systems such as WLANs. In this paper we propose COG-MAC, a novel cognitive medium access control scheme (MAC) for IEEE 802.15.4-compliant WSNS that minimizes the energy cost for multihop communications, by deriving energy-optimal packet lengths and single-hop transmission distances based on the experienced interference from IEEE 802.11 WLANs. We evaluate COG-MAC by deriving a detailed analytic model for its performance and by comparing it with previous access control schemes. Numerical and simulation results show that a significant decrease in packet transmission energy cost, up to 66%, can be achieved in a wide range of scenarios, particularly under severe WLAN interference. COG-MAC is, also, lightweight and shows high robustness against WLAN model estimation errors and is, therefore, an effective, implementable solution to reduce the WSN performance impairment when coexisting with WLANs. |
---|---|
ISSN: | 1536-1276 1558-2248 |
DOI: | 10.1109/TWC.2015.2416336 |