Difference-Complementary Learning and Label Reassignment for Multimodal Semi-Supervised Semantic Segmentation of Remote Sensing Images

The feature fusion of optical and Synthetic Aperture Radar (SAR) images is widely used for semantic segmentation of multimodal remote sensing images. It leverages information from two different sensors to enhance the analytical capabilities of land cover. However, the imaging characteristics of opti...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 34; pp. 566 - 580
Main Authors Han, Wenqi, Jiang, Wen, Geng, Jie, Miao, Wang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The feature fusion of optical and Synthetic Aperture Radar (SAR) images is widely used for semantic segmentation of multimodal remote sensing images. It leverages information from two different sensors to enhance the analytical capabilities of land cover. However, the imaging characteristics of optical and SAR data are vastly different, and noise interference makes the fusion of multimodal data information challenging. Furthermore, in practical remote sensing applications, there are typically only a limited number of labeled samples available, with most pixels needing to be labeled. Semi-supervised learning has the potential to improve model performance in scenarios with limited labeled data. However, in remote sensing applications, the quality of pseudo-labels is frequently compromised, particularly in challenging regions such as blurred edges and areas with class confusion. This degradation in label quality can have a detrimental effect on the model's overall performance. In this paper, we introduce the Difference-complementary Learning and Label Reassignment (DLLR) network for multimodal semi-supervised semantic segmentation of remote sensing images. Our proposed DLLR framework leverages asymmetric masking to create information discrepancies between the optical and SAR modalities, and employs a difference-guided complementary learning strategy to enable mutual learning. Subsequently, we introduce a multi-level label reassignment strategy, treating the label assignment problem as an optimal transport optimization task to allocate pixels to classes with higher precision for unlabeled pixels, thereby enhancing the quality of pseudo-label annotations. Finally, we introduce a multimodal consistency cross pseudo-supervision strategy to improve pseudo-label utilization. We evaluate our method on two multimodal remote sensing datasets, namely, the WHU-OPT-SAR and EErDS-OPT-SAR datasets. Experimental results demonstrate that our proposed DLLR model outperforms other relevant deep networks in terms of accuracy in multimodal semantic segmentation.
AbstractList The feature fusion of optical and Synthetic Aperture Radar (SAR) images is widely used for semantic segmentation of multimodal remote sensing images. It leverages information from two different sensors to enhance the analytical capabilities of land cover. However, the imaging characteristics of optical and SAR data are vastly different, and noise interference makes the fusion of multimodal data information challenging. Furthermore, in practical remote sensing applications, there are typically only a limited number of labeled samples available, with most pixels needing to be labeled. Semi-supervised learning has the potential to improve model performance in scenarios with limited labeled data. However, in remote sensing applications, the quality of pseudo-labels is frequently compromised, particularly in challenging regions such as blurred edges and areas with class confusion. This degradation in label quality can have a detrimental effect on the model’s overall performance. In this paper, we introduce the Difference-complementary Learning and Label Reassignment (DLLR) network for multimodal semi-supervised semantic segmentation of remote sensing images. Our proposed DLLR framework leverages asymmetric masking to create information discrepancies between the optical and SAR modalities, and employs a difference-guided complementary learning strategy to enable mutual learning. Subsequently, we introduce a multi-level label reassignment strategy, treating the label assignment problem as an optimal transport optimization task to allocate pixels to classes with higher precision for unlabeled pixels, thereby enhancing the quality of pseudo-label annotations. Finally, we introduce a multimodal consistency cross pseudo-supervision strategy to improve pseudo-label utilization. We evaluate our method on two multimodal remote sensing datasets, namely, the WHU-OPT-SAR and EErDS-OPT-SAR datasets. Experimental results demonstrate that our proposed DLLR model outperforms other relevant deep networks in terms of accuracy in multimodal semantic segmentation.
The feature fusion of optical and Synthetic Aperture Radar (SAR) images is widely used for semantic segmentation of multimodal remote sensing images. It leverages information from two different sensors to enhance the analytical capabilities of land cover. However, the imaging characteristics of optical and SAR data are vastly different, and noise interference makes the fusion of multimodal data information challenging. Furthermore, in practical remote sensing applications, there are typically only a limited number of labeled samples available, with most pixels needing to be labeled. Semi-supervised learning has the potential to improve model performance in scenarios with limited labeled data. However, in remote sensing applications, the quality of pseudo-labels is frequently compromised, particularly in challenging regions such as blurred edges and areas with class confusion. This degradation in label quality can have a detrimental effect on the model's overall performance. In this paper, we introduce the Difference-complementary Learning and Label Reassignment (DLLR) network for multimodal semi-supervised semantic segmentation of remote sensing images. Our proposed DLLR framework leverages asymmetric masking to create information discrepancies between the optical and SAR modalities, and employs a difference-guided complementary learning strategy to enable mutual learning. Subsequently, we introduce a multi-level label reassignment strategy, treating the label assignment problem as an optimal transport optimization task to allocate pixels to classes with higher precision for unlabeled pixels, thereby enhancing the quality of pseudo-label annotations. Finally, we introduce a multimodal consistency cross pseudo-supervision strategy to improve pseudo-label utilization. We evaluate our method on two multimodal remote sensing datasets, namely, the WHU-OPT-SAR and EErDS-OPT-SAR datasets. Experimental results demonstrate that our proposed DLLR model outperforms other relevant deep networks in terms of accuracy in multimodal semantic segmentation.The feature fusion of optical and Synthetic Aperture Radar (SAR) images is widely used for semantic segmentation of multimodal remote sensing images. It leverages information from two different sensors to enhance the analytical capabilities of land cover. However, the imaging characteristics of optical and SAR data are vastly different, and noise interference makes the fusion of multimodal data information challenging. Furthermore, in practical remote sensing applications, there are typically only a limited number of labeled samples available, with most pixels needing to be labeled. Semi-supervised learning has the potential to improve model performance in scenarios with limited labeled data. However, in remote sensing applications, the quality of pseudo-labels is frequently compromised, particularly in challenging regions such as blurred edges and areas with class confusion. This degradation in label quality can have a detrimental effect on the model's overall performance. In this paper, we introduce the Difference-complementary Learning and Label Reassignment (DLLR) network for multimodal semi-supervised semantic segmentation of remote sensing images. Our proposed DLLR framework leverages asymmetric masking to create information discrepancies between the optical and SAR modalities, and employs a difference-guided complementary learning strategy to enable mutual learning. Subsequently, we introduce a multi-level label reassignment strategy, treating the label assignment problem as an optimal transport optimization task to allocate pixels to classes with higher precision for unlabeled pixels, thereby enhancing the quality of pseudo-label annotations. Finally, we introduce a multimodal consistency cross pseudo-supervision strategy to improve pseudo-label utilization. We evaluate our method on two multimodal remote sensing datasets, namely, the WHU-OPT-SAR and EErDS-OPT-SAR datasets. Experimental results demonstrate that our proposed DLLR model outperforms other relevant deep networks in terms of accuracy in multimodal semantic segmentation.
Author Han, Wenqi
Jiang, Wen
Geng, Jie
Miao, Wang
Author_xml – sequence: 1
  givenname: Wenqi
  surname: Han
  fullname: Han, Wenqi
  email: hanwenqinwpu@mail.nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Wen
  orcidid: 0000-0001-5429-2748
  surname: Jiang
  fullname: Jiang, Wen
  email: jiangwen@nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Jie
  orcidid: 0000-0003-4858-823X
  surname: Geng
  fullname: Geng, Jie
  email: gengjie@nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Wang
  orcidid: 0009-0006-8704-4445
  surname: Miao
  fullname: Miao, Wang
  email: mw0638@mail.nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40030991$$D View this record in MEDLINE/PubMed
BookMark eNpdkcur1DAUxoNc8T5070Kk4MZNx5NH02Yp42tgRPFe1yVNT4ZcmmRMWsF_wL_b1BlFXJ0Hv_Nx-L5rchFiQEKeUthQCurV3e7zhgFrNrxhEqR4QK6oErQGEOyi9NC0dUuFuiTXOd8DUNFQ-YhcCgAOStEr8vONsxYTBoP1NvrjhB7DrNOPao86BRcOlQ5jtdcDTtUX1Dm7Q1iRysZUfVym2fk46qm6Re_q2-WI6bvLOK6zDrMzpTn8lpxdDFW0RcTHGcs65FV95_UB82Py0Oop45NzvSFf3729236o95_e77av97XhQOfa2AFaapRQBjWCYawbG-y6cTAdcC1Nq20HEgWzLarWglSDRKOMlc0wCOA35OVJ95jitwXz3HuXDU6TDhiX3HPaclHME01BX_yH3sclhfJdoRophWBSFur5mVoGj2N_TM4X9_o_DhcAToBJMeeE9i9CoV9D7EuI_Rpifw6xnDw7nThE_AfveMeU4L8A352ZXw
CODEN IIPRE4
Cites_doi 10.1109/TPAMI.2022.3233584
10.1109/TGRS.2023.3306180
10.1109/TGRS.2023.3274395
10.1109/TGRS.2020.3034123
10.1109/TGRS.2022.3197402
10.1109/TIP.2021.3109518
10.1109/CVPR42600.2020.01269
10.1109/TCSVT.2020.2995754
10.1109/TGRS.2023.3290232
10.1109/TGRS.2023.3321041
10.1109/CVPR46437.2021.00037
10.1109/CVPRW59228.2023.00671
10.1109/TGRS.2020.2964679
10.1109/CVPR52733.2024.02618
10.1109/JSTARS.2020.2975252
10.1109/TGRS.2017.2783902
10.1109/TPAMI.2023.3273592
10.1109/TGRS.2022.3185298
10.1109/SIU55565.2022.9864861
10.1109/TIP.2021.3116793
10.48550/arXiv.1802.02611
10.1109/TIP.2023.3290519
10.1109/TGRS.2022.3166252
10.1109/TCSVT.2022.3206496
10.1109/CVPR46437.2021.00126
10.1109/JSTARS.2020.3019582
10.1109/TMM.2022.3167805
10.1016/j.jag.2021.102638
10.1109/TGRS.2023.3310521
10.1109/TGRS.2022.3174636
10.1109/TIP.2023.3279660
10.1109/CVPR52688.2022.00423
10.1109/TGRS.2020.3016820
10.1109/JSTARS.2022.3150843
10.1109/ICIEA58696.2023.10241417
10.1109/TIP.2020.2987161
10.1109/TGRS.2022.3200996
10.3390/rs13010071
10.1109/WACV48630.2021.00357
10.1016/j.isprsjprs.2020.07.007
10.1109/TNNLS.2022.3171572
10.1109/ICCV.2019.00608
10.1109/CVPR.2015.7298965
10.1109/BIGSARDATA.2019.8858437
10.1016/j.patcog.2022.108777
10.1109/CVPR52733.2024.01640
10.1109/TGRS.2023.3267890
10.1109/CVPR52729.2023.00116
10.1109/TGRS.2022.3144165
10.1109/WACV57701.2024.00089
10.3390/rs13183600
10.1109/TGRS.2023.3244565
10.48550/ARXIV.1706.03762
10.1109/IGARSS47720.2021.9555111
10.1109/TGRS.2024.3423663
10.5194/isprs-annals-V-3-2020-795-2020
10.1109/TGRS.2022.3195740
10.1109/TGRS.2020.3015157
10.1109/TGRS.2022.3140485
10.1109/cvprw.2018.00048
10.1109/TITS.2023.3300537
10.1109/TIP.2023.3243853
10.1109/TGRS.2023.3290242
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2025.3526064
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 580
ExternalDocumentID 40030991
10_1109_TIP_2025_3526064
10838294
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2021YFB3900502
  funderid: 10.13039/501100012166
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c301t-cfb071c949ceae0c228d5e88dbc803a6c7af806e42f7e97f069b6ec9cf65bb403
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 02:38:47 EDT 2025
Mon Jun 30 10:09:13 EDT 2025
Mon Jul 21 06:06:31 EDT 2025
Tue Jul 01 02:19:00 EDT 2025
Wed Aug 27 01:55:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c301t-cfb071c949ceae0c228d5e88dbc803a6c7af806e42f7e97f069b6ec9cf65bb403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0006-8704-4445
0000-0001-5429-2748
0000-0003-4858-823X
PMID 40030991
PQID 3156644266
PQPubID 85429
PageCount 15
ParticipantIDs ieee_primary_10838294
crossref_primary_10_1109_TIP_2025_3526064
proquest_miscellaneous_3173404245
proquest_journals_3156644266
pubmed_primary_40030991
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref55
ref10
Zou (ref51)
ref17
Hu (ref54) 2021; 34
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Na (ref64)
Kimhi (ref63) 2023
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
Kingma (ref65) 2014
ref37
ref36
Tai (ref59)
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref24
ref68
ref23
ref67
ref26
Xie (ref57); 34
ref25
ref20
ref22
ref66
ref21
Yin (ref69) 2023
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref46
  doi: 10.1109/TPAMI.2022.3233584
– ident: ref29
  doi: 10.1109/TGRS.2023.3306180
– ident: ref24
  doi: 10.1109/TGRS.2023.3274395
– ident: ref40
  doi: 10.1109/TGRS.2020.3034123
– ident: ref21
  doi: 10.1109/TGRS.2022.3197402
– ident: ref22
  doi: 10.1109/TIP.2021.3109518
– ident: ref49
  doi: 10.1109/CVPR42600.2020.01269
– ident: ref8
  doi: 10.1109/TCSVT.2020.2995754
– ident: ref5
  doi: 10.1109/TGRS.2023.3290232
– ident: ref33
  doi: 10.1109/TGRS.2023.3321041
– ident: ref60
  doi: 10.1109/CVPR46437.2021.00037
– ident: ref58
  doi: 10.1109/CVPRW59228.2023.00671
– ident: ref11
  doi: 10.1109/TGRS.2020.2964679
– start-page: 10065
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref59
  article-title: Sinkhorn label allocation: Semi-supervised classification via annealed self-training
– ident: ref13
  doi: 10.1109/CVPR52733.2024.02618
– ident: ref67
  doi: 10.1109/JSTARS.2020.2975252
– ident: ref20
  doi: 10.1109/TGRS.2017.2783902
– ident: ref48
  doi: 10.1109/TPAMI.2023.3273592
– ident: ref28
  doi: 10.1109/TGRS.2022.3185298
– ident: ref41
  doi: 10.1109/SIU55565.2022.9864861
– ident: ref9
  doi: 10.1109/TIP.2021.3116793
– ident: ref66
  doi: 10.48550/arXiv.1802.02611
– ident: ref3
  doi: 10.1109/TIP.2023.3290519
– ident: ref25
  doi: 10.1109/TGRS.2022.3166252
– ident: ref47
  doi: 10.1109/TCSVT.2022.3206496
– ident: ref50
  doi: 10.1109/CVPR46437.2021.00126
– ident: ref19
  doi: 10.1109/JSTARS.2020.3019582
– ident: ref35
  doi: 10.1109/TMM.2022.3167805
– ident: ref61
  doi: 10.1016/j.jag.2021.102638
– ident: ref45
  doi: 10.1109/TGRS.2023.3310521
– ident: ref34
  doi: 10.1109/TGRS.2022.3174636
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref64
  article-title: Switching temporary teachers for semi-supervised semantic segmentation
– ident: ref1
  doi: 10.1109/TIP.2023.3279660
– ident: ref52
  doi: 10.1109/CVPR52688.2022.00423
– ident: ref6
  doi: 10.1109/TGRS.2020.3016820
– ident: ref32
  doi: 10.1109/JSTARS.2022.3150843
– ident: ref7
  doi: 10.1109/ICIEA58696.2023.10241417
– ident: ref30
  doi: 10.1109/TIP.2020.2987161
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref51
  article-title: PseudoSeg: Designing pseudo labels for semantic segmentation
– ident: ref27
  doi: 10.1109/TGRS.2022.3200996
– year: 2023
  ident: ref69
  article-title: DFormer: Rethinking RGBD representation learning for semantic segmentation
  publication-title: arXiv:2309.09668
– ident: ref39
  doi: 10.3390/rs13010071
– ident: ref56
  doi: 10.1109/WACV48630.2021.00357
– ident: ref23
  doi: 10.1016/j.isprsjprs.2020.07.007
– ident: ref26
  doi: 10.1109/TNNLS.2022.3171572
– ident: ref62
  doi: 10.1109/ICCV.2019.00608
– ident: ref37
  doi: 10.1109/CVPR.2015.7298965
– ident: ref42
  doi: 10.1109/BIGSARDATA.2019.8858437
– ident: ref53
  doi: 10.1016/j.patcog.2022.108777
– ident: ref10
  doi: 10.1109/CVPR52733.2024.01640
– ident: ref17
  doi: 10.1109/TGRS.2023.3267890
– ident: ref71
  doi: 10.1109/CVPR52729.2023.00116
– ident: ref16
  doi: 10.1109/TGRS.2022.3144165
– ident: ref68
  doi: 10.1109/WACV57701.2024.00089
– volume: 34
  start-page: 12077
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref57
  article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers
– ident: ref44
  doi: 10.3390/rs13183600
– ident: ref36
  doi: 10.1109/TGRS.2023.3244565
– ident: ref55
  doi: 10.48550/ARXIV.1706.03762
– ident: ref43
  doi: 10.1109/IGARSS47720.2021.9555111
– ident: ref14
  doi: 10.1109/TGRS.2024.3423663
– ident: ref31
  doi: 10.5194/isprs-annals-V-3-2020-795-2020
– year: 2023
  ident: ref63
  article-title: Semi-supervised semantic segmentation via marginal contextual information
  publication-title: arXiv:2308.13900
– ident: ref12
  doi: 10.1109/TGRS.2022.3195740
– ident: ref18
  doi: 10.1109/TGRS.2020.3015157
– ident: ref15
  doi: 10.1109/TGRS.2022.3140485
– year: 2014
  ident: ref65
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref38
  doi: 10.1109/cvprw.2018.00048
– volume: 34
  start-page: 22106
  year: 2021
  ident: ref54
  article-title: Semi-supervised semantic segmentation via adaptive equalization learning
  publication-title: Proc. Adv. Neural Inf. Process. Syst.
– ident: ref70
  doi: 10.1109/TITS.2023.3300537
– ident: ref4
  doi: 10.1109/TIP.2023.3243853
– ident: ref2
  doi: 10.1109/TGRS.2023.3290242
SSID ssj0014516
Score 2.4658
Snippet The feature fusion of optical and Synthetic Aperture Radar (SAR) images is widely used for semantic segmentation of multimodal remote sensing images. It...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 566
SubjectTerms Accuracy
Adaptive optics
Datasets
Image segmentation
Labels
Land cover
multimodal fusion
Optical imaging
Optical sensors
Optimization
Pixels
Radar imaging
Radar polarimetry
Remote sensing
Semantic segmentation
Semantics
Semi-supervised learning
Sensors
Synthetic aperture radar
Title Difference-Complementary Learning and Label Reassignment for Multimodal Semi-Supervised Semantic Segmentation of Remote Sensing Images
URI https://ieeexplore.ieee.org/document/10838294
https://www.ncbi.nlm.nih.gov/pubmed/40030991
https://www.proquest.com/docview/3156644266
https://www.proquest.com/docview/3173404245
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RnuBAoRQIFGQkLhy8mMSJ7SMCqhZBhWgr9RbZzmS1Kkmq7uZAf0B_N2PHuypIlbhFiWU7moe_8bwA3irbeuGl4GVjBZeFdFw7ZbmVjVLOSmNtuIf8flwdnsmv5-V5SlaPuTCIGIPPcBYeoy-_GfwYrspIwnWhcyO3YIsstylZa-MyCB1no2uzVFwR7l_7JIV5f3r0gyzBvJyFYvCikn-dQbGpyt34Mp4zBztwvN7hFF5yMRtXbuav_yne-N-_8AgeJsTJPk4s8hjuYb8LOwl9siTby114cKs04RO4-Zw6p3jkQWekKPOr3yxVZJ0z2zfsm3X4i_1EguCLeQwsYISCWUzr7YaG1j3BbsFPxsugk5ZhQeyImAtPD_MuJT71bGhpEuIapNd9uL5gRx1puuUenB18Of10yFPPBu5JVay4bx2BFm-k8WhR-DzXTYlaN85rUdjKE3NoUaHMW4VGtaIyrkJvfFuVzklRPIXtfujxOTDUBY1tK0KErTQaXdUQvmmKaPQok2fwbk3F-nIqzVFHk0aYmiheB4rXieIZ7AVa3Bo3kSGD_TXd6yS8y7oINq0M0CWDN5vPJHbBl2J7HMYwRhUyuo0zeDbxy2ZyGf3L5sOLOxZ9CffD3mJIoNqH7dXViK8I2qzc68jSfwDnkvck
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH-CcQAODMaAwAAjceHgYhInsY8ImFroKsQ6abfIdl6qCpJOa3OAP4C_m2fHrQbSJG5RYtmO3od_fp8Ar0vTOOGk4HltBJeZtFzZ0nAj67K0RmpjvB3yZFaMz-Tn8_w8JquHXBhEDMFnOPKPwZdfr1zvTWUk4SpTqZY34RYd_Hk6pGvtnAa-52xwbuYlLwn5b72SQr-dT77SXTDNR74cvCjkX6dQaKtyPcIMJ83xPsy2exwCTL6P-o0duV__lG_875-4D_ci5mTvByZ5ADewO4D9iD9ZlO71Ady9UpzwIfz-GHunOORea8Q488ufLNZkXTDT1WxqLP5g35BA-HIRQgsY4WAWEnvbVU3rnmK75Kf9hddKa78gtkTOpaOHRRtTnzq2amgS4huk1503YLBJS7pufQhnx5_mH8Y8dm3gjpTFhrvGEmxxWmqHBoVLU1XnqFRtnRKZKRyxhxIFyrQpUZeNKLQt0GnXFLm1UmSPYK9bdfgEGKqMxjYFYcJGaoW2qAnh1Fm49pQ6TeDNlorVxVCcowqXGqEronjlKV5Fiidw6GlxZdxAhgSOtnSvoviuq8zfaqUHLwm82n0mwfPeFNPhqvdjykwGx3ECjwd-2U0ug4dZv3t6zaIv4fZ4fjKtppPZl2dwx-9zMOscwd7mssfnBHQ29kVg7z_vV_po
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Difference-complementary+Learning+and+Label+Reassignment+for+Multimodal+Semi-Supervised+Semantic+Segmentation+of+Remote+Sensing+Images&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Han%2C+Wenqi&rft.au=Jiang%2C+Wen&rft.au=Geng%2C+Jie&rft.au=Miao%2C+Wang&rft.date=2025-01-01&rft.eissn=1941-0042&rft.volume=PP&rft_id=info:doi/10.1109%2FTIP.2025.3526064&rft_id=info%3Apmid%2F40030991&rft.externalDocID=40030991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon