DdrC, a unique DNA repair factor from D. radiodurans, senses and stabilizes DNA breaks through a novel lesion-recognition mechanism

Abstract The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which protect efficient DNA repair mechanisms that are unique to Deinococcus species. The protein DdrC has been identified as an important...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 52; no. 15; pp. 9282 - 9302
Main Authors Szabla, Robert, Li, Mingyi, Warner, Victoria, Song, Yifeng, Junop, Murray
Format Journal Article
LanguageEnglish
Published England Oxford University Press 27.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which protect efficient DNA repair mechanisms that are unique to Deinococcus species. The protein DdrC has been identified as an important component of this repair machinery. DdrC is known to bind to DNA in vitro and has been shown to circularize and compact DNA fragments. The mechanism and biological relevance of this activity is poorly understood. Here, we show that the DdrC homodimer is a lesion-sensing protein that binds to two single-strand (ss) or double-strand (ds) breaks. The immobilization of DNA breaks in pairs consequently leads to the circularization of linear DNA and the compaction of nicked DNA. The degree of compaction is directly proportional with the number of available nicks. Previously, the structure of the DdrC homodimer was solved in an unusual asymmetric conformation. Here, we solve the structure of DdrC under different crystallographic environments and confirm that the asymmetry is an endogenous feature of DdrC. We propose a dynamic structural mechanism where the asymmetry is necessary to trap a pair of lesions. We support this model with mutant disruption and computational modeling experiments. Graphical Abstract Graphical Abstract
AbstractList Abstract The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which protect efficient DNA repair mechanisms that are unique to Deinococcus species. The protein DdrC has been identified as an important component of this repair machinery. DdrC is known to bind to DNA in vitro and has been shown to circularize and compact DNA fragments. The mechanism and biological relevance of this activity is poorly understood. Here, we show that the DdrC homodimer is a lesion-sensing protein that binds to two single-strand (ss) or double-strand (ds) breaks. The immobilization of DNA breaks in pairs consequently leads to the circularization of linear DNA and the compaction of nicked DNA. The degree of compaction is directly proportional with the number of available nicks. Previously, the structure of the DdrC homodimer was solved in an unusual asymmetric conformation. Here, we solve the structure of DdrC under different crystallographic environments and confirm that the asymmetry is an endogenous feature of DdrC. We propose a dynamic structural mechanism where the asymmetry is necessary to trap a pair of lesions. We support this model with mutant disruption and computational modeling experiments.
Abstract The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which protect efficient DNA repair mechanisms that are unique to Deinococcus species. The protein DdrC has been identified as an important component of this repair machinery. DdrC is known to bind to DNA in vitro and has been shown to circularize and compact DNA fragments. The mechanism and biological relevance of this activity is poorly understood. Here, we show that the DdrC homodimer is a lesion-sensing protein that binds to two single-strand (ss) or double-strand (ds) breaks. The immobilization of DNA breaks in pairs consequently leads to the circularization of linear DNA and the compaction of nicked DNA. The degree of compaction is directly proportional with the number of available nicks. Previously, the structure of the DdrC homodimer was solved in an unusual asymmetric conformation. Here, we solve the structure of DdrC under different crystallographic environments and confirm that the asymmetry is an endogenous feature of DdrC. We propose a dynamic structural mechanism where the asymmetry is necessary to trap a pair of lesions. We support this model with mutant disruption and computational modeling experiments. Graphical Abstract Graphical Abstract
The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which protect efficient DNA repair mechanisms that are unique to Deinococcus species. The protein DdrC has been identified as an important component of this repair machinery. DdrC is known to bind to DNA in vitro and has been shown to circularize and compact DNA fragments. The mechanism and biological relevance of this activity is poorly understood. Here, we show that the DdrC homodimer is a lesion-sensing protein that binds to two single-strand (ss) or double-strand (ds) breaks. The immobilization of DNA breaks in pairs consequently leads to the circularization of linear DNA and the compaction of nicked DNA. The degree of compaction is directly proportional with the number of available nicks. Previously, the structure of the DdrC homodimer was solved in an unusual asymmetric conformation. Here, we solve the structure of DdrC under different crystallographic environments and confirm that the asymmetry is an endogenous feature of DdrC. We propose a dynamic structural mechanism where the asymmetry is necessary to trap a pair of lesions. We support this model with mutant disruption and computational modeling experiments. Graphical Abstract
The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which protect efficient DNA repair mechanisms that are unique to Deinococcus species. The protein DdrC has been identified as an important component of this repair machinery. DdrC is known to bind to DNA in vitro and has been shown to circularize and compact DNA fragments. The mechanism and biological relevance of this activity is poorly understood. Here, we show that the DdrC homodimer is a lesion-sensing protein that binds to two single-strand (ss) or double-strand (ds) breaks. The immobilization of DNA breaks in pairs consequently leads to the circularization of linear DNA and the compaction of nicked DNA. The degree of compaction is directly proportional with the number of available nicks. Previously, the structure of the DdrC homodimer was solved in an unusual asymmetric conformation. Here, we solve the structure of DdrC under different crystallographic environments and confirm that the asymmetry is an endogenous feature of DdrC. We propose a dynamic structural mechanism where the asymmetry is necessary to trap a pair of lesions. We support this model with mutant disruption and computational modeling experiments.The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which protect efficient DNA repair mechanisms that are unique to Deinococcus species. The protein DdrC has been identified as an important component of this repair machinery. DdrC is known to bind to DNA in vitro and has been shown to circularize and compact DNA fragments. The mechanism and biological relevance of this activity is poorly understood. Here, we show that the DdrC homodimer is a lesion-sensing protein that binds to two single-strand (ss) or double-strand (ds) breaks. The immobilization of DNA breaks in pairs consequently leads to the circularization of linear DNA and the compaction of nicked DNA. The degree of compaction is directly proportional with the number of available nicks. Previously, the structure of the DdrC homodimer was solved in an unusual asymmetric conformation. Here, we solve the structure of DdrC under different crystallographic environments and confirm that the asymmetry is an endogenous feature of DdrC. We propose a dynamic structural mechanism where the asymmetry is necessary to trap a pair of lesions. We support this model with mutant disruption and computational modeling experiments.
The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which protect efficient DNA repair mechanisms that are unique to Deinococcus species. The protein DdrC has been identified as an important component of this repair machinery. DdrC is known to bind to DNA in vitro and has been shown to circularize and compact DNA fragments. The mechanism and biological relevance of this activity is poorly understood. Here, we show that the DdrC homodimer is a lesion-sensing protein that binds to two single-strand (ss) or double-strand (ds) breaks. The immobilization of DNA breaks in pairs consequently leads to the circularization of linear DNA and the compaction of nicked DNA. The degree of compaction is directly proportional with the number of available nicks. Previously, the structure of the DdrC homodimer was solved in an unusual asymmetric conformation. Here, we solve the structure of DdrC under different crystallographic environments and confirm that the asymmetry is an endogenous feature of DdrC. We propose a dynamic structural mechanism where the asymmetry is necessary to trap a pair of lesions. We support this model with mutant disruption and computational modeling experiments.
Author Szabla, Robert
Song, Yifeng
Li, Mingyi
Junop, Murray
Warner, Victoria
Author_xml – sequence: 1
  givenname: Robert
  orcidid: 0000-0002-6379-232X
  surname: Szabla
  fullname: Szabla, Robert
  email: rszabla@uwo.ca
– sequence: 2
  givenname: Mingyi
  orcidid: 0000-0002-2916-2682
  surname: Li
  fullname: Li, Mingyi
– sequence: 3
  givenname: Victoria
  orcidid: 0009-0006-5151-9955
  surname: Warner
  fullname: Warner, Victoria
– sequence: 4
  givenname: Yifeng
  orcidid: 0000-0003-2744-7657
  surname: Song
  fullname: Song, Yifeng
– sequence: 5
  givenname: Murray
  orcidid: 0000-0001-6676-5717
  surname: Junop
  fullname: Junop, Murray
  email: mjunop@uwo.ca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39036966$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P3DAQhq0KVBbaU--VT6hSCdjxR5JThXZpqYTaS3u2Zp3JriGxFztBgmv_OEa7RXDhNLbmmcfWvIdkzwePhHzi7JSzRpx5iGerG0At1Dsy40KXhWx0uUdmTDBVcCbrA3KY0jVjXHIl35MD0TChG61n5N-ijfMTCnTy7nZCuvh1TiNuwEXagR1DLjEMdHFKI7QutFMEn05oQp8wUfAtTSMsXe8e8vVpeBkRbhId1zFMq3UW-3CHPe0xueCLiDasvBvzmQ5o1-BdGj6Q_Q76hB939Yj8_X7xZ35ZXP3-8XN-flVYwfhY2MpK1eglBxCq5Y2sFBMoJDLUHa_r0tqq7FTVtEwqVKUQXd2i0iXvVJ7k4oh823o303LA1qIfI_RmE90A8d4EcOZ1x7u1WYU7w7mQFZciG77sDDHkbaXRDC5Z7HvwGKZkBKtFyRsmq4x-3aI2hpQids_vcGaecjM5N7PLLdOfX37tmf0fVAaOt0CYNm-aHgGj5aTN
Cites_doi 10.1093/nar/gkv1256
10.1093/nar/gkr620
10.1038/s41592-023-02086-5
10.1371/journal.pone.0012570
10.1371/journal.pone.0177751
10.1107/S2059798319011471
10.1016/j.dnarep.2013.01.004
10.1021/acs.jctc.7b00125
10.1016/j.tibs.2021.01.014
10.1107/S0907444911039655
10.1038/s41598-021-84026-x
10.1002/bip.20622
10.1093/nar/gky759
10.1111/j.1365-2958.2004.04272.x
10.1128/AEM.66.9.3856-3867.2000
10.1038/ncomms6849
10.1073/pnas.1514666113
10.1016/S0006-291X(03)00965-3
10.1128/AEM.01356-19
10.1038/srep07655
10.1016/j.dnarep.2011.09.010
10.1128/mbio.03394-21
10.1128/JB.01165-07
10.1096/fj.201801506R
10.1016/j.dnarep.2018.11.011
10.1073/pnas.72.11.4275
10.1002/pro.2519
10.1016/j.dnarep.2010.04.006
10.1107/S0907444910007493
10.1534/genetics.104.029249
10.1002/pro.3280
10.1038/s41592-019-0686-2
10.1038/s41467-021-25936-2
10.1002/mbo3.477
10.1371/journal.pone.0024109
10.1073/pnas.72.11.4280
10.1073/pnas.1520847113
10.1002/pro.2389
10.1093/nar/gkac387
10.1007/s12038-020-00123-5
10.1128/mSphere.00036-15
10.1128/MMBR.00015-10
10.1073/pnas.1713608114
10.1038/ncomms9440
10.1016/j.molcel.2015.10.032
10.1371/journal.pone.0085288
10.1016/j.bbapap.2008.03.009
10.1007/s00792-021-01233-0
10.1107/S0907444911007773
10.1093/nar/gkac563
10.1038/nrmicro1264
10.1038/nature05160
10.1038/s41467-021-21243-y
10.1016/j.cell.2009.01.018
10.1038/cr.2007.116
10.3390/cells10102536
10.1002/anie.200603420
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024
The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.
DBID TOX
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1093/nar/gkae635
DatabaseName Open Access: Oxford University Press Open Journals
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Open Access: Oxford University Press Open Journals
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 9302
ExternalDocumentID 10_1093_nar_gkae635
39036966
10.1093/nar/gkae635
Genre Journal Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: 2008R00075
– fundername: ;
  grantid: 2008R00075
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
6.Y
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABXVV
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACMRT
ACNCT
ACPQN
ACPRK
ACUTJ
ACZBC
ADBBV
ADHZD
AEGXH
AEHUL
AEKPW
AENEX
AENZO
AFFNX
AFRAH
AFSHK
AFULF
AFYAG
AGKRT
AGMDO
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
AOIJS
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
BTTYL
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
ESTFP
F20
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KQ8
KSI
M49
MBTAY
MVM
M~E
NTWIH
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
AFPKN
CITATION
7X8
5PM
ID FETCH-LOGICAL-c301t-c7c4596b1aa35d1947503e34e0e6f1882cc72f579d045e5233f8de5621f5c4513
IEDL.DBID RPM
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 29 07:31:00 EDT 2024
Sat Oct 26 04:33:07 EDT 2024
Wed Aug 28 12:35:35 EDT 2024
Thu Oct 24 09:25:27 EDT 2024
Mon Oct 07 18:04:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c301t-c7c4596b1aa35d1947503e34e0e6f1882cc72f579d045e5233f8de5621f5c4513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0006-5151-9955
0000-0002-2916-2682
0000-0003-2744-7657
0000-0002-6379-232X
0000-0001-6676-5717
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347143/
PMID 39036966
PQID 3083219047
PQPubID 23479
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11347143
proquest_miscellaneous_3083219047
crossref_primary_10_1093_nar_gkae635
pubmed_primary_39036966
oup_primary_10_1093_nar_gkae635
PublicationCentury 2000
PublicationDate 2024-Aug-27
PublicationDateYYYYMMDD 2024-08-27
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-Aug-27
  day: 27
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Sutthibutpong (2024082703532542300_B53) 2016; 44
Fogg (2024082703532542300_B54) 2021; 12
Devigne (2024082703532542300_B16) 2016; 1
Meima (2024082703532542300_B41) 2000; 66
Pyne (2024082703532542300_B52) 2021; 12
Cox (2024082703532542300_B2) 2005; 3
Matek (2024082703532542300_B55) 2015; 5
Eustermann (2024082703532542300_B57) 2015; 60
Holm (2024082703532542300_B35) 2022; 50
Baek (2024082703532542300_B39) 2024; 21
Bouthier de la Tour (2024082703532542300_B22) 2011; 10
Narasimha (2024082703532542300_B9) 2021; 46
Sharma (2024082703532542300_B5) 2017; 114
Emsley (2024082703532542300_B32) 2010; 66
Sugiman-Marangos (2024082703532542300_B21) 2016; 113
Pulleyblank (2024082703532542300_B49) 1975; 72
Adachi (2024082703532542300_B45) 2019; 33
Kota (2024082703532542300_B17) 2014; 9
Liebschner (2024082703532542300_B30) 2019; 75
Alford (2024082703532542300_B34) 2017; 13
Harris (2024082703532542300_B20) 2008; 190
Banneville (2024082703532542300_B26) 2022; 50
Gaidamakova (2024082703532542300_B3) 2022; 13
Blanchard (2024082703532542300_B10) 2017; 6
Daly (2024082703532542300_B4) 2010; 5
Pandey (2024082703532542300_B56) 2021; 46
Allerston (2024082703532542300_B43) 2015; 43
Adachi (2024082703532542300_B44) 2014; 23
Bouthier de la Tour (2024082703532542300_B25) 2017; 12
Conway (2024082703532542300_B38) 2014; 23
Chen (2024082703532542300_B40) 2019; 85
Virtanen (2024082703532542300_B28) 2020; 17
Huang (2024082703532542300_B33) 2011; 6
Yang (2024082703532542300_B47) 2008; 18
McCauley (2024082703532542300_B51) 2007; 85
Devigne (2024082703532542300_B42) 2013; 12
Tanaka (2024082703532542300_B12) 2004; 168
Slade (2024082703532542300_B7) 2009; 136
Xu (2024082703532542300_B23) 2010; 9
Zahradka (2024082703532542300_B6) 2006; 443
Iyer (2024082703532542300_B18) 2002; 3
Slade (2024082703532542300_B1) 2011; 75
Buzon (2024082703532542300_B27) 2018; 46
de la Tour (2024082703532542300_B24) 2021; 25
Chen (2024082703532542300_B58) 2015; 6
Eugénie (2024082703532542300_B11) 2021; 10
Hirsch (2024082703532542300_B46) 2007; 46
Vonrhein (2024082703532542300_B29) 2011; 67
Velmurugu (2024082703532542300_B59) 2016; 113
Depew (2024082703532542300_B48) 1975; 72
Cowtan (2024082703532542300_B31) 2012; 68
Magerand (2024082703532542300_B8) 2021; 11
Hua (2024082703532542300_B13) 2003; 306
Gutsche (2024082703532542300_B19) 2008; 1784
Devigne (2024082703532542300_B15) 2019; 73
Jurrus (2024082703532542300_B36) 2018; 27
Irobalieva (2024082703532542300_B50) 2015; 6
Narumi (2024082703532542300_B14) 2004; 54
Banitt (2024082703532542300_B37) 2011; 39
References_xml – volume: 43
  start-page: 11047
  year: 2015
  ident: 2024082703532542300_B43
  article-title: The structures of the SNM1A and SNM1B/apollo nuclease domains reveal a potential basis for their distinct DNA processing activities
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1256
  contributor:
    fullname: Allerston
– volume: 44
  start-page: 9121
  year: 2016
  ident: 2024082703532542300_B53
  article-title: Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation
  publication-title: Nucleic Acids Res.
  contributor:
    fullname: Sutthibutpong
– volume: 39
  start-page: e135
  year: 2011
  ident: 2024082703532542300_B37
  article-title: ParaDock: a flexible non-specific DNA–rigid protein docking algorithm
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr620
  contributor:
    fullname: Banitt
– volume: 21
  start-page: 117
  year: 2024
  ident: 2024082703532542300_B39
  article-title: Accurate prediction of nucleic acid and protein-nucleic acid complexes using RoseTTAFoldNA
  publication-title: Nat. Methods
  doi: 10.1038/s41592-023-02086-5
  contributor:
    fullname: Baek
– volume: 5
  start-page: e12570
  year: 2010
  ident: 2024082703532542300_B4
  article-title: Small-molecule antioxidant proteome-shields in Deinococcus radiodurans
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0012570
  contributor:
    fullname: Daly
– volume: 12
  start-page: e0177751
  year: 2017
  ident: 2024082703532542300_B25
  article-title: In vivo and in vitro characterization of DdrC, a DNA damage response protein in Deinococcus radiodurans bacterium
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0177751
  contributor:
    fullname: Bouthier de la Tour
– volume: 75
  start-page: 861
  year: 2019
  ident: 2024082703532542300_B30
  article-title: Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix
  publication-title: Acta Crystallogr. Sect. D Struct. Biol.
  doi: 10.1107/S2059798319011471
  contributor:
    fullname: Liebschner
– volume: 12
  start-page: 265
  year: 2013
  ident: 2024082703532542300_B42
  article-title: The PprA protein is required for accurate cell division of gamma-irradiated Deinococcus radiodurans bacteria
  publication-title: DNA Repair (Amst.)
  doi: 10.1016/j.dnarep.2013.01.004
  contributor:
    fullname: Devigne
– volume: 13
  start-page: 3031
  year: 2017
  ident: 2024082703532542300_B34
  article-title: The Rosetta all-atom energy function for macromolecular modeling and design
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00125
  contributor:
    fullname: Alford
– volume: 46
  start-page: 744
  year: 2021
  ident: 2024082703532542300_B56
  article-title: Rapid detection and signaling of DNA damage by PARP-1
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2021.01.014
  contributor:
    fullname: Pandey
– volume: 68
  start-page: 328
  year: 2012
  ident: 2024082703532542300_B31
  article-title: Completion of autobuilt protein models using a database of protein fragments
  publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr.
  doi: 10.1107/S0907444911039655
  contributor:
    fullname: Cowtan
– volume: 11
  start-page: 4528
  year: 2021
  ident: 2024082703532542300_B8
  article-title: Redox signaling through zinc activates the radiation response in Deinococcus bacteria
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84026-x
  contributor:
    fullname: Magerand
– volume: 85
  start-page: 154
  year: 2007
  ident: 2024082703532542300_B51
  article-title: Mechanisms of DNA binding determined in optical tweezers experiments
  publication-title: Biopolymers
  doi: 10.1002/bip.20622
  contributor:
    fullname: McCauley
– volume: 46
  start-page: 9057
  year: 2018
  ident: 2024082703532542300_B27
  article-title: Structure-specific endonuclease activity of SNM1A enables processing of a DNA interstrand crosslink
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky759
  contributor:
    fullname: Buzon
– volume: 54
  start-page: 278
  year: 2004
  ident: 2024082703532542300_B14
  article-title: PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2004.04272.x
  contributor:
    fullname: Narumi
– volume: 66
  start-page: 3856
  year: 2000
  ident: 2024082703532542300_B41
  article-title: Characterization of the minimal replicon of a cryptic deinococcus radiodurans SARK plasmid and development of versatile Escherichia coli-D. radiodurans shuttle vectors
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.66.9.3856-3867.2000
  contributor:
    fullname: Meima
– volume: 6
  start-page: 5849
  year: 2015
  ident: 2024082703532542300_B58
  article-title: Kinetic gating mechanism of DNA damage recognition by Rad4/XPC
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6849
  contributor:
    fullname: Chen
– volume: 113
  start-page: E2296
  year: 2016
  ident: 2024082703532542300_B59
  article-title: Twist-open mechanism of DNA damage recognition by the Rad4/XPC nucleotide excision repair complex
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1514666113
  contributor:
    fullname: Velmurugu
– volume: 306
  start-page: 354
  year: 2003
  ident: 2024082703532542300_B13
  article-title: PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(03)00965-3
  contributor:
    fullname: Hua
– volume: 85
  start-page: e01356-19
  year: 2019
  ident: 2024082703532542300_B40
  article-title: Discovery and characterization of native deinococcus radiodurans promoters for tunable gene expression
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01356-19
  contributor:
    fullname: Chen
– volume: 5
  start-page: 7655
  year: 2015
  ident: 2024082703532542300_B55
  article-title: Plectoneme tip bubbles: Coupled denaturation and writhing in supercoiled DNA
  publication-title: Sci. Rep.
  doi: 10.1038/srep07655
  contributor:
    fullname: Matek
– volume: 10
  start-page: 1223
  year: 2011
  ident: 2024082703532542300_B22
  article-title: The deinococcal DdrB protein is involved in an early step of DNA double strand break repair and in plasmid transformation through its single-strand annealing activity
  publication-title: DNA Repair (Amst.)
  doi: 10.1016/j.dnarep.2011.09.010
  contributor:
    fullname: Bouthier de la Tour
– volume: 13
  start-page: e0339421
  year: 2022
  ident: 2024082703532542300_B3
  article-title: Small-molecule Mn antioxidants in Caenorhabditis elegans and deinococcus radiodurans supplant MnSOD enzymes during aging and irradiation
  publication-title: mBio
  doi: 10.1128/mbio.03394-21
  contributor:
    fullname: Gaidamakova
– volume: 190
  start-page: 6475
  year: 2008
  ident: 2024082703532542300_B20
  article-title: The stable, functional core of DdrA from Deinococcus radiodurans R1 does not restore radioresistance in vivo
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01165-07
  contributor:
    fullname: Harris
– volume: 33
  start-page: 3647
  year: 2019
  ident: 2024082703532542300_B45
  article-title: Extended structure of pleiotropic DNA repair-promoting protein PprA from Deinococcus radiodurans
  publication-title: FASEB J.
  doi: 10.1096/fj.201801506R
  contributor:
    fullname: Adachi
– volume: 73
  start-page: 144
  year: 2019
  ident: 2024082703532542300_B15
  article-title: The absence of the RecN protein suppresses the cellular defects of Deinococcus radiodurans irradiated cells devoid of the PprA protein by limiting recombinational repair of DNA lesions
  publication-title: DNA Repair (Amst.)
  doi: 10.1016/j.dnarep.2018.11.011
  contributor:
    fullname: Devigne
– volume: 72
  start-page: 4275
  year: 1975
  ident: 2024082703532542300_B48
  article-title: Conformational fluctuations of DNA helix
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.72.11.4275
  contributor:
    fullname: Depew
– volume: 23
  start-page: 1349
  year: 2014
  ident: 2024082703532542300_B44
  article-title: Interaction of double-stranded DNA with polymerized PprA protein from Deinococcus radiodurans
  publication-title: Protein Sci.
  doi: 10.1002/pro.2519
  contributor:
    fullname: Adachi
– volume: 3
  start-page: 8
  year: 2002
  ident: 2024082703532542300_B18
  article-title: Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52
  publication-title: Bmc Genomics [Electronic Resource]
  contributor:
    fullname: Iyer
– volume: 9
  start-page: 805
  year: 2010
  ident: 2024082703532542300_B23
  article-title: DdrB stimulates single-stranded DNA annealing and facilitates RecA-independent DNA repair in Deinococcus radiodurans
  publication-title: DNA Repair (Amst.)
  doi: 10.1016/j.dnarep.2010.04.006
  contributor:
    fullname: Xu
– volume: 66
  start-page: 486
  year: 2010
  ident: 2024082703532542300_B32
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr.
  doi: 10.1107/S0907444910007493
  contributor:
    fullname: Emsley
– volume: 168
  start-page: 21
  year: 2004
  ident: 2024082703532542300_B12
  article-title: Analysis of Deinococcus radiodurans's transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance
  publication-title: Genetics
  doi: 10.1534/genetics.104.029249
  contributor:
    fullname: Tanaka
– volume: 27
  start-page: 112
  year: 2018
  ident: 2024082703532542300_B36
  article-title: Improvements to the APBS biomolecular solvation software suite
  publication-title: Protein Sci.
  doi: 10.1002/pro.3280
  contributor:
    fullname: Jurrus
– volume: 17
  start-page: 261
  year: 2020
  ident: 2024082703532542300_B28
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
  contributor:
    fullname: Virtanen
– volume: 12
  start-page: 5683
  year: 2021
  ident: 2024082703532542300_B54
  article-title: Supercoiling and looping promote DNA base accessibility and coordination among distant sites
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25936-2
  contributor:
    fullname: Fogg
– volume: 6
  start-page: e00477
  year: 2017
  ident: 2024082703532542300_B10
  article-title: Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria
  publication-title: Microbiologyopen
  doi: 10.1002/mbo3.477
  contributor:
    fullname: Blanchard
– volume: 6
  start-page: e24109
  year: 2011
  ident: 2024082703532542300_B33
  article-title: RosettaRemodel: a generalized framework for flexible backbone protein design
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0024109
  contributor:
    fullname: Huang
– volume: 72
  start-page: 4280
  year: 1975
  ident: 2024082703532542300_B49
  article-title: Action of nicking-closing enzyme on supercoiled and nonsupercoiled closed circular DNA: formation of a Boltzmann distribution of topological isomers
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.72.11.4280
  contributor:
    fullname: Pulleyblank
– volume: 113
  start-page: 4308
  year: 2016
  ident: 2024082703532542300_B21
  article-title: Mechanism for accurate, protein-assisted DNA annealing by Deinococcus radiodurans DdrB
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1520847113
  contributor:
    fullname: Sugiman-Marangos
– volume: 23
  start-page: 47
  year: 2014
  ident: 2024082703532542300_B38
  article-title: Relaxation of backbone bond geometry improves protein energy landscape modeling
  publication-title: Protein Sci.
  doi: 10.1002/pro.2389
  contributor:
    fullname: Conway
– volume: 50
  start-page: W210
  year: 2022
  ident: 2024082703532542300_B35
  article-title: Dali server: structural unification of protein families
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac387
  contributor:
    fullname: Holm
– volume: 46
  start-page: 10
  year: 2021
  ident: 2024082703532542300_B9
  article-title: New insights into the activation of radiation desiccation response regulon in Deinococcus radiodurans
  publication-title: J. Biosci.
  doi: 10.1007/s12038-020-00123-5
  contributor:
    fullname: Narasimha
– volume: 1
  start-page: e00036-15
  year: 2016
  ident: 2024082703532542300_B16
  article-title: PprA protein is involved in chromosome segregation via its physical and functional interaction with DNA gyrase in irradiated deinococcus radiodurans bacteria
  publication-title: mSphere
  doi: 10.1128/mSphere.00036-15
  contributor:
    fullname: Devigne
– volume: 75
  start-page: 133
  year: 2011
  ident: 2024082703532542300_B1
  article-title: Oxidative stress resistance in Deinococcus radiodurans
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00015-10
  contributor:
    fullname: Slade
– volume: 114
  start-page: E9253
  year: 2017
  ident: 2024082703532542300_B5
  article-title: Across the tree of life, radiation resistance is governed by antioxidant Mn2+, gauged by paramagnetic resonance
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1713608114
  contributor:
    fullname: Sharma
– volume: 6
  start-page: 8440
  year: 2015
  ident: 2024082703532542300_B50
  article-title: Structural diversity of supercoiled DNA
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9440
  contributor:
    fullname: Irobalieva
– volume: 60
  start-page: 742
  year: 2015
  ident: 2024082703532542300_B57
  article-title: Structural basis of detection and signaling of DNA single-strand breaks by Human PARP-1
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.10.032
  contributor:
    fullname: Eustermann
– volume: 9
  start-page: e85288
  year: 2014
  ident: 2024082703532542300_B17
  article-title: PprA contributes to deinococcus radiodurans resistance to nalidixic acid, genome maintenance after DNA damage and interacts with deinococcal topoisomerases
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0085288
  contributor:
    fullname: Kota
– volume: 1784
  start-page: 1050
  year: 2008
  ident: 2024082703532542300_B19
  article-title: Complex oligomeric structure of a truncated form of DdrA: a protein required for the extreme radiotolerance of Deinococcus
  publication-title: Biochim. Biophys. Acta - Proteins Proteomics
  doi: 10.1016/j.bbapap.2008.03.009
  contributor:
    fullname: Gutsche
– volume: 25
  start-page: 343
  year: 2021
  ident: 2024082703532542300_B24
  article-title: Characterization of the DdrD protein from the extremely radioresistant bacterium Deinococcus radiodurans
  publication-title: Extremophiles
  doi: 10.1007/s00792-021-01233-0
  contributor:
    fullname: de la Tour
– volume: 67
  start-page: 293
  year: 2011
  ident: 2024082703532542300_B29
  article-title: Data processing and analysis with the autoPROC toolbox
  publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr.
  doi: 10.1107/S0907444911007773
  contributor:
    fullname: Vonrhein
– volume: 50
  start-page: 7680
  year: 2022
  ident: 2024082703532542300_B26
  article-title: Structural and functional characterization of DdrC, a novel DNA damage-induced nucleoid associated protein involved in DNA compaction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac563
  contributor:
    fullname: Banneville
– volume: 3
  start-page: 882
  year: 2005
  ident: 2024082703532542300_B2
  article-title: Deinococcus radiodurans - the consummate survivor
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1264
  contributor:
    fullname: Cox
– volume: 443
  start-page: 569
  year: 2006
  ident: 2024082703532542300_B6
  article-title: Reassembly of shattered chromosomes in Deinococcus radiodurans
  publication-title: Nature
  doi: 10.1038/nature05160
  contributor:
    fullname: Zahradka
– volume: 12
  start-page: 1053
  year: 2021
  ident: 2024082703532542300_B52
  article-title: Base-pair resolution analysis of the effect of supercoiling on DNA flexibility and major groove recognition by triplex-forming oligonucleotides
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21243-y
  contributor:
    fullname: Pyne
– volume: 136
  start-page: 1044
  year: 2009
  ident: 2024082703532542300_B7
  article-title: Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.018
  contributor:
    fullname: Slade
– volume: 18
  start-page: 184
  year: 2008
  ident: 2024082703532542300_B47
  article-title: Structure and mechanism for DNA lesion recognition
  publication-title: Cell Res.
  doi: 10.1038/cr.2007.116
  contributor:
    fullname: Yang
– volume: 10
  start-page: 2536
  year: 2021
  ident: 2024082703532542300_B11
  article-title: Characterization of the radiation desiccation response regulon of the radioresistant bacterium Deinococcus radiodurans by Integrative Genomic analyses
  publication-title: Cells
  doi: 10.3390/cells10102536
  contributor:
    fullname: Eugénie
– volume: 46
  start-page: 338
  year: 2007
  ident: 2024082703532542300_B46
  article-title: Phosphate recognition in structural biology
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.200603420
  contributor:
    fullname: Hirsch
SSID ssj0014154
Score 2.5068934
Snippet Abstract The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant...
The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which...
Abstract The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant...
The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which...
SourceID pubmedcentral
proquest
crossref
pubmed
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 9282
SubjectTerms Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Deinococcus - genetics
Deinococcus - metabolism
DNA - chemistry
DNA - genetics
DNA - metabolism
DNA Breaks, Double-Stranded
DNA Breaks, Single-Stranded
DNA Repair
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
DNA, Bacterial - metabolism
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Models, Molecular
Protein Binding
Protein Multimerization
Structural Biology
Title DdrC, a unique DNA repair factor from D. radiodurans, senses and stabilizes DNA breaks through a novel lesion-recognition mechanism
URI https://www.ncbi.nlm.nih.gov/pubmed/39036966
https://www.proquest.com/docview/3083219047
https://pubmed.ncbi.nlm.nih.gov/PMC11347143
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5wwEB0lObS5RG3Sj03b7VSKegoLLAbMcbWbKKrUtIdE2hsyxrQowUSwGym55o93bGCV7aGHXpAQtoU8A_PG82YG4IR-cbHihhcWJ9xhUagcLlXixEHuBcLnmd-xLS6ji2v2bRkudyAacmEsaV9m5UTfVhNd_rbcyrtKugNPzP35fe6b_Ecy9O4u7JKGDj56Hzsgk9QVjbI1Nhnvs_LIdXe1aNxfN0KRld2HF-Tum2520ZZJ2kpze4Y2_yZNPrNC56_goIePOOte8zXsKH0IRzNNrnP1gF_REjrtSfkhvJwPzdyO4GmRN_NTFLi2BVtxcTnDhixR2WDXcQdNngkuJtiIvKzztTFhp9iSk6taFDpHQpGGR_tIt2YyedLipsW-zQ8trOt7dYu0dSRoZ0NLqjVWyiQXl231Bq7Pz67mF07ff8GR9NmvHBlLFiZR5gsRhLmfMBPzVAFTnooKn6C5lPG0COMkJ1yoyKMNCp4rAlR-EdJMP3gLe7rW6j0ggbAiLBKZSx4x2vYs4iFTTIoky0wRvBGcDCJI77oyG2kXHg9SElraC20En0k8_x7xZRBdSltsoh9Cq3rdpoFnmjIlHotH8K4T5WahQRNGwLeEvBlginBvPyHdtMW4B108_v-pH2B_SlDJnFRP44-wt2rW6hNBnVU2Jv32zsb2oGBstZyuVz-WfwAWFwEn
link.rule.ids 230,315,730,783,787,867,888,1607,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VItFeCrQUlleNVHFqXhvHcY6rXaoF2hWHVvQWOY4D0TZOlWwq0St_nHEeq24PSHCMYkdJ_MXzTeabGYBj3OJCxY0uLIy4RVmgLC5VZIV-6vrC44nXqS0WbH5Jv1wFV1vAhlyYVrQvk9zW14Wt85-ttvKmkM6gE3O-nU89k_-Iht55BI_xg3XZ4KX30QM0Sl3ZqLbKJuV9Xh46744WlfNjKRTa2V14gg6_6WfHNozSRqLbPb75UDZ5zw6dPoXvwxN08pOl3awSW949KO7474_4DPZ6akom3fnnsKX0PhxMNLrlxS_ykbRi0fYv_D7sTIdGcQfwe5ZW0xMiSNMWgyWzxYRUaOXyinTdfIjJYSEzm1Qizcu0MebxhNToQKuaCJ0SZKhGo3uHh2YyeuliWZO-hRBeWJe36prgPSOIrLXkqdSkUCZxOa-LF3B5-uliOrf63g6WxC1lZclQ0iBiiSeEH6ReRE08VflUuYplHtJ-KcNxFoRRipxTobfsZzxVSNa8LMCZnn8I27rU6hUQJHhZkEUylZxRXNCE8YAqKkWUJKbA3giOh8WNb7oSHnEXevdjhEPcw2EER7jwfx_xYQBFjK_YRFaEVmVTx75rGj5FLg1H8LIDyfpCA8ZGwDfgsx5gCnxvnkFQtIW-BxC8_v-pR7Azvzg_i88-L76-gd0xUjLzR3wcvoXtVdWod0ipVsn79vv5AyxAIGo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwEB61qZTm0kfSxzZN40pRT-G1GDDH1W5W6WuVQyNF6gEZ27Rog1nBUqm59o9nzGOVzaGHHBG2Bfgz8439zQzACf7iIsWMLiyKmUXDQFlMqNiKfOn63GOp16ktFuH5Jf1yFVz1qsq6l1Vqkea2vi5snf9utZWrQjiDTsy5-D71TPwjGnpnJTPnMTzBReuywVPvTxDQMHWpo9pMm5T1sXnowDuaV86vJVdoa_dgF51-U9Mu3DJMW8FudzjnfenkHVs0fw4_h7foJChLu1mntri5l-DxYa_5Ap71FJVMujYv4ZHS-3Aw0eieF3_JJ9KKRtvd-H14Oh0Kxh3Av5mspqeEk6ZNCktmiwmp0NrlFemq-hATy0JmNqm4zEvZGDN5Smp0pFVNuJYEmarR6t7gpemM3jpf1qQvJYQD6_KPuib43AgmayN9KjUplAlgzuviFVzOz35Mz62-xoMl8NeytkQkaBCHqce5H0gvpuZcVflUuSrMPKT_QkTjLIhiidxTodfsZ0wqJG1eFmBPz38NO7rU6i0QJHpZkMVCChZSnNQ0ZAFVVPA4TU2ivRGcDBOcrLpUHkl3BO8nCImkh8QIjnHy_9_i4wCMBD-xOWHhWpVNnfiuKfwUuzQawZsOKJuBBpyNgG1BaNPAJPrevoPAaBN-D0B49_Cux7B7MZsn3z4vvh7C3hiZmdkYH0fvYWddNeoImdU6_dAuoVsp9iLq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DdrC%2C+a+unique+DNA+repair+factor+from+D.+radiodurans+%2C+senses+and+stabilizes+DNA+breaks+through+a+novel+lesion-recognition+mechanism&rft.jtitle=Nucleic+acids+research&rft.au=Szabla%2C+Robert&rft.au=Li%2C+Mingyi&rft.au=Warner%2C+Victoria&rft.au=Song%2C+Yifeng&rft.date=2024-08-27&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=52&rft.issue=15&rft.spage=9282&rft.epage=9302&rft_id=info:doi/10.1093%2Fnar%2Fgkae635&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_gkae635
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon