DdrC, a unique DNA repair factor from D. radiodurans, senses and stabilizes DNA breaks through a novel lesion-recognition mechanism
Abstract The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which protect efficient DNA repair mechanisms that are unique to Deinococcus species. The protein DdrC has been identified as an important...
Saved in:
Published in | Nucleic acids research Vol. 52; no. 15; pp. 9282 - 9302 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
27.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which protect efficient DNA repair mechanisms that are unique to Deinococcus species. The protein DdrC has been identified as an important component of this repair machinery. DdrC is known to bind to DNA in vitro and has been shown to circularize and compact DNA fragments. The mechanism and biological relevance of this activity is poorly understood. Here, we show that the DdrC homodimer is a lesion-sensing protein that binds to two single-strand (ss) or double-strand (ds) breaks. The immobilization of DNA breaks in pairs consequently leads to the circularization of linear DNA and the compaction of nicked DNA. The degree of compaction is directly proportional with the number of available nicks. Previously, the structure of the DdrC homodimer was solved in an unusual asymmetric conformation. Here, we solve the structure of DdrC under different crystallographic environments and confirm that the asymmetry is an endogenous feature of DdrC. We propose a dynamic structural mechanism where the asymmetry is necessary to trap a pair of lesions. We support this model with mutant disruption and computational modeling experiments.
Graphical Abstract
Graphical Abstract |
---|---|
AbstractList | Abstract The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which protect efficient DNA repair mechanisms that are unique to Deinococcus species. The protein DdrC has been identified as an important component of this repair machinery. DdrC is known to bind to DNA in vitro and has been shown to circularize and compact DNA fragments. The mechanism and biological relevance of this activity is poorly understood. Here, we show that the DdrC homodimer is a lesion-sensing protein that binds to two single-strand (ss) or double-strand (ds) breaks. The immobilization of DNA breaks in pairs consequently leads to the circularization of linear DNA and the compaction of nicked DNA. The degree of compaction is directly proportional with the number of available nicks. Previously, the structure of the DdrC homodimer was solved in an unusual asymmetric conformation. Here, we solve the structure of DdrC under different crystallographic environments and confirm that the asymmetry is an endogenous feature of DdrC. We propose a dynamic structural mechanism where the asymmetry is necessary to trap a pair of lesions. We support this model with mutant disruption and computational modeling experiments. Abstract The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which protect efficient DNA repair mechanisms that are unique to Deinococcus species. The protein DdrC has been identified as an important component of this repair machinery. DdrC is known to bind to DNA in vitro and has been shown to circularize and compact DNA fragments. The mechanism and biological relevance of this activity is poorly understood. Here, we show that the DdrC homodimer is a lesion-sensing protein that binds to two single-strand (ss) or double-strand (ds) breaks. The immobilization of DNA breaks in pairs consequently leads to the circularization of linear DNA and the compaction of nicked DNA. The degree of compaction is directly proportional with the number of available nicks. Previously, the structure of the DdrC homodimer was solved in an unusual asymmetric conformation. Here, we solve the structure of DdrC under different crystallographic environments and confirm that the asymmetry is an endogenous feature of DdrC. We propose a dynamic structural mechanism where the asymmetry is necessary to trap a pair of lesions. We support this model with mutant disruption and computational modeling experiments. Graphical Abstract Graphical Abstract The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which protect efficient DNA repair mechanisms that are unique to Deinococcus species. The protein DdrC has been identified as an important component of this repair machinery. DdrC is known to bind to DNA in vitro and has been shown to circularize and compact DNA fragments. The mechanism and biological relevance of this activity is poorly understood. Here, we show that the DdrC homodimer is a lesion-sensing protein that binds to two single-strand (ss) or double-strand (ds) breaks. The immobilization of DNA breaks in pairs consequently leads to the circularization of linear DNA and the compaction of nicked DNA. The degree of compaction is directly proportional with the number of available nicks. Previously, the structure of the DdrC homodimer was solved in an unusual asymmetric conformation. Here, we solve the structure of DdrC under different crystallographic environments and confirm that the asymmetry is an endogenous feature of DdrC. We propose a dynamic structural mechanism where the asymmetry is necessary to trap a pair of lesions. We support this model with mutant disruption and computational modeling experiments. Graphical Abstract The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which protect efficient DNA repair mechanisms that are unique to Deinococcus species. The protein DdrC has been identified as an important component of this repair machinery. DdrC is known to bind to DNA in vitro and has been shown to circularize and compact DNA fragments. The mechanism and biological relevance of this activity is poorly understood. Here, we show that the DdrC homodimer is a lesion-sensing protein that binds to two single-strand (ss) or double-strand (ds) breaks. The immobilization of DNA breaks in pairs consequently leads to the circularization of linear DNA and the compaction of nicked DNA. The degree of compaction is directly proportional with the number of available nicks. Previously, the structure of the DdrC homodimer was solved in an unusual asymmetric conformation. Here, we solve the structure of DdrC under different crystallographic environments and confirm that the asymmetry is an endogenous feature of DdrC. We propose a dynamic structural mechanism where the asymmetry is necessary to trap a pair of lesions. We support this model with mutant disruption and computational modeling experiments.The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which protect efficient DNA repair mechanisms that are unique to Deinococcus species. The protein DdrC has been identified as an important component of this repair machinery. DdrC is known to bind to DNA in vitro and has been shown to circularize and compact DNA fragments. The mechanism and biological relevance of this activity is poorly understood. Here, we show that the DdrC homodimer is a lesion-sensing protein that binds to two single-strand (ss) or double-strand (ds) breaks. The immobilization of DNA breaks in pairs consequently leads to the circularization of linear DNA and the compaction of nicked DNA. The degree of compaction is directly proportional with the number of available nicks. Previously, the structure of the DdrC homodimer was solved in an unusual asymmetric conformation. Here, we solve the structure of DdrC under different crystallographic environments and confirm that the asymmetry is an endogenous feature of DdrC. We propose a dynamic structural mechanism where the asymmetry is necessary to trap a pair of lesions. We support this model with mutant disruption and computational modeling experiments. The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which protect efficient DNA repair mechanisms that are unique to Deinococcus species. The protein DdrC has been identified as an important component of this repair machinery. DdrC is known to bind to DNA in vitro and has been shown to circularize and compact DNA fragments. The mechanism and biological relevance of this activity is poorly understood. Here, we show that the DdrC homodimer is a lesion-sensing protein that binds to two single-strand (ss) or double-strand (ds) breaks. The immobilization of DNA breaks in pairs consequently leads to the circularization of linear DNA and the compaction of nicked DNA. The degree of compaction is directly proportional with the number of available nicks. Previously, the structure of the DdrC homodimer was solved in an unusual asymmetric conformation. Here, we solve the structure of DdrC under different crystallographic environments and confirm that the asymmetry is an endogenous feature of DdrC. We propose a dynamic structural mechanism where the asymmetry is necessary to trap a pair of lesions. We support this model with mutant disruption and computational modeling experiments. |
Author | Szabla, Robert Song, Yifeng Li, Mingyi Junop, Murray Warner, Victoria |
Author_xml | – sequence: 1 givenname: Robert orcidid: 0000-0002-6379-232X surname: Szabla fullname: Szabla, Robert email: rszabla@uwo.ca – sequence: 2 givenname: Mingyi orcidid: 0000-0002-2916-2682 surname: Li fullname: Li, Mingyi – sequence: 3 givenname: Victoria orcidid: 0009-0006-5151-9955 surname: Warner fullname: Warner, Victoria – sequence: 4 givenname: Yifeng orcidid: 0000-0003-2744-7657 surname: Song fullname: Song, Yifeng – sequence: 5 givenname: Murray orcidid: 0000-0001-6676-5717 surname: Junop fullname: Junop, Murray email: mjunop@uwo.ca |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39036966$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1P3DAQhq0KVBbaU--VT6hSCdjxR5JThXZpqYTaS3u2Zp3JriGxFztBgmv_OEa7RXDhNLbmmcfWvIdkzwePhHzi7JSzRpx5iGerG0At1Dsy40KXhWx0uUdmTDBVcCbrA3KY0jVjXHIl35MD0TChG61n5N-ijfMTCnTy7nZCuvh1TiNuwEXagR1DLjEMdHFKI7QutFMEn05oQp8wUfAtTSMsXe8e8vVpeBkRbhId1zFMq3UW-3CHPe0xueCLiDasvBvzmQ5o1-BdGj6Q_Q76hB939Yj8_X7xZ35ZXP3-8XN-flVYwfhY2MpK1eglBxCq5Y2sFBMoJDLUHa_r0tqq7FTVtEwqVKUQXd2i0iXvVJ7k4oh823o303LA1qIfI_RmE90A8d4EcOZ1x7u1WYU7w7mQFZciG77sDDHkbaXRDC5Z7HvwGKZkBKtFyRsmq4x-3aI2hpQids_vcGaecjM5N7PLLdOfX37tmf0fVAaOt0CYNm-aHgGj5aTN |
Cites_doi | 10.1093/nar/gkv1256 10.1093/nar/gkr620 10.1038/s41592-023-02086-5 10.1371/journal.pone.0012570 10.1371/journal.pone.0177751 10.1107/S2059798319011471 10.1016/j.dnarep.2013.01.004 10.1021/acs.jctc.7b00125 10.1016/j.tibs.2021.01.014 10.1107/S0907444911039655 10.1038/s41598-021-84026-x 10.1002/bip.20622 10.1093/nar/gky759 10.1111/j.1365-2958.2004.04272.x 10.1128/AEM.66.9.3856-3867.2000 10.1038/ncomms6849 10.1073/pnas.1514666113 10.1016/S0006-291X(03)00965-3 10.1128/AEM.01356-19 10.1038/srep07655 10.1016/j.dnarep.2011.09.010 10.1128/mbio.03394-21 10.1128/JB.01165-07 10.1096/fj.201801506R 10.1016/j.dnarep.2018.11.011 10.1073/pnas.72.11.4275 10.1002/pro.2519 10.1016/j.dnarep.2010.04.006 10.1107/S0907444910007493 10.1534/genetics.104.029249 10.1002/pro.3280 10.1038/s41592-019-0686-2 10.1038/s41467-021-25936-2 10.1002/mbo3.477 10.1371/journal.pone.0024109 10.1073/pnas.72.11.4280 10.1073/pnas.1520847113 10.1002/pro.2389 10.1093/nar/gkac387 10.1007/s12038-020-00123-5 10.1128/mSphere.00036-15 10.1128/MMBR.00015-10 10.1073/pnas.1713608114 10.1038/ncomms9440 10.1016/j.molcel.2015.10.032 10.1371/journal.pone.0085288 10.1016/j.bbapap.2008.03.009 10.1007/s00792-021-01233-0 10.1107/S0907444911007773 10.1093/nar/gkac563 10.1038/nrmicro1264 10.1038/nature05160 10.1038/s41467-021-21243-y 10.1016/j.cell.2009.01.018 10.1038/cr.2007.116 10.3390/cells10102536 10.1002/anie.200603420 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. |
DBID | TOX CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1093/nar/gkae635 |
DatabaseName | Open Access: Oxford University Press Open Journals Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Open Access: Oxford University Press Open Journals url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 9302 |
ExternalDocumentID | 10_1093_nar_gkae635 39036966 10.1093/nar/gkae635 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada grantid: 2008R00075 – fundername: ; grantid: 2008R00075 |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 6.Y 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP AAWDT AAYJJ ABPTD ABQLI ABQTQ ABSAR ABSMQ ABXVV ACFRR ACGFO ACGFS ACIPB ACIWK ACMRT ACNCT ACPQN ACPRK ACUTJ ACZBC ADBBV ADHZD AEGXH AEHUL AEKPW AENEX AENZO AFFNX AFRAH AFSHK AFULF AFYAG AGKRT AGMDO AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD AOIJS AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ BTTYL C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN ESTFP F20 F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KQ8 KSI M49 MBTAY MVM M~E NTWIH NU- OAWHX OBC OBS OEB OES OJQWA OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROX ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM CGR CUY CVF ECM EIF NPM AAYXX AFPKN CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c301t-c7c4596b1aa35d1947503e34e0e6f1882cc72f579d045e5233f8de5621f5c4513 |
IEDL.DBID | RPM |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 29 07:31:00 EDT 2024 Sat Oct 26 04:33:07 EDT 2024 Wed Aug 28 12:35:35 EDT 2024 Thu Oct 24 09:25:27 EDT 2024 Mon Oct 07 18:04:42 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c301t-c7c4596b1aa35d1947503e34e0e6f1882cc72f579d045e5233f8de5621f5c4513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0006-5151-9955 0000-0002-2916-2682 0000-0003-2744-7657 0000-0002-6379-232X 0000-0001-6676-5717 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347143/ |
PMID | 39036966 |
PQID | 3083219047 |
PQPubID | 23479 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11347143 proquest_miscellaneous_3083219047 crossref_primary_10_1093_nar_gkae635 pubmed_primary_39036966 oup_primary_10_1093_nar_gkae635 |
PublicationCentury | 2000 |
PublicationDate | 2024-Aug-27 |
PublicationDateYYYYMMDD | 2024-08-27 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-Aug-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Sutthibutpong (2024082703532542300_B53) 2016; 44 Fogg (2024082703532542300_B54) 2021; 12 Devigne (2024082703532542300_B16) 2016; 1 Meima (2024082703532542300_B41) 2000; 66 Pyne (2024082703532542300_B52) 2021; 12 Cox (2024082703532542300_B2) 2005; 3 Matek (2024082703532542300_B55) 2015; 5 Eustermann (2024082703532542300_B57) 2015; 60 Holm (2024082703532542300_B35) 2022; 50 Baek (2024082703532542300_B39) 2024; 21 Bouthier de la Tour (2024082703532542300_B22) 2011; 10 Narasimha (2024082703532542300_B9) 2021; 46 Sharma (2024082703532542300_B5) 2017; 114 Emsley (2024082703532542300_B32) 2010; 66 Sugiman-Marangos (2024082703532542300_B21) 2016; 113 Pulleyblank (2024082703532542300_B49) 1975; 72 Adachi (2024082703532542300_B45) 2019; 33 Kota (2024082703532542300_B17) 2014; 9 Liebschner (2024082703532542300_B30) 2019; 75 Alford (2024082703532542300_B34) 2017; 13 Harris (2024082703532542300_B20) 2008; 190 Banneville (2024082703532542300_B26) 2022; 50 Gaidamakova (2024082703532542300_B3) 2022; 13 Blanchard (2024082703532542300_B10) 2017; 6 Daly (2024082703532542300_B4) 2010; 5 Pandey (2024082703532542300_B56) 2021; 46 Allerston (2024082703532542300_B43) 2015; 43 Adachi (2024082703532542300_B44) 2014; 23 Bouthier de la Tour (2024082703532542300_B25) 2017; 12 Conway (2024082703532542300_B38) 2014; 23 Chen (2024082703532542300_B40) 2019; 85 Virtanen (2024082703532542300_B28) 2020; 17 Huang (2024082703532542300_B33) 2011; 6 Yang (2024082703532542300_B47) 2008; 18 McCauley (2024082703532542300_B51) 2007; 85 Devigne (2024082703532542300_B42) 2013; 12 Tanaka (2024082703532542300_B12) 2004; 168 Slade (2024082703532542300_B7) 2009; 136 Xu (2024082703532542300_B23) 2010; 9 Zahradka (2024082703532542300_B6) 2006; 443 Iyer (2024082703532542300_B18) 2002; 3 Slade (2024082703532542300_B1) 2011; 75 Buzon (2024082703532542300_B27) 2018; 46 de la Tour (2024082703532542300_B24) 2021; 25 Chen (2024082703532542300_B58) 2015; 6 Eugénie (2024082703532542300_B11) 2021; 10 Hirsch (2024082703532542300_B46) 2007; 46 Vonrhein (2024082703532542300_B29) 2011; 67 Velmurugu (2024082703532542300_B59) 2016; 113 Depew (2024082703532542300_B48) 1975; 72 Cowtan (2024082703532542300_B31) 2012; 68 Magerand (2024082703532542300_B8) 2021; 11 Hua (2024082703532542300_B13) 2003; 306 Gutsche (2024082703532542300_B19) 2008; 1784 Devigne (2024082703532542300_B15) 2019; 73 Jurrus (2024082703532542300_B36) 2018; 27 Irobalieva (2024082703532542300_B50) 2015; 6 Narumi (2024082703532542300_B14) 2004; 54 Banitt (2024082703532542300_B37) 2011; 39 |
References_xml | – volume: 43 start-page: 11047 year: 2015 ident: 2024082703532542300_B43 article-title: The structures of the SNM1A and SNM1B/apollo nuclease domains reveal a potential basis for their distinct DNA processing activities publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1256 contributor: fullname: Allerston – volume: 44 start-page: 9121 year: 2016 ident: 2024082703532542300_B53 article-title: Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation publication-title: Nucleic Acids Res. contributor: fullname: Sutthibutpong – volume: 39 start-page: e135 year: 2011 ident: 2024082703532542300_B37 article-title: ParaDock: a flexible non-specific DNA–rigid protein docking algorithm publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr620 contributor: fullname: Banitt – volume: 21 start-page: 117 year: 2024 ident: 2024082703532542300_B39 article-title: Accurate prediction of nucleic acid and protein-nucleic acid complexes using RoseTTAFoldNA publication-title: Nat. Methods doi: 10.1038/s41592-023-02086-5 contributor: fullname: Baek – volume: 5 start-page: e12570 year: 2010 ident: 2024082703532542300_B4 article-title: Small-molecule antioxidant proteome-shields in Deinococcus radiodurans publication-title: PLoS One doi: 10.1371/journal.pone.0012570 contributor: fullname: Daly – volume: 12 start-page: e0177751 year: 2017 ident: 2024082703532542300_B25 article-title: In vivo and in vitro characterization of DdrC, a DNA damage response protein in Deinococcus radiodurans bacterium publication-title: PLoS One doi: 10.1371/journal.pone.0177751 contributor: fullname: Bouthier de la Tour – volume: 75 start-page: 861 year: 2019 ident: 2024082703532542300_B30 article-title: Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix publication-title: Acta Crystallogr. Sect. D Struct. Biol. doi: 10.1107/S2059798319011471 contributor: fullname: Liebschner – volume: 12 start-page: 265 year: 2013 ident: 2024082703532542300_B42 article-title: The PprA protein is required for accurate cell division of gamma-irradiated Deinococcus radiodurans bacteria publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2013.01.004 contributor: fullname: Devigne – volume: 13 start-page: 3031 year: 2017 ident: 2024082703532542300_B34 article-title: The Rosetta all-atom energy function for macromolecular modeling and design publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b00125 contributor: fullname: Alford – volume: 46 start-page: 744 year: 2021 ident: 2024082703532542300_B56 article-title: Rapid detection and signaling of DNA damage by PARP-1 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2021.01.014 contributor: fullname: Pandey – volume: 68 start-page: 328 year: 2012 ident: 2024082703532542300_B31 article-title: Completion of autobuilt protein models using a database of protein fragments publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr. doi: 10.1107/S0907444911039655 contributor: fullname: Cowtan – volume: 11 start-page: 4528 year: 2021 ident: 2024082703532542300_B8 article-title: Redox signaling through zinc activates the radiation response in Deinococcus bacteria publication-title: Sci. Rep. doi: 10.1038/s41598-021-84026-x contributor: fullname: Magerand – volume: 85 start-page: 154 year: 2007 ident: 2024082703532542300_B51 article-title: Mechanisms of DNA binding determined in optical tweezers experiments publication-title: Biopolymers doi: 10.1002/bip.20622 contributor: fullname: McCauley – volume: 46 start-page: 9057 year: 2018 ident: 2024082703532542300_B27 article-title: Structure-specific endonuclease activity of SNM1A enables processing of a DNA interstrand crosslink publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky759 contributor: fullname: Buzon – volume: 54 start-page: 278 year: 2004 ident: 2024082703532542300_B14 article-title: PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2004.04272.x contributor: fullname: Narumi – volume: 66 start-page: 3856 year: 2000 ident: 2024082703532542300_B41 article-title: Characterization of the minimal replicon of a cryptic deinococcus radiodurans SARK plasmid and development of versatile Escherichia coli-D. radiodurans shuttle vectors publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.9.3856-3867.2000 contributor: fullname: Meima – volume: 6 start-page: 5849 year: 2015 ident: 2024082703532542300_B58 article-title: Kinetic gating mechanism of DNA damage recognition by Rad4/XPC publication-title: Nat. Commun. doi: 10.1038/ncomms6849 contributor: fullname: Chen – volume: 113 start-page: E2296 year: 2016 ident: 2024082703532542300_B59 article-title: Twist-open mechanism of DNA damage recognition by the Rad4/XPC nucleotide excision repair complex publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1514666113 contributor: fullname: Velmurugu – volume: 306 start-page: 354 year: 2003 ident: 2024082703532542300_B13 article-title: PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(03)00965-3 contributor: fullname: Hua – volume: 85 start-page: e01356-19 year: 2019 ident: 2024082703532542300_B40 article-title: Discovery and characterization of native deinococcus radiodurans promoters for tunable gene expression publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01356-19 contributor: fullname: Chen – volume: 5 start-page: 7655 year: 2015 ident: 2024082703532542300_B55 article-title: Plectoneme tip bubbles: Coupled denaturation and writhing in supercoiled DNA publication-title: Sci. Rep. doi: 10.1038/srep07655 contributor: fullname: Matek – volume: 10 start-page: 1223 year: 2011 ident: 2024082703532542300_B22 article-title: The deinococcal DdrB protein is involved in an early step of DNA double strand break repair and in plasmid transformation through its single-strand annealing activity publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2011.09.010 contributor: fullname: Bouthier de la Tour – volume: 13 start-page: e0339421 year: 2022 ident: 2024082703532542300_B3 article-title: Small-molecule Mn antioxidants in Caenorhabditis elegans and deinococcus radiodurans supplant MnSOD enzymes during aging and irradiation publication-title: mBio doi: 10.1128/mbio.03394-21 contributor: fullname: Gaidamakova – volume: 190 start-page: 6475 year: 2008 ident: 2024082703532542300_B20 article-title: The stable, functional core of DdrA from Deinococcus radiodurans R1 does not restore radioresistance in vivo publication-title: J. Bacteriol. doi: 10.1128/JB.01165-07 contributor: fullname: Harris – volume: 33 start-page: 3647 year: 2019 ident: 2024082703532542300_B45 article-title: Extended structure of pleiotropic DNA repair-promoting protein PprA from Deinococcus radiodurans publication-title: FASEB J. doi: 10.1096/fj.201801506R contributor: fullname: Adachi – volume: 73 start-page: 144 year: 2019 ident: 2024082703532542300_B15 article-title: The absence of the RecN protein suppresses the cellular defects of Deinococcus radiodurans irradiated cells devoid of the PprA protein by limiting recombinational repair of DNA lesions publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2018.11.011 contributor: fullname: Devigne – volume: 72 start-page: 4275 year: 1975 ident: 2024082703532542300_B48 article-title: Conformational fluctuations of DNA helix publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.72.11.4275 contributor: fullname: Depew – volume: 23 start-page: 1349 year: 2014 ident: 2024082703532542300_B44 article-title: Interaction of double-stranded DNA with polymerized PprA protein from Deinococcus radiodurans publication-title: Protein Sci. doi: 10.1002/pro.2519 contributor: fullname: Adachi – volume: 3 start-page: 8 year: 2002 ident: 2024082703532542300_B18 article-title: Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52 publication-title: Bmc Genomics [Electronic Resource] contributor: fullname: Iyer – volume: 9 start-page: 805 year: 2010 ident: 2024082703532542300_B23 article-title: DdrB stimulates single-stranded DNA annealing and facilitates RecA-independent DNA repair in Deinococcus radiodurans publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2010.04.006 contributor: fullname: Xu – volume: 66 start-page: 486 year: 2010 ident: 2024082703532542300_B32 article-title: Features and development of Coot publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr. doi: 10.1107/S0907444910007493 contributor: fullname: Emsley – volume: 168 start-page: 21 year: 2004 ident: 2024082703532542300_B12 article-title: Analysis of Deinococcus radiodurans's transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance publication-title: Genetics doi: 10.1534/genetics.104.029249 contributor: fullname: Tanaka – volume: 27 start-page: 112 year: 2018 ident: 2024082703532542300_B36 article-title: Improvements to the APBS biomolecular solvation software suite publication-title: Protein Sci. doi: 10.1002/pro.3280 contributor: fullname: Jurrus – volume: 17 start-page: 261 year: 2020 ident: 2024082703532542300_B28 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 contributor: fullname: Virtanen – volume: 12 start-page: 5683 year: 2021 ident: 2024082703532542300_B54 article-title: Supercoiling and looping promote DNA base accessibility and coordination among distant sites publication-title: Nat. Commun. doi: 10.1038/s41467-021-25936-2 contributor: fullname: Fogg – volume: 6 start-page: e00477 year: 2017 ident: 2024082703532542300_B10 article-title: Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria publication-title: Microbiologyopen doi: 10.1002/mbo3.477 contributor: fullname: Blanchard – volume: 6 start-page: e24109 year: 2011 ident: 2024082703532542300_B33 article-title: RosettaRemodel: a generalized framework for flexible backbone protein design publication-title: PLoS One doi: 10.1371/journal.pone.0024109 contributor: fullname: Huang – volume: 72 start-page: 4280 year: 1975 ident: 2024082703532542300_B49 article-title: Action of nicking-closing enzyme on supercoiled and nonsupercoiled closed circular DNA: formation of a Boltzmann distribution of topological isomers publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.72.11.4280 contributor: fullname: Pulleyblank – volume: 113 start-page: 4308 year: 2016 ident: 2024082703532542300_B21 article-title: Mechanism for accurate, protein-assisted DNA annealing by Deinococcus radiodurans DdrB publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1520847113 contributor: fullname: Sugiman-Marangos – volume: 23 start-page: 47 year: 2014 ident: 2024082703532542300_B38 article-title: Relaxation of backbone bond geometry improves protein energy landscape modeling publication-title: Protein Sci. doi: 10.1002/pro.2389 contributor: fullname: Conway – volume: 50 start-page: W210 year: 2022 ident: 2024082703532542300_B35 article-title: Dali server: structural unification of protein families publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac387 contributor: fullname: Holm – volume: 46 start-page: 10 year: 2021 ident: 2024082703532542300_B9 article-title: New insights into the activation of radiation desiccation response regulon in Deinococcus radiodurans publication-title: J. Biosci. doi: 10.1007/s12038-020-00123-5 contributor: fullname: Narasimha – volume: 1 start-page: e00036-15 year: 2016 ident: 2024082703532542300_B16 article-title: PprA protein is involved in chromosome segregation via its physical and functional interaction with DNA gyrase in irradiated deinococcus radiodurans bacteria publication-title: mSphere doi: 10.1128/mSphere.00036-15 contributor: fullname: Devigne – volume: 75 start-page: 133 year: 2011 ident: 2024082703532542300_B1 article-title: Oxidative stress resistance in Deinococcus radiodurans publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00015-10 contributor: fullname: Slade – volume: 114 start-page: E9253 year: 2017 ident: 2024082703532542300_B5 article-title: Across the tree of life, radiation resistance is governed by antioxidant Mn2+, gauged by paramagnetic resonance publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1713608114 contributor: fullname: Sharma – volume: 6 start-page: 8440 year: 2015 ident: 2024082703532542300_B50 article-title: Structural diversity of supercoiled DNA publication-title: Nat. Commun. doi: 10.1038/ncomms9440 contributor: fullname: Irobalieva – volume: 60 start-page: 742 year: 2015 ident: 2024082703532542300_B57 article-title: Structural basis of detection and signaling of DNA single-strand breaks by Human PARP-1 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.10.032 contributor: fullname: Eustermann – volume: 9 start-page: e85288 year: 2014 ident: 2024082703532542300_B17 article-title: PprA contributes to deinococcus radiodurans resistance to nalidixic acid, genome maintenance after DNA damage and interacts with deinococcal topoisomerases publication-title: PLoS One doi: 10.1371/journal.pone.0085288 contributor: fullname: Kota – volume: 1784 start-page: 1050 year: 2008 ident: 2024082703532542300_B19 article-title: Complex oligomeric structure of a truncated form of DdrA: a protein required for the extreme radiotolerance of Deinococcus publication-title: Biochim. Biophys. Acta - Proteins Proteomics doi: 10.1016/j.bbapap.2008.03.009 contributor: fullname: Gutsche – volume: 25 start-page: 343 year: 2021 ident: 2024082703532542300_B24 article-title: Characterization of the DdrD protein from the extremely radioresistant bacterium Deinococcus radiodurans publication-title: Extremophiles doi: 10.1007/s00792-021-01233-0 contributor: fullname: de la Tour – volume: 67 start-page: 293 year: 2011 ident: 2024082703532542300_B29 article-title: Data processing and analysis with the autoPROC toolbox publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr. doi: 10.1107/S0907444911007773 contributor: fullname: Vonrhein – volume: 50 start-page: 7680 year: 2022 ident: 2024082703532542300_B26 article-title: Structural and functional characterization of DdrC, a novel DNA damage-induced nucleoid associated protein involved in DNA compaction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac563 contributor: fullname: Banneville – volume: 3 start-page: 882 year: 2005 ident: 2024082703532542300_B2 article-title: Deinococcus radiodurans - the consummate survivor publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1264 contributor: fullname: Cox – volume: 443 start-page: 569 year: 2006 ident: 2024082703532542300_B6 article-title: Reassembly of shattered chromosomes in Deinococcus radiodurans publication-title: Nature doi: 10.1038/nature05160 contributor: fullname: Zahradka – volume: 12 start-page: 1053 year: 2021 ident: 2024082703532542300_B52 article-title: Base-pair resolution analysis of the effect of supercoiling on DNA flexibility and major groove recognition by triplex-forming oligonucleotides publication-title: Nat. Commun. doi: 10.1038/s41467-021-21243-y contributor: fullname: Pyne – volume: 136 start-page: 1044 year: 2009 ident: 2024082703532542300_B7 article-title: Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans publication-title: Cell doi: 10.1016/j.cell.2009.01.018 contributor: fullname: Slade – volume: 18 start-page: 184 year: 2008 ident: 2024082703532542300_B47 article-title: Structure and mechanism for DNA lesion recognition publication-title: Cell Res. doi: 10.1038/cr.2007.116 contributor: fullname: Yang – volume: 10 start-page: 2536 year: 2021 ident: 2024082703532542300_B11 article-title: Characterization of the radiation desiccation response regulon of the radioresistant bacterium Deinococcus radiodurans by Integrative Genomic analyses publication-title: Cells doi: 10.3390/cells10102536 contributor: fullname: Eugénie – volume: 46 start-page: 338 year: 2007 ident: 2024082703532542300_B46 article-title: Phosphate recognition in structural biology publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.200603420 contributor: fullname: Hirsch |
SSID | ssj0014154 |
Score | 2.5068934 |
Snippet | Abstract
The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant... The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which... Abstract The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant... The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which... |
SourceID | pubmedcentral proquest crossref pubmed oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 9282 |
SubjectTerms | Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Deinococcus - genetics Deinococcus - metabolism DNA - chemistry DNA - genetics DNA - metabolism DNA Breaks, Double-Stranded DNA Breaks, Single-Stranded DNA Repair DNA, Bacterial - chemistry DNA, Bacterial - genetics DNA, Bacterial - metabolism DNA-Binding Proteins - chemistry DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Models, Molecular Protein Binding Protein Multimerization Structural Biology |
Title | DdrC, a unique DNA repair factor from D. radiodurans, senses and stabilizes DNA breaks through a novel lesion-recognition mechanism |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39036966 https://www.proquest.com/docview/3083219047 https://pubmed.ncbi.nlm.nih.gov/PMC11347143 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5wwEB0lObS5RG3Sj03b7VSKegoLLAbMcbWbKKrUtIdE2hsyxrQowUSwGym55o93bGCV7aGHXpAQtoU8A_PG82YG4IR-cbHihhcWJ9xhUagcLlXixEHuBcLnmd-xLS6ji2v2bRkudyAacmEsaV9m5UTfVhNd_rbcyrtKugNPzP35fe6b_Ecy9O4u7JKGDj56Hzsgk9QVjbI1Nhnvs_LIdXe1aNxfN0KRld2HF-Tum2520ZZJ2kpze4Y2_yZNPrNC56_goIePOOte8zXsKH0IRzNNrnP1gF_REjrtSfkhvJwPzdyO4GmRN_NTFLi2BVtxcTnDhixR2WDXcQdNngkuJtiIvKzztTFhp9iSk6taFDpHQpGGR_tIt2YyedLipsW-zQ8trOt7dYu0dSRoZ0NLqjVWyiQXl231Bq7Pz67mF07ff8GR9NmvHBlLFiZR5gsRhLmfMBPzVAFTnooKn6C5lPG0COMkJ1yoyKMNCp4rAlR-EdJMP3gLe7rW6j0ggbAiLBKZSx4x2vYs4iFTTIoky0wRvBGcDCJI77oyG2kXHg9SElraC20En0k8_x7xZRBdSltsoh9Cq3rdpoFnmjIlHotH8K4T5WahQRNGwLeEvBlginBvPyHdtMW4B108_v-pH2B_SlDJnFRP44-wt2rW6hNBnVU2Jv32zsb2oGBstZyuVz-WfwAWFwEn |
link.rule.ids | 230,315,730,783,787,867,888,1607,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VItFeCrQUlleNVHFqXhvHcY6rXaoF2hWHVvQWOY4D0TZOlWwq0St_nHEeq24PSHCMYkdJ_MXzTeabGYBj3OJCxY0uLIy4RVmgLC5VZIV-6vrC44nXqS0WbH5Jv1wFV1vAhlyYVrQvk9zW14Wt85-ttvKmkM6gE3O-nU89k_-Iht55BI_xg3XZ4KX30QM0Sl3ZqLbKJuV9Xh46744WlfNjKRTa2V14gg6_6WfHNozSRqLbPb75UDZ5zw6dPoXvwxN08pOl3awSW949KO7474_4DPZ6akom3fnnsKX0PhxMNLrlxS_ykbRi0fYv_D7sTIdGcQfwe5ZW0xMiSNMWgyWzxYRUaOXyinTdfIjJYSEzm1Qizcu0MebxhNToQKuaCJ0SZKhGo3uHh2YyeuliWZO-hRBeWJe36prgPSOIrLXkqdSkUCZxOa-LF3B5-uliOrf63g6WxC1lZclQ0iBiiSeEH6ReRE08VflUuYplHtJ-KcNxFoRRipxTobfsZzxVSNa8LMCZnn8I27rU6hUQJHhZkEUylZxRXNCE8YAqKkWUJKbA3giOh8WNb7oSHnEXevdjhEPcw2EER7jwfx_xYQBFjK_YRFaEVmVTx75rGj5FLg1H8LIDyfpCA8ZGwDfgsx5gCnxvnkFQtIW-BxC8_v-pR7Azvzg_i88-L76-gd0xUjLzR3wcvoXtVdWod0ipVsn79vv5AyxAIGo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwEB61qZTm0kfSxzZN40pRT-G1GDDH1W5W6WuVQyNF6gEZ27Rog1nBUqm59o9nzGOVzaGHHBG2Bfgz8439zQzACf7iIsWMLiyKmUXDQFlMqNiKfOn63GOp16ktFuH5Jf1yFVz1qsq6l1Vqkea2vi5snf9utZWrQjiDTsy5-D71TPwjGnpnJTPnMTzBReuywVPvTxDQMHWpo9pMm5T1sXnowDuaV86vJVdoa_dgF51-U9Mu3DJMW8FudzjnfenkHVs0fw4_h7foJChLu1mntri5l-DxYa_5Ap71FJVMujYv4ZHS-3Aw0eieF3_JJ9KKRtvd-H14Oh0Kxh3Av5mspqeEk6ZNCktmiwmp0NrlFemq-hATy0JmNqm4zEvZGDN5Smp0pFVNuJYEmarR6t7gpemM3jpf1qQvJYQD6_KPuib43AgmayN9KjUplAlgzuviFVzOz35Mz62-xoMl8NeytkQkaBCHqce5H0gvpuZcVflUuSrMPKT_QkTjLIhiidxTodfsZ0wqJG1eFmBPz38NO7rU6i0QJHpZkMVCChZSnNQ0ZAFVVPA4TU2ivRGcDBOcrLpUHkl3BO8nCImkh8QIjnHy_9_i4wCMBD-xOWHhWpVNnfiuKfwUuzQawZsOKJuBBpyNgG1BaNPAJPrevoPAaBN-D0B49_Cux7B7MZsn3z4vvh7C3hiZmdkYH0fvYWddNeoImdU6_dAuoVsp9iLq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DdrC%2C+a+unique+DNA+repair+factor+from+D.+radiodurans+%2C+senses+and+stabilizes+DNA+breaks+through+a+novel+lesion-recognition+mechanism&rft.jtitle=Nucleic+acids+research&rft.au=Szabla%2C+Robert&rft.au=Li%2C+Mingyi&rft.au=Warner%2C+Victoria&rft.au=Song%2C+Yifeng&rft.date=2024-08-27&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=52&rft.issue=15&rft.spage=9282&rft.epage=9302&rft_id=info:doi/10.1093%2Fnar%2Fgkae635&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_gkae635 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |