Estimating response propensities in nonprobability surveys using machine learning weighted models

Propensity Score Adjustment (PSA) is a widely accepted method to reduce selection bias in nonprobability samples. In this approach, the (unknown) response probability of each individual is estimated in a nonprobability sample, using a reference probability sample. This, the researcher obtains a repr...

Full description

Saved in:
Bibliographic Details
Published inMathematics and computers in simulation Vol. 225; pp. 779 - 793
Main Authors Ferri-García, Ramón, Rueda-Sánchez, Jorge L., Rueda, María del Mar, Cobo, Beatriz
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2024
Subjects
Online AccessGet full text
ISSN0378-4754
DOI10.1016/j.matcom.2024.06.012

Cover

Abstract Propensity Score Adjustment (PSA) is a widely accepted method to reduce selection bias in nonprobability samples. In this approach, the (unknown) response probability of each individual is estimated in a nonprobability sample, using a reference probability sample. This, the researcher obtains a representation of the target population, reflecting the differences (for a set of auxiliary variables) between the population and the nonprobability sample, from which response probabilities can be estimated. Auxiliary probability samples are usually produced by surveys with complex sampling designs, meaning that the use of design weights is crucial to accurately calculate response probabilities. When a linear model is used for this task, maximising a pseudo log-likelihood function which involves design weights provides consistent estimates for the inverse probability weighting estimator. However, little is known about how design weights may benefit the estimates when techniques such as machine learning classifiers are used. This study aims to investigate the behaviour of Propensity Score Adjustment with machine learning classifiers, subject to the use of weights in the modelling step. A theoretical approximation to the problem is presented, together with a simulation study highlighting the properties of estimators using different types of weights in the propensity modelling step. •Machine learning methods with design weights can be used for propensity estimation.•Using design weights in propensity estimation is effective under complex designs.•All modelling approaches performed well but machine learning ones are preferable.•Design weights can be used in propensity transformations based on correction factors.
AbstractList Propensity Score Adjustment (PSA) is a widely accepted method to reduce selection bias in nonprobability samples. In this approach, the (unknown) response probability of each individual is estimated in a nonprobability sample, using a reference probability sample. This, the researcher obtains a representation of the target population, reflecting the differences (for a set of auxiliary variables) between the population and the nonprobability sample, from which response probabilities can be estimated. Auxiliary probability samples are usually produced by surveys with complex sampling designs, meaning that the use of design weights is crucial to accurately calculate response probabilities. When a linear model is used for this task, maximising a pseudo log-likelihood function which involves design weights provides consistent estimates for the inverse probability weighting estimator. However, little is known about how design weights may benefit the estimates when techniques such as machine learning classifiers are used. This study aims to investigate the behaviour of Propensity Score Adjustment with machine learning classifiers, subject to the use of weights in the modelling step. A theoretical approximation to the problem is presented, together with a simulation study highlighting the properties of estimators using different types of weights in the propensity modelling step. •Machine learning methods with design weights can be used for propensity estimation.•Using design weights in propensity estimation is effective under complex designs.•All modelling approaches performed well but machine learning ones are preferable.•Design weights can be used in propensity transformations based on correction factors.
Author Cobo, Beatriz
Ferri-García, Ramón
Rueda-Sánchez, Jorge L.
Rueda, María del Mar
Author_xml – sequence: 1
  givenname: Ramón
  orcidid: 0000-0002-9655-933X
  surname: Ferri-García
  fullname: Ferri-García, Ramón
  email: rferri@ugr.es
  organization: Department of Statistics and Operations Research, University of Granada, Avenida Fuentenueva, s/n, Granada, 18017, Spain
– sequence: 2
  givenname: Jorge L.
  surname: Rueda-Sánchez
  fullname: Rueda-Sánchez, Jorge L.
  organization: Mathematics Institute of the University of Granada (IMAG), Calle Ventanilla, 11, 18001, Granada, Spain
– sequence: 3
  givenname: María del Mar
  orcidid: 0000-0002-2903-8745
  surname: Rueda
  fullname: Rueda, María del Mar
  organization: Department of Statistics and Operations Research, University of Granada, Avenida Fuentenueva, s/n, Granada, 18017, Spain
– sequence: 4
  givenname: Beatriz
  orcidid: 0000-0003-2654-0032
  surname: Cobo
  fullname: Cobo, Beatriz
  organization: Department of Quantitative Methods for Economics and Business, University of Granada, Campus Universitario de Cartuja, Granada, 18071, Spain
BookMark eNp9kMtqwzAQRbVIoUnaP-hCP2B3bEuysymUkD4g0E27FrI8SRRs2WiclPx9ZdJ1NjPDZc487oLNfO-RsacM0gwy9XxMOzPavktzyEUKKoUsn7E5FGWViFKKe7YgOgJArOWcmQ2NLhLO73lAGnpPyIfQD-jJjQ6JO8_jiijVpnatGy-cTuGMF-InmqjO2IPzyFs0wU_CL7r9YcSGd32DLT2wu51pCR__85L9vG2-1x_J9uv9c_26TWwB2ZhYEEpBJQFkjCspM4u1qFRdV2WhLJi8wtyaHEW1Kg0aKzE2ljtb1UqWKyiWTFzn2tATBdzpIcTPwkVnoCdr9FFfrdGTNRqUjtZE7OWKxVPx7DBosg69xcYFtKNuend7wB_cS3Um
Cites_doi 10.1177/0049124108329643
10.1093/jssam/smaa028
10.2307/2528036
10.1214/aoms/1177729988
10.1093/jssam/smz003
10.1080/01621459.1984.10478078
10.1007/s11749-021-00795-7
10.3414/ME00-01-0052
10.3390/math8060879
10.1214/16-STS597
10.1023/A:1010933404324
10.1371/journal.pone.0231500
10.1214/16-STS598
10.1177/0049124110392533
10.1111/rssa.12564
10.1145/2939672.2939785
10.1093/jssam/smz023
10.1111/rssc.12371
10.1080/01621459.2019.1677241
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.matcom.2024.06.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 793
ExternalDocumentID 10_1016_j_matcom_2024_06_012
S0378475424002374
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXKI
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c301t-c04660850050859551ceb486bb8736c0a28e2ca2e4897aeac5e5087fc8b657903
IEDL.DBID AIKHN
ISSN 0378-4754
IngestDate Tue Jul 01 03:39:45 EDT 2025
Sat Sep 28 16:09:28 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Propensity score adjustment
Design weights
Nonprobability samples
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c301t-c04660850050859551ceb486bb8736c0a28e2ca2e4897aeac5e5087fc8b657903
ORCID 0000-0002-9655-933X
0000-0002-2903-8745
0000-0003-2654-0032
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0378475424002374
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_matcom_2024_06_012
elsevier_sciencedirect_doi_10_1016_j_matcom_2024_06_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Mathematics and computers in simulation
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Friedman (b24) 2001
Castro-Martín, Rueda, Ferri-García (b11) 2020; 8
Cochran (b15) 1968
Madow (b26) 1949; 20
Beaumont (b18) 2020; 46
Breiman (b20) 2001; 45
Valliant, Dever (b9) 2011; 40
Chen, He, Benesty, Khotilovich, Tang, Cho, Chen, Mitchell, Cano, Zhou, Li, Xie, Lin, Geng, Li, Yuan (b25) 2024
Tillé, Matei (b27) 2023
Rivers (b4) 2007
Valliant (b17) 2020; 8
Rosenbaum, Rubin (b16) 1984; 79
Lee, Valliant (b14) 2009; 37
Buskirk, Kolenikov (b28) 2015
Ferri-García, Beaumont, Bosa, Charlebois, Chu (b6) 2022; 31
Malley, Kruppa, Dasgupta, Malley, Ziegler (b21) 2012; 51
K.C.K. Chu, J.F. Beaumont, The use of classification trees to reduce selection bias for a non-probability sample with help from a probability sample, in: Proceedings of the Survey Methods Section: SSC Annual Meeting, vol. 26, Calgary, AB, Canada, 2019.
Andridge, West, Little, Boonstra, Alvarado-Leiton (b7) 2019; 68
Wang, Graubard, Katki, Li (b3) 2020; 183
Kern, Li, Wang (b12) 2020; 9
Chen, Li, Wu (b5) 2020; 115
Schonlau, Couper (b13) 2017; 32
Little, West, Boonstra, Hu (b8) 2020; 8
Elliott, Valliant (b1) 2017; 32
Lee (b2) 2006; 22
T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794.
Castro-Martín, Rueda, Ferri-García, Hernando-Tamayo (b23) 2021; 9
Ferri-García, Rueda (b10) 2020; 15
Valliant (10.1016/j.matcom.2024.06.012_b17) 2020; 8
Ferri-García (10.1016/j.matcom.2024.06.012_b6) 2022; 31
Little (10.1016/j.matcom.2024.06.012_b8) 2020; 8
Chen (10.1016/j.matcom.2024.06.012_b5) 2020; 115
Elliott (10.1016/j.matcom.2024.06.012_b1) 2017; 32
Andridge (10.1016/j.matcom.2024.06.012_b7) 2019; 68
Madow (10.1016/j.matcom.2024.06.012_b26) 1949; 20
Beaumont (10.1016/j.matcom.2024.06.012_b18) 2020; 46
Castro-Martín (10.1016/j.matcom.2024.06.012_b11) 2020; 8
Rosenbaum (10.1016/j.matcom.2024.06.012_b16) 1984; 79
10.1016/j.matcom.2024.06.012_b19
Valliant (10.1016/j.matcom.2024.06.012_b9) 2011; 40
Schonlau (10.1016/j.matcom.2024.06.012_b13) 2017; 32
Breiman (10.1016/j.matcom.2024.06.012_b20) 2001; 45
10.1016/j.matcom.2024.06.012_b22
Chen (10.1016/j.matcom.2024.06.012_b25) 2024
Ferri-García (10.1016/j.matcom.2024.06.012_b10) 2020; 15
Friedman (10.1016/j.matcom.2024.06.012_b24) 2001
Rivers (10.1016/j.matcom.2024.06.012_b4) 2007
Castro-Martín (10.1016/j.matcom.2024.06.012_b23) 2021; 9
Buskirk (10.1016/j.matcom.2024.06.012_b28) 2015
Kern (10.1016/j.matcom.2024.06.012_b12) 2020; 9
Malley (10.1016/j.matcom.2024.06.012_b21) 2012; 51
Lee (10.1016/j.matcom.2024.06.012_b2) 2006; 22
Wang (10.1016/j.matcom.2024.06.012_b3) 2020; 183
Tillé (10.1016/j.matcom.2024.06.012_b27) 2023
Lee (10.1016/j.matcom.2024.06.012_b14) 2009; 37
Cochran (10.1016/j.matcom.2024.06.012_b15) 1968
References_xml – year: 2007
  ident: b4
  article-title: Sampling for web surveys
– volume: 37
  start-page: 319
  year: 2009
  end-page: 343
  ident: b14
  article-title: Estimation for volunteer panel web surveys using propensity score adjustment and calibration adjustment
  publication-title: Sociol. Methods Res.
– start-page: 295
  year: 1968
  end-page: 313
  ident: b15
  article-title: The effectiveness of adjustment by subclassification in removing bias in observational studies
  publication-title: Biometrics
– volume: 20
  start-page: 333
  year: 1949
  end-page: 354
  ident: b26
  article-title: On the theory of systematic sampling, II
  publication-title: Ann. Math. Stat.
– volume: 8
  start-page: 879
  year: 2020
  ident: b11
  article-title: Inference from non-probability surveys with statistical matching and propensity score adjustment using modern prediction techniques
  publication-title: Mathematics
– year: 2024
  ident: b25
  article-title: Xgboost: Extreme gradient boosting. r package version 1.7.7.1
– volume: 32
  start-page: 249
  year: 2017
  end-page: 264
  ident: b1
  article-title: Inference for nonprobability samples
  publication-title: Statist. Sci.
– volume: 8
  start-page: 932
  year: 2020
  end-page: 964
  ident: b8
  article-title: Measures of the degree of departure from ignorable sample selection
  publication-title: J. Surv. Stat. Methodol.
– volume: 46
  start-page: 1
  year: 2020
  end-page: 28
  ident: b18
  article-title: Are probability surveys bound to disappear for the production of official statistics
  publication-title: Survey Methodol.
– volume: 115
  start-page: 2011
  year: 2020
  end-page: 2021
  ident: b5
  article-title: Doubly robust inference with nonprobability survey samples
  publication-title: J. Amer. Statist. Assoc.
– volume: 15
  year: 2020
  ident: b10
  article-title: Propensity score adjustment using machine learning classification algorithms to control selection bias in online surveys
  publication-title: PLoS One
– volume: 9
  start-page: 1088
  year: 2020
  end-page: 1113
  ident: b12
  article-title: Boosted kernel weighting—Using statistical learning to improve inference from nonprobability samples
  publication-title: J. Surv. Stat. Methodol.
– volume: 79
  start-page: 516
  year: 1984
  end-page: 524
  ident: b16
  article-title: Reducing bias in observational studies using subclassification on the propensity score
  publication-title: J. Amer. Statist. Assoc.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b20
  article-title: Random forests
  publication-title: Mach. Learn.
– year: 2023
  ident: b27
  article-title: Sampling: Survey sampling
– reference: T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794.
– volume: 8
  start-page: 231
  year: 2020
  end-page: 263
  ident: b17
  article-title: Comparing alternatives for estimation from nonprobability samples
  publication-title: J. Surv. Stat. Methodol.
– volume: 31
  start-page: 619
  year: 2022
  end-page: 643
  ident: b6
  article-title: Weight smoothing for nonprobability surveys
  publication-title: TEST
– start-page: 1
  year: 2015
  end-page: 17
  ident: b28
  article-title: Finding respondents in the forest: A comparison of logistic regression and random forest models for response propensity weighting and stratification
  publication-title: Surv. Methods: Insights Field
– volume: 40
  start-page: 105
  year: 2011
  end-page: 137
  ident: b9
  article-title: Estimating propensity adjustments for volunteer web surveys
  publication-title: Sociol. Methods Res.
– volume: 22
  start-page: 329
  year: 2006
  end-page: 349
  ident: b2
  article-title: Propensity score adjustment as a weighting scheme for volunteer panel web surveys
  publication-title: J. Off. Stat.
– reference: K.C.K. Chu, J.F. Beaumont, The use of classification trees to reduce selection bias for a non-probability sample with help from a probability sample, in: Proceedings of the Survey Methods Section: SSC Annual Meeting, vol. 26, Calgary, AB, Canada, 2019.
– volume: 183
  start-page: 1293
  year: 2020
  end-page: 1311
  ident: b3
  article-title: Improving external validity of epidemiologic cohort analyses: A kernel weighting approach
  publication-title: J. R. Stat. Soc. Ser. A: Stat. Soc.
– volume: 51
  start-page: 74
  year: 2012
  end-page: 81
  ident: b21
  article-title: Probability machines
  publication-title: Methods Inf. Med.
– volume: 32
  start-page: 279
  year: 2017
  end-page: 292
  ident: b13
  article-title: Options for conducting web surveys
  publication-title: Statist. Sci.
– start-page: 1189
  year: 2001
  end-page: 1232
  ident: b24
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
– volume: 9
  year: 2021
  ident: b23
  article-title: On the use of gradient boosting methods to improve the estimation with data obtained with self-selection procedures
  publication-title: Mathematics
– volume: 68
  start-page: 1465
  year: 2019
  end-page: 1483
  ident: b7
  article-title: Indices of non-ignorable selection bias for proportions estimated from non-probability samples
  publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat.
– volume: 37
  start-page: 319
  issue: 3
  year: 2009
  ident: 10.1016/j.matcom.2024.06.012_b14
  article-title: Estimation for volunteer panel web surveys using propensity score adjustment and calibration adjustment
  publication-title: Sociol. Methods Res.
  doi: 10.1177/0049124108329643
– volume: 9
  start-page: 1088
  issue: 5
  year: 2020
  ident: 10.1016/j.matcom.2024.06.012_b12
  article-title: Boosted kernel weighting—Using statistical learning to improve inference from nonprobability samples
  publication-title: J. Surv. Stat. Methodol.
  doi: 10.1093/jssam/smaa028
– year: 2023
  ident: 10.1016/j.matcom.2024.06.012_b27
– start-page: 295
  year: 1968
  ident: 10.1016/j.matcom.2024.06.012_b15
  article-title: The effectiveness of adjustment by subclassification in removing bias in observational studies
  publication-title: Biometrics
  doi: 10.2307/2528036
– volume: 20
  start-page: 333
  issue: 3
  year: 1949
  ident: 10.1016/j.matcom.2024.06.012_b26
  article-title: On the theory of systematic sampling, II
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729988
– volume: 22
  start-page: 329
  issue: 2
  year: 2006
  ident: 10.1016/j.matcom.2024.06.012_b2
  article-title: Propensity score adjustment as a weighting scheme for volunteer panel web surveys
  publication-title: J. Off. Stat.
– volume: 8
  start-page: 231
  issue: 2
  year: 2020
  ident: 10.1016/j.matcom.2024.06.012_b17
  article-title: Comparing alternatives for estimation from nonprobability samples
  publication-title: J. Surv. Stat. Methodol.
  doi: 10.1093/jssam/smz003
– volume: 79
  start-page: 516
  issue: 387
  year: 1984
  ident: 10.1016/j.matcom.2024.06.012_b16
  article-title: Reducing bias in observational studies using subclassification on the propensity score
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1984.10478078
– volume: 31
  start-page: 619
  issue: 3
  year: 2022
  ident: 10.1016/j.matcom.2024.06.012_b6
  article-title: Weight smoothing for nonprobability surveys
  publication-title: TEST
  doi: 10.1007/s11749-021-00795-7
– start-page: 1189
  year: 2001
  ident: 10.1016/j.matcom.2024.06.012_b24
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
– volume: 51
  start-page: 74
  issue: 01
  year: 2012
  ident: 10.1016/j.matcom.2024.06.012_b21
  article-title: Probability machines
  publication-title: Methods Inf. Med.
  doi: 10.3414/ME00-01-0052
– volume: 8
  start-page: 879
  issue: 6
  year: 2020
  ident: 10.1016/j.matcom.2024.06.012_b11
  article-title: Inference from non-probability surveys with statistical matching and propensity score adjustment using modern prediction techniques
  publication-title: Mathematics
  doi: 10.3390/math8060879
– volume: 32
  start-page: 279
  issue: 2
  year: 2017
  ident: 10.1016/j.matcom.2024.06.012_b13
  article-title: Options for conducting web surveys
  publication-title: Statist. Sci.
  doi: 10.1214/16-STS597
– volume: 46
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.matcom.2024.06.012_b18
  article-title: Are probability surveys bound to disappear for the production of official statistics
  publication-title: Survey Methodol.
– start-page: 1
  year: 2015
  ident: 10.1016/j.matcom.2024.06.012_b28
  article-title: Finding respondents in the forest: A comparison of logistic regression and random forest models for response propensity weighting and stratification
  publication-title: Surv. Methods: Insights Field
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.matcom.2024.06.012_b20
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2024
  ident: 10.1016/j.matcom.2024.06.012_b25
– year: 2007
  ident: 10.1016/j.matcom.2024.06.012_b4
– volume: 15
  issue: 4
  year: 2020
  ident: 10.1016/j.matcom.2024.06.012_b10
  article-title: Propensity score adjustment using machine learning classification algorithms to control selection bias in online surveys
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0231500
– volume: 32
  start-page: 249
  issue: 2
  year: 2017
  ident: 10.1016/j.matcom.2024.06.012_b1
  article-title: Inference for nonprobability samples
  publication-title: Statist. Sci.
  doi: 10.1214/16-STS598
– volume: 40
  start-page: 105
  issue: 1
  year: 2011
  ident: 10.1016/j.matcom.2024.06.012_b9
  article-title: Estimating propensity adjustments for volunteer web surveys
  publication-title: Sociol. Methods Res.
  doi: 10.1177/0049124110392533
– volume: 183
  start-page: 1293
  issue: 3
  year: 2020
  ident: 10.1016/j.matcom.2024.06.012_b3
  article-title: Improving external validity of epidemiologic cohort analyses: A kernel weighting approach
  publication-title: J. R. Stat. Soc. Ser. A: Stat. Soc.
  doi: 10.1111/rssa.12564
– volume: 9
  issue: 2991
  year: 2021
  ident: 10.1016/j.matcom.2024.06.012_b23
  article-title: On the use of gradient boosting methods to improve the estimation with data obtained with self-selection procedures
  publication-title: Mathematics
– ident: 10.1016/j.matcom.2024.06.012_b22
  doi: 10.1145/2939672.2939785
– volume: 8
  start-page: 932
  issue: 5
  year: 2020
  ident: 10.1016/j.matcom.2024.06.012_b8
  article-title: Measures of the degree of departure from ignorable sample selection
  publication-title: J. Surv. Stat. Methodol.
  doi: 10.1093/jssam/smz023
– volume: 68
  start-page: 1465
  issue: 5
  year: 2019
  ident: 10.1016/j.matcom.2024.06.012_b7
  article-title: Indices of non-ignorable selection bias for proportions estimated from non-probability samples
  publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat.
  doi: 10.1111/rssc.12371
– ident: 10.1016/j.matcom.2024.06.012_b19
– volume: 115
  start-page: 2011
  issue: 532
  year: 2020
  ident: 10.1016/j.matcom.2024.06.012_b5
  article-title: Doubly robust inference with nonprobability survey samples
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2019.1677241
SSID ssj0007545
Score 2.386104
Snippet Propensity Score Adjustment (PSA) is a widely accepted method to reduce selection bias in nonprobability samples. In this approach, the (unknown) response...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 779
SubjectTerms Design weights
Nonprobability samples
Propensity score adjustment
Title Estimating response propensities in nonprobability surveys using machine learning weighted models
URI https://dx.doi.org/10.1016/j.matcom.2024.06.012
Volume 225
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDBZ9XHbZe6x7FB929Zr4ESfHUlq6DXrZCr2F2HFLBwulj41d9tsnO8nYYOywY4IERrY_SeaTBHCTM4WnVgfU5KGkgs_nVOs8pxzPB5M6Z0J7guwkGk_F_UzOGjCoa2EcrbLC_hLTPVpXf3qVNXur5bL3GHCF0CqFY0EyrkQT2ownkWxBu3_3MJ58ATLKeCYjylOnUFfQeZoXxoWONsLQV_lGniH73UN98zqjQ9ivwkXSL1d0BA1bHMNBPYqBVDfzBLIhXlUXfBYLsi5pr5as3EN7sfE9U8myIJjpu_kxZWfud7LZrV9xH4mjvi_Ii2dVWlKNkViQN_9oanPih-VsTmE6Gj4NxrSankANXtotNZj5Rq4hXSB9EzMZGqtFHGkdKx6ZIGOxZSZjVsSJyhB_pUVBNTexjqRKAn4GLVyXPQeCIR_GgbmQJgnRo-cx45h2cqOyRKOy7QCtLZauyiYZac0ee05LC6fOwqkj0YWsA6o2a_pjs1PE8T81L_6teQl77qssI7yC1na9s9cYT2x1F5q3H2G3OjWfb-LLmA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LSwMxEIBDrQe9-BbrMwevsbt5bHaPUlqq1l5sobewebRUsJQ-FC_-difZXVQQD153JxAmk5lJ-DKD0LWlEqxWR8TYWBDOxmOitbWEgX1QoS3lOgCy_aQ75PcjMaqhVvUWxmOVpe8vfHrw1uWXZqnN5nw6bT5FTIJrFdxTkJRJvoE2uWDSc303H1-cB0gEjhGkiRev3s8FyAuyQg-NUIhUoYxnTH-PT99iTmcP7ZTJIr4t5rOPam52gHarRgy43JeHKG_DRvWp52yCFwX06vDcX7PPlqFiKp7OMJzzffeYoi73O16uF6-witiD7xP8EphKh8smEhP8Fq5MncWhVc7yCA077UGrS8reCcTAll0RA-fexJeji0QoYSZi4zRPE61TyRIT5TR11OTU8TSTOXhf4UBQjk2qEyGziB2jOszLnSAMCR9kgZYLk8UQz21KGRw6mZF5pmGwayBSaUzNixIZqmLHnlWhYeU1rDxCF9MGkpVa1Y-lVuDF_xx5-u-RV2irO3jsqd5d_-EMbfs_xYPCc1RfLdbuAjKLlb4MlvMJJdHMYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+response+propensities+in+nonprobability+surveys+using+machine+learning+weighted+models&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Ferri-Garc%C3%ADa%2C+Ram%C3%B3n&rft.au=Rueda-S%C3%A1nchez%2C+Jorge+L.&rft.au=Rueda%2C+Mar%C3%ADa+del+Mar&rft.au=Cobo%2C+Beatriz&rft.date=2024-11-01&rft.issn=0378-4754&rft.volume=225&rft.spage=779&rft.epage=793&rft_id=info:doi/10.1016%2Fj.matcom.2024.06.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matcom_2024_06_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon