Solving higher-order nonlocal boundary value problems with high precision by the fixed quasi Newton methods
The paper presents a numerical solution of a higher-order nonlocal and nonlinear boundary value problem (NNBVP); it exhibits triple nonlinearities: nonlinear ordinary differential equation (ODE), nonlinear local boundary values and nonlinear integral boundary conditions (BCs). We consider one nonloc...
Saved in:
Published in | Mathematics and computers in simulation Vol. 232; pp. 211 - 226 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The paper presents a numerical solution of a higher-order nonlocal and nonlinear boundary value problem (NNBVP); it exhibits triple nonlinearities: nonlinear ordinary differential equation (ODE), nonlinear local boundary values and nonlinear integral boundary conditions (BCs). We consider one nonlocal, two nonlocal and three nonlocal BCs. New variables are incorporated, whose values at right-end present the integral parts in the specified nonlocal BCs. For an extremely precise solution of NNBVP, it is crucial to acquire highly accurate initial values of independent variables by solving target equations very accurately. Because of the implicit form of the target equations, they are solved by a fixed quasi-Newton method (FQNM) without calculating the differentials, which together with the shooting technique would offer nearly exact initial values. Higher-order numerical examples are examined to assure that the proposed methods are efficient to achieve some highly accurate solutions with 14- and 15-digit precisions, whose computational costs are very saving as reflected in the small number of iterations. The computed order of convergence (COC) reveals that the iterative methods converge faster than linear convergence. The novelty lies on the introduction of new variables to present the nonlocal boundary conditions, and develop FQNM to solve the target equations. The difficult part of nonlinear and nonlocal BC is simply transformed to find an ended value of the new variable governed by an ODE. When the constant iteration matrix is properly established, the numerical examples of NNBVP reveal that FQNM is convergent fast and is not sensitive to the initial guesses of unknown initial values.
•New variables simplify the nonlocal parts in the target equations different from the conventional iterative approaches.•The numerical algorithm effectively and accurately solves higher-order nonlocal and nonlinear boundary value problems.•Numerical examples reveals the high performance of the proposed iterative algorithms. |
---|---|
AbstractList | The paper presents a numerical solution of a higher-order nonlocal and nonlinear boundary value problem (NNBVP); it exhibits triple nonlinearities: nonlinear ordinary differential equation (ODE), nonlinear local boundary values and nonlinear integral boundary conditions (BCs). We consider one nonlocal, two nonlocal and three nonlocal BCs. New variables are incorporated, whose values at right-end present the integral parts in the specified nonlocal BCs. For an extremely precise solution of NNBVP, it is crucial to acquire highly accurate initial values of independent variables by solving target equations very accurately. Because of the implicit form of the target equations, they are solved by a fixed quasi-Newton method (FQNM) without calculating the differentials, which together with the shooting technique would offer nearly exact initial values. Higher-order numerical examples are examined to assure that the proposed methods are efficient to achieve some highly accurate solutions with 14- and 15-digit precisions, whose computational costs are very saving as reflected in the small number of iterations. The computed order of convergence (COC) reveals that the iterative methods converge faster than linear convergence. The novelty lies on the introduction of new variables to present the nonlocal boundary conditions, and develop FQNM to solve the target equations. The difficult part of nonlinear and nonlocal BC is simply transformed to find an ended value of the new variable governed by an ODE. When the constant iteration matrix is properly established, the numerical examples of NNBVP reveal that FQNM is convergent fast and is not sensitive to the initial guesses of unknown initial values.
•New variables simplify the nonlocal parts in the target equations different from the conventional iterative approaches.•The numerical algorithm effectively and accurately solves higher-order nonlocal and nonlinear boundary value problems.•Numerical examples reveals the high performance of the proposed iterative algorithms. |
Author | Chen, Yung-Wei Liu, Chein-Shan Chang, Yen-Shen Shen, Jian-Hung |
Author_xml | – sequence: 1 givenname: Chein-Shan orcidid: 0000-0001-6366-3539 surname: Liu fullname: Liu, Chein-Shan organization: Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan – sequence: 2 givenname: Yung-Wei orcidid: 0000-0002-4567-5234 surname: Chen fullname: Chen, Yung-Wei email: cyw0710@mail.ntou.edu.tw organization: Department of Marine Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan – sequence: 3 givenname: Jian-Hung surname: Shen fullname: Shen, Jian-Hung organization: Department of Marine Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan – sequence: 4 givenname: Yen-Shen orcidid: 0000-0003-1367-1674 surname: Chang fullname: Chang, Yen-Shen organization: Department of Marine Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan |
BookMark | eNp9kM1OwzAQhH0oEi3wBhz8AglrJ2lyQkIVf1IFB-Bs-WfduCRxsdOWvj0u5czpW-1qRjszI5PBD0jINYOcAZvfrPNejtr3OQde5oznCRMyhaJusrKuynMyi3ENAGmupuTzzXc7N6xo61YthswHg4Emz85r2VHlt4OR4UB3stsi3QSvOuwj3bux_ZWkFWoXnR-oOtCxRWrdNxr6tZXR0Rfcj-nS49h6Ey_JmZVdxKs_XpCPh_v3xVO2fH18XtwtM10AGzNpqhqsVdbOVS35vACrK4aqNJwDNKxpmhJ0YyWvASXnJajGzBWikYXkti4uSHny1cHHGNCKTXB9SiEYiGNJYi1OJYljSYJxkZBktycZpt92DoOI2uGg0biUcRTGu_8NfgDjCHkk |
Cites_doi | 10.1017/S0308210506001041 10.1007/s00030-007-4067-7 10.1016/j.camwa.2006.12.007 10.1016/j.cam.2009.07.007 10.1002/num.20177 10.1016/j.camwa.2009.04.002 10.1016/j.nonrwa.2007.05.005 10.3390/sym14040778 10.1155/2011/297578 10.1016/j.na.2007.12.007 10.1080/00207160.2021.1897111 10.1007/s00025-012-0272-8 10.1016/j.na.2008.12.047 10.1016/j.matcom.2021.06.019 10.1090/S0025-5718-1965-0198670-6 10.1090/qam/678203 10.1016/j.chaos.2008.06.009 10.1002/num.20019 10.1080/10407790.2021.1945243 10.1002/cnm.522 10.1016/j.matcom.2021.12.013 10.1080/10407790.2022.2063606 10.1007/s11075-019-00842-3 10.21136/MB.2010.140687 10.1186/s13661-015-0441-2 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.matcom.2024.12.024 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EndPage | 226 |
ExternalDocumentID | 10_1016_j_matcom_2024_12_024 S0378475424005081 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXKI AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADGUI ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM ARUGR AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SME SPC SPCBC SSB SSD SST SSW SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c301t-ad570ffbff6b7a2630fc51eb4d22008188840c8fa270ea2240b8d6beeda3a2f73 |
IEDL.DBID | .~1 |
ISSN | 0378-4754 |
IngestDate | Tue Jul 01 05:32:33 EDT 2025 Sat Mar 08 15:48:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fixed quasi-Newton method Computed order of convergence Shooting technique Nonlocal and nonlinear boundary value problems |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c301t-ad570ffbff6b7a2630fc51eb4d22008188840c8fa270ea2240b8d6beeda3a2f73 |
ORCID | 0000-0003-1367-1674 0000-0001-6366-3539 0000-0002-4567-5234 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0378475424005081 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1016_j_matcom_2024_12_024 elsevier_sciencedirect_doi_10_1016_j_matcom_2024_12_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2025 2025-06-00 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
PublicationDecade | 2020 |
PublicationTitle | Mathematics and computers in simulation |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Graef, Webb (bib16) 2009; 71 Saadatmandi, Dehghan (bib30) 2007; 23 Goodrich (bib15) 2013; 63 Ma, Chen (bib27) 2011; 2011 Yao (bib33) 2007; 53 Day (bib8) 1982; 40 Boucherif (bib3) 2009; 70 Geng, Cui (bib14) 2009; 233 Li, Wang, Pei (bib20) 2013; 2013 Kang, Wei, Xu (bib19) 2008; 206 Liu, Chang (bib24) 2022; 81 Liu (bib21) 2006; 13 Pandey (bib29) 2019; 15 Benaicha, Haddouchi (bib4) 2016; 1 Broyden (bib5) 1965; 19 Chen, Jiang, Du (bib6) 2021; 98 Dehghan (bib10) 2005; 21 Weeb, Infante, Franco (bib32) 2008; 138 Hajiketabi, Abbasbandy (bib17) 2021; 12 Dennis (bib13) 1971; 25 Ahmad, Alsaedi, Alghamdi (bib1) 2008; 9 Deng, Lin, Liu (bib12) 2022; 194 Lv, Wang, Pei (bib26) 2015; 2015 Dehghan (bib9) 2003; 19 Najafi, Saray (bib28) 2017; 5 Liu, Chang (bib22) 2021; 80 Ascher, Mattheij, Russell (bib2) 1995 Dang, Dang (bib7) 2020; 85 Webb, Infante (bib31) 2008; 15 Zhang, Ge (bib34) 2009; 58 Dehghan, Saadatmandi (bib11) 2009; 41 Liu, Chang (bib25) 2022; 14 Liu, Hong, Lee (bib23) 2021; 190 Infante, Pietramala (bib18) 2010; 135 Hajiketabi (10.1016/j.matcom.2024.12.024_bib17) 2021; 12 Liu (10.1016/j.matcom.2024.12.024_bib21) 2006; 13 Lv (10.1016/j.matcom.2024.12.024_bib26) 2015; 2015 Liu (10.1016/j.matcom.2024.12.024_bib25) 2022; 14 Pandey (10.1016/j.matcom.2024.12.024_bib29) 2019; 15 Saadatmandi (10.1016/j.matcom.2024.12.024_bib30) 2007; 23 Dennis (10.1016/j.matcom.2024.12.024_bib13) 1971; 25 Graef (10.1016/j.matcom.2024.12.024_bib16) 2009; 71 Zhang (10.1016/j.matcom.2024.12.024_bib34) 2009; 58 Infante (10.1016/j.matcom.2024.12.024_bib18) 2010; 135 Kang (10.1016/j.matcom.2024.12.024_bib19) 2008; 206 Webb (10.1016/j.matcom.2024.12.024_bib31) 2008; 15 Weeb (10.1016/j.matcom.2024.12.024_bib32) 2008; 138 Dehghan (10.1016/j.matcom.2024.12.024_bib11) 2009; 41 Goodrich (10.1016/j.matcom.2024.12.024_bib15) 2013; 63 Ascher (10.1016/j.matcom.2024.12.024_bib2) 1995 Geng (10.1016/j.matcom.2024.12.024_bib14) 2009; 233 Dang (10.1016/j.matcom.2024.12.024_bib7) 2020; 85 Liu (10.1016/j.matcom.2024.12.024_bib22) 2021; 80 Dehghan (10.1016/j.matcom.2024.12.024_bib9) 2003; 19 Liu (10.1016/j.matcom.2024.12.024_bib23) 2021; 190 Deng (10.1016/j.matcom.2024.12.024_bib12) 2022; 194 Boucherif (10.1016/j.matcom.2024.12.024_bib3) 2009; 70 Yao (10.1016/j.matcom.2024.12.024_bib33) 2007; 53 Benaicha (10.1016/j.matcom.2024.12.024_bib4) 2016; 1 Ahmad (10.1016/j.matcom.2024.12.024_bib1) 2008; 9 Dehghan (10.1016/j.matcom.2024.12.024_bib10) 2005; 21 Broyden (10.1016/j.matcom.2024.12.024_bib5) 1965; 19 Chen (10.1016/j.matcom.2024.12.024_bib6) 2021; 98 Day (10.1016/j.matcom.2024.12.024_bib8) 1982; 40 Liu (10.1016/j.matcom.2024.12.024_bib24) 2022; 81 Ma (10.1016/j.matcom.2024.12.024_bib27) 2011; 2011 Najafi (10.1016/j.matcom.2024.12.024_bib28) 2017; 5 Li (10.1016/j.matcom.2024.12.024_bib20) 2013; 2013 |
References_xml | – volume: 135 start-page: 113 year: 2010 end-page: 121 ident: bib18 article-title: A third order boundary value problem subject to nonlinear boundary conditions publication-title: Math. Bohem. – volume: 81 start-page: 38 year: 2022 end-page: 54 ident: bib24 article-title: Solving nonlinear parabolic equations under nonlocal conditions by a nonlocal boundary shape function and splitting-linearizing method publication-title: Numer. Heat. Tranf. B-Fundam. – volume: 2011 year: 2011 ident: bib27 article-title: Existence of positive solutions of fourth-order problems with integral boundary conditions publication-title: Bound. Value Probl. – volume: 25 start-page: 559 year: 1971 end-page: 567 ident: bib13 article-title: On the convergence of Broyden’s method for nonlinear systems of equations publication-title: Math. Comput. – volume: 12 start-page: 761 year: 2021 end-page: 781 ident: bib17 article-title: A simple, efficient and accurate new Lie-group shooting method for solving nonlinear boundary value problems publication-title: Int. J. Nonlinear Anal. Appl. – volume: 23 start-page: 282 year: 2007 end-page: 292 ident: bib30 article-title: Numerical solution of the one-dimensional wave equation with an integral condition publication-title: Numer. Meth. Part Differ. Equ. – volume: 19 start-page: 1 year: 2003 end-page: 12 ident: bib9 article-title: Numerical solution of a non-local boundary value problem with Neumann’s boundary conditions publication-title: Commun. Numer. Methods Eng. – year: 1995 ident: bib2 article-title: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations – volume: 70 start-page: 364 year: 2009 end-page: 371 ident: bib3 article-title: Second-order boundary value problems with integral boundary condition publication-title: Nonlinear Anal. -Theory Methods Appl. – volume: 2013 year: 2013 ident: bib20 article-title: Solvability of a fourth-order boundary value problem with integral boundary conditions publication-title: J. Appl. Math. – volume: 58 start-page: 203 year: 2009 end-page: 215 ident: bib34 article-title: Positive solutions for a class of boundary-value problems with integral boundary conditions publication-title: Comput. Math. Appl. – volume: 53 start-page: 741 year: 2007 end-page: 749 ident: bib33 article-title: Successive iteration of positive solution for a discontinuous third-order boundary value problem publication-title: Comput. Math. Appl. – volume: 80 start-page: 1 year: 2021 end-page: 13 ident: bib22 article-title: Solving a nonlinear heat equation with nonlocal boundary conditions by a method of nonlocal boundary shape functions publication-title: Numer. Heat. Tranf. B-Fundam. – volume: 63 start-page: 1351 year: 2013 end-page: 1364 ident: bib15 article-title: On a nonlocal BVP with nonlinear boundary conditions publication-title: Results Math. – volume: 15 start-page: 73 year: 2019 end-page: 82 ident: bib29 article-title: The numerical solution of third-order non-local boundary value problems in ODEs by the finite difference method publication-title: Romai J. – volume: 71 start-page: 1542 year: 2009 end-page: 1551 ident: bib16 article-title: Third order boundary value problems with nonlocal boundary conditions publication-title: Nonlinear Anal. -Theory Methods Appl. – volume: 21 start-page: 24 year: 2005 end-page: 40 ident: bib10 article-title: On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation publication-title: Numer. Meth. Part Differ. Equ. – volume: 194 start-page: 539 year: 2022 end-page: 551 ident: bib12 article-title: Boundary shape function iterative method for nonlinear second-order boundary value problem with nonlinear boundary conditions publication-title: Math. Comput. Simul. – volume: 13 start-page: 149 year: 2006 end-page: 163 ident: bib21 article-title: The Lie-group shooting method for nonlinear two-point boundary value problems exhibiting multiple solutions publication-title: CMES-Comp. Model. Eng. Sci. – volume: 14 start-page: 778 year: 2022 ident: bib25 article-title: Lie-group shooting/boundary shape function methods for solving nonlinear boundary value problems publication-title: Symmetry – volume: 9 start-page: 1727 year: 2008 end-page: 1740 ident: bib1 article-title: Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions publication-title: Nonlinear Anal. -Real. World Appl. – volume: 98 start-page: 2341 year: 2021 end-page: 2354 ident: bib6 article-title: A new reproducing kernel method for Duffing equations publication-title: Int. J. Comput. Math. – volume: 1 start-page: 73 year: 2016 end-page: 86 ident: bib4 article-title: Positive solutions of a nonlinear fourth-order integral boundary value problem publication-title: Annales of the University of the West, Timi¸soara Mathematics Series - Informatics – volume: 85 start-page: 887 year: 2020 end-page: 907 ident: bib7 article-title: Existence results and iterative method for a fully fourth-order nonlinear integral boundary value problem publication-title: Numer. Algorithms – volume: 2015 start-page: 172 year: 2015 ident: bib26 article-title: Monotone positive solution of a fourth-order BVP with integral boundary conditions publication-title: Bound. Value Probl. – volume: 41 start-page: 1448 year: 2009 end-page: 1453 ident: bib11 article-title: Variational iteration method for solving the wave equation subject to an integral conservation condition publication-title: Chaos Solitons Fractals – volume: 190 start-page: 837 year: 2021 end-page: 847 ident: bib23 article-title: A splitting method to solve a single nonlinear equation with derivative-free iterative schemes publication-title: Math. Comput. Simul. – volume: 40 start-page: 319 year: 1982 end-page: 330 ident: bib8 article-title: Extensions of a property of the heat equation to linear thermoelasticity and other theories publication-title: Q. Appl. Math. – volume: 15 start-page: 45 year: 2008 end-page: 67 ident: bib31 article-title: Positive solutions of nonlocal boundary value problems involving integral conditions publication-title: NoDea-Nonlinear Differ. Equ. Appl. – volume: 206 start-page: 245 year: 2008 end-page: 256 ident: bib19 article-title: Positive solutions to fourth order singular boundary value problems with integral boundary conditions in abstract spaces publication-title: Appl. Math. Comput. – volume: 5 start-page: 43 year: 2017 end-page: 55 ident: bib28 article-title: Numerical solution of the forced Duffing equations using Legendre multiwavelets publication-title: Comput. Methods Differ. Equ. – volume: 19 start-page: 577 year: 1965 end-page: 593 ident: bib5 article-title: A class of methods for solving nonlinear simultaneous equations publication-title: Math. Comput. – volume: 233 start-page: 165 year: 2009 end-page: 172 ident: bib14 article-title: New method based on the HPM and RKHSM for solving forced Duffing equations with integral boundary conditions publication-title: J. Comput. Appl. Math. – volume: 138 start-page: 427 year: 2008 end-page: 446 ident: bib32 article-title: Positive solutions of nonlinear fourth-order boundary value problems with local and nonlocal boundary conditions publication-title: Proc. R. Soc. Edinb. Sect. A Math. – volume: 25 start-page: 559 year: 1971 ident: 10.1016/j.matcom.2024.12.024_bib13 article-title: On the convergence of Broyden’s method for nonlinear systems of equations publication-title: Math. Comput. – volume: 13 start-page: 149 year: 2006 ident: 10.1016/j.matcom.2024.12.024_bib21 article-title: The Lie-group shooting method for nonlinear two-point boundary value problems exhibiting multiple solutions publication-title: CMES-Comp. Model. Eng. Sci. – volume: 138 start-page: 427 year: 2008 ident: 10.1016/j.matcom.2024.12.024_bib32 article-title: Positive solutions of nonlinear fourth-order boundary value problems with local and nonlocal boundary conditions publication-title: Proc. R. Soc. Edinb. Sect. A Math. doi: 10.1017/S0308210506001041 – volume: 15 start-page: 45 year: 2008 ident: 10.1016/j.matcom.2024.12.024_bib31 article-title: Positive solutions of nonlocal boundary value problems involving integral conditions publication-title: NoDea-Nonlinear Differ. Equ. Appl. doi: 10.1007/s00030-007-4067-7 – volume: 53 start-page: 741 year: 2007 ident: 10.1016/j.matcom.2024.12.024_bib33 article-title: Successive iteration of positive solution for a discontinuous third-order boundary value problem publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2006.12.007 – volume: 233 start-page: 165 year: 2009 ident: 10.1016/j.matcom.2024.12.024_bib14 article-title: New method based on the HPM and RKHSM for solving forced Duffing equations with integral boundary conditions publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2009.07.007 – volume: 15 start-page: 73 year: 2019 ident: 10.1016/j.matcom.2024.12.024_bib29 article-title: The numerical solution of third-order non-local boundary value problems in ODEs by the finite difference method publication-title: Romai J. – volume: 23 start-page: 282 year: 2007 ident: 10.1016/j.matcom.2024.12.024_bib30 article-title: Numerical solution of the one-dimensional wave equation with an integral condition publication-title: Numer. Meth. Part Differ. Equ. doi: 10.1002/num.20177 – volume: 58 start-page: 203 year: 2009 ident: 10.1016/j.matcom.2024.12.024_bib34 article-title: Positive solutions for a class of boundary-value problems with integral boundary conditions publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.04.002 – volume: 206 start-page: 245 year: 2008 ident: 10.1016/j.matcom.2024.12.024_bib19 article-title: Positive solutions to fourth order singular boundary value problems with integral boundary conditions in abstract spaces publication-title: Appl. Math. Comput. – year: 1995 ident: 10.1016/j.matcom.2024.12.024_bib2 – volume: 5 start-page: 43 year: 2017 ident: 10.1016/j.matcom.2024.12.024_bib28 article-title: Numerical solution of the forced Duffing equations using Legendre multiwavelets publication-title: Comput. Methods Differ. Equ. – volume: 9 start-page: 1727 year: 2008 ident: 10.1016/j.matcom.2024.12.024_bib1 article-title: Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions publication-title: Nonlinear Anal. -Real. World Appl. doi: 10.1016/j.nonrwa.2007.05.005 – volume: 14 start-page: 778 year: 2022 ident: 10.1016/j.matcom.2024.12.024_bib25 article-title: Lie-group shooting/boundary shape function methods for solving nonlinear boundary value problems publication-title: Symmetry doi: 10.3390/sym14040778 – volume: 2011 year: 2011 ident: 10.1016/j.matcom.2024.12.024_bib27 article-title: Existence of positive solutions of fourth-order problems with integral boundary conditions publication-title: Bound. Value Probl. doi: 10.1155/2011/297578 – volume: 2013 year: 2013 ident: 10.1016/j.matcom.2024.12.024_bib20 article-title: Solvability of a fourth-order boundary value problem with integral boundary conditions publication-title: J. Appl. Math. – volume: 70 start-page: 364 year: 2009 ident: 10.1016/j.matcom.2024.12.024_bib3 article-title: Second-order boundary value problems with integral boundary condition publication-title: Nonlinear Anal. -Theory Methods Appl. doi: 10.1016/j.na.2007.12.007 – volume: 98 start-page: 2341 year: 2021 ident: 10.1016/j.matcom.2024.12.024_bib6 article-title: A new reproducing kernel method for Duffing equations publication-title: Int. J. Comput. Math. doi: 10.1080/00207160.2021.1897111 – volume: 63 start-page: 1351 year: 2013 ident: 10.1016/j.matcom.2024.12.024_bib15 article-title: On a nonlocal BVP with nonlinear boundary conditions publication-title: Results Math. doi: 10.1007/s00025-012-0272-8 – volume: 71 start-page: 1542 year: 2009 ident: 10.1016/j.matcom.2024.12.024_bib16 article-title: Third order boundary value problems with nonlocal boundary conditions publication-title: Nonlinear Anal. -Theory Methods Appl. doi: 10.1016/j.na.2008.12.047 – volume: 190 start-page: 837 year: 2021 ident: 10.1016/j.matcom.2024.12.024_bib23 article-title: A splitting method to solve a single nonlinear equation with derivative-free iterative schemes publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2021.06.019 – volume: 19 start-page: 577 year: 1965 ident: 10.1016/j.matcom.2024.12.024_bib5 article-title: A class of methods for solving nonlinear simultaneous equations publication-title: Math. Comput. doi: 10.1090/S0025-5718-1965-0198670-6 – volume: 40 start-page: 319 year: 1982 ident: 10.1016/j.matcom.2024.12.024_bib8 article-title: Extensions of a property of the heat equation to linear thermoelasticity and other theories publication-title: Q. Appl. Math. doi: 10.1090/qam/678203 – volume: 41 start-page: 1448 year: 2009 ident: 10.1016/j.matcom.2024.12.024_bib11 article-title: Variational iteration method for solving the wave equation subject to an integral conservation condition publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2008.06.009 – volume: 12 start-page: 761 year: 2021 ident: 10.1016/j.matcom.2024.12.024_bib17 article-title: A simple, efficient and accurate new Lie-group shooting method for solving nonlinear boundary value problems publication-title: Int. J. Nonlinear Anal. Appl. – volume: 21 start-page: 24 year: 2005 ident: 10.1016/j.matcom.2024.12.024_bib10 article-title: On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation publication-title: Numer. Meth. Part Differ. Equ. doi: 10.1002/num.20019 – volume: 80 start-page: 1 year: 2021 ident: 10.1016/j.matcom.2024.12.024_bib22 article-title: Solving a nonlinear heat equation with nonlocal boundary conditions by a method of nonlocal boundary shape functions publication-title: Numer. Heat. Tranf. B-Fundam. doi: 10.1080/10407790.2021.1945243 – volume: 1 start-page: 73 year: 2016 ident: 10.1016/j.matcom.2024.12.024_bib4 article-title: Positive solutions of a nonlinear fourth-order integral boundary value problem publication-title: Annales of the University of the West, Timi¸soara Mathematics Series - Informatics – volume: 19 start-page: 1 year: 2003 ident: 10.1016/j.matcom.2024.12.024_bib9 article-title: Numerical solution of a non-local boundary value problem with Neumann’s boundary conditions publication-title: Commun. Numer. Methods Eng. doi: 10.1002/cnm.522 – volume: 194 start-page: 539 year: 2022 ident: 10.1016/j.matcom.2024.12.024_bib12 article-title: Boundary shape function iterative method for nonlinear second-order boundary value problem with nonlinear boundary conditions publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2021.12.013 – volume: 81 start-page: 38 year: 2022 ident: 10.1016/j.matcom.2024.12.024_bib24 article-title: Solving nonlinear parabolic equations under nonlocal conditions by a nonlocal boundary shape function and splitting-linearizing method publication-title: Numer. Heat. Tranf. B-Fundam. doi: 10.1080/10407790.2022.2063606 – volume: 85 start-page: 887 year: 2020 ident: 10.1016/j.matcom.2024.12.024_bib7 article-title: Existence results and iterative method for a fully fourth-order nonlinear integral boundary value problem publication-title: Numer. Algorithms doi: 10.1007/s11075-019-00842-3 – volume: 135 start-page: 113 year: 2010 ident: 10.1016/j.matcom.2024.12.024_bib18 article-title: A third order boundary value problem subject to nonlinear boundary conditions publication-title: Math. Bohem. doi: 10.21136/MB.2010.140687 – volume: 2015 start-page: 172 year: 2015 ident: 10.1016/j.matcom.2024.12.024_bib26 article-title: Monotone positive solution of a fourth-order BVP with integral boundary conditions publication-title: Bound. Value Probl. doi: 10.1186/s13661-015-0441-2 |
SSID | ssj0007545 |
Score | 2.4040804 |
Snippet | The paper presents a numerical solution of a higher-order nonlocal and nonlinear boundary value problem (NNBVP); it exhibits triple nonlinearities: nonlinear... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 211 |
SubjectTerms | Computed order of convergence Fixed quasi-Newton method Nonlocal and nonlinear boundary value problems Shooting technique |
Title | Solving higher-order nonlocal boundary value problems with high precision by the fixed quasi Newton methods |
URI | https://dx.doi.org/10.1016/j.matcom.2024.12.024 |
Volume | 232 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL158i_VRcvAau012N7vHUixVsZda6C0kuwlWRWsfYC_-dmeyWVQQD54CIQNhksxMhm_mI-Si1CYq8g5nGsF-cQ4fFK15xjKOnVCwH0iJCf27YToYxzeTZNIgvboWBmGVwfZXNt1b6zDTDtpsz6bT9igSEkxrEiMKEsIMX8EeS7zllx9fMA9Y4GGMsJjh6rp8zmO8IChEzAgHR-WTgjz-3T19czn9XbIdYkXarbazRxr2ZZ_s1DwMNDzLA_I0en3GvAB98KAN5ttpUvjXe0dFjWdOmq8pNva2NFDILCimYL0ITAWmHWrWFCJC6qbvtqRvK72YUjCDEB_Simp6cUjG_av73oAFEgVWwNtdMl0mMnLOOJcaqXkqIlckHWviknPfzy6DL16ROc1lZDU6eJOVqQHXqYXmToojsgEbtseEFsIgy1BhRS5iYXRWWDhhwaNc2sgK1ySs1p2aVb0yVA0ie1SVrhXqWnW4gqFJZK1g9ePMFZjzPyVP_i15SrY4Mvj6PMoZ2VjOV_Ycwoqlafl70yKb3evbwfATu5TOyw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMsDCG1GeHmAMTe20SQcGxEOFPpaCxGbsxBYB1JY-BF34U_xBzo4jQEIMSJ0iWXJ0uZy-O58-3wdwmAjpx_UK9YQh-wV1PKAIQSMvomYSipkHkpiGfrtTa9wG13fVuwJ85HdhDK3SYX-G6Rat3UrZebM8SNNy12chQms1MCxILDMqjlnZVNNXPLeNTq7O8ScfUXp5cXPW8Jy0gBdjRI89kVRDX2updU2GgtaYr-NqRckgodROeYvw4BNHWtDQV8KkPRklNYkJRTBBdcjwvXMwHyBcGNmE4_cvXglaZHmTaJ1nzMvv61lSGVahhqRCMTPaLiQNfs-H33Lc5QosueKUnGbfvwoF1VuD5Vz4gTgcWIenbv_ZNCLIg2WJeHZ-J-n1ezYzEmmlmoZTYiaJK-I0a0bE9HztFlxy0j5ETgmWoESnbyohLxMxSgniLhakJNO2Hm3A7UxcuwlFNFhtAYmZNLJGsWJ1FjApolhhSDHq10PlK6ZL4OW-44NsOAfPWWuPPPM1N77mFcrxUYIwdzD_EWQc88efO7f_vfMAFho37RZvXXWaO7BIjXywbeLsQnE8nKg9rGnGct_GEIH7WQftJ4JVC4I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+higher-order+nonlocal+boundary+value+problems+with+high+precision+by+the+fixed+quasi+Newton+methods&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Liu%2C+Chein-Shan&rft.au=Chen%2C+Yung-Wei&rft.au=Shen%2C+Jian-Hung&rft.au=Chang%2C+Yen-Shen&rft.date=2025-06-01&rft.issn=0378-4754&rft.volume=232&rft.spage=211&rft.epage=226&rft_id=info:doi/10.1016%2Fj.matcom.2024.12.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matcom_2024_12_024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon |