Solving higher-order nonlocal boundary value problems with high precision by the fixed quasi Newton methods

The paper presents a numerical solution of a higher-order nonlocal and nonlinear boundary value problem (NNBVP); it exhibits triple nonlinearities: nonlinear ordinary differential equation (ODE), nonlinear local boundary values and nonlinear integral boundary conditions (BCs). We consider one nonloc...

Full description

Saved in:
Bibliographic Details
Published inMathematics and computers in simulation Vol. 232; pp. 211 - 226
Main Authors Liu, Chein-Shan, Chen, Yung-Wei, Shen, Jian-Hung, Chang, Yen-Shen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The paper presents a numerical solution of a higher-order nonlocal and nonlinear boundary value problem (NNBVP); it exhibits triple nonlinearities: nonlinear ordinary differential equation (ODE), nonlinear local boundary values and nonlinear integral boundary conditions (BCs). We consider one nonlocal, two nonlocal and three nonlocal BCs. New variables are incorporated, whose values at right-end present the integral parts in the specified nonlocal BCs. For an extremely precise solution of NNBVP, it is crucial to acquire highly accurate initial values of independent variables by solving target equations very accurately. Because of the implicit form of the target equations, they are solved by a fixed quasi-Newton method (FQNM) without calculating the differentials, which together with the shooting technique would offer nearly exact initial values. Higher-order numerical examples are examined to assure that the proposed methods are efficient to achieve some highly accurate solutions with 14- and 15-digit precisions, whose computational costs are very saving as reflected in the small number of iterations. The computed order of convergence (COC) reveals that the iterative methods converge faster than linear convergence. The novelty lies on the introduction of new variables to present the nonlocal boundary conditions, and develop FQNM to solve the target equations. The difficult part of nonlinear and nonlocal BC is simply transformed to find an ended value of the new variable governed by an ODE. When the constant iteration matrix is properly established, the numerical examples of NNBVP reveal that FQNM is convergent fast and is not sensitive to the initial guesses of unknown initial values. •New variables simplify the nonlocal parts in the target equations different from the conventional iterative approaches.•The numerical algorithm effectively and accurately solves higher-order nonlocal and nonlinear boundary value problems.•Numerical examples reveals the high performance of the proposed iterative algorithms.
AbstractList The paper presents a numerical solution of a higher-order nonlocal and nonlinear boundary value problem (NNBVP); it exhibits triple nonlinearities: nonlinear ordinary differential equation (ODE), nonlinear local boundary values and nonlinear integral boundary conditions (BCs). We consider one nonlocal, two nonlocal and three nonlocal BCs. New variables are incorporated, whose values at right-end present the integral parts in the specified nonlocal BCs. For an extremely precise solution of NNBVP, it is crucial to acquire highly accurate initial values of independent variables by solving target equations very accurately. Because of the implicit form of the target equations, they are solved by a fixed quasi-Newton method (FQNM) without calculating the differentials, which together with the shooting technique would offer nearly exact initial values. Higher-order numerical examples are examined to assure that the proposed methods are efficient to achieve some highly accurate solutions with 14- and 15-digit precisions, whose computational costs are very saving as reflected in the small number of iterations. The computed order of convergence (COC) reveals that the iterative methods converge faster than linear convergence. The novelty lies on the introduction of new variables to present the nonlocal boundary conditions, and develop FQNM to solve the target equations. The difficult part of nonlinear and nonlocal BC is simply transformed to find an ended value of the new variable governed by an ODE. When the constant iteration matrix is properly established, the numerical examples of NNBVP reveal that FQNM is convergent fast and is not sensitive to the initial guesses of unknown initial values. •New variables simplify the nonlocal parts in the target equations different from the conventional iterative approaches.•The numerical algorithm effectively and accurately solves higher-order nonlocal and nonlinear boundary value problems.•Numerical examples reveals the high performance of the proposed iterative algorithms.
Author Chen, Yung-Wei
Liu, Chein-Shan
Chang, Yen-Shen
Shen, Jian-Hung
Author_xml – sequence: 1
  givenname: Chein-Shan
  orcidid: 0000-0001-6366-3539
  surname: Liu
  fullname: Liu, Chein-Shan
  organization: Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan
– sequence: 2
  givenname: Yung-Wei
  orcidid: 0000-0002-4567-5234
  surname: Chen
  fullname: Chen, Yung-Wei
  email: cyw0710@mail.ntou.edu.tw
  organization: Department of Marine Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan
– sequence: 3
  givenname: Jian-Hung
  surname: Shen
  fullname: Shen, Jian-Hung
  organization: Department of Marine Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan
– sequence: 4
  givenname: Yen-Shen
  orcidid: 0000-0003-1367-1674
  surname: Chang
  fullname: Chang, Yen-Shen
  organization: Department of Marine Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan
BookMark eNp9kM1OwzAQhH0oEi3wBhz8AglrJ2lyQkIVf1IFB-Bs-WfduCRxsdOWvj0u5czpW-1qRjszI5PBD0jINYOcAZvfrPNejtr3OQde5oznCRMyhaJusrKuynMyi3ENAGmupuTzzXc7N6xo61YthswHg4Emz85r2VHlt4OR4UB3stsi3QSvOuwj3bux_ZWkFWoXnR-oOtCxRWrdNxr6tZXR0Rfcj-nS49h6Ey_JmZVdxKs_XpCPh_v3xVO2fH18XtwtM10AGzNpqhqsVdbOVS35vACrK4aqNJwDNKxpmhJ0YyWvASXnJajGzBWikYXkti4uSHny1cHHGNCKTXB9SiEYiGNJYi1OJYljSYJxkZBktycZpt92DoOI2uGg0biUcRTGu_8NfgDjCHkk
Cites_doi 10.1017/S0308210506001041
10.1007/s00030-007-4067-7
10.1016/j.camwa.2006.12.007
10.1016/j.cam.2009.07.007
10.1002/num.20177
10.1016/j.camwa.2009.04.002
10.1016/j.nonrwa.2007.05.005
10.3390/sym14040778
10.1155/2011/297578
10.1016/j.na.2007.12.007
10.1080/00207160.2021.1897111
10.1007/s00025-012-0272-8
10.1016/j.na.2008.12.047
10.1016/j.matcom.2021.06.019
10.1090/S0025-5718-1965-0198670-6
10.1090/qam/678203
10.1016/j.chaos.2008.06.009
10.1002/num.20019
10.1080/10407790.2021.1945243
10.1002/cnm.522
10.1016/j.matcom.2021.12.013
10.1080/10407790.2022.2063606
10.1007/s11075-019-00842-3
10.21136/MB.2010.140687
10.1186/s13661-015-0441-2
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.matcom.2024.12.024
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 226
ExternalDocumentID 10_1016_j_matcom_2024_12_024
S0378475424005081
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXKI
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADGUI
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
ARUGR
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c301t-ad570ffbff6b7a2630fc51eb4d22008188840c8fa270ea2240b8d6beeda3a2f73
IEDL.DBID .~1
ISSN 0378-4754
IngestDate Tue Jul 01 05:32:33 EDT 2025
Sat Mar 08 15:48:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fixed quasi-Newton method
Computed order of convergence
Shooting technique
Nonlocal and nonlinear boundary value problems
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c301t-ad570ffbff6b7a2630fc51eb4d22008188840c8fa270ea2240b8d6beeda3a2f73
ORCID 0000-0003-1367-1674
0000-0001-6366-3539
0000-0002-4567-5234
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0378475424005081
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_matcom_2024_12_024
elsevier_sciencedirect_doi_10_1016_j_matcom_2024_12_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle Mathematics and computers in simulation
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Graef, Webb (bib16) 2009; 71
Saadatmandi, Dehghan (bib30) 2007; 23
Goodrich (bib15) 2013; 63
Ma, Chen (bib27) 2011; 2011
Yao (bib33) 2007; 53
Day (bib8) 1982; 40
Boucherif (bib3) 2009; 70
Geng, Cui (bib14) 2009; 233
Li, Wang, Pei (bib20) 2013; 2013
Kang, Wei, Xu (bib19) 2008; 206
Liu, Chang (bib24) 2022; 81
Liu (bib21) 2006; 13
Pandey (bib29) 2019; 15
Benaicha, Haddouchi (bib4) 2016; 1
Broyden (bib5) 1965; 19
Chen, Jiang, Du (bib6) 2021; 98
Dehghan (bib10) 2005; 21
Weeb, Infante, Franco (bib32) 2008; 138
Hajiketabi, Abbasbandy (bib17) 2021; 12
Dennis (bib13) 1971; 25
Ahmad, Alsaedi, Alghamdi (bib1) 2008; 9
Deng, Lin, Liu (bib12) 2022; 194
Lv, Wang, Pei (bib26) 2015; 2015
Dehghan (bib9) 2003; 19
Najafi, Saray (bib28) 2017; 5
Liu, Chang (bib22) 2021; 80
Ascher, Mattheij, Russell (bib2) 1995
Dang, Dang (bib7) 2020; 85
Webb, Infante (bib31) 2008; 15
Zhang, Ge (bib34) 2009; 58
Dehghan, Saadatmandi (bib11) 2009; 41
Liu, Chang (bib25) 2022; 14
Liu, Hong, Lee (bib23) 2021; 190
Infante, Pietramala (bib18) 2010; 135
Hajiketabi (10.1016/j.matcom.2024.12.024_bib17) 2021; 12
Liu (10.1016/j.matcom.2024.12.024_bib21) 2006; 13
Lv (10.1016/j.matcom.2024.12.024_bib26) 2015; 2015
Liu (10.1016/j.matcom.2024.12.024_bib25) 2022; 14
Pandey (10.1016/j.matcom.2024.12.024_bib29) 2019; 15
Saadatmandi (10.1016/j.matcom.2024.12.024_bib30) 2007; 23
Dennis (10.1016/j.matcom.2024.12.024_bib13) 1971; 25
Graef (10.1016/j.matcom.2024.12.024_bib16) 2009; 71
Zhang (10.1016/j.matcom.2024.12.024_bib34) 2009; 58
Infante (10.1016/j.matcom.2024.12.024_bib18) 2010; 135
Kang (10.1016/j.matcom.2024.12.024_bib19) 2008; 206
Webb (10.1016/j.matcom.2024.12.024_bib31) 2008; 15
Weeb (10.1016/j.matcom.2024.12.024_bib32) 2008; 138
Dehghan (10.1016/j.matcom.2024.12.024_bib11) 2009; 41
Goodrich (10.1016/j.matcom.2024.12.024_bib15) 2013; 63
Ascher (10.1016/j.matcom.2024.12.024_bib2) 1995
Geng (10.1016/j.matcom.2024.12.024_bib14) 2009; 233
Dang (10.1016/j.matcom.2024.12.024_bib7) 2020; 85
Liu (10.1016/j.matcom.2024.12.024_bib22) 2021; 80
Dehghan (10.1016/j.matcom.2024.12.024_bib9) 2003; 19
Liu (10.1016/j.matcom.2024.12.024_bib23) 2021; 190
Deng (10.1016/j.matcom.2024.12.024_bib12) 2022; 194
Boucherif (10.1016/j.matcom.2024.12.024_bib3) 2009; 70
Yao (10.1016/j.matcom.2024.12.024_bib33) 2007; 53
Benaicha (10.1016/j.matcom.2024.12.024_bib4) 2016; 1
Ahmad (10.1016/j.matcom.2024.12.024_bib1) 2008; 9
Dehghan (10.1016/j.matcom.2024.12.024_bib10) 2005; 21
Broyden (10.1016/j.matcom.2024.12.024_bib5) 1965; 19
Chen (10.1016/j.matcom.2024.12.024_bib6) 2021; 98
Day (10.1016/j.matcom.2024.12.024_bib8) 1982; 40
Liu (10.1016/j.matcom.2024.12.024_bib24) 2022; 81
Ma (10.1016/j.matcom.2024.12.024_bib27) 2011; 2011
Najafi (10.1016/j.matcom.2024.12.024_bib28) 2017; 5
Li (10.1016/j.matcom.2024.12.024_bib20) 2013; 2013
References_xml – volume: 135
  start-page: 113
  year: 2010
  end-page: 121
  ident: bib18
  article-title: A third order boundary value problem subject to nonlinear boundary conditions
  publication-title: Math. Bohem.
– volume: 81
  start-page: 38
  year: 2022
  end-page: 54
  ident: bib24
  article-title: Solving nonlinear parabolic equations under nonlocal conditions by a nonlocal boundary shape function and splitting-linearizing method
  publication-title: Numer. Heat. Tranf. B-Fundam.
– volume: 2011
  year: 2011
  ident: bib27
  article-title: Existence of positive solutions of fourth-order problems with integral boundary conditions
  publication-title: Bound. Value Probl.
– volume: 25
  start-page: 559
  year: 1971
  end-page: 567
  ident: bib13
  article-title: On the convergence of Broyden’s method for nonlinear systems of equations
  publication-title: Math. Comput.
– volume: 12
  start-page: 761
  year: 2021
  end-page: 781
  ident: bib17
  article-title: A simple, efficient and accurate new Lie-group shooting method for solving nonlinear boundary value problems
  publication-title: Int. J. Nonlinear Anal. Appl.
– volume: 23
  start-page: 282
  year: 2007
  end-page: 292
  ident: bib30
  article-title: Numerical solution of the one-dimensional wave equation with an integral condition
  publication-title: Numer. Meth. Part Differ. Equ.
– volume: 19
  start-page: 1
  year: 2003
  end-page: 12
  ident: bib9
  article-title: Numerical solution of a non-local boundary value problem with Neumann’s boundary conditions
  publication-title: Commun. Numer. Methods Eng.
– year: 1995
  ident: bib2
  article-title: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations
– volume: 70
  start-page: 364
  year: 2009
  end-page: 371
  ident: bib3
  article-title: Second-order boundary value problems with integral boundary condition
  publication-title: Nonlinear Anal. -Theory Methods Appl.
– volume: 2013
  year: 2013
  ident: bib20
  article-title: Solvability of a fourth-order boundary value problem with integral boundary conditions
  publication-title: J. Appl. Math.
– volume: 58
  start-page: 203
  year: 2009
  end-page: 215
  ident: bib34
  article-title: Positive solutions for a class of boundary-value problems with integral boundary conditions
  publication-title: Comput. Math. Appl.
– volume: 53
  start-page: 741
  year: 2007
  end-page: 749
  ident: bib33
  article-title: Successive iteration of positive solution for a discontinuous third-order boundary value problem
  publication-title: Comput. Math. Appl.
– volume: 80
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib22
  article-title: Solving a nonlinear heat equation with nonlocal boundary conditions by a method of nonlocal boundary shape functions
  publication-title: Numer. Heat. Tranf. B-Fundam.
– volume: 63
  start-page: 1351
  year: 2013
  end-page: 1364
  ident: bib15
  article-title: On a nonlocal BVP with nonlinear boundary conditions
  publication-title: Results Math.
– volume: 15
  start-page: 73
  year: 2019
  end-page: 82
  ident: bib29
  article-title: The numerical solution of third-order non-local boundary value problems in ODEs by the finite difference method
  publication-title: Romai J.
– volume: 71
  start-page: 1542
  year: 2009
  end-page: 1551
  ident: bib16
  article-title: Third order boundary value problems with nonlocal boundary conditions
  publication-title: Nonlinear Anal. -Theory Methods Appl.
– volume: 21
  start-page: 24
  year: 2005
  end-page: 40
  ident: bib10
  article-title: On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation
  publication-title: Numer. Meth. Part Differ. Equ.
– volume: 194
  start-page: 539
  year: 2022
  end-page: 551
  ident: bib12
  article-title: Boundary shape function iterative method for nonlinear second-order boundary value problem with nonlinear boundary conditions
  publication-title: Math. Comput. Simul.
– volume: 13
  start-page: 149
  year: 2006
  end-page: 163
  ident: bib21
  article-title: The Lie-group shooting method for nonlinear two-point boundary value problems exhibiting multiple solutions
  publication-title: CMES-Comp. Model. Eng. Sci.
– volume: 14
  start-page: 778
  year: 2022
  ident: bib25
  article-title: Lie-group shooting/boundary shape function methods for solving nonlinear boundary value problems
  publication-title: Symmetry
– volume: 9
  start-page: 1727
  year: 2008
  end-page: 1740
  ident: bib1
  article-title: Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions
  publication-title: Nonlinear Anal. -Real. World Appl.
– volume: 98
  start-page: 2341
  year: 2021
  end-page: 2354
  ident: bib6
  article-title: A new reproducing kernel method for Duffing equations
  publication-title: Int. J. Comput. Math.
– volume: 1
  start-page: 73
  year: 2016
  end-page: 86
  ident: bib4
  article-title: Positive solutions of a nonlinear fourth-order integral boundary value problem
  publication-title: Annales of the University of the West, Timi¸soara Mathematics Series - Informatics
– volume: 85
  start-page: 887
  year: 2020
  end-page: 907
  ident: bib7
  article-title: Existence results and iterative method for a fully fourth-order nonlinear integral boundary value problem
  publication-title: Numer. Algorithms
– volume: 2015
  start-page: 172
  year: 2015
  ident: bib26
  article-title: Monotone positive solution of a fourth-order BVP with integral boundary conditions
  publication-title: Bound. Value Probl.
– volume: 41
  start-page: 1448
  year: 2009
  end-page: 1453
  ident: bib11
  article-title: Variational iteration method for solving the wave equation subject to an integral conservation condition
  publication-title: Chaos Solitons Fractals
– volume: 190
  start-page: 837
  year: 2021
  end-page: 847
  ident: bib23
  article-title: A splitting method to solve a single nonlinear equation with derivative-free iterative schemes
  publication-title: Math. Comput. Simul.
– volume: 40
  start-page: 319
  year: 1982
  end-page: 330
  ident: bib8
  article-title: Extensions of a property of the heat equation to linear thermoelasticity and other theories
  publication-title: Q. Appl. Math.
– volume: 15
  start-page: 45
  year: 2008
  end-page: 67
  ident: bib31
  article-title: Positive solutions of nonlocal boundary value problems involving integral conditions
  publication-title: NoDea-Nonlinear Differ. Equ. Appl.
– volume: 206
  start-page: 245
  year: 2008
  end-page: 256
  ident: bib19
  article-title: Positive solutions to fourth order singular boundary value problems with integral boundary conditions in abstract spaces
  publication-title: Appl. Math. Comput.
– volume: 5
  start-page: 43
  year: 2017
  end-page: 55
  ident: bib28
  article-title: Numerical solution of the forced Duffing equations using Legendre multiwavelets
  publication-title: Comput. Methods Differ. Equ.
– volume: 19
  start-page: 577
  year: 1965
  end-page: 593
  ident: bib5
  article-title: A class of methods for solving nonlinear simultaneous equations
  publication-title: Math. Comput.
– volume: 233
  start-page: 165
  year: 2009
  end-page: 172
  ident: bib14
  article-title: New method based on the HPM and RKHSM for solving forced Duffing equations with integral boundary conditions
  publication-title: J. Comput. Appl. Math.
– volume: 138
  start-page: 427
  year: 2008
  end-page: 446
  ident: bib32
  article-title: Positive solutions of nonlinear fourth-order boundary value problems with local and nonlocal boundary conditions
  publication-title: Proc. R. Soc. Edinb. Sect. A Math.
– volume: 25
  start-page: 559
  year: 1971
  ident: 10.1016/j.matcom.2024.12.024_bib13
  article-title: On the convergence of Broyden’s method for nonlinear systems of equations
  publication-title: Math. Comput.
– volume: 13
  start-page: 149
  year: 2006
  ident: 10.1016/j.matcom.2024.12.024_bib21
  article-title: The Lie-group shooting method for nonlinear two-point boundary value problems exhibiting multiple solutions
  publication-title: CMES-Comp. Model. Eng. Sci.
– volume: 138
  start-page: 427
  year: 2008
  ident: 10.1016/j.matcom.2024.12.024_bib32
  article-title: Positive solutions of nonlinear fourth-order boundary value problems with local and nonlocal boundary conditions
  publication-title: Proc. R. Soc. Edinb. Sect. A Math.
  doi: 10.1017/S0308210506001041
– volume: 15
  start-page: 45
  year: 2008
  ident: 10.1016/j.matcom.2024.12.024_bib31
  article-title: Positive solutions of nonlocal boundary value problems involving integral conditions
  publication-title: NoDea-Nonlinear Differ. Equ. Appl.
  doi: 10.1007/s00030-007-4067-7
– volume: 53
  start-page: 741
  year: 2007
  ident: 10.1016/j.matcom.2024.12.024_bib33
  article-title: Successive iteration of positive solution for a discontinuous third-order boundary value problem
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2006.12.007
– volume: 233
  start-page: 165
  year: 2009
  ident: 10.1016/j.matcom.2024.12.024_bib14
  article-title: New method based on the HPM and RKHSM for solving forced Duffing equations with integral boundary conditions
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2009.07.007
– volume: 15
  start-page: 73
  year: 2019
  ident: 10.1016/j.matcom.2024.12.024_bib29
  article-title: The numerical solution of third-order non-local boundary value problems in ODEs by the finite difference method
  publication-title: Romai J.
– volume: 23
  start-page: 282
  year: 2007
  ident: 10.1016/j.matcom.2024.12.024_bib30
  article-title: Numerical solution of the one-dimensional wave equation with an integral condition
  publication-title: Numer. Meth. Part Differ. Equ.
  doi: 10.1002/num.20177
– volume: 58
  start-page: 203
  year: 2009
  ident: 10.1016/j.matcom.2024.12.024_bib34
  article-title: Positive solutions for a class of boundary-value problems with integral boundary conditions
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.04.002
– volume: 206
  start-page: 245
  year: 2008
  ident: 10.1016/j.matcom.2024.12.024_bib19
  article-title: Positive solutions to fourth order singular boundary value problems with integral boundary conditions in abstract spaces
  publication-title: Appl. Math. Comput.
– year: 1995
  ident: 10.1016/j.matcom.2024.12.024_bib2
– volume: 5
  start-page: 43
  year: 2017
  ident: 10.1016/j.matcom.2024.12.024_bib28
  article-title: Numerical solution of the forced Duffing equations using Legendre multiwavelets
  publication-title: Comput. Methods Differ. Equ.
– volume: 9
  start-page: 1727
  year: 2008
  ident: 10.1016/j.matcom.2024.12.024_bib1
  article-title: Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions
  publication-title: Nonlinear Anal. -Real. World Appl.
  doi: 10.1016/j.nonrwa.2007.05.005
– volume: 14
  start-page: 778
  year: 2022
  ident: 10.1016/j.matcom.2024.12.024_bib25
  article-title: Lie-group shooting/boundary shape function methods for solving nonlinear boundary value problems
  publication-title: Symmetry
  doi: 10.3390/sym14040778
– volume: 2011
  year: 2011
  ident: 10.1016/j.matcom.2024.12.024_bib27
  article-title: Existence of positive solutions of fourth-order problems with integral boundary conditions
  publication-title: Bound. Value Probl.
  doi: 10.1155/2011/297578
– volume: 2013
  year: 2013
  ident: 10.1016/j.matcom.2024.12.024_bib20
  article-title: Solvability of a fourth-order boundary value problem with integral boundary conditions
  publication-title: J. Appl. Math.
– volume: 70
  start-page: 364
  year: 2009
  ident: 10.1016/j.matcom.2024.12.024_bib3
  article-title: Second-order boundary value problems with integral boundary condition
  publication-title: Nonlinear Anal. -Theory Methods Appl.
  doi: 10.1016/j.na.2007.12.007
– volume: 98
  start-page: 2341
  year: 2021
  ident: 10.1016/j.matcom.2024.12.024_bib6
  article-title: A new reproducing kernel method for Duffing equations
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2021.1897111
– volume: 63
  start-page: 1351
  year: 2013
  ident: 10.1016/j.matcom.2024.12.024_bib15
  article-title: On a nonlocal BVP with nonlinear boundary conditions
  publication-title: Results Math.
  doi: 10.1007/s00025-012-0272-8
– volume: 71
  start-page: 1542
  year: 2009
  ident: 10.1016/j.matcom.2024.12.024_bib16
  article-title: Third order boundary value problems with nonlocal boundary conditions
  publication-title: Nonlinear Anal. -Theory Methods Appl.
  doi: 10.1016/j.na.2008.12.047
– volume: 190
  start-page: 837
  year: 2021
  ident: 10.1016/j.matcom.2024.12.024_bib23
  article-title: A splitting method to solve a single nonlinear equation with derivative-free iterative schemes
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2021.06.019
– volume: 19
  start-page: 577
  year: 1965
  ident: 10.1016/j.matcom.2024.12.024_bib5
  article-title: A class of methods for solving nonlinear simultaneous equations
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1965-0198670-6
– volume: 40
  start-page: 319
  year: 1982
  ident: 10.1016/j.matcom.2024.12.024_bib8
  article-title: Extensions of a property of the heat equation to linear thermoelasticity and other theories
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/678203
– volume: 41
  start-page: 1448
  year: 2009
  ident: 10.1016/j.matcom.2024.12.024_bib11
  article-title: Variational iteration method for solving the wave equation subject to an integral conservation condition
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2008.06.009
– volume: 12
  start-page: 761
  year: 2021
  ident: 10.1016/j.matcom.2024.12.024_bib17
  article-title: A simple, efficient and accurate new Lie-group shooting method for solving nonlinear boundary value problems
  publication-title: Int. J. Nonlinear Anal. Appl.
– volume: 21
  start-page: 24
  year: 2005
  ident: 10.1016/j.matcom.2024.12.024_bib10
  article-title: On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation
  publication-title: Numer. Meth. Part Differ. Equ.
  doi: 10.1002/num.20019
– volume: 80
  start-page: 1
  year: 2021
  ident: 10.1016/j.matcom.2024.12.024_bib22
  article-title: Solving a nonlinear heat equation with nonlocal boundary conditions by a method of nonlocal boundary shape functions
  publication-title: Numer. Heat. Tranf. B-Fundam.
  doi: 10.1080/10407790.2021.1945243
– volume: 1
  start-page: 73
  year: 2016
  ident: 10.1016/j.matcom.2024.12.024_bib4
  article-title: Positive solutions of a nonlinear fourth-order integral boundary value problem
  publication-title: Annales of the University of the West, Timi¸soara Mathematics Series - Informatics
– volume: 19
  start-page: 1
  year: 2003
  ident: 10.1016/j.matcom.2024.12.024_bib9
  article-title: Numerical solution of a non-local boundary value problem with Neumann’s boundary conditions
  publication-title: Commun. Numer. Methods Eng.
  doi: 10.1002/cnm.522
– volume: 194
  start-page: 539
  year: 2022
  ident: 10.1016/j.matcom.2024.12.024_bib12
  article-title: Boundary shape function iterative method for nonlinear second-order boundary value problem with nonlinear boundary conditions
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2021.12.013
– volume: 81
  start-page: 38
  year: 2022
  ident: 10.1016/j.matcom.2024.12.024_bib24
  article-title: Solving nonlinear parabolic equations under nonlocal conditions by a nonlocal boundary shape function and splitting-linearizing method
  publication-title: Numer. Heat. Tranf. B-Fundam.
  doi: 10.1080/10407790.2022.2063606
– volume: 85
  start-page: 887
  year: 2020
  ident: 10.1016/j.matcom.2024.12.024_bib7
  article-title: Existence results and iterative method for a fully fourth-order nonlinear integral boundary value problem
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-019-00842-3
– volume: 135
  start-page: 113
  year: 2010
  ident: 10.1016/j.matcom.2024.12.024_bib18
  article-title: A third order boundary value problem subject to nonlinear boundary conditions
  publication-title: Math. Bohem.
  doi: 10.21136/MB.2010.140687
– volume: 2015
  start-page: 172
  year: 2015
  ident: 10.1016/j.matcom.2024.12.024_bib26
  article-title: Monotone positive solution of a fourth-order BVP with integral boundary conditions
  publication-title: Bound. Value Probl.
  doi: 10.1186/s13661-015-0441-2
SSID ssj0007545
Score 2.4040804
Snippet The paper presents a numerical solution of a higher-order nonlocal and nonlinear boundary value problem (NNBVP); it exhibits triple nonlinearities: nonlinear...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 211
SubjectTerms Computed order of convergence
Fixed quasi-Newton method
Nonlocal and nonlinear boundary value problems
Shooting technique
Title Solving higher-order nonlocal boundary value problems with high precision by the fixed quasi Newton methods
URI https://dx.doi.org/10.1016/j.matcom.2024.12.024
Volume 232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL158i_VRcvAau012N7vHUixVsZda6C0kuwlWRWsfYC_-dmeyWVQQD54CIQNhksxMhm_mI-Si1CYq8g5nGsF-cQ4fFK15xjKOnVCwH0iJCf27YToYxzeTZNIgvboWBmGVwfZXNt1b6zDTDtpsz6bT9igSEkxrEiMKEsIMX8EeS7zllx9fMA9Y4GGMsJjh6rp8zmO8IChEzAgHR-WTgjz-3T19czn9XbIdYkXarbazRxr2ZZ_s1DwMNDzLA_I0en3GvAB98KAN5ttpUvjXe0dFjWdOmq8pNva2NFDILCimYL0ITAWmHWrWFCJC6qbvtqRvK72YUjCDEB_Simp6cUjG_av73oAFEgVWwNtdMl0mMnLOOJcaqXkqIlckHWviknPfzy6DL16ROc1lZDU6eJOVqQHXqYXmToojsgEbtseEFsIgy1BhRS5iYXRWWDhhwaNc2sgK1ySs1p2aVb0yVA0ie1SVrhXqWnW4gqFJZK1g9ePMFZjzPyVP_i15SrY4Mvj6PMoZ2VjOV_Ycwoqlafl70yKb3evbwfATu5TOyw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMsDCG1GeHmAMTe20SQcGxEOFPpaCxGbsxBYB1JY-BF34U_xBzo4jQEIMSJ0iWXJ0uZy-O58-3wdwmAjpx_UK9YQh-wV1PKAIQSMvomYSipkHkpiGfrtTa9wG13fVuwJ85HdhDK3SYX-G6Rat3UrZebM8SNNy12chQms1MCxILDMqjlnZVNNXPLeNTq7O8ScfUXp5cXPW8Jy0gBdjRI89kVRDX2updU2GgtaYr-NqRckgodROeYvw4BNHWtDQV8KkPRklNYkJRTBBdcjwvXMwHyBcGNmE4_cvXglaZHmTaJ1nzMvv61lSGVahhqRCMTPaLiQNfs-H33Lc5QosueKUnGbfvwoF1VuD5Vz4gTgcWIenbv_ZNCLIg2WJeHZ-J-n1ezYzEmmlmoZTYiaJK-I0a0bE9HztFlxy0j5ETgmWoESnbyohLxMxSgniLhakJNO2Hm3A7UxcuwlFNFhtAYmZNLJGsWJ1FjApolhhSDHq10PlK6ZL4OW-44NsOAfPWWuPPPM1N77mFcrxUYIwdzD_EWQc88efO7f_vfMAFho37RZvXXWaO7BIjXywbeLsQnE8nKg9rGnGct_GEIH7WQftJ4JVC4I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+higher-order+nonlocal+boundary+value+problems+with+high+precision+by+the+fixed+quasi+Newton+methods&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Liu%2C+Chein-Shan&rft.au=Chen%2C+Yung-Wei&rft.au=Shen%2C+Jian-Hung&rft.au=Chang%2C+Yen-Shen&rft.date=2025-06-01&rft.issn=0378-4754&rft.volume=232&rft.spage=211&rft.epage=226&rft_id=info:doi/10.1016%2Fj.matcom.2024.12.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matcom_2024_12_024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon