The Limitations and Ethical Considerations of ChatGPT
With the advancements of artificial intelligence technology, ChatGPT, a new practice of artificial intelligence, holds immense potential across multiple fields. Its user-friendly human-machine interface, rapid response capabilities, and delivery of high-quality answers have attracted considerable at...
Saved in:
Published in | Data intelligence Vol. 6; no. 1; pp. 201 - 239 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
MIT Press Journals, The
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the advancements of artificial intelligence technology, ChatGPT, a new practice of artificial intelligence, holds immense potential across multiple fields. Its user-friendly human-machine interface, rapid response capabilities, and delivery of high-quality answers have attracted considerable attention and widespread usage. Regarded by many as a groundbreaking advancement in AI, ChatGPT represents a new milestone in the field. However, as with any technological evolution, the emergence of ChatGPT brings not only benefits, but also inevitable security risks and ethical issues. This paper provides specific information about ChatGPT, including its technology, limitations, ethical issues, governance paths and future directions. Specifically, we firstly offered a thorough exploration of the technical implementation details of GPT series models. Next, we provided an intricate analysis elucidating the reasons for limitations and scrutinized the consequential impacts, such as malicious misuse, privacy violation, and so on. Finally, we explore diverse governance paths to mitigate the impacts of ChatGPT and present future directions. This review aims to equip users with crucial knowledge, facilitating well-informed decision-making, effectively handling of potential challenges in employing ChatGPT, and staying abreast with the rapidly evolving landscape of this technology. |
---|---|
AbstractList | With the advancements of artificial intelligence technology, ChatGPT, a new practice of artificial intelligence, holds immense potential across multiple fields. Its user-friendly human-machine interface, rapid response capabilities, and delivery of high-quality answers have attracted considerable attention and widespread usage. Regarded by many as a groundbreaking advancement in AI, ChatGPT represents a new milestone in the field. However, as with any technological evolution, the emergence of ChatGPT brings not only benefits, but also inevitable security risks and ethical issues. This paper provides specific information about ChatGPT, including its technology, limitations, ethical issues, governance paths and future directions. Specifically, we firstly offered a thorough exploration of the technical implementation details of GPT series models. Next, we provided an intricate analysis elucidating the reasons for limitations and scrutinized the consequential impacts, such as malicious misuse, privacy violation, and so on. Finally, we explore diverse governance paths to mitigate the impacts of ChatGPT and present future directions. This review aims to equip users with crucial knowledge, facilitating well-informed decision-making, effectively handling of potential challenges in employing ChatGPT, and staying abreast with the rapidly evolving landscape of this technology. |
Author | Hua, Shangying Jiang, Shengyi Jin, Shuangci |
Author_xml | – sequence: 1 givenname: Shangying surname: Hua fullname: Hua, Shangying – sequence: 2 givenname: Shuangci surname: Jin fullname: Jin, Shuangci – sequence: 3 givenname: Shengyi surname: Jiang fullname: Jiang, Shengyi |
BookMark | eNptkEFLAzEQhYNUsNbe_AELXl3NZDbp7lGWWoWCHip4C7NJlqa0uzVJD_57V9pDEU8zzHzvDfOu2ajrO8fYLfAHACUere-SJs25KPCCjYUqIC9Qfo7O-is2jXHDBwYUVIUcM7lau2zpdz5R8n0XM-psNk9rb2ib1cPAWxdOq77N6jWlxfvqhl22tI1ueqoT9vE8X9Uv-fJt8Vo_LXODHFJOEpUrbakkNKWFEqRUiFY4IFFxaLAylbCSWjRGECqJ4GZIwlDDsWkNTtjd0Xcf-q-Di0lv-kPohpMauRzsZjMJAyWOlAl9jMG12pzeSYH8VgPXvwnp84QG0f0f0T74HYXv__EfvJtpfg |
CitedBy_id | crossref_primary_10_1080_10875301_2024_2437174 crossref_primary_10_34248_bsengineering_1544165 crossref_primary_10_70838_pemj_340206 crossref_primary_10_1016_j_jik_2024_100602 crossref_primary_10_3390_fire8010007 crossref_primary_10_1108_JICES_07_2024_0097 crossref_primary_10_46230_lef_v16i2_13157 crossref_primary_10_1109_ACCESS_2025_3536095 crossref_primary_10_1007_s00266_025_04673_7 crossref_primary_10_1080_17404622_2024_2414032 crossref_primary_10_1186_s40561_024_00316_7 crossref_primary_10_3390_su16166890 crossref_primary_10_1145_3711857 crossref_primary_10_1016_j_compedu_2024_105182 crossref_primary_10_1080_10508422_2025_2466152 crossref_primary_10_1080_17516234_2024_2447195 crossref_primary_10_3390_su16208882 crossref_primary_10_1016_j_asw_2024_100899 crossref_primary_10_3390_heritage7030070 |
Cites_doi | 10.1145/3461702.3462624 10.54097/fcis.v2i2.4465 10.1016/j.nepr.2022.103537 10.1007/s00521-019-04144-6 10.18653/v1/2021.emnlp-main.565 10.1145/3442188.3445922 10.1016/j.frl.2023.103662 10.1145/3571730 10.1007/s12195-023-00759-x 10.1177/10776958221149577 10.1109/SP.2019.00065 10.1016/j.iotcps.2023.04.003 10.3390/socsci12030148 10.1007/s12525-022-00605-4 10.1007/978-981-99-3608-3_15 10.18653/v1/2021.nuse-1.5 10.18653/v1/2021.naacl-main.158 10.1007/s13347-023-00621-y 10.1038/s41585-023-00746-x 10.1016/j.inffus.2019.12.012 10.18653/v1/2021.sustainlp-1.2 10.1007/s00167-023-07355-6 10.1007/978-3-030-30371-6 10.18653/v1/2020.acl-main.326 10.1038/s41746-023-00819-6 10.1016/j.imlet.2023.04.002 10.1038/s41561-020-0531-3 10.1148/radiol.223312 |
ContentType | Journal Article |
Copyright | 2024. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1162/dint_a_00243 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2641-435X |
EndPage | 239 |
ExternalDocumentID | 10_1162_dint_a_00243 |
GroupedDBID | AAYXX ABJCF AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION EBS EJD HCIFZ JMNJE K7- LM3 M7S OK1 PHGZM PHGZT PIMPY PTHSS RMI 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c301t-a536e8d8651b8d18155633d2e1a2901b39c92d5af3cc2a36531e73a2cab03bfc3 |
IEDL.DBID | BENPR |
ISSN | 2641-435X |
IngestDate | Fri Jul 25 12:04:28 EDT 2025 Thu Apr 24 23:11:29 EDT 2025 Tue Jul 01 05:18:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c301t-a536e8d8651b8d18155633d2e1a2901b39c92d5af3cc2a36531e73a2cab03bfc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3051557751?pq-origsite=%requestingapplication% |
PQID | 3051557751 |
PQPubID | 6535869 |
PageCount | 39 |
ParticipantIDs | proquest_journals_3051557751 crossref_citationtrail_10_1162_dint_a_00243 crossref_primary_10_1162_dint_a_00243 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Data intelligence |
PublicationYear | 2024 |
Publisher | MIT Press Journals, The |
Publisher_xml | – name: MIT Press Journals, The |
References | Ghosh (2024041719552356700_ref56) 2023 Cao (2024041719552356700_ref79) 2023; 38 Zhang (2024041719552356700_ref72) 2022 Thompson (2024041719552356700_ref66) 2022 Radford (2024041719552356700_ref1) 2018 Bender (2024041719552356700_ref22) 2021 Alain (2024041719552356700_ref94) 2016 Monti (2024041719552356700_ref101) 2016; 3 Ferrara (2024041719552356700_ref54) 2023 Rozado (2024041719552356700_ref61) 2023; 12 Vaswani (2024041719552356700_ref5) 2017; 30 Wiggers (2024041719552356700_ref42) 2022 Lukyanenko (2024041719552356700_ref84) 2022; 32 Akter (2024041719552356700_ref17) 2021; 60 Natasha (2024041719552356700_ref76) 2023 Tatzel (2024041719552356700_ref41) 2023 Lee (2024041719552356700_ref20) 2022; 35 Commission (2024041719552356700_ref81) 2023 Radford (2024041719552356700_ref2) 2019; 1 Rutinowski (2024041719552356700_ref62) 2023 Deng (2024041719552356700_ref33) 2022; 2 Brown (2024041719552356700_ref65) 2020; 33 European Commission White Paper on Artificial Intelligence (2024041719552356700_ref80) 2023 COPE (Committee on Publication Ethics) (2024041719552356700_ref49) 2023 Liu (2024041719552356700_ref29) 2023 Ji (2024041719552356700_ref18) 2023; 55 Abid (2024041719552356700_ref58) 2021 Jing (2024041719552356700_ref97) 2017 Stokel-Walker (2024041719552356700_ref46) 2022 Telecommunications (2024041719552356700_ref78) 2023 Gao (2024041719552356700_ref43) 2023; 6 Wittmann (2024041719552356700_ref28) 2023; 256 Editorials (2024041719552356700_ref48) 2023; 613 Devlin (2024041719552356700_ref9) 2018 Zuccon (2024041719552356700_ref26) 2023 Thoppilan (2024041719552356700_ref11) 2022 Bannour (2024041719552356700_ref70) 2021 Schulman (2024041719552356700_ref10) 2017 Nasr (2024041719552356700_ref31) 2019 Liu (2024041719552356700_ref91) 2023 Wang (2024041719552356700_ref93) 2022; 1-12 (2024041719552356700_ref68) 2023 Volkova (2024041719552356700_ref98) 2018 Kleebayoon (2024041719552356700_ref40) 2023; 16 Temsah (2024041719552356700_ref52) 2023; 15 Mitrani (2024041719552356700_ref60) 2022; 55 Dwivedi (2024041719552356700_ref27) 2023; 71 da Silva (2024041719552356700_ref50) 2023; 103600 Zhong (2024041719552356700_ref87) 2023; 3 Ouyang (2024041719552356700_ref4) 2022; 35 Dignum (2024041719552356700_ref85) 2019 Potthast (2024041719552356700_ref96) 2017 Yu (2024041719552356700_ref82) 2023; 06 Arrieta (2024041719552356700_ref86) 2020; 58 Chowdhery (2024041719552356700_ref12) 2022 Fitria (2024041719552356700_ref35) 2021; 9 Pavlik (2024041719552356700_ref16) 2023; 78 O'Connor (2024041719552356700_ref45) 2022; 66 Ventayen (2024041719552356700_ref34) 2023 Zhu (2024041719552356700_ref6) 2015 Azadi (2024041719552356700_ref69) 2020; 13 Patterson (2024041719552356700_ref73) 2021 Monti (2024041719552356700_ref99) 2019 Shang (2024041719552356700_ref83) 2023; 1-14 Patel (2024041719552356700_ref75) Wei (2024041719552356700_ref8) 2022; 35 Lee (2024041719552356700_ref19) 2021 Carlini (2024041719552356700_ref30) 2020 Zhao (2024041719552356700_ref100) 2023 Longpre (2024041719552356700_ref24) 2021 AlAfnan (2024041719552356700_ref14) 2023; 3 Lucy (2024041719552356700_ref57) 2021 The White House (2024041719552356700_ref77) 2023 Zou (2024041719552356700_ref89) 2023 Luccioni (2024041719552356700_ref74) 2022 Writer (2024041719552356700_ref71) 2023 Ray (2024041719552356700_ref32) 2023; 3 Svrluga (2024041719552356700_ref44) Biswas (2024041719552356700_ref13) 2023; 307 Israeli (2024041719552356700_ref92) 2020 Zhang (2024041719552356700_ref21) 2020 Rudolph (2024041719552356700_ref37) 2023; 6 Wei (2024041719552356700_ref7) 2021 Radford (2024041719552356700_ref64) 2019; 1 Khowaja (2024041719552356700_ref63) 2023 Deshpande (2024041719552356700_ref53) 2023 Prates (2024041719552356700_ref59) 2020; 32 Lin (2024041719552356700_ref25) 2021 Dowling (2024041719552356700_ref15) 2023; 53 Steponenaite (2024041719552356700_ref36) 2023 Ouyang (2024041719552356700_ref67) 2022; 35 Floridi (2024041719552356700_ref51) 2023; 36 Lakkaraju (2024041719552356700_ref95) 2017 Golan (2024041719552356700_ref38) 2023; 20 Yu (2024041719552356700_ref88) 2023; 44 Dahmen (2024041719552356700_ref55) 2023; 31 Wang (2024041719552356700_ref23) 2020 Gao (2024041719552356700_ref90) 2023 Brown (2024041719552356700_ref3) 2020; 33 Terwiesch (2024041719552356700_ref39) 2023 Dowling (2024041719552356700_ref47) 2023; 103662 |
References_xml | – volume: 1-14 year: 2023 ident: 2024041719552356700_ref83 article-title: On the meta-rules for risk governance of generative artificial intelligence publication-title: Oriental Law – start-page: 298 volume-title: Proceedings of the 2021 AAAI/ACM Conference on AI year: 2021 ident: 2024041719552356700_ref58 article-title: Persistent anti-muslim bias in large language models doi: 10.1145/3461702.3462624 – volume-title: Authorship and contributorship year: 2023 ident: 2024041719552356700_ref49 – volume: 15 issue: 4 year: 2023 ident: 2024041719552356700_ref52 article-title: Overview of early ChatGPT's presence in medical literature: insights from a hybrid literature review by ChatGPT and human experts publication-title: Cureus – volume: 2 start-page: 81 issue: 2 year: 2022 ident: 2024041719552356700_ref33 article-title: The benefits and challenges of ChatGPT: An overview publication-title: Frontiers in Computing and Intelligent Systems doi: 10.54097/fcis.v2i2.4465 – volume: 3 start-page: 60 issue: 2 year: 2023 ident: 2024041719552356700_ref14 article-title: Chatgpt as an educational tool: Opportunities, challenges, and recommendations for communication, business writing, and composition courses publication-title: Journal of Artificial Intelligence and Technology – volume: 103600 year: 2023 ident: 2024041719552356700_ref50 article-title: Is ChatGPT a valid author? publication-title: Nurse Education in Practice 68 – volume: 66 start-page: 103537 year: 2022 ident: 2024041719552356700_ref45 article-title: Open artificial intelligence platforms in nursing education: Tools for academic progress or abuse? publication-title: Nurse Education in Practice doi: 10.1016/j.nepr.2022.103537 – volume-title: Carbon emissions and large neural network training. year: 2021 ident: 2024041719552356700_ref73 – volume-title: LifeArchitect. ai Report year: 2022 ident: 2024041719552356700_ref66 article-title: What's in my ai. A comprehensive analysis of datasets used to train GPT-1, GPT-2, GPT-3, GPT-NeoX-20B, Megatron-11B, MT-NLG, and Gopher – volume-title: OpenAI's attempts to watermark AI text hit limits year: 2022 ident: 2024041719552356700_ref42 – volume-title: Truthfulqa: Measuring how models mimic human falsehoods. year: 2021 ident: 2024041719552356700_ref25 – volume-title: Bert: Pre-trained of deep bidirectional transformers for language understanding. year: 2018 ident: 2024041719552356700_ref9 – volume: 06 start-page: 45 year: 2023 ident: 2024041719552356700_ref82 article-title: Review of the EU artificial intelligence act and implications publication-title: Hainan Finance – volume-title: Proximal policy optimization algorithms. year: 2017 ident: 2024041719552356700_ref10 – volume: 1-12 year: 2022 ident: 2024041719552356700_ref93 article-title: Lightweight deep learning: An overview publication-title: IEEE Consumer Electronics Magazine – volume: 32 start-page: 6363 year: 2020 ident: 2024041719552356700_ref59 article-title: Assessing gender bias in machine translation: a case study with google translate publication-title: Neural Computing and Applications doi: 10.1007/s00521-019-04144-6 – volume-title: Extracting training data from large language models year: 2020 ident: 2024041719552356700_ref30 – volume-title: Entity-based knowledge conflicts in question answering. year: 2021 ident: 2024041719552356700_ref24 doi: 10.18653/v1/2021.emnlp-main.565 – volume-title: Nature year: 2022 ident: 2024041719552356700_ref46 article-title: AI bot ChatGPT writes smart essays-should academics worry? – start-page: 610 volume-title: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency year: 2021 ident: 2024041719552356700_ref22 article-title: On the dangers of stochastic parrots: Can language models be too big? doi: 10.1145/3442188.3445922 – volume: 1 start-page: 9 issue: 8 year: 2019 ident: 2024041719552356700_ref64 article-title: Language models are unsupervised multitask learners publication-title: OpenAI blog – volume-title: Open AI year: 2023 ident: 2024041719552356700_ref68 article-title: Open AI (no date) Privacy policy – volume-title: Summary of chatgpt/gpt-4 research and perspective towards the future of large language models year: 2023 ident: 2024041719552356700_ref91 – volume-title: Understanding intermediate layers using linear classifier probes. year: 2016 ident: 2024041719552356700_ref94 – volume: 53 start-page: 1544 year: 2023 ident: 2024041719552356700_ref15 article-title: ChatGPT for (finance) research: The Bananarama conjecture publication-title: Finance Research Letters doi: 10.1016/j.frl.2023.103662 – volume-title: When do you need billions of words of pretraining data? year: 2020 ident: 2024041719552356700_ref21 – volume: 35 start-page: 34586 year: 2022 ident: 2024041719552356700_ref20 article-title: Factuality enhanced language models for open-ended text generation publication-title: Advances in Neural Information Processing Systems – volume: 55 start-page: 1 issue: 12 year: 2023 ident: 2024041719552356700_ref18 article-title: Survey of hallucination in natural language generation publication-title: ACM Computing Surveys doi: 10.1145/3571730 – volume-title: Opt: Open pre-trained transformer language models. year: 2022 ident: 2024041719552356700_ref72 – volume: 71 start-page: 2642 issue: 10 year: 2023 ident: 2024041719552356700_ref27 article-title: So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy publication-title: International Journal of Information Management – start-page: 575 volume-title: Companion Proceedings of the The Web Conference 2018 year: 2018 ident: 2024041719552356700_ref98 article-title: Misleading or falsification: Inferring deceptive strategies and types in online news and social media – volume: 16 start-page: 173 issue: 2 year: 2023 ident: 2024041719552356700_ref40 article-title: Artificial intelligence, chatbots, plagiarism and basic honesty: comment publication-title: Cellular and Molecular Bioengineering doi: 10.1007/s12195-023-00759-x – volume: 78 start-page: 84 issue: 1 year: 2023 ident: 2024041719552356700_ref16 article-title: Collaborating With ChatGPT: Considering the implications of generative artificial intelligence for journalism and media education publication-title: Journalism & Mass Communication Educator doi: 10.1177/10776958221149577 – start-page: 739 volume-title: 2019 IEEE Symposium on Security and Privacy (SP) year: 2019 ident: 2024041719552356700_ref31 article-title: Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning doi: 10.1109/SP.2019.00065 – volume: 33 start-page: 1877 year: 2020 ident: 2024041719552356700_ref65 article-title: Language models are few-shot learners publication-title: Advances in neural information processing systems – volume: 35 start-page: 27730 year: 2022 ident: 2024041719552356700_ref4 article-title: Training language models to follow instructions with human feedback publication-title: Advances in Neural Information Processing Systems – volume-title: Lamda: Language models for dialog applications. year: 2022 ident: 2024041719552356700_ref11 – volume: 613 start-page: 10 year: 2023 ident: 2024041719552356700_ref48 article-title: Tools such as ChatGPT threaten transparent science; here are our ground rules for their use publication-title: Nature – volume-title: ChatGPT needs SPADE (Sustainability, PrivAcy, Digital divide, and Ethics) evaluation: A review. year: 2023 ident: 2024041719552356700_ref63 – volume: 3 start-page: 121 year: 2023 ident: 2024041719552356700_ref32 article-title: ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope publication-title: Internet of Things and Cyber-Physical Systems doi: 10.1016/j.iotcps.2023.04.003 – volume: 12 start-page: 148 issue: 3 year: 2023 ident: 2024041719552356700_ref61 article-title: The political biases of chatgpt publication-title: Social Sciences doi: 10.3390/socsci12030148 – volume: 32 start-page: 1993 issue: 4 year: 2022 ident: 2024041719552356700_ref84 article-title: Trust in artificial intelligence: From a foundational trust framework to emerging research opportunities publication-title: Electronic Markets doi: 10.1007/s12525-022-00605-4 – volume-title: Dr ChatGPT, tell me what I want to hear: How prompt knowledge impacts health answer correctness. year: 2023 ident: 2024041719552356700_ref26 – start-page: 708 volume-title: In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) year: 2017 ident: 2024041719552356700_ref97 article-title: Detect rumors in microblog posts using propagation structure via kernel learning – volume-title: Toxicity in chatgpt: Analyzing persona-assigned language models. year: 2023 ident: 2024041719552356700_ref53 – start-page: 215 volume-title: International Conference on Soft Computing for Security Applications year: 2023 ident: 2024041719552356700_ref34 article-title: OpenAI ChatGPT generated results: Similarity index of artificial intelligence-based contents doi: 10.1007/978-981-99-3608-3_15 – volume-title: Should ChatGPT be biased? Challenges and risks of bias in large language models. year: 2023 ident: 2024041719552356700_ref54 – volume-title: A stylometric inquiry into hyperpartisan and fake news. year: 2017 ident: 2024041719552356700_ref96 – volume: 1 start-page: 9 issue: 8 year: 2019 ident: 2024041719552356700_ref2 article-title: Language models are unsupervised multitask learners publication-title: OpenAI blog – volume: 103662 year: 2023 ident: 2024041719552356700_ref47 article-title: ChatGPT for (finance) research: The Bananarama conjecture publication-title: Finance Research Letters 53 – volume-title: OpenAI blog year: 2018 ident: 2024041719552356700_ref1 article-title: Improving language understanding by generative pre-tralned – start-page: 48 volume-title: Proceedings of the Third Workshop on Narrative Understanding year: 2021 ident: 2024041719552356700_ref57 article-title: Gender and representation bias in GPT-3 generated stories doi: 10.18653/v1/2021.nuse-1.5 – volume-title: Fake news detection on social media using geometric deep learning. year: 2019 ident: 2024041719552356700_ref99 – volume-title: Can chatgpt-like generative models guarantee factual accuracy? on the mistakes of new generation search engines. year: 2023 ident: 2024041719552356700_ref100 – volume-title: Towards few-shot fact-checking via perplexity. year: 2021 ident: 2024041719552356700_ref19 doi: 10.18653/v1/2021.naacl-main.158 – volume-title: Palm: Scaling language modeling with pathways. year: 2022 ident: 2024041719552356700_ref12 – volume-title: Blueprint for an AI bill of rights: making automated systems work for the American people year: 2023 ident: 2024041719552356700_ref77 – volume-title: A European Approach to Excellence and Trust year: 2023 ident: 2024041719552356700_ref80 – volume: 36 start-page: 15 issue: 1 year: 2023 ident: 2024041719552356700_ref51 article-title: AI as Agency without Intelligence: On ChatGPT, large language models, and other generative models publication-title: Philosophy & Technology doi: 10.1007/s13347-023-00621-y – volume: 60 start-page: 2387 issue: 10 year: 2021 ident: 2024041719552356700_ref17 article-title: Algorithmic bias in data-driven innovation in the age of AI publication-title: International Journal of Information Management – volume: 9 start-page: 183 issue: 1 year: 2021 ident: 2024041719552356700_ref35 article-title: QuillBot as an online tool: Students’ alternative in paraphrasing and rewriting of English writing publication-title: Englisia: Journal of Language, Education, and Humanities – volume: 20 start-page: 327 issue: 6 year: 2023 ident: 2024041719552356700_ref38 article-title: Artificial intelligence in academic writing: a paradigm-shifting technological advance publication-title: Nature Reviews Urology doi: 10.1038/s41585-023-00746-x – volume-title: ChatGPT Perpetuates Gender Bias in Machine Translation and Ignores Non-Gendered Pronouns: Findings across Bengali and Five other Low-Resource Languages. year: 2023 ident: 2024041719552356700_ref56 – volume-title: Would Chat GPT3 get a Wharton MBA? A prediction based on its performance in the operations management course. Mack Institute for Innovation Management at the Wharton School year: 2023 ident: 2024041719552356700_ref39 – volume: 58 start-page: 82 year: 2020 ident: 2024041719552356700_ref86 article-title: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI publication-title: Information fusion doi: 10.1016/j.inffus.2019.12.012 – start-page: 11 volume-title: Proceedings of the Second Workshop on Simple and Efficient Natural Language Processing year: 2021 ident: 2024041719552356700_ref70 article-title: Evaluating the carbon footprint of NLP methods: a survey and analysis of existing tools doi: 10.18653/v1/2021.sustainlp-1.2 – volume-title: Interpretable & explorable approximations of black box models. year: 2017 ident: 2024041719552356700_ref95 – volume: 35 start-page: 24824 year: 2022 ident: 2024041719552356700_ref8 article-title: Chain-of-thought prompting elicits reasoning in large language models publication-title: Advances in Neural Information Processing Systems – start-page: 1 volume-title: Journal of Hohai University (Philosophy and Social Sciences) year: 2023 ident: 2024041719552356700_ref89 article-title: On ChatGPT-like general artificial intelligence governance: Based on the perspective of algorithmic security review – volume-title: Finetuned language models are zero-shot learners. year: 2021 ident: 2024041719552356700_ref7 – volume-title: Summary of ChatGPT/GPT-4 research and perspective towards the future of large language models year: 2023 ident: 2024041719552356700_ref29 – volume: 30 year: 2017 ident: 2024041719552356700_ref5 article-title: Attention is all you need publication-title: Advances in neural information processing systems – volume: 31 start-page: 1187 issue: 4 year: 2023 ident: 2024041719552356700_ref55 article-title: Artificial intelligence bot ChatGPT in medical research: the potential game changer as a double-edged sword publication-title: Knee Surgery, Sports Traumatology, Arthroscopy doi: 10.1007/s00167-023-07355-6 – volume-title: SemiAnalysis ident: 2024041719552356700_ref75 article-title: The inference cost of search disruption-large language model cost analysis – volume-title: Responsible artificial intelligence: How to develop and use ai in a responsible way year: 2019 ident: 2024041719552356700_ref85 doi: 10.1007/978-3-030-30371-6 – volume: 44 start-page: 28 issue: 05 year: 2023 ident: 2024041719552356700_ref88 article-title: The main characteristics, social risks and governance paths of the new generation of artificial intelligence (ChatGPT) publication-title: Journal of Dalian University of Technology (Social Sciences) – start-page: 1 volume-title: Journal of Shandong University (Philosophy and Social Sciences) year: 2023 ident: 2024041719552356700_ref90 article-title: GPT technology and the modernization of national governance: A framework based on order, empowerment and innovation – volume-title: On exposure bias, hallucination and domain shift in neural machine translation. year: 2020 ident: 2024041719552356700_ref23 doi: 10.18653/v1/2020.acl-main.326 – volume-title: UK to Avoid Fixed Rules for AI - in Favor of ‘Context-Specific Guidance’ year: 2023 ident: 2024041719552356700_ref76 – volume-title: ‘Write a paper on AI Plagiarism’: An Analysis on ChatGPT and its impact on Academic Dishonesty in Higher Education year: 2023 ident: 2024041719552356700_ref41 – volume: 3 start-page: 25 year: 2023 ident: 2024041719552356700_ref87 article-title: Governance of ChatGPT: Challenges and countermeasures publication-title: Media Observer – volume-title: Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language Model. year: 2022 ident: 2024041719552356700_ref74 – volume: 3 start-page: 1 year: 2016 ident: 2024041719552356700_ref101 article-title: Big data privacy: A technological perspective and review publication-title: Journal of Big Data – volume: 6 start-page: 1 issue: 1 year: 2023 ident: 2024041719552356700_ref43 article-title: Comparing scientific abstracts generated by ChatGPT to original abstracts using an artificial intelligence output detector, plagiarism detector, and blinded human reviewers publication-title: Npj Digit Medicine doi: 10.1038/s41746-023-00819-6 – start-page: 521 volume-title: Harvard Business School Technical Note year: 2020 ident: 2024041719552356700_ref92 article-title: Algorithmic bias in marketing [R] – volume: 6 start-page: 342 issue: 1 year: 2023 ident: 2024041719552356700_ref37 article-title: ChatGPT: Bullshit spewer or the end of traditional assessments in higher education? publication-title: Journal of Applied Learning and Teaching – volume-title: The Self-Perception and Political Biases of ChatGPT. year: 2023 ident: 2024041719552356700_ref62 – start-page: 434 volume-title: International Conference on HumanComputer Interaction year: 2023 ident: 2024041719552356700_ref36 article-title: Plagiarism in AI empowered world – volume-title: The AI A year: 2023 ident: 2024041719552356700_ref81 – volume-title: AI accountability policy request for comment year: 2023 ident: 2024041719552356700_ref78 – volume: 256 start-page: 42 year: 2023 ident: 2024041719552356700_ref28 article-title: Science fact vs science fiction: A ChatGPT immunological review experiment gone awry publication-title: Immunology Letters doi: 10.1016/j.imlet.2023.04.002 – start-page: 19 volume-title: Proceedings of the IEEE international conference on computer vision year: 2015 ident: 2024041719552356700_ref6 article-title: Aligning books and movies: Towards story-like visual explanations by watching movies and reading books – volume: 38 start-page: 28 issue: 04 year: 2023 ident: 2024041719552356700_ref79 article-title: Towards trustworthy AI: The governance challenges and responses for generative AI like ChatGPT publication-title: Journal of Shanghai University of Political Science and Law(The Rule of Law Forum) – volume: 33 start-page: 1877 year: 2020 ident: 2024041719552356700_ref3 article-title: Language models are few-shot learners publication-title: Advances in neural information processing systems – volume: 13 start-page: 100 issue: 2 year: 2020 ident: 2024041719552356700_ref69 article-title: Transparency on greenhouse gas emissions from mining to enable climate change mitigation publication-title: Nature Geoscience doi: 10.1038/s41561-020-0531-3 – volume: 307 issue: 2 year: 2023 ident: 2024041719552356700_ref13 article-title: ChatGPT and the future of medical writing publication-title: Radiology doi: 10.1148/radiol.223312 – volume-title: The Washington Post ident: 2024041719552356700_ref44 article-title: Princeton student builds app to detect essays written by a popular AI bot – volume-title: Carbon footprint of training GPT-3 and large language models, Shrink That Footprint year: 2023 ident: 2024041719552356700_ref71 – volume: 55 start-page: 809 issue: 4 year: 2022 ident: 2024041719552356700_ref60 article-title: Can We Algorithmize Politics? The Promise and Perils of Computerized Text Analysis in Political Research publication-title: PS: Political Science & Politics – volume: 35 start-page: 27730 year: 2022 ident: 2024041719552356700_ref67 article-title: Training language models to follow instructions with human feedback publication-title: Advances in Neural Information Processing Systems |
SSID | ssj0002161945 |
Score | 2.4938412 |
Snippet | With the advancements of artificial intelligence technology, ChatGPT, a new practice of artificial intelligence, holds immense potential across multiple... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 201 |
SubjectTerms | Artificial intelligence Chatbots Ethics Man-machine interfaces |
Title | The Limitations and Ethical Considerations of ChatGPT |
URI | https://www.proquest.com/docview/3051557751 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA62vXgRRcVqLXvQk4R2k002exItfSBYirTQW0iyWTxIH3b9_06y2WoPes4QNhnmm51H5kPoTgHu2r4osDFc4STNY8BB1ceKZIB-rnLouQ5fp3yySF6WbBkSbrvQVlljogfqfG1cjrxHPRlJmrL4cbPFjjXKVVcDhUYDtQCCBQRfrefhdPa2z7KQ2EXprO5456QHHqGUSvpJfIe-6BCKvX8ZnaKT8GMYPVWaPENHdnWOGGgx8m-QqsRaBHF_5FvUQbTm2gxL6yIavKtyPJtfoMVoOB9McCA6wAbsq8SKUW5FLjiLtcjB57qpXTQnNlauzKlpZjKSM1VQY4iiHOzGplQRo3Sf6sLQS9RcrVf2CkW5ILGBqEjrlCQmNllmdKIoEUVqE1uwNnqojyxN-HhHRvEhfTTAifx9QW10v5feVNMv_pDr1Lcngw3s5I_Grv9fvkHHBHapeqE7qFl-ftlbcPWl7qKGGI27QavfsICrKg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMsCCQIB4FMhAJxS1seM8BoRQoQ_6EEMrdTN-RQwoLTQI8af4jdhOUugAW2efrOT8-c53Pt8HcMm03VXNKHGFCJjrh9LTdpA1XYZibf3MzaHlOhyOgu7Ef5iSaQW-yrcwpqyytInWUMuZMDnyBrZkJGFIvJv5q2tYo8ztakmhkcOirz4_dMi2uO7d6fWtI9S-H7e6bsEq4AoN5sxlBAcqklFAPB5J7eBMiywskfKYuVPkOBYxkoQlWAjEcKBBqkLMkGC8iXkisJ53AzZ9jGOzo6J2Z5nTQZ7JCZCyvj5ADe1_Msqo7fu36vlWDb_1Zu1d2CmOoc5tjps9qKh0H4jGjGNfPOVpPIel0rEF8Vq0ZPYshmaJ03pmWedxfACTtSjgEKrpLFVH4MgIeULHYJyHyBeeiGPBfYZRlITKVwk5hqvyl6koPt5QX7xQG3sEiP5W0DHUl9LzvNfGH3K1Unu02HEL-oOPk_-HL2CrOx4O6KA36p_CNtIz5lXYNahmb-_qTB8yMn5uV9aBp3VD6RviaeVG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Limitations+and+Ethical+Considerations+of+ChatGPT&rft.jtitle=Data+intelligence&rft.au=Shangying+Hua&rft.au=Jin%2C+Shuangci&rft.au=Jiang%2C+Shengyi&rft.date=2024-02-01&rft.pub=MIT+Press+Journals%2C+The&rft.eissn=2641-435X&rft.volume=6&rft.issue=1&rft.spage=201&rft_id=info:doi/10.1162%2Fdint_a_00243 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2641-435X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2641-435X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2641-435X&client=summon |