CoMo/SS Cathode Catalyst for Enhanced Hydrogen Production in Microbial Electrolysis Cells

Hydrogen energy has emerged as a pivotal clean energy solution due to its sustainability and zero-emission potential. Microbial electrolysis cells are a promising technology for renewable hydrogen production, typically relying on expensive and unstable Pt/C catalysts for the hydrogen evolution react...

Full description

Saved in:
Bibliographic Details
Published inCatalysts Vol. 15; no. 5; p. 439
Main Authors Lei, Gao, Wang, Yaoqiang, Xiao, Gang, Su, Haijia
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen energy has emerged as a pivotal clean energy solution due to its sustainability and zero-emission potential. Microbial electrolysis cells are a promising technology for renewable hydrogen production, typically relying on expensive and unstable Pt/C catalysts for the hydrogen evolution reaction (HER). To address these limitations, this study develops a cost-effective and durable alternative approach. A cobalt–molybdenum (Co-Mo) alloy catalyst (denoted as CoMo/SS) was synthesized via a one-step electrodeposition method on 1000-mesh 316L stainless steel at a current density of 30 mA·cm−2 for 80 min, using an electrolyte with a Co-to-Mo ratio of 1:1. The electrochemical properties and hydrogen evolution performance of this catalyst in a microbial electrolysis cell were evaluated. Key results demonstrate that the CoMo/SS catalyst achieves a good catalytic performance of hydrogen evolution. The CoMo/SS cathode catalyst only requires an overpotential of 91.70 mV (vs. RHE) to reach a current density of 10 mA·cm−2 in 1 mol·L−1 KOH, with favorable kinetics, evidenced by a reduced Tafel slope of 104.10 mV·dec−1, enhanced charge transfer with a charge transfer resistance of 4.56 Ω, and a double-layer capacitance of 34.73 mF·cm−2. Under an applied voltage of 0.90 V, the CoMo/SS cathode exhibited a hydrogen production rate of 1.12 m3·m−3·d−1, representing a 33.33% improvement over bare SS mesh. This performance highlights the catalyst’s potential as a viable Pt/C substitute for scalable MEC applications.
AbstractList Hydrogen energy has emerged as a pivotal clean energy solution due to its sustainability and zero-emission potential. Microbial electrolysis cells are a promising technology for renewable hydrogen production, typically relying on expensive and unstable Pt/C catalysts for the hydrogen evolution reaction (HER). To address these limitations, this study develops a cost-effective and durable alternative approach. A cobalt–molybdenum (Co-Mo) alloy catalyst (denoted as CoMo/SS) was synthesized via a one-step electrodeposition method on 1000-mesh 316L stainless steel at a current density of 30 mA·cm[sup.−2] for 80 min, using an electrolyte with a Co-to-Mo ratio of 1:1. The electrochemical properties and hydrogen evolution performance of this catalyst in a microbial electrolysis cell were evaluated. Key results demonstrate that the CoMo/SS catalyst achieves a good catalytic performance of hydrogen evolution. The CoMo/SS cathode catalyst only requires an overpotential of 91.70 mV (vs. RHE) to reach a current density of 10 mA·cm[sup.−2] in 1 mol·L[sup.−1] KOH, with favorable kinetics, evidenced by a reduced Tafel slope of 104.10 mV·dec[sup.−1], enhanced charge transfer with a charge transfer resistance of 4.56 Ω, and a double-layer capacitance of 34.73 mF·cm[sup.−2]. Under an applied voltage of 0.90 V, the CoMo/SS cathode exhibited a hydrogen production rate of 1.12 m[sup.3]·m[sup.−3]·d[sup.−1], representing a 33.33% improvement over bare SS mesh. This performance highlights the catalyst’s potential as a viable Pt/C substitute for scalable MEC applications.
Hydrogen energy has emerged as a pivotal clean energy solution due to its sustainability and zero-emission potential. Microbial electrolysis cells are a promising technology for renewable hydrogen production, typically relying on expensive and unstable Pt/C catalysts for the hydrogen evolution reaction (HER). To address these limitations, this study develops a cost-effective and durable alternative approach. A cobalt–molybdenum (Co-Mo) alloy catalyst (denoted as CoMo/SS) was synthesized via a one-step electrodeposition method on 1000-mesh 316L stainless steel at a current density of 30 mA·cm−2 for 80 min, using an electrolyte with a Co-to-Mo ratio of 1:1. The electrochemical properties and hydrogen evolution performance of this catalyst in a microbial electrolysis cell were evaluated. Key results demonstrate that the CoMo/SS catalyst achieves a good catalytic performance of hydrogen evolution. The CoMo/SS cathode catalyst only requires an overpotential of 91.70 mV (vs. RHE) to reach a current density of 10 mA·cm−2 in 1 mol·L−1 KOH, with favorable kinetics, evidenced by a reduced Tafel slope of 104.10 mV·dec−1, enhanced charge transfer with a charge transfer resistance of 4.56 Ω, and a double-layer capacitance of 34.73 mF·cm−2. Under an applied voltage of 0.90 V, the CoMo/SS cathode exhibited a hydrogen production rate of 1.12 m3·m−3·d−1, representing a 33.33% improvement over bare SS mesh. This performance highlights the catalyst’s potential as a viable Pt/C substitute for scalable MEC applications.
Audience Academic
Author Wang, Yaoqiang
Lei, Gao
Xiao, Gang
Su, Haijia
Author_xml – sequence: 1
  givenname: Gao
  orcidid: 0009-0008-2937-9700
  surname: Lei
  fullname: Lei, Gao
– sequence: 2
  givenname: Yaoqiang
  surname: Wang
  fullname: Wang, Yaoqiang
– sequence: 3
  givenname: Gang
  orcidid: 0000-0002-0635-8965
  surname: Xiao
  fullname: Xiao, Gang
– sequence: 4
  givenname: Haijia
  surname: Su
  fullname: Su, Haijia
BookMark eNpVUE1PAjEQbQwmInL03sTzQrvtbrdHskExgWiCHjxtSj-gpLTYLgf-vSV40JnDm0zem8l792Dgg9cAPGI0IYSjqRS9cLhCFaKE34BhiRgpKKF08Ge-A-OU9igXx6TB1RB8tWEVpus1bEW_C0pfULhz6qEJEc79TnipFVycVQxb7eF7DOokexs8tB6urIxhY4WDc6dlH0NW2gRb7Vx6ALdGuKTHvzgCn8_zj3ZRLN9eXtvZspAE4b7gGySZZIjijVGGm7LmAhteVZjVTBlcI6EIMY3AminF6xrTsuQaK0FZnVlkBJ6ud48xfJ906rt9OEWfX3akxJiXrMr2R2ByZW2F0531JvRRyNxKH6zMURqb97OGElJShJssKK6C7DClqE13jPYg4rnDqLsk3v1LnPwA_5F0lA
Cites_doi 10.1016/j.eehl.2022.04.004
10.1002/adfm.201804600
10.1038/s41598-020-76694-y
10.1016/j.ijhydene.2006.06.004
10.1016/j.seppur.2021.118474
10.1007/s40195-018-0715-7
10.1016/j.psep.2024.08.032
10.1016/j.ijhydene.2010.11.114
10.1016/j.jmst.2016.08.010
10.1016/j.elecom.2009.11.017
10.1021/sc400046y
10.1039/C4TA02254H
10.1016/j.rser.2015.12.112
10.1016/j.ijhydene.2009.08.011
10.1016/j.ijhydene.2012.11.031
10.1016/j.tibtech.2023.12.010
10.1007/s40195-018-0785-6
10.1039/D3DT02467A
10.1016/j.ijhydene.2013.04.116
10.1016/j.nanoen.2021.106649
10.1002/adfm.202006484
10.1016/S0013-4686(00)00523-5
10.1016/j.ijhydene.2009.11.014
10.1021/jacs.9b10809
10.1002/sus2.75
10.1016/j.jpowsour.2008.12.144
10.1021/es801553z
10.1016/j.bioelechem.2009.05.005
10.1039/C5CS00434A
10.1002/adma.201500821
10.1039/D1TA04193B
10.1016/j.biortech.2019.01.020
10.1016/j.ijhydene.2019.05.018
10.1016/j.jpowsour.2015.09.108
10.1016/j.biortech.2012.06.115
10.1016/j.ijhydene.2014.06.055
10.1016/j.ijhydene.2018.01.010
10.1002/adma.201703311
10.1021/ja409445p
10.1016/j.cej.2012.03.044
10.1016/j.apmate.2024.100227
10.1016/j.apmate.2024.100224
10.1016/j.apenergy.2020.114700
10.2298/CICEQ0802057D
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/catal15050439
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4344
ExternalDocumentID A843324018
10_3390_catal15050439
GeographicLocations Massachusetts
China
GeographicLocations_xml – name: China
– name: Massachusetts
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
ESX
HCIFZ
IAO
ITC
KB.
KQ8
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c301t-9b0c7c7041bfdf9f269a1f9551767df160ad33f8a1e7dd96614229e1da4765513
IEDL.DBID BENPR
ISSN 2073-4344
IngestDate Fri Jul 25 09:47:02 EDT 2025
Tue Jun 17 03:40:59 EDT 2025
Tue Aug 05 12:02:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c301t-9b0c7c7041bfdf9f269a1f9551767df160ad33f8a1e7dd96614229e1da4765513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-2937-9700
0000-0002-0635-8965
OpenAccessLink https://www.proquest.com/docview/3211927507?pq-origsite=%requestingapplication%
PQID 3211927507
PQPubID 2032420
ParticipantIDs proquest_journals_3211927507
gale_infotracacademiconefile_A843324018
crossref_primary_10_3390_catal15050439
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Catalysts
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yang (ref_45) 2024; 3
Zhang (ref_6) 2021; 9
Jafary (ref_24) 2019; 44
Rathinam (ref_25) 2019; 277
Conway (ref_39) 2000; 45
Liu (ref_28) 2015; 39
Zhang (ref_15) 2007; 32
Wang (ref_38) 2021; 40
Wu (ref_47) 2021; 31
Chai (ref_23) 2022; 2
Swaminathan (ref_26) 2024; 190
Fu (ref_21) 2013; 38
Xu (ref_2) 2022; 1
Kundu (ref_37) 2013; 38
Bo (ref_29) 2014; 042
Zhang (ref_44) 2018; 28
Yang (ref_41) 2019; 141
Zhao (ref_31) 2019; 44
Wang (ref_40) 2023; 52
Zhu (ref_17) 2014; 39
Dai (ref_20) 2019; 32
Ramsurn (ref_16) 2013; 1
Zhao (ref_5) 2022; 1
Poudyal (ref_1) 2021; 4
Zheng (ref_3) 2015; 27
Wang (ref_11) 2018; 31
Liang (ref_51) 2020; 264
Jeremiasse (ref_52) 2010; 78
ref_36
Huang (ref_50) 2011; 36
Munoz (ref_33) 2010; 12
Liu (ref_18) 2012; 192
Qi (ref_53) 2016; 5
Selembo (ref_30) 2010; 35
Shi (ref_43) 2016; 45
Hou (ref_48) 2014; 2
Selembo (ref_32) 2009; 190
Logan (ref_35) 2008; 42
Das (ref_14) 2008; 14
Li (ref_12) 2024; 3
Liu (ref_19) 2012; 121
Hu (ref_49) 2009; 34
Hosseini (ref_13) 2016; 57
Zhao (ref_42) 2022; 91
Zhang (ref_7) 2021; 265
Chen (ref_46) 2017; 29
Zhu (ref_4) 2013; 135
Kim (ref_10) 2016; 32
Su (ref_34) 2016; 301
Zhong (ref_27) 2015; 03
Noori (ref_22) 2024; 42
ref_9
ref_8
References_xml – volume: 1
  start-page: 53
  year: 2022
  ident: ref_5
  article-title: Global Climate Change and Human Health: Pathways and Possible Solutions
  publication-title: Eco-Environ. Health
  doi: 10.1016/j.eehl.2022.04.004
– ident: ref_9
– volume: 5
  start-page: 2033
  year: 2016
  ident: ref_53
  article-title: Selective inhibition of methanogens using 2-bromoethanesulfonate for improvement of acetate production from CO2 in bioelectrochemical systems
  publication-title: CIESC J.
– volume: 28
  start-page: 1804600
  year: 2018
  ident: ref_44
  article-title: General Construction of Molybdenum-Based Nanowire Arrays for pH-Universal Hydrogen Evolution Electrocatalysis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804600
– ident: ref_36
  doi: 10.1038/s41598-020-76694-y
– volume: 32
  start-page: 17
  year: 2007
  ident: ref_15
  article-title: Enhancement Effect of Gold Nanoparticles on Biohydrogen Production from Artificial Wastewater
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.06.004
– volume: 40
  start-page: 5523
  year: 2021
  ident: ref_38
  article-title: Progress of electrocatalytic hydrogen evolution reaction catalysts
  publication-title: Chem. Eng. Prog.
– volume: 265
  start-page: 118474
  year: 2021
  ident: ref_7
  article-title: Melamine-Cyanurate Supramolecule Induced Graphitic N-Rich Graphene for Singlet Oxygen-Dominated Peroxymonosulfate Activation to Efficiently Degrade Organic Pollutants
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.118474
– volume: 31
  start-page: 431
  year: 2018
  ident: ref_11
  article-title: Enhanced Thermochemical H2 Production on Ca-Doped Lanthanum Manganite Perovskites Through Optimizing the Dopant Level and Re-Oxidation Temperature
  publication-title: Acta Metall. Sin. (Engl. Lett.)
  doi: 10.1007/s40195-018-0715-7
– volume: 190
  start-page: 458
  year: 2024
  ident: ref_26
  article-title: A Comprehensive Review of Microbial Electrolysis Cells: Integrated for Wastewater Treatment and Hydrogen Generation
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2024.08.032
– volume: 36
  start-page: 2773
  year: 2011
  ident: ref_50
  article-title: A New Cathodic Electrode Deposit with Palladium Nanoparticles for Cost-Effective Hydrogen Production in a Microbial Electrolysis Cell
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.11.114
– volume: 32
  start-page: 1059
  year: 2016
  ident: ref_10
  article-title: Effect of ZnO Electrodeposited on Carbon Film and Decorated with Metal Nanoparticles for Solar Hydrogen Production
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2016.08.010
– volume: 12
  start-page: 183
  year: 2010
  ident: ref_33
  article-title: Combining Phosphate Species and Stainless Steel Cathode to Enhance Hydrogen Evolution in Microbial Electrolysis Cell (MEC)
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.11.017
– volume: 1
  start-page: 779
  year: 2013
  ident: ref_16
  article-title: Nanotechnology in Solar and Biofuels
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/sc400046y
– volume: 2
  start-page: 13795
  year: 2014
  ident: ref_48
  article-title: A 3D Hybrid of Layered MoS2/Nitrogen-Doped Graphene Nanosheet Aerogels: An Effective Catalyst for Hydrogen Evolution in Microbial Electrolysis Cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA02254H
– volume: 57
  start-page: 850
  year: 2016
  ident: ref_13
  article-title: Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.112
– volume: 34
  start-page: 8535
  year: 2009
  ident: ref_49
  article-title: Hydrogen Production in Single-Chamber Tubular Microbial Electrolysis Cells Using Non-Precious-Metal Catalysts
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.08.011
– volume: 38
  start-page: 1745
  year: 2013
  ident: ref_37
  article-title: An Overview of Cathode Material and Catalysts Suitable for Generating Hydrogen in Microbial Electrolysis Cell
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.11.031
– ident: ref_8
– volume: 42
  start-page: 815
  year: 2024
  ident: ref_22
  article-title: Hydrogen Production in Microbial Electrolysis Cells with Biocathodes
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2023.12.010
– volume: 32
  start-page: 297
  year: 2019
  ident: ref_20
  article-title: Hydrogen Production Using “Direct-Starting” Biocathode Microbial Electrolysis Cell and the Analysis of Microbial Communities
  publication-title: Acta Metall. Sin. (Engl. Lett.)
  doi: 10.1007/s40195-018-0785-6
– volume: 52
  start-page: 15091
  year: 2023
  ident: ref_40
  article-title: MnOxHy-Modified CoMoP/NF Nanosheet Arrays as Hydrogen Evolution Reaction and Oxygen Evolution Reaction Bifunctional Catalysts under Alkaline Conditions
  publication-title: Dalton Trans.
  doi: 10.1039/D3DT02467A
– volume: 38
  start-page: 15638
  year: 2013
  ident: ref_21
  article-title: Bioelectrochemical Analyses of a Thermophilic Biocathode Catalyzing Sustainable Hydrogen Production
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.04.116
– volume: 4
  start-page: 100024
  year: 2021
  ident: ref_1
  article-title: Environmental Sustainability in Cement Industry: An Integrated Approach for Green and Economical Cement Production
  publication-title: Resour. Environ. Sustain.
– volume: 03
  start-page: 132
  year: 2015
  ident: ref_27
  article-title: The influence of different layers of carbon paper on the electricity generation in MFC
  publication-title: New Chem. Mater.
– volume: 91
  start-page: 106649
  year: 2022
  ident: ref_42
  article-title: High-Performance and Long-Cycle Life of Triboelectric Nanogenerator Using PVC/MoS2 Composite Membranes for Wind Energy Scavenging Application
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106649
– volume: 31
  start-page: 2006484
  year: 2021
  ident: ref_47
  article-title: Heterogeneous Bimetallic Phosphide Ni2P-Fe2P as an Efficient Bifunctional Catalyst for Water/Seawater Splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202006484
– volume: 45
  start-page: 4075
  year: 2000
  ident: ref_39
  article-title: Relation of Energies and Coverages of Underpotential and Overpotential Deposited H at Pt and Other Metals to the ‘Volcano Curve’ for Cathodic H2 Evolution Kinetics
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(00)00523-5
– volume: 35
  start-page: 428
  year: 2010
  ident: ref_30
  article-title: Hydrogen Production with Nickel Powder Cathode Catalysts in Microbial Electrolysis Cells
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.11.014
– volume: 141
  start-page: 19241
  year: 2019
  ident: ref_41
  article-title: Cobalt-Based Nitride-Core Oxide-Shell Oxygen Reduction Electrocatalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b10809
– volume: 2
  start-page: 392
  year: 2022
  ident: ref_23
  article-title: Recent Progress on Rational Design of Catalysts for Fermentative Hydrogen Production
  publication-title: SusMat
  doi: 10.1002/sus2.75
– volume: 190
  start-page: 271
  year: 2009
  ident: ref_32
  article-title: The Use of Stainless Steel and Nickel Alloys as Low-Cost Cathodes in Microbial Electrolysis Cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.12.144
– volume: 39
  start-page: 1661
  year: 2015
  ident: ref_28
  article-title: Electricity generation of MFCs with graphite fiber brush and carbon cloth anode
  publication-title: J. Power Sources
– volume: 42
  start-page: 8630
  year: 2008
  ident: ref_35
  article-title: Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es801553z
– volume: 78
  start-page: 39
  year: 2010
  ident: ref_52
  article-title: Microbial Electrolysis Cell with a Microbial Biocathode
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2009.05.005
– volume: 45
  start-page: 1529
  year: 2016
  ident: ref_43
  article-title: Recent Advances in Transition Metal Phosphide Nanomaterials: Synthesis and Applications in Hydrogen Evolution Reaction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00434A
– volume: 27
  start-page: 5372
  year: 2015
  ident: ref_3
  article-title: Engineering of Carbon-Based Electrocatalysts for Emerging Energy Conversion: From Fundamentality to Functionality
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500821
– volume: 9
  start-page: 17366
  year: 2021
  ident: ref_6
  article-title: Two-Step Assembly Induced Fe0-Anchored Graphitic N-Rich Graphene with Biactive Centers for Enhanced Heterogeneous Peroxymonosulfate Activation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA04193B
– volume: 277
  start-page: 171
  year: 2019
  ident: ref_25
  article-title: Thermophiles for Biohydrogen Production in Microbial Electrolytic Cells
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.01.020
– volume: 44
  start-page: 28841
  year: 2019
  ident: ref_31
  article-title: Process Kinetics for the Electrocatalytic Hydrogen Evolution Reaction on Carbon-Based Ni/NiO Nanocomposite in a Single-Chamber Microbial Electrolysis Cell
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.05.018
– volume: 301
  start-page: 29
  year: 2016
  ident: ref_34
  article-title: Hydrogen Production in Single Chamber Microbial Electrolysis Cells with Stainless Steel Fiber Felt Cathodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.108
– volume: 121
  start-page: 148
  year: 2012
  ident: ref_19
  article-title: Enhanced Azo Dye Wastewater Treatment in a Two-Stage Anaerobic System with Fe0 Dosing
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.06.115
– volume: 39
  start-page: 19331
  year: 2014
  ident: ref_17
  article-title: Enhanced Dark Fermentative Hydrogen Production under the Effect of Zero-Valent Iron Shavings
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.06.055
– volume: 1
  start-page: 31
  year: 2022
  ident: ref_2
  article-title: Environmental Pollution, a Hidden Culprit for Health Issues
  publication-title: EEH
– volume: 042
  start-page: 126
  year: 2014
  ident: ref_29
  article-title: Research on producing electricity characteristics of wastewater microbial fuel cell anode carbon felt
  publication-title: New Chem. Mater.
– volume: 44
  start-page: 30524
  year: 2019
  ident: ref_24
  article-title: Clean Hydrogen Production in a Full Biological Microbial Electrolysis Cell
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.01.010
– volume: 29
  start-page: 1703311
  year: 2017
  ident: ref_46
  article-title: Self-Templated Fabrication of MoNi4/MoO3-x Nanorod Arrays with Dual Active Components for Highly Efficient Hydrogen Evolution
  publication-title: Adv. Mat.
  doi: 10.1002/adma.201703311
– volume: 135
  start-page: 16833
  year: 2013
  ident: ref_4
  article-title: Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of CO2 to CO
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja409445p
– volume: 192
  start-page: 179
  year: 2012
  ident: ref_18
  article-title: Optimization of Anaerobic Acidogenesis by Adding Fe0 Powder to Enhance Anaerobic Wastewater Treatment
  publication-title: J. Chem. Eng.
  doi: 10.1016/j.cej.2012.03.044
– volume: 3
  start-page: 100227
  year: 2024
  ident: ref_12
  article-title: A Comprehensive Review on Catalysts for Seawater Electrolysis
  publication-title: Adv. Powder Mater.
  doi: 10.1016/j.apmate.2024.100227
– volume: 3
  start-page: 100224
  year: 2024
  ident: ref_45
  article-title: Targeted Doping Induces Interfacial Orientation for Constructing Surface-Functionalized Schottky Junctions to Coordinate Redox Reactions in Water Electrolysis
  publication-title: Adv. Powder Mater.
  doi: 10.1016/j.apmate.2024.100224
– volume: 264
  start-page: 114700
  year: 2020
  ident: ref_51
  article-title: Efficient Hydrogen Recovery with CoP-NF as Cathode in Microbial Electrolysis Cells
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114700
– volume: 14
  start-page: 57
  year: 2008
  ident: ref_14
  article-title: Recent Developments in Biological Hydrogen Production Processes
  publication-title: Chem. Ind. Chem. Eng. Q.
  doi: 10.2298/CICEQ0802057D
SSID ssj0000913815
Score 2.3343878
Snippet Hydrogen energy has emerged as a pivotal clean energy solution due to its sustainability and zero-emission potential. Microbial electrolysis cells are a...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Index Database
StartPage 439
SubjectTerms Alloys
Alternative energy sources
Carbon
Catalysts
Cathodes
Charge transfer
Clean energy
Cobalt
Current density
Efficiency
Electrochemical analysis
Electrolysis
Electrolytes
Electrolytic cells
Energy consumption
Energy industry
Energy resources
Fermentation
Force and energy
Fossil fuels
Green technology
Hydrogen
Hydrogen as fuel
Hydrogen evolution reactions
Hydrogen production
Metals
Microorganisms
Molybdenum
Molybdenum alloys
Nickel
Renewable resources
Spectrum analysis
Stainless steel
Technology application
Title CoMo/SS Cathode Catalyst for Enhanced Hydrogen Production in Microbial Electrolysis Cells
URI https://www.proquest.com/docview/3211927507
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFB60PehFXLFayxxET6FZmkzmJDW0FqGlWAv1FCazYKEktY0H_73vZVEK4imHgQx8M_O2efN9hNzaQkqmIC0xEFujhBm3EiEDC3wjOHiZcFZ2-U6C0bz3vPAXVcFtW7VV1jaxMNQqk1gj73pIRYZk5Oxh_WGhahTerlYSGvukCSY4hOSr-TiYTF9-qizIehk6fkmu6UF-X74IhygImbv4jjP62yQXfmZ4TI6qAJH2yxU9IXs6PSUHUa3LdkbeomycdWczio_3MqXxi8QiOYX4kw7S9-JOn46-1CaD3UGnJacr4E-XKR0vC-YlmGFQCuAUlCQ00qvV9pzMh4PXaGRVAgmWhHOZWzyxJZPM7jmJUYYbN-DCMRyCIBYwZZzAFsrzTCgczZTi6Ipdl2tHiR4LUNnlgjTSLNWXhDLjJMJzbRn4BjI2nycAuGbaeK6BvzktclcjFa9LHowY8geENN6BtEXuEccYz0e-EVJUbf4wDTJNxf0QGdMgqwtbpF1DHVcHZxv_LvPV_8PX5NBFKd6i97BNGvnmU99AfJAnHbIfDp861Vb4BuY_uzA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58HPQiPrE-9-DjFJpHm80eRKS2Vm2LoIKe4mYfKEiibUT8U_5GZ5JGEcRbTzks7MLstzszm5nvA9hzpVJcY1piMbYmCTPhJFKFDvpGdPAqEbys8h2E3dvGxV3zbgo-q14YKqus7sTiotaZojfyekBUZERGzo9fXh1SjaK_q5WERgmLS_Pxjinb6Oj8FPd33_c77ZtW1xmrCjgKwZw7InEVV9xteInVVlg_FNKzAiMHHnJtvdCVOghsJD3DtRbkv3xfGE_LBg9JDgXnnYbZRhAIOlFR5-z7TYc4NiOvWVJ54rhb9p9jzEU8YeKX6_vbARRerbMIC-NwlJ2U-FmCKZMuw1yrUoFbgftW1s_q19eMWgUzbehLNCY5w2iXtdPHooKAdT_0MEMssquSQRZ3mz2lrP9U8DzhCu1SbqcgQGEt8_w8WoXbiRhuDWbSLDXrwLj1Ehn4rgqbFvPDpkhwew03NvAtzubV4KCyVPxSsm7EmK2QSeNfJq3BIdkxptOYD6WS46YCXIZ4reKTiPjZMIeMarBVmToeH9NR_AOqjf-Hd2Gue9Pvxb3zweUmzPskAlxUPW7BTD58M9sYmeTJTgEHBg-Txt8XivD03g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6lQWp7qYC2aiiPPRR6suJH4vUeEIKQKDQQRU0jpSd3vQ8VCdmQGCH-Gr-OGT9AkRA3Tj6stCvNfrszs575PoAfrlSKa0xLLMbWJGEmnESq0EHfiA5eJYKXVb7jcDjr_Jp35w14qHthqKyyvhOLi1pnit7I2wFRkREZOW_bqixicjo4ur5xSEGK_rTWcholREbm_g7Tt-Xh2Snu9b7vD_p_ekOnUhhwFAI7d0TiKq642_ESq62wfiikZwVGETzk2nqhK3UQ2Eh6hmstyJf5vjCelh0ekjQKzvsO1jhmRW4T1k7648nvpxceYtyMvG5J7BkEwi270TECI9YwseIIX3YHhY8brMOnKjhlxyWaNqBh0k340Ks14T7D3152kbWnU0aNg5k29CVSk5xh7Mv66f-inoAN7_UiQ2SySckni3vPLlN2cVmwPuEK_VJ8p6BDYT1zdbX8ArM3Md1XaKZZar4B49ZLZOC7KuxazBa7IsHNNtzYwLc4m9eCg9pS8XXJwRFj7kImjVdM2oKfZMeYzma-kEpWLQa4DLFcxccRsbVhRhm1YLs2dVwd2mX8DLGt14f34D1iLz4_G4--w0efFIGLEshtaOaLW7ODYUqe7FZ4YPDvrSH4COFi-nA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CoMo%2FSS+Cathode+Catalyst+for+Enhanced+Hydrogen+Production+in+Microbial+Electrolysis+Cells&rft.jtitle=Catalysts&rft.au=Gao%2C+Lei&rft.au=Wang+Yaoqiang&rft.au=Xiao%2C+Gang&rft.au=Su+Haijia&rft.date=2025-05-01&rft.pub=MDPI+AG&rft.eissn=2073-4344&rft.volume=15&rft.issue=5&rft.spage=439&rft_id=info:doi/10.3390%2Fcatal15050439&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4344&client=summon