CoMo/SS Cathode Catalyst for Enhanced Hydrogen Production in Microbial Electrolysis Cells
Hydrogen energy has emerged as a pivotal clean energy solution due to its sustainability and zero-emission potential. Microbial electrolysis cells are a promising technology for renewable hydrogen production, typically relying on expensive and unstable Pt/C catalysts for the hydrogen evolution react...
Saved in:
Published in | Catalysts Vol. 15; no. 5; p. 439 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen energy has emerged as a pivotal clean energy solution due to its sustainability and zero-emission potential. Microbial electrolysis cells are a promising technology for renewable hydrogen production, typically relying on expensive and unstable Pt/C catalysts for the hydrogen evolution reaction (HER). To address these limitations, this study develops a cost-effective and durable alternative approach. A cobalt–molybdenum (Co-Mo) alloy catalyst (denoted as CoMo/SS) was synthesized via a one-step electrodeposition method on 1000-mesh 316L stainless steel at a current density of 30 mA·cm−2 for 80 min, using an electrolyte with a Co-to-Mo ratio of 1:1. The electrochemical properties and hydrogen evolution performance of this catalyst in a microbial electrolysis cell were evaluated. Key results demonstrate that the CoMo/SS catalyst achieves a good catalytic performance of hydrogen evolution. The CoMo/SS cathode catalyst only requires an overpotential of 91.70 mV (vs. RHE) to reach a current density of 10 mA·cm−2 in 1 mol·L−1 KOH, with favorable kinetics, evidenced by a reduced Tafel slope of 104.10 mV·dec−1, enhanced charge transfer with a charge transfer resistance of 4.56 Ω, and a double-layer capacitance of 34.73 mF·cm−2. Under an applied voltage of 0.90 V, the CoMo/SS cathode exhibited a hydrogen production rate of 1.12 m3·m−3·d−1, representing a 33.33% improvement over bare SS mesh. This performance highlights the catalyst’s potential as a viable Pt/C substitute for scalable MEC applications. |
---|---|
AbstractList | Hydrogen energy has emerged as a pivotal clean energy solution due to its sustainability and zero-emission potential. Microbial electrolysis cells are a promising technology for renewable hydrogen production, typically relying on expensive and unstable Pt/C catalysts for the hydrogen evolution reaction (HER). To address these limitations, this study develops a cost-effective and durable alternative approach. A cobalt–molybdenum (Co-Mo) alloy catalyst (denoted as CoMo/SS) was synthesized via a one-step electrodeposition method on 1000-mesh 316L stainless steel at a current density of 30 mA·cm[sup.−2] for 80 min, using an electrolyte with a Co-to-Mo ratio of 1:1. The electrochemical properties and hydrogen evolution performance of this catalyst in a microbial electrolysis cell were evaluated. Key results demonstrate that the CoMo/SS catalyst achieves a good catalytic performance of hydrogen evolution. The CoMo/SS cathode catalyst only requires an overpotential of 91.70 mV (vs. RHE) to reach a current density of 10 mA·cm[sup.−2] in 1 mol·L[sup.−1] KOH, with favorable kinetics, evidenced by a reduced Tafel slope of 104.10 mV·dec[sup.−1], enhanced charge transfer with a charge transfer resistance of 4.56 Ω, and a double-layer capacitance of 34.73 mF·cm[sup.−2]. Under an applied voltage of 0.90 V, the CoMo/SS cathode exhibited a hydrogen production rate of 1.12 m[sup.3]·m[sup.−3]·d[sup.−1], representing a 33.33% improvement over bare SS mesh. This performance highlights the catalyst’s potential as a viable Pt/C substitute for scalable MEC applications. Hydrogen energy has emerged as a pivotal clean energy solution due to its sustainability and zero-emission potential. Microbial electrolysis cells are a promising technology for renewable hydrogen production, typically relying on expensive and unstable Pt/C catalysts for the hydrogen evolution reaction (HER). To address these limitations, this study develops a cost-effective and durable alternative approach. A cobalt–molybdenum (Co-Mo) alloy catalyst (denoted as CoMo/SS) was synthesized via a one-step electrodeposition method on 1000-mesh 316L stainless steel at a current density of 30 mA·cm−2 for 80 min, using an electrolyte with a Co-to-Mo ratio of 1:1. The electrochemical properties and hydrogen evolution performance of this catalyst in a microbial electrolysis cell were evaluated. Key results demonstrate that the CoMo/SS catalyst achieves a good catalytic performance of hydrogen evolution. The CoMo/SS cathode catalyst only requires an overpotential of 91.70 mV (vs. RHE) to reach a current density of 10 mA·cm−2 in 1 mol·L−1 KOH, with favorable kinetics, evidenced by a reduced Tafel slope of 104.10 mV·dec−1, enhanced charge transfer with a charge transfer resistance of 4.56 Ω, and a double-layer capacitance of 34.73 mF·cm−2. Under an applied voltage of 0.90 V, the CoMo/SS cathode exhibited a hydrogen production rate of 1.12 m3·m−3·d−1, representing a 33.33% improvement over bare SS mesh. This performance highlights the catalyst’s potential as a viable Pt/C substitute for scalable MEC applications. |
Audience | Academic |
Author | Wang, Yaoqiang Lei, Gao Xiao, Gang Su, Haijia |
Author_xml | – sequence: 1 givenname: Gao orcidid: 0009-0008-2937-9700 surname: Lei fullname: Lei, Gao – sequence: 2 givenname: Yaoqiang surname: Wang fullname: Wang, Yaoqiang – sequence: 3 givenname: Gang orcidid: 0000-0002-0635-8965 surname: Xiao fullname: Xiao, Gang – sequence: 4 givenname: Haijia surname: Su fullname: Su, Haijia |
BookMark | eNpVUE1PAjEQbQwmInL03sTzQrvtbrdHskExgWiCHjxtSj-gpLTYLgf-vSV40JnDm0zem8l792Dgg9cAPGI0IYSjqRS9cLhCFaKE34BhiRgpKKF08Ge-A-OU9igXx6TB1RB8tWEVpus1bEW_C0pfULhz6qEJEc79TnipFVycVQxb7eF7DOokexs8tB6urIxhY4WDc6dlH0NW2gRb7Vx6ALdGuKTHvzgCn8_zj3ZRLN9eXtvZspAE4b7gGySZZIjijVGGm7LmAhteVZjVTBlcI6EIMY3AminF6xrTsuQaK0FZnVlkBJ6ud48xfJ906rt9OEWfX3akxJiXrMr2R2ByZW2F0531JvRRyNxKH6zMURqb97OGElJShJssKK6C7DClqE13jPYg4rnDqLsk3v1LnPwA_5F0lA |
Cites_doi | 10.1016/j.eehl.2022.04.004 10.1002/adfm.201804600 10.1038/s41598-020-76694-y 10.1016/j.ijhydene.2006.06.004 10.1016/j.seppur.2021.118474 10.1007/s40195-018-0715-7 10.1016/j.psep.2024.08.032 10.1016/j.ijhydene.2010.11.114 10.1016/j.jmst.2016.08.010 10.1016/j.elecom.2009.11.017 10.1021/sc400046y 10.1039/C4TA02254H 10.1016/j.rser.2015.12.112 10.1016/j.ijhydene.2009.08.011 10.1016/j.ijhydene.2012.11.031 10.1016/j.tibtech.2023.12.010 10.1007/s40195-018-0785-6 10.1039/D3DT02467A 10.1016/j.ijhydene.2013.04.116 10.1016/j.nanoen.2021.106649 10.1002/adfm.202006484 10.1016/S0013-4686(00)00523-5 10.1016/j.ijhydene.2009.11.014 10.1021/jacs.9b10809 10.1002/sus2.75 10.1016/j.jpowsour.2008.12.144 10.1021/es801553z 10.1016/j.bioelechem.2009.05.005 10.1039/C5CS00434A 10.1002/adma.201500821 10.1039/D1TA04193B 10.1016/j.biortech.2019.01.020 10.1016/j.ijhydene.2019.05.018 10.1016/j.jpowsour.2015.09.108 10.1016/j.biortech.2012.06.115 10.1016/j.ijhydene.2014.06.055 10.1016/j.ijhydene.2018.01.010 10.1002/adma.201703311 10.1021/ja409445p 10.1016/j.cej.2012.03.044 10.1016/j.apmate.2024.100227 10.1016/j.apmate.2024.100224 10.1016/j.apenergy.2020.114700 10.2298/CICEQ0802057D |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/catal15050439 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2073-4344 |
ExternalDocumentID | A843324018 10_3390_catal15050439 |
GeographicLocations | Massachusetts China |
GeographicLocations_xml | – name: China – name: Massachusetts |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION D1I ESX HCIFZ IAO ITC KB. KQ8 MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c301t-9b0c7c7041bfdf9f269a1f9551767df160ad33f8a1e7dd96614229e1da4765513 |
IEDL.DBID | BENPR |
ISSN | 2073-4344 |
IngestDate | Fri Jul 25 09:47:02 EDT 2025 Tue Jun 17 03:40:59 EDT 2025 Tue Aug 05 12:02:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c301t-9b0c7c7041bfdf9f269a1f9551767df160ad33f8a1e7dd96614229e1da4765513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0008-2937-9700 0000-0002-0635-8965 |
OpenAccessLink | https://www.proquest.com/docview/3211927507?pq-origsite=%requestingapplication% |
PQID | 3211927507 |
PQPubID | 2032420 |
ParticipantIDs | proquest_journals_3211927507 gale_infotracacademiconefile_A843324018 crossref_primary_10_3390_catal15050439 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Catalysts |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Yang (ref_45) 2024; 3 Zhang (ref_6) 2021; 9 Jafary (ref_24) 2019; 44 Rathinam (ref_25) 2019; 277 Conway (ref_39) 2000; 45 Liu (ref_28) 2015; 39 Zhang (ref_15) 2007; 32 Wang (ref_38) 2021; 40 Wu (ref_47) 2021; 31 Chai (ref_23) 2022; 2 Swaminathan (ref_26) 2024; 190 Fu (ref_21) 2013; 38 Xu (ref_2) 2022; 1 Kundu (ref_37) 2013; 38 Bo (ref_29) 2014; 042 Zhang (ref_44) 2018; 28 Yang (ref_41) 2019; 141 Zhao (ref_31) 2019; 44 Wang (ref_40) 2023; 52 Zhu (ref_17) 2014; 39 Dai (ref_20) 2019; 32 Ramsurn (ref_16) 2013; 1 Zhao (ref_5) 2022; 1 Poudyal (ref_1) 2021; 4 Zheng (ref_3) 2015; 27 Wang (ref_11) 2018; 31 Liang (ref_51) 2020; 264 Jeremiasse (ref_52) 2010; 78 ref_36 Huang (ref_50) 2011; 36 Munoz (ref_33) 2010; 12 Liu (ref_18) 2012; 192 Qi (ref_53) 2016; 5 Selembo (ref_30) 2010; 35 Shi (ref_43) 2016; 45 Hou (ref_48) 2014; 2 Selembo (ref_32) 2009; 190 Logan (ref_35) 2008; 42 Das (ref_14) 2008; 14 Li (ref_12) 2024; 3 Liu (ref_19) 2012; 121 Hu (ref_49) 2009; 34 Hosseini (ref_13) 2016; 57 Zhao (ref_42) 2022; 91 Zhang (ref_7) 2021; 265 Chen (ref_46) 2017; 29 Zhu (ref_4) 2013; 135 Kim (ref_10) 2016; 32 Su (ref_34) 2016; 301 Zhong (ref_27) 2015; 03 Noori (ref_22) 2024; 42 ref_9 ref_8 |
References_xml | – volume: 1 start-page: 53 year: 2022 ident: ref_5 article-title: Global Climate Change and Human Health: Pathways and Possible Solutions publication-title: Eco-Environ. Health doi: 10.1016/j.eehl.2022.04.004 – ident: ref_9 – volume: 5 start-page: 2033 year: 2016 ident: ref_53 article-title: Selective inhibition of methanogens using 2-bromoethanesulfonate for improvement of acetate production from CO2 in bioelectrochemical systems publication-title: CIESC J. – volume: 28 start-page: 1804600 year: 2018 ident: ref_44 article-title: General Construction of Molybdenum-Based Nanowire Arrays for pH-Universal Hydrogen Evolution Electrocatalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804600 – ident: ref_36 doi: 10.1038/s41598-020-76694-y – volume: 32 start-page: 17 year: 2007 ident: ref_15 article-title: Enhancement Effect of Gold Nanoparticles on Biohydrogen Production from Artificial Wastewater publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.06.004 – volume: 40 start-page: 5523 year: 2021 ident: ref_38 article-title: Progress of electrocatalytic hydrogen evolution reaction catalysts publication-title: Chem. Eng. Prog. – volume: 265 start-page: 118474 year: 2021 ident: ref_7 article-title: Melamine-Cyanurate Supramolecule Induced Graphitic N-Rich Graphene for Singlet Oxygen-Dominated Peroxymonosulfate Activation to Efficiently Degrade Organic Pollutants publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.118474 – volume: 31 start-page: 431 year: 2018 ident: ref_11 article-title: Enhanced Thermochemical H2 Production on Ca-Doped Lanthanum Manganite Perovskites Through Optimizing the Dopant Level and Re-Oxidation Temperature publication-title: Acta Metall. Sin. (Engl. Lett.) doi: 10.1007/s40195-018-0715-7 – volume: 190 start-page: 458 year: 2024 ident: ref_26 article-title: A Comprehensive Review of Microbial Electrolysis Cells: Integrated for Wastewater Treatment and Hydrogen Generation publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2024.08.032 – volume: 36 start-page: 2773 year: 2011 ident: ref_50 article-title: A New Cathodic Electrode Deposit with Palladium Nanoparticles for Cost-Effective Hydrogen Production in a Microbial Electrolysis Cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.11.114 – volume: 32 start-page: 1059 year: 2016 ident: ref_10 article-title: Effect of ZnO Electrodeposited on Carbon Film and Decorated with Metal Nanoparticles for Solar Hydrogen Production publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2016.08.010 – volume: 12 start-page: 183 year: 2010 ident: ref_33 article-title: Combining Phosphate Species and Stainless Steel Cathode to Enhance Hydrogen Evolution in Microbial Electrolysis Cell (MEC) publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.11.017 – volume: 1 start-page: 779 year: 2013 ident: ref_16 article-title: Nanotechnology in Solar and Biofuels publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/sc400046y – volume: 2 start-page: 13795 year: 2014 ident: ref_48 article-title: A 3D Hybrid of Layered MoS2/Nitrogen-Doped Graphene Nanosheet Aerogels: An Effective Catalyst for Hydrogen Evolution in Microbial Electrolysis Cells publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02254H – volume: 57 start-page: 850 year: 2016 ident: ref_13 article-title: Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.112 – volume: 34 start-page: 8535 year: 2009 ident: ref_49 article-title: Hydrogen Production in Single-Chamber Tubular Microbial Electrolysis Cells Using Non-Precious-Metal Catalysts publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.08.011 – volume: 38 start-page: 1745 year: 2013 ident: ref_37 article-title: An Overview of Cathode Material and Catalysts Suitable for Generating Hydrogen in Microbial Electrolysis Cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.11.031 – ident: ref_8 – volume: 42 start-page: 815 year: 2024 ident: ref_22 article-title: Hydrogen Production in Microbial Electrolysis Cells with Biocathodes publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2023.12.010 – volume: 32 start-page: 297 year: 2019 ident: ref_20 article-title: Hydrogen Production Using “Direct-Starting” Biocathode Microbial Electrolysis Cell and the Analysis of Microbial Communities publication-title: Acta Metall. Sin. (Engl. Lett.) doi: 10.1007/s40195-018-0785-6 – volume: 52 start-page: 15091 year: 2023 ident: ref_40 article-title: MnOxHy-Modified CoMoP/NF Nanosheet Arrays as Hydrogen Evolution Reaction and Oxygen Evolution Reaction Bifunctional Catalysts under Alkaline Conditions publication-title: Dalton Trans. doi: 10.1039/D3DT02467A – volume: 38 start-page: 15638 year: 2013 ident: ref_21 article-title: Bioelectrochemical Analyses of a Thermophilic Biocathode Catalyzing Sustainable Hydrogen Production publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.04.116 – volume: 4 start-page: 100024 year: 2021 ident: ref_1 article-title: Environmental Sustainability in Cement Industry: An Integrated Approach for Green and Economical Cement Production publication-title: Resour. Environ. Sustain. – volume: 03 start-page: 132 year: 2015 ident: ref_27 article-title: The influence of different layers of carbon paper on the electricity generation in MFC publication-title: New Chem. Mater. – volume: 91 start-page: 106649 year: 2022 ident: ref_42 article-title: High-Performance and Long-Cycle Life of Triboelectric Nanogenerator Using PVC/MoS2 Composite Membranes for Wind Energy Scavenging Application publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106649 – volume: 31 start-page: 2006484 year: 2021 ident: ref_47 article-title: Heterogeneous Bimetallic Phosphide Ni2P-Fe2P as an Efficient Bifunctional Catalyst for Water/Seawater Splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006484 – volume: 45 start-page: 4075 year: 2000 ident: ref_39 article-title: Relation of Energies and Coverages of Underpotential and Overpotential Deposited H at Pt and Other Metals to the ‘Volcano Curve’ for Cathodic H2 Evolution Kinetics publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(00)00523-5 – volume: 35 start-page: 428 year: 2010 ident: ref_30 article-title: Hydrogen Production with Nickel Powder Cathode Catalysts in Microbial Electrolysis Cells publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.11.014 – volume: 141 start-page: 19241 year: 2019 ident: ref_41 article-title: Cobalt-Based Nitride-Core Oxide-Shell Oxygen Reduction Electrocatalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b10809 – volume: 2 start-page: 392 year: 2022 ident: ref_23 article-title: Recent Progress on Rational Design of Catalysts for Fermentative Hydrogen Production publication-title: SusMat doi: 10.1002/sus2.75 – volume: 190 start-page: 271 year: 2009 ident: ref_32 article-title: The Use of Stainless Steel and Nickel Alloys as Low-Cost Cathodes in Microbial Electrolysis Cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.12.144 – volume: 39 start-page: 1661 year: 2015 ident: ref_28 article-title: Electricity generation of MFCs with graphite fiber brush and carbon cloth anode publication-title: J. Power Sources – volume: 42 start-page: 8630 year: 2008 ident: ref_35 article-title: Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter publication-title: Environ. Sci. Technol. doi: 10.1021/es801553z – volume: 78 start-page: 39 year: 2010 ident: ref_52 article-title: Microbial Electrolysis Cell with a Microbial Biocathode publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2009.05.005 – volume: 45 start-page: 1529 year: 2016 ident: ref_43 article-title: Recent Advances in Transition Metal Phosphide Nanomaterials: Synthesis and Applications in Hydrogen Evolution Reaction publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00434A – volume: 27 start-page: 5372 year: 2015 ident: ref_3 article-title: Engineering of Carbon-Based Electrocatalysts for Emerging Energy Conversion: From Fundamentality to Functionality publication-title: Adv. Mater. doi: 10.1002/adma.201500821 – volume: 9 start-page: 17366 year: 2021 ident: ref_6 article-title: Two-Step Assembly Induced Fe0-Anchored Graphitic N-Rich Graphene with Biactive Centers for Enhanced Heterogeneous Peroxymonosulfate Activation publication-title: J. Mater. Chem. A doi: 10.1039/D1TA04193B – volume: 277 start-page: 171 year: 2019 ident: ref_25 article-title: Thermophiles for Biohydrogen Production in Microbial Electrolytic Cells publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.01.020 – volume: 44 start-page: 28841 year: 2019 ident: ref_31 article-title: Process Kinetics for the Electrocatalytic Hydrogen Evolution Reaction on Carbon-Based Ni/NiO Nanocomposite in a Single-Chamber Microbial Electrolysis Cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.018 – volume: 301 start-page: 29 year: 2016 ident: ref_34 article-title: Hydrogen Production in Single Chamber Microbial Electrolysis Cells with Stainless Steel Fiber Felt Cathodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.09.108 – volume: 121 start-page: 148 year: 2012 ident: ref_19 article-title: Enhanced Azo Dye Wastewater Treatment in a Two-Stage Anaerobic System with Fe0 Dosing publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.06.115 – volume: 39 start-page: 19331 year: 2014 ident: ref_17 article-title: Enhanced Dark Fermentative Hydrogen Production under the Effect of Zero-Valent Iron Shavings publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.06.055 – volume: 1 start-page: 31 year: 2022 ident: ref_2 article-title: Environmental Pollution, a Hidden Culprit for Health Issues publication-title: EEH – volume: 042 start-page: 126 year: 2014 ident: ref_29 article-title: Research on producing electricity characteristics of wastewater microbial fuel cell anode carbon felt publication-title: New Chem. Mater. – volume: 44 start-page: 30524 year: 2019 ident: ref_24 article-title: Clean Hydrogen Production in a Full Biological Microbial Electrolysis Cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.01.010 – volume: 29 start-page: 1703311 year: 2017 ident: ref_46 article-title: Self-Templated Fabrication of MoNi4/MoO3-x Nanorod Arrays with Dual Active Components for Highly Efficient Hydrogen Evolution publication-title: Adv. Mat. doi: 10.1002/adma.201703311 – volume: 135 start-page: 16833 year: 2013 ident: ref_4 article-title: Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of CO2 to CO publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409445p – volume: 192 start-page: 179 year: 2012 ident: ref_18 article-title: Optimization of Anaerobic Acidogenesis by Adding Fe0 Powder to Enhance Anaerobic Wastewater Treatment publication-title: J. Chem. Eng. doi: 10.1016/j.cej.2012.03.044 – volume: 3 start-page: 100227 year: 2024 ident: ref_12 article-title: A Comprehensive Review on Catalysts for Seawater Electrolysis publication-title: Adv. Powder Mater. doi: 10.1016/j.apmate.2024.100227 – volume: 3 start-page: 100224 year: 2024 ident: ref_45 article-title: Targeted Doping Induces Interfacial Orientation for Constructing Surface-Functionalized Schottky Junctions to Coordinate Redox Reactions in Water Electrolysis publication-title: Adv. Powder Mater. doi: 10.1016/j.apmate.2024.100224 – volume: 264 start-page: 114700 year: 2020 ident: ref_51 article-title: Efficient Hydrogen Recovery with CoP-NF as Cathode in Microbial Electrolysis Cells publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114700 – volume: 14 start-page: 57 year: 2008 ident: ref_14 article-title: Recent Developments in Biological Hydrogen Production Processes publication-title: Chem. Ind. Chem. Eng. Q. doi: 10.2298/CICEQ0802057D |
SSID | ssj0000913815 |
Score | 2.3343878 |
Snippet | Hydrogen energy has emerged as a pivotal clean energy solution due to its sustainability and zero-emission potential. Microbial electrolysis cells are a... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Index Database |
StartPage | 439 |
SubjectTerms | Alloys Alternative energy sources Carbon Catalysts Cathodes Charge transfer Clean energy Cobalt Current density Efficiency Electrochemical analysis Electrolysis Electrolytes Electrolytic cells Energy consumption Energy industry Energy resources Fermentation Force and energy Fossil fuels Green technology Hydrogen Hydrogen as fuel Hydrogen evolution reactions Hydrogen production Metals Microorganisms Molybdenum Molybdenum alloys Nickel Renewable resources Spectrum analysis Stainless steel Technology application |
Title | CoMo/SS Cathode Catalyst for Enhanced Hydrogen Production in Microbial Electrolysis Cells |
URI | https://www.proquest.com/docview/3211927507 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFB60PehFXLFayxxET6FZmkzmJDW0FqGlWAv1FCazYKEktY0H_73vZVEK4imHgQx8M_O2efN9hNzaQkqmIC0xEFujhBm3EiEDC3wjOHiZcFZ2-U6C0bz3vPAXVcFtW7VV1jaxMNQqk1gj73pIRYZk5Oxh_WGhahTerlYSGvukCSY4hOSr-TiYTF9-qizIehk6fkmu6UF-X74IhygImbv4jjP62yQXfmZ4TI6qAJH2yxU9IXs6PSUHUa3LdkbeomycdWczio_3MqXxi8QiOYX4kw7S9-JOn46-1CaD3UGnJacr4E-XKR0vC-YlmGFQCuAUlCQ00qvV9pzMh4PXaGRVAgmWhHOZWzyxJZPM7jmJUYYbN-DCMRyCIBYwZZzAFsrzTCgczZTi6Ipdl2tHiR4LUNnlgjTSLNWXhDLjJMJzbRn4BjI2nycAuGbaeK6BvzktclcjFa9LHowY8geENN6BtEXuEccYz0e-EVJUbf4wDTJNxf0QGdMgqwtbpF1DHVcHZxv_LvPV_8PX5NBFKd6i97BNGvnmU99AfJAnHbIfDp861Vb4BuY_uzA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58HPQiPrE-9-DjFJpHm80eRKS2Vm2LoIKe4mYfKEiibUT8U_5GZ5JGEcRbTzks7MLstzszm5nvA9hzpVJcY1piMbYmCTPhJFKFDvpGdPAqEbys8h2E3dvGxV3zbgo-q14YKqus7sTiotaZojfyekBUZERGzo9fXh1SjaK_q5WERgmLS_Pxjinb6Oj8FPd33_c77ZtW1xmrCjgKwZw7InEVV9xteInVVlg_FNKzAiMHHnJtvdCVOghsJD3DtRbkv3xfGE_LBg9JDgXnnYbZRhAIOlFR5-z7TYc4NiOvWVJ54rhb9p9jzEU8YeKX6_vbARRerbMIC-NwlJ2U-FmCKZMuw1yrUoFbgftW1s_q19eMWgUzbehLNCY5w2iXtdPHooKAdT_0MEMssquSQRZ3mz2lrP9U8DzhCu1SbqcgQGEt8_w8WoXbiRhuDWbSLDXrwLj1Ehn4rgqbFvPDpkhwew03NvAtzubV4KCyVPxSsm7EmK2QSeNfJq3BIdkxptOYD6WS46YCXIZ4reKTiPjZMIeMarBVmToeH9NR_AOqjf-Hd2Gue9Pvxb3zweUmzPskAlxUPW7BTD58M9sYmeTJTgEHBg-Txt8XivD03g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6lQWp7qYC2aiiPPRR6suJH4vUeEIKQKDQQRU0jpSd3vQ8VCdmQGCH-Gr-OGT9AkRA3Tj6stCvNfrszs575PoAfrlSKa0xLLMbWJGEmnESq0EHfiA5eJYKXVb7jcDjr_Jp35w14qHthqKyyvhOLi1pnit7I2wFRkREZOW_bqixicjo4ur5xSEGK_rTWcholREbm_g7Tt-Xh2Snu9b7vD_p_ekOnUhhwFAI7d0TiKq642_ESq62wfiikZwVGETzk2nqhK3UQ2Eh6hmstyJf5vjCelh0ekjQKzvsO1jhmRW4T1k7648nvpxceYtyMvG5J7BkEwi270TECI9YwseIIX3YHhY8brMOnKjhlxyWaNqBh0k340Ks14T7D3152kbWnU0aNg5k29CVSk5xh7Mv66f-inoAN7_UiQ2SySckni3vPLlN2cVmwPuEK_VJ8p6BDYT1zdbX8ArM3Md1XaKZZar4B49ZLZOC7KuxazBa7IsHNNtzYwLc4m9eCg9pS8XXJwRFj7kImjVdM2oKfZMeYzma-kEpWLQa4DLFcxccRsbVhRhm1YLs2dVwd2mX8DLGt14f34D1iLz4_G4--w0efFIGLEshtaOaLW7ODYUqe7FZ4YPDvrSH4COFi-nA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CoMo%2FSS+Cathode+Catalyst+for+Enhanced+Hydrogen+Production+in+Microbial+Electrolysis+Cells&rft.jtitle=Catalysts&rft.au=Gao%2C+Lei&rft.au=Wang+Yaoqiang&rft.au=Xiao%2C+Gang&rft.au=Su+Haijia&rft.date=2025-05-01&rft.pub=MDPI+AG&rft.eissn=2073-4344&rft.volume=15&rft.issue=5&rft.spage=439&rft_id=info:doi/10.3390%2Fcatal15050439&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4344&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4344&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4344&client=summon |