Type-I two-Higgs-doublet model and gravitational waves from domain walls bounded by strings
A bstract The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by cosmic strings . The decay of this defect network leads to a unique gravitational wave signal spanning many orders in observable frequencies, t...
Saved in:
Published in | The journal of high energy physics Vol. 2024; no. 8; pp. 237 - 25 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
30.08.2024
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of
domain walls bounded by cosmic strings
. The decay of this defect network leads to a unique gravitational wave signal spanning many orders in observable frequencies, that can be distinguished from signals generated by other sources. We investigate the production of gravitational waves from this mechanism in the context of the type-I two-Higgs-doublet model extended by a U(1)
R
symmetry, that simultaneously accommodates the seesaw mechanism, anomaly cancellation, and eliminates flavour-changing neutral currents. The gravitational wave spectrum produced by the string-bounded-wall network can be detected for U(1)
R
breaking scale from 10
12
to 10
15
GeV in forthcoming interferometers including LISA and Einstein Telescope, with a distinctive
f
3
slope and inflexion in the frequency range between microhertz and hertz. |
---|---|
AbstractList | The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by cosmic strings. The decay of this defect network leads to a unique gravitational wave signal spanning many orders in observable frequencies, that can be distinguished from signals generated by other sources. We investigate the production of gravitational waves from this mechanism in the context of the type-I two-Higgs-doublet model extended by a U(1)R symmetry, that simultaneously accommodates the seesaw mechanism, anomaly cancellation, and eliminates flavour-changing neutral currents. The gravitational wave spectrum produced by the string-bounded-wall network can be detected for U(1)R breaking scale from 1012 to 1015 GeV in forthcoming interferometers including LISA and Einstein Telescope, with a distinctive f3 slope and inflexion in the frequency range between microhertz and hertz. Abstract The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by cosmic strings. The decay of this defect network leads to a unique gravitational wave signal spanning many orders in observable frequencies, that can be distinguished from signals generated by other sources. We investigate the production of gravitational waves from this mechanism in the context of the type-I two-Higgs-doublet model extended by a U(1) R symmetry, that simultaneously accommodates the seesaw mechanism, anomaly cancellation, and eliminates flavour-changing neutral currents. The gravitational wave spectrum produced by the string-bounded-wall network can be detected for U(1) R breaking scale from 1012 to 1015 GeV in forthcoming interferometers including LISA and Einstein Telescope, with a distinctive f 3 slope and inflexion in the frequency range between microhertz and hertz. The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by cosmic strings . The decay of this defect network leads to a unique gravitational wave signal spanning many orders in observable frequencies, that can be distinguished from signals generated by other sources. We investigate the production of gravitational waves from this mechanism in the context of the type-I two-Higgs-doublet model extended by a U(1) R symmetry, that simultaneously accommodates the seesaw mechanism, anomaly cancellation, and eliminates flavour-changing neutral currents. The gravitational wave spectrum produced by the string-bounded-wall network can be detected for U(1) R breaking scale from 10 12 to 10 15 GeV in forthcoming interferometers including LISA and Einstein Telescope, with a distinctive f 3 slope and inflexion in the frequency range between microhertz and hertz. A bstract The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by cosmic strings . The decay of this defect network leads to a unique gravitational wave signal spanning many orders in observable frequencies, that can be distinguished from signals generated by other sources. We investigate the production of gravitational waves from this mechanism in the context of the type-I two-Higgs-doublet model extended by a U(1) R symmetry, that simultaneously accommodates the seesaw mechanism, anomaly cancellation, and eliminates flavour-changing neutral currents. The gravitational wave spectrum produced by the string-bounded-wall network can be detected for U(1) R breaking scale from 10 12 to 10 15 GeV in forthcoming interferometers including LISA and Einstein Telescope, with a distinctive f 3 slope and inflexion in the frequency range between microhertz and hertz. |
ArticleNumber | 237 |
Author | Fu, Bowen Rahat, Moinul Hossain Ghoshal, Anish King, Stephen F. |
Author_xml | – sequence: 1 givenname: Bowen orcidid: 0000-0003-2270-8352 surname: Fu fullname: Fu, Bowen organization: Tsung-Dao Lee Institute, Shanghai Jiao Tong University – sequence: 2 givenname: Anish orcidid: 0000-0001-7045-302X surname: Ghoshal fullname: Ghoshal, Anish organization: Institute of Theoretical Physics, Faculty of Physics, University of Warsaw – sequence: 3 givenname: Stephen F. orcidid: 0000-0002-4351-7507 surname: King fullname: King, Stephen F. organization: School of Physics & Astronomy, University of Southampton – sequence: 4 givenname: Moinul Hossain orcidid: 0000-0001-6371-6426 surname: Rahat fullname: Rahat, Moinul Hossain email: moinul.rahat@ific.uv.es organization: Instituto de Física Corpuscular, Universidad de Valencia and CSIC, Edificio Institutos Investigación |
BookMark | eNp1kU1P3DAQhq2KSnyUM1dLvcAhZSZOYvtYIWC3QqIHeuJgee1JlFU23tpZ0P57vKRqe-E0o9G8z3y8p-xoDCMxdoHwDQHk9Y_F7U9QlyWU1VUp5Cd2glDqQlVSH_2XH7PTlNYAWKOGE_b8tN9SseTTaygWfdelwofdaqCJb4KngdvR8y7al36yUx9GO_BX-0KJtzFsuA8b24-5MgyJr8Ju9OT5as_TFPuxS1_Y59YOic7_xDP26-726WZRPDzeL2--PxROAE6FEo2XTgrpFcqmIuFJgpOqqRGs83XeXBOSEoigbdtooVDVEiRSXYFS4owtZ64Pdm22sd_YuDfB9ua9EGJnbJx6N5CpnGqpLPUKpK80OlU3pa4zSQrnBOrM-jqztjH83lGazDrsYr47GQFa6TxRYO66nrtcDClFav9ORTAHN8zshjm4YbIbWQGzIm0Pv6H4j_uR5A3_g4uG |
Cites_doi | 10.1016/0550-3213(82)90135-3 10.1103/PhysRevD.8.1226 10.1088/0305-4470/9/8/029 10.1103/PhysRevD.59.102001 10.1007/JHEP01(2019)081 10.1103/PhysRevD.106.075030 10.1103/PhysRevD.67.075019 10.1088/0264-9381/23/15/008 10.1016/j.physletb.2024.138516 10.1016/j.cpc.2012.04.004 10.1007/JHEP04(2020)025 10.1103/PhysRevD.101.103508 10.1007/JHEP08(2011)020 10.1103/PhysRevD.96.115024 10.1103/PhysRevD.109.123014 10.1016/j.physrep.2012.02.002 10.1007/JHEP09(2023)036 10.1088/1475-7516/2023/04/009 10.1103/PhysRevD.79.083519 10.1007/JHEP12(2021)021 10.1007/JHEP01(2014)016 10.1103/PhysRevD.26.435 10.1111/j.1365-2966.2003.07176.x 10.1140/epjc/s10052-024-12574-3 10.1007/JHEP12(2014)024 10.1103/PhysRevD.106.075027 10.1088/1475-7516/2019/07/007 10.1103/PhysRevD.15.1966 10.1103/PhysRevLett.77.2879 10.1007/JHEP11(2022)061 10.1103/PhysRevD.73.064006 10.1088/1475-7516/2020/05/011 10.1103/PhysRevLett.118.151105 10.1103/PhysRevD.84.084004 10.1103/PhysRevD.79.123519 10.1007/978-1-4684-7197-7_15 10.1007/JHEP07(2018)007 10.1103/PhysRevD.15.1958 10.1140/epjc/s10052-017-5197-7 10.1007/JHEP08(2017)092 10.1088/1475-7516/2020/07/032 10.1007/JHEP11(2023)071 10.1103/PhysRevLett.131.231801 10.1007/JHEP10(2020)081 10.1093/mnras/stt207 10.1038/s41467-018-08204-8 10.1016/j.physletb.2012.09.019 10.1016/0370-2693(77)90435-X 10.1103/PhysRevLett.44.912 10.22323/1.405.0010 10.3390/universe3020040 10.1088/1475-7516/2020/04/034 10.1103/PhysRevResearch.2.043321 10.1007/JHEP05(2023)119 10.1103/PhysRevD.97.115007 10.1016/0370-2693(82)90829-2 10.1007/JHEP01(2021)045 10.1088/1475-7516/2023/02/026 10.22323/1.414.0529 10.1103/PhysRevD.31.3052 10.1016/j.ppnp.2017.03.001 10.1016/S0550-3213(02)00264-X 10.1103/PhysRevD.89.022001 10.1007/JHEP08(2020)131 10.1016/0550-3213(85)90022-7 10.5696/2156-9614-5-9.68 10.1007/JHEP11(2014)054 10.1016/j.physletb.2023.138127 10.1103/PhysRevD.73.042001 10.1103/PhysRevD.82.022002 10.22323/1.215.0037 10.1103/PhysRevD.47.2324 10.1103/PhysRevD.88.023516 10.1007/s10686-021-09709-9 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP08(2024)237 |
DatabaseName | SpringerOpen (Open Access) CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni Edition) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Access via ProQuest (Open Access) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen (Open Access) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 25 |
ExternalDocumentID | oai_doaj_org_article_4c8fe229b07d491c85629571e73cc319 10_1007_JHEP08_2024_237 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN AAYZJ ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBXF AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S1Z S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX CITATION ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c301t-836d7c737d81764e3de70c786510acd50299e1e831109af69381857071e540883 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 |
IngestDate | Mon Nov 25 20:31:34 EST 2024 Sun Nov 24 05:24:37 EST 2024 Wed Nov 27 12:55:56 EST 2024 Sun Nov 24 01:29:46 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Cosmology of Theories BSM Multi-Higgs Models Early Universe Particle Physics Phase Transitions in the Early Universe |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c301t-836d7c737d81764e3de70c786510acd50299e1e831109af69381857071e540883 |
ORCID | 0000-0001-6371-6426 0000-0001-7045-302X 0000-0003-2270-8352 0000-0002-4351-7507 |
OpenAccessLink | https://www.proquest.com/docview/3098954031?pq-origsite=%requestingapplication% |
PQID | 3098954031 |
PQPubID | 2034718 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4c8fe229b07d491c85629571e73cc319 proquest_journals_3098954031 crossref_primary_10_1007_JHEP08_2024_237 springer_journals_10_1007_JHEP08_2024_237 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-30 |
PublicationDateYYYYMMDD | 2024-08-30 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | Blanco-PilladoJJOlumKDStochastic gravitational wave background from smoothed cosmic string loopsPhys. Rev. D2017962017PhRvD..96j4046B386586310.1103/PhysRevD.96.104046[arXiv:1709.02693] [INSPIRE] T.W.B. Kibble, G. Lazarides and Q. Shafi, Strings in SO(10), Phys. Lett. B113 (1982) 237 [INSPIRE]. P. Minkowski, μ → eγ at a Rate of One Out of 109Muon Decays?, Phys. Lett. B67 (1977) 421 [INSPIRE]. WangYAnalysis of W± + 4γ in the 2HDM Type-I at the LHCJHEP2021120212021JHEP...12..021W10.1007/JHEP12(2021)021[arXiv:2107.01451] [INSPIRE] AdamsMRCornishNJDiscriminating between a Stochastic Gravitational Wave Background and Instrument NoisePhys. Rev. D2010822010PhRvD..82b2002A10.1103/PhysRevD.82.022002[arXiv:1002.1291] [INSPIRE] S. Kawamura et al., Current status of space gravitational wave antenna DECIGO and B-DECIGO, PTEP2021 (2021) 05A105 [arXiv:2006.13545] [INSPIRE]. SaikawaKA review of gravitational waves from cosmic domain wallsUniverse20173402017Univ....3...40S10.3390/universe3020040[arXiv:1703.02576] [INSPIRE] AfzalAShafiQTiwariAGravitational wave emission from metastable current-carrying strings in E6Phys. Lett. B202485010.1016/j.physletb.2024.138516[arXiv:2311.05564] [INSPIRE] RosadoPAGravitational wave background from binary systemsPhys. Rev. D2011842011PhRvD..84h4004R10.1103/PhysRevD.84.084004[arXiv:1106.5795] [INSPIRE] C. Cutler and J. Harms, BBO and the neutron-star-binary subtraction problem, Phys. Rev. D73 (2006) 042001 [gr-qc/0511092] [INSPIRE]. LiuWWangLZhangYDirect production of light scalars in the type-I two-Higgs-doublet model at the lifetime frontier of the LHCPhys. Rev. D202411010.1103/PhysRevD.110.015016[arXiv:2403.16623] [INSPIRE] GouttenoireYServantGSimakachornPBeyond the Standard Models with Cosmic StringsJCAP2020070322020JCAP...07..032G421064310.1088/1475-7516/2020/07/032[arXiv:1912.02569] [INSPIRE] AdamsMRCornishNJDetecting a Stochastic Gravitational Wave Background in the presence of a Galactic Foreground and Instrument NoisePhys. Rev. D2014892014PhRvD..89b2001A10.1103/PhysRevD.89.022001[arXiv:1307.4116] [INSPIRE] H. Kudoh, A. Taruya, T. Hiramatsu and Y. Himemoto, Detecting a gravitational-wave background with next-generation space interferometers, Phys. Rev. D73 (2006) 064006 [gr-qc/0511145] [INSPIRE]. E.W. Kolb and M.S. Turner, The early universe. Reprints, Addison-Wesley (1988) [INSPIRE]. ArhribAMulti-photon production in the Type-I 2HDMJHEP2018070072018JHEP...07..007A10.1007/JHEP07(2018)007[arXiv:1712.05332] [INSPIRE] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716 (2012) 1 [arXiv:1207.7214] [INSPIRE]. CepedaMReport from Working Group 2: Higgs Physics at the HL-LHC and HE-LHCCERN Yellow Rep. Monogr.20197221[arXiv:1902.00134] [INSPIRE] ZhuX-JHowellEJBlairDGZhuZ-HOn the gravitational wave background from compact binary coalescences in the band of ground-based interferometersMon. Not. Roy. Astron. Soc.20134318822013MNRAS.431..882Z10.1093/mnras/stt207[arXiv:1209.0595] [INSPIRE] MorettiSSemlaliSShepherd-ThemistocleousCHA novel experimental search channel for very light higgs bosons in the 2HDM type IEur. Phys. J. C2024842452024EPJC...84..245M10.1140/epjc/s10052-024-12574-3[arXiv:2207.03007] [INSPIRE] CuiYLewickiMMorrisseyDEWellsJDProbing the pre-BBN universe with gravitational waves from cosmic stringsJHEP2019010812019JHEP...01..081C10.1007/JHEP01(2019)081[arXiv:1808.08968] [INSPIRE] T.D. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D8 (1973) 1226 [INSPIRE]. LazaridesGMajiRShafiQSuperheavy quasistable strings and walls bounded by strings in the light of NANOGrav 15 year dataPhys. Rev. D20231082023PhRvD.108i5041L10.1103/PhysRevD.108.095041[arXiv:2306.17788] [INSPIRE] LazaridesGShafiQTiwariAComposite topological structures in SO(10)JHEP2023051192023JHEP...05..119L459017410.1007/JHEP05(2023)119[arXiv:2303.15159] [INSPIRE] CuiYLewickiMMorrisseyDEGravitational Wave Bursts as Harbingers of Cosmic Strings Diluted by InflationPhys. Rev. Lett.20201252020PhRvL.125u1302C418043410.1103/PhysRevLett.125.211302[arXiv:1912.08832] [INSPIRE] MajiRParkW-IShafiQGravitational waves from walls bounded by strings in SO(10) model of pseudo-Goldstone dark matterPhys. Lett. B202384510.1016/j.physletb.2023.138127[arXiv:2305.11775] [INSPIRE] D.I. Kosenko and K.A. Postnov, On the gravitational wave noise from unresolved extragalactic binaries, Astron. Astrophys.336 (1998) 786 [astro-ph/9801032] [INSPIRE]. AEDGE collaboration, AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space, EPJ Quant. Technol.7 (2020) 6 [arXiv:1908.00802] [INSPIRE]. KAGRA et al. collaborations, Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo’s third observing run, Phys. Rev. D104 (2021) 022004 [arXiv:2101.12130] [INSPIRE]. AuclairPBlasiSBrdarVSchmitzKGravitational waves from current-carrying cosmic stringsJCAP2023040092023JCAP...04..009A459202810.1088/1475-7516/2023/04/009[arXiv:2207.03510] [INSPIRE] BrancoGCTheory and phenomenology of two-Higgs-doublet modelsPhys. Rept.201251612012PhR...516....1B10.1016/j.physrep.2012.02.002[arXiv:1106.0034] [INSPIRE] NANOGrav collaboration, The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett.951 (2023) L8 [arXiv:2306.16213] [INSPIRE]. Di BariPKingSFRahatMHGravitational waves from phase transitions and cosmic strings in neutrino mass models with multiple majoronsJHEP202405068474435110.5696/2156-9614-5-9.68[arXiv:2306.04680] [INSPIRE] L. Delle Rose, S. Khalil and S. Moretti, Explanation of the 17 MeV Atomki anomaly in a U(1)’-extended two Higgs doublet model, Phys. Rev. D96 (2017) 115024 [arXiv:1704.03436] [INSPIRE]. Delle RoseLPanicoGRediMTesiAGravitational Waves from Supercool AxionsJHEP202004025409702410.1007/JHEP04(2020)025[arXiv:1912.06139] [INSPIRE] LIGO Scientific and Virgo collaborations, GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett.116 (2016) 241103 [arXiv:1606.04855] [INSPIRE]. ATLAS collaboration, A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery, Nature607 (2022) 52 [Erratum ibid.612 (2022) E24] [arXiv:2207.00092] [INSPIRE]. AnFPrecision Higgs physics at the CEPCChin. Phys. C2019432019ChPhC..43d3002A10.1088/1674-1137/43/4/043002[arXiv:1810.09037] [INSPIRE] Blanco-PilladoJJOlumKDShlaerBThe number of cosmic string loopsPhys. Rev. D2014892014PhRvD..89b3512B10.1103/PhysRevD.89.023512[arXiv:1309.6637] [INSPIRE] SesanaAUnveiling the gravitational universe at μ-Hz frequenciesExper. Astron.20215113332021ExA....51.1333S10.1007/s10686-021-09709-9[arXiv:1908.11391] [INSPIRE] T.W.B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A9 (1976) 1387 [INSPIRE]. DasguptaADevPSBGhoshalAMazumdarAGravitational wave pathway to testable leptogenesisPhys. Rev. D20221062022PhRvD.106g5027D10.1103/PhysRevD.106.075027[arXiv:2206.07032] [INSPIRE] A. Vilenkin and E.P.S. Shellard, Cosmic Strings and Other Topological Defects, Cambridge University Press (2000). T. Vachaspati and A. Vilenkin, Gravitational Radiation from Cosmic Strings, Phys. Rev. D31 (1985) 3052 [INSPIRE]. P.S. Bhupal Dev and A. Pilaftsis, Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment, JHEP12 (2014) 024 [Erratum ibid.11 (2015) 147] [arXiv:1408.3405] [INSPIRE]. R. Enberg, W. Klemm, S. Moretti and S. Munir, Signatures of the Type-I 2HDM at the LHC, PoSCORFU2018 (2018) 013 [arXiv:1812.08623] [INSPIRE]. HanTHeavy Higgs bosons in 2HDM at a muon colliderPhys. Rev. D20211042021PhRvD.104e5029H10.1103/PhysRevD.104.055029[arXiv:2102.08386] [INSPIRE] CapriniCDurrerRKonstandinTServantGGeneral Properties of the Gravitational Wave Spectrum from Phase TransitionsPhys. Rev. D2009792009PhRvD..79h3519C10.1103/PhysRevD.79.083519[arXiv:0901.1661] [INSPIRE] EPTA and InPTA: collaborations, The second data release from the European Pulsar Timing Array — III. Search for gravitational wave signals, Astron. Astrophys.678 (2023) A50 [arXiv:2306.16214] [INSPIRE]. BattyeRABrawnGDPilaftsisAVacuum Topology of the Two Higgs Doublet ModelJHEP2011080202011JHEP...08..020B10.1007/JHEP08(2011)020[arXiv:1106.3482] [INSPIRE] A. Conaci, L. Delle Rose, P.S.B. Dev and A. Ghoshal, Slaying Axion-Like Particles via Gravitational Waves and Primordial Black Holes from Supercooled Phase Transition, arXiv:2401.09411 [INSPIRE]. KingSFMarfatiaDRahatMHToward distinguishing Dirac from Majorana neutrino mass with gravitational wavesPhys. Rev. D20241092024PhRvD.109c5014K10.1103/PhysRevD.109.035014[arXiv:2306.05389] [INSPIRE] MondalTMorettiSMunirSSanyalPElectroweak Multi-Higgs Production: A Smoking Gun for the Type-I Two-Higgs-Doublet ModelPhys. Rev. Lett.20231312023PhRvL.131w1801M10.1103/PhysRevLett.131.231801[arXiv:2304.07719] [INSPIRE] E. Witten, Superconducting Strings, Nucl. Phys. B249 (1985) 557 [INSPIRE]. X. Martin and A. Vilenkin, Gravitational wave background from hybrid topological defects, Phys. Rev. Lett.77 (1996) 2879 [astro-ph/9606022] [INSPIRE]. E.A. Paschos, Diagonal Neutral Currents, Phys. Rev. D15 (1977) 1966 [INSPIRE]. M. Breitbach et al., Dark, Cold, and Noisy: Constraining Secluded Hidden Sectors with Gravitational Waves, JCAP07 (2019) 007 [arXiv:1811.11175] [INSPIRE]. T. Yanagida, Horizontal Gauge Symmetry and Masses of Neutrinos, in the proceedings of the Workshop on Unified Theory and Baryon Number of the Universe, Tsukuba, Japan (1979). LIGO Scientific and Virgo collaborations, Binary Black Hole Mergers in the first Advanced LIGO Observing Run, Phys. Rev. X6 (2016) 041015 [Erratum ibid.8 (2018) 039903] [arXiv:1606.04856] [INSPIRE]. FuBGhoshalAKingSFCosmic string gravitational waves from global U (1)B−Lsymmetry breaking as a probe of the type I seesaw scaleJHEP2023110712023JHEP...11..071F10.1007/JHEP11(2023)071[arXiv:2306.07334] [INSPIRE] B. Allen and J.D. Romano, Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities, Phys. Rev P Ko (24371_CR12) 2012; 717 Y Cui (24371_CR58) 2020; 125 GSF Guedes (24371_CR57) 2018; 98 24371_CR78 P Auclair (24371_CR77) 2020; 04 RA Battye (24371_CR66) 2020; 102 PA Rosado (24371_CR111) 2011; 84 24371_CR80 L Delle Rose (24371_CR121) 2020; 04 P Ko (24371_CR14) 2014; 11 24371_CR82 24371_CR81 M Cepeda (24371_CR6) 2019; 7 24371_CR84 24371_CR83 L Bian (24371_CR34) 2018; 97 P Ko (24371_CR13) 2014; 01 G Lazarides (24371_CR49) 2023; 108 W Liu (24371_CR30) 2024; 110 RA Battye (24371_CR67) 2021; 01 24371_CR86 24371_CR107 Y Cui (24371_CR72) 2019; 01 24371_CR88 24371_CR108 T Regimbau (24371_CR109) 2017; 118 Y Cui (24371_CR75) 2018; 97 24371_CR87 24371_CR89 24371_CR103 24371_CR104 24371_CR105 P Auclair (24371_CR64) 2023; 04 MR Adams (24371_CR114) 2010; 82 24371_CR91 JT Mäkinen (24371_CR44) 2019; 10 24371_CR93 24371_CR92 24371_CR94 F An (24371_CR5) 2019; 43 Y Jiang (24371_CR90) 2023; 02 P Di Bari (24371_CR101) 2024; 05 24371_CR17 24371_CR16 24371_CR19 24371_CR18 T Han (24371_CR33) 2021; 01 24371_CR119 T Han (24371_CR32) 2021; 104 24371_CR113 24371_CR110 MR Adams (24371_CR115) 2014; 89 X-J Zhu (24371_CR116) 2013; 431 24371_CR27 Y Wang (24371_CR24) 2021; 12 24371_CR29 F Ferrer (24371_CR59) 2023; 09 A Dasgupta (24371_CR99) 2022; 106 SF King (24371_CR102) 2024; 109 24371_CR20 A Arhrib (24371_CR22) 2018; 07 S Blasi (24371_CR76) 2020; 2 JA Dror (24371_CR98) 2020; 124 E Thrane (24371_CR118) 2013; 88 24371_CR23 24371_CR25 24371_CR120 L Leblond (24371_CR68) 2009; 79 24371_CR122 24371_CR123 G Lazarides (24371_CR43) 2023; 05 GC Branco (24371_CR10) 2012; 516 RA Battye (24371_CR65) 2011; 08 S Moretti (24371_CR26) 2024; 84 24371_CR4 24371_CR39 24371_CR3 24371_CR38 24371_CR8 24371_CR7 B Fu (24371_CR100) 2023; 11 24371_CR9 T Mondal (24371_CR28) 2023; 131 L Badurina (24371_CR85) 2020; 05 C Caprini (24371_CR117) 2016; 04 24371_CR37 24371_CR36 CL Wainwright (24371_CR54) 2012; 183 24371_CR40 A Afzal (24371_CR62) 2024; 850 24371_CR2 24371_CR1 R-G Cai (24371_CR96) 2020; 102 24371_CR42 24371_CR41 24371_CR46 H Song (24371_CR106) 2024; 109 24371_CR45 K Saikawa (24371_CR53) 2017; 3 R Maji (24371_CR48) 2023; 845 24371_CR51 24371_CR50 MD Campos (24371_CR15) 2017; 08 L Sousa (24371_CR74) 2013; 88 N Chen (24371_CR35) 2020; 10 D Brzeminski (24371_CR97) 2022; 11 Y Gouttenoire (24371_CR73) 2020; 07 JJ Blanco-Pillado (24371_CR71) 2014; 89 24371_CR52 24371_CR55 IP Ivanov (24371_CR11) 2017; 95 24371_CR56 A Sesana (24371_CR79) 2021; 51 24371_CR60 24371_CR61 CJ Moore (24371_CR112) 2015; 32 N Chen (24371_CR31) 2020; 08 DI Dunsky (24371_CR47) 2022; 106 A Arhrib (24371_CR21) 2017; 77 C Caprini (24371_CR95) 2009; 79 24371_CR69 JJ Blanco-Pillado (24371_CR70) 2017; 96 L Sousa (24371_CR63) 2020; 101 |
References_xml | – ident: 24371_CR17 – ident: 24371_CR42 doi: 10.1016/0550-3213(82)90135-3 – ident: 24371_CR7 doi: 10.1103/PhysRevD.8.1226 – ident: 24371_CR39 doi: 10.1088/0305-4470/9/8/029 – ident: 24371_CR123 doi: 10.1103/PhysRevD.59.102001 – ident: 24371_CR46 – ident: 24371_CR84 – ident: 24371_CR104 – volume: 89 year: 2014 ident: 24371_CR71 publication-title: Phys. Rev. D contributor: fullname: JJ Blanco-Pillado – volume: 01 start-page: 081 year: 2019 ident: 24371_CR72 publication-title: JHEP doi: 10.1007/JHEP01(2019)081 contributor: fullname: Y Cui – volume: 106 year: 2022 ident: 24371_CR47 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.106.075030 contributor: fullname: DI Dunsky – ident: 24371_CR50 doi: 10.1103/PhysRevD.67.075019 – ident: 24371_CR83 doi: 10.1088/0264-9381/23/15/008 – ident: 24371_CR23 – volume: 850 year: 2024 ident: 24371_CR62 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2024.138516 contributor: fullname: A Afzal – volume: 109 year: 2024 ident: 24371_CR102 publication-title: Phys. Rev. D contributor: fullname: SF King – volume: 102 year: 2020 ident: 24371_CR96 publication-title: Phys. Rev. D contributor: fullname: R-G Cai – volume: 183 start-page: 2006 year: 2012 ident: 24371_CR54 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.04.004 contributor: fullname: CL Wainwright – ident: 24371_CR89 – ident: 24371_CR37 – volume: 88 year: 2013 ident: 24371_CR118 publication-title: Phys. Rev. D contributor: fullname: E Thrane – volume: 04 start-page: 025 year: 2020 ident: 24371_CR121 publication-title: JHEP doi: 10.1007/JHEP04(2020)025 contributor: fullname: L Delle Rose – volume: 101 year: 2020 ident: 24371_CR63 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.103508 contributor: fullname: L Sousa – ident: 24371_CR107 – volume: 08 start-page: 020 year: 2011 ident: 24371_CR65 publication-title: JHEP doi: 10.1007/JHEP08(2011)020 contributor: fullname: RA Battye – ident: 24371_CR36 doi: 10.1103/PhysRevD.96.115024 – volume: 109 year: 2024 ident: 24371_CR106 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.109.123014 contributor: fullname: H Song – volume: 516 start-page: 1 year: 2012 ident: 24371_CR10 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2012.02.002 contributor: fullname: GC Branco – ident: 24371_CR113 – volume: 98 year: 2018 ident: 24371_CR57 publication-title: Phys. Rev. D contributor: fullname: GSF Guedes – ident: 24371_CR3 – volume: 09 start-page: 036 year: 2023 ident: 24371_CR59 publication-title: JHEP doi: 10.1007/JHEP09(2023)036 contributor: fullname: F Ferrer – volume: 04 start-page: 009 year: 2023 ident: 24371_CR64 publication-title: JCAP doi: 10.1088/1475-7516/2023/04/009 contributor: fullname: P Auclair – volume: 79 year: 2009 ident: 24371_CR95 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.79.083519 contributor: fullname: C Caprini – volume: 12 start-page: 021 year: 2021 ident: 24371_CR24 publication-title: JHEP doi: 10.1007/JHEP12(2021)021 contributor: fullname: Y Wang – volume: 01 start-page: 105 year: 2021 ident: 24371_CR67 publication-title: JHEP contributor: fullname: RA Battye – ident: 24371_CR25 – ident: 24371_CR82 – volume: 01 start-page: 016 year: 2014 ident: 24371_CR13 publication-title: JHEP doi: 10.1007/JHEP01(2014)016 contributor: fullname: P Ko – volume: 104 year: 2021 ident: 24371_CR32 publication-title: Phys. Rev. D contributor: fullname: T Han – ident: 24371_CR41 doi: 10.1103/PhysRevD.26.435 – ident: 24371_CR122 – ident: 24371_CR110 doi: 10.1111/j.1365-2966.2003.07176.x – volume: 84 start-page: 245 year: 2024 ident: 24371_CR26 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-024-12574-3 contributor: fullname: S Moretti – ident: 24371_CR87 – ident: 24371_CR93 – volume: 7 start-page: 221 year: 2019 ident: 24371_CR6 publication-title: CERN Yellow Rep. Monogr. contributor: fullname: M Cepeda – ident: 24371_CR52 doi: 10.1007/JHEP12(2014)024 – volume: 102 year: 2020 ident: 24371_CR66 publication-title: Phys. Rev. D contributor: fullname: RA Battye – ident: 24371_CR105 – volume: 106 year: 2022 ident: 24371_CR99 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.106.075027 contributor: fullname: A Dasgupta – ident: 24371_CR119 doi: 10.1088/1475-7516/2019/07/007 – ident: 24371_CR9 doi: 10.1103/PhysRevD.15.1966 – volume: 108 year: 2023 ident: 24371_CR49 publication-title: Phys. Rev. D contributor: fullname: G Lazarides – volume: 125 year: 2020 ident: 24371_CR58 publication-title: Phys. Rev. Lett. contributor: fullname: Y Cui – volume: 96 year: 2017 ident: 24371_CR70 publication-title: Phys. Rev. D contributor: fullname: JJ Blanco-Pillado – ident: 24371_CR69 doi: 10.1103/PhysRevLett.77.2879 – volume: 32 year: 2015 ident: 24371_CR112 publication-title: Class. Quant. Grav. contributor: fullname: CJ Moore – volume: 11 start-page: 061 year: 2022 ident: 24371_CR97 publication-title: JHEP doi: 10.1007/JHEP11(2022)061 contributor: fullname: D Brzeminski – volume: 04 start-page: 001 year: 2016 ident: 24371_CR117 publication-title: JCAP contributor: fullname: C Caprini – ident: 24371_CR81 doi: 10.1103/PhysRevD.73.064006 – volume: 05 start-page: 011 year: 2020 ident: 24371_CR85 publication-title: JCAP doi: 10.1088/1475-7516/2020/05/011 contributor: fullname: L Badurina – volume: 118 year: 2017 ident: 24371_CR109 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.151105 contributor: fullname: T Regimbau – volume: 84 year: 2011 ident: 24371_CR111 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.84.084004 contributor: fullname: PA Rosado – ident: 24371_CR88 – volume: 79 year: 2009 ident: 24371_CR68 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.79.123519 contributor: fullname: L Leblond – ident: 24371_CR19 doi: 10.1007/978-1-4684-7197-7_15 – volume: 07 start-page: 007 year: 2018 ident: 24371_CR22 publication-title: JHEP doi: 10.1007/JHEP07(2018)007 contributor: fullname: A Arhrib – ident: 24371_CR8 doi: 10.1103/PhysRevD.15.1958 – volume: 77 start-page: 621 year: 2017 ident: 24371_CR21 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-5197-7 contributor: fullname: A Arhrib – ident: 24371_CR80 – volume: 08 start-page: 092 year: 2017 ident: 24371_CR15 publication-title: JHEP doi: 10.1007/JHEP08(2017)092 contributor: fullname: MD Campos – ident: 24371_CR94 – ident: 24371_CR2 – volume: 07 start-page: 032 year: 2020 ident: 24371_CR73 publication-title: JCAP doi: 10.1088/1475-7516/2020/07/032 contributor: fullname: Y Gouttenoire – volume: 11 start-page: 071 year: 2023 ident: 24371_CR100 publication-title: JHEP doi: 10.1007/JHEP11(2023)071 contributor: fullname: B Fu – volume: 131 year: 2023 ident: 24371_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.131.231801 contributor: fullname: T Mondal – volume: 10 start-page: 081 year: 2020 ident: 24371_CR35 publication-title: JHEP doi: 10.1007/JHEP10(2020)081 contributor: fullname: N Chen – volume: 431 start-page: 882 year: 2013 ident: 24371_CR116 publication-title: Mon. Not. Roy. Astron. Soc. doi: 10.1093/mnras/stt207 contributor: fullname: X-J Zhu – volume: 10 start-page: 237 year: 2019 ident: 24371_CR44 publication-title: Nature Commun. doi: 10.1038/s41467-018-08204-8 contributor: fullname: JT Mäkinen – ident: 24371_CR91 – volume: 717 start-page: 202 year: 2012 ident: 24371_CR12 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2012.09.019 contributor: fullname: P Ko – ident: 24371_CR16 doi: 10.1016/0370-2693(77)90435-X – ident: 24371_CR20 doi: 10.1103/PhysRevLett.44.912 – ident: 24371_CR120 – ident: 24371_CR51 doi: 10.22323/1.405.0010 – volume: 3 start-page: 40 year: 2017 ident: 24371_CR53 publication-title: Universe doi: 10.3390/universe3020040 contributor: fullname: K Saikawa – ident: 24371_CR103 – volume: 04 start-page: 034 year: 2020 ident: 24371_CR77 publication-title: JCAP doi: 10.1088/1475-7516/2020/04/034 contributor: fullname: P Auclair – volume: 2 year: 2020 ident: 24371_CR76 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.043321 contributor: fullname: S Blasi – volume: 05 start-page: 119 year: 2023 ident: 24371_CR43 publication-title: JHEP doi: 10.1007/JHEP05(2023)119 contributor: fullname: G Lazarides – volume: 97 year: 2018 ident: 24371_CR34 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.115007 contributor: fullname: L Bian – ident: 24371_CR60 doi: 10.1016/0370-2693(82)90829-2 – volume: 97 year: 2018 ident: 24371_CR75 publication-title: Phys. Rev. D contributor: fullname: Y Cui – volume: 124 year: 2020 ident: 24371_CR98 publication-title: Phys. Rev. Lett. contributor: fullname: JA Dror – ident: 24371_CR92 – volume: 01 start-page: 045 year: 2021 ident: 24371_CR33 publication-title: JHEP doi: 10.1007/JHEP01(2021)045 contributor: fullname: T Han – volume: 02 start-page: 026 year: 2023 ident: 24371_CR90 publication-title: JCAP doi: 10.1088/1475-7516/2023/02/026 contributor: fullname: Y Jiang – ident: 24371_CR27 doi: 10.22323/1.414.0529 – ident: 24371_CR38 – ident: 24371_CR40 doi: 10.1103/PhysRevD.31.3052 – ident: 24371_CR86 – volume: 95 start-page: 160 year: 2017 ident: 24371_CR11 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2017.03.001 contributor: fullname: IP Ivanov – ident: 24371_CR56 doi: 10.1016/S0550-3213(02)00264-X – volume: 89 year: 2014 ident: 24371_CR115 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.022001 contributor: fullname: MR Adams – volume: 110 year: 2024 ident: 24371_CR30 publication-title: Phys. Rev. D contributor: fullname: W Liu – volume: 08 start-page: 131 year: 2020 ident: 24371_CR31 publication-title: JHEP doi: 10.1007/JHEP08(2020)131 contributor: fullname: N Chen – ident: 24371_CR61 doi: 10.1016/0550-3213(85)90022-7 – volume: 05 start-page: 068 year: 2024 ident: 24371_CR101 publication-title: JHEP doi: 10.5696/2156-9614-5-9.68 contributor: fullname: P Di Bari – ident: 24371_CR29 – ident: 24371_CR4 – volume: 11 start-page: 054 year: 2014 ident: 24371_CR14 publication-title: JHEP doi: 10.1007/JHEP11(2014)054 contributor: fullname: P Ko – ident: 24371_CR18 – volume: 845 year: 2023 ident: 24371_CR48 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2023.138127 contributor: fullname: R Maji – ident: 24371_CR108 doi: 10.1103/PhysRevD.73.042001 – volume: 82 year: 2010 ident: 24371_CR114 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.82.022002 contributor: fullname: MR Adams – ident: 24371_CR78 doi: 10.22323/1.215.0037 – ident: 24371_CR45 doi: 10.1103/PhysRevD.47.2324 – ident: 24371_CR55 – volume: 88 year: 2013 ident: 24371_CR74 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.88.023516 contributor: fullname: L Sousa – volume: 51 start-page: 1333 year: 2021 ident: 24371_CR79 publication-title: Exper. Astron. doi: 10.1007/s10686-021-09709-9 contributor: fullname: A Sesana – volume: 43 year: 2019 ident: 24371_CR5 publication-title: Chin. Phys. C contributor: fullname: F An – ident: 24371_CR1 |
SSID | ssj0015190 |
Score | 2.5027874 |
Snippet | A
bstract
The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of
domain walls bounded by... The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by cosmic... Abstract The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 237 |
SubjectTerms | Classical and Quantum Gravitation Cosmology of Theories BSM Defects Domain walls Early Universe Particle Physics Elementary Particles Flavors Frequency ranges Gravitational waves Lie groups Multi-Higgs Models Neutral currents Neutrinos Phase transitions Phase Transitions in the Early Universe Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Quarks Regular Article - Theoretical Physics Relativity Theory String Theory Strings Symmetry Wave spectra |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA1SENyIT6xWycJFuwjNTDKTZKnSUguKCwsFF8NMHiLUqTitxb_3Zh5aBXHjdmYIl3MnnHvzOAehc-qoAxq2xFDh_DZjRCTQDolSp1mkJefa30a-uY1HEz6eRtM1qy9_JqySB66A63MtnQ1DlVFhuAq0BMJWkQisYFqzoLq6R3nTTNX7B1CX0EbIh4r-eDS4o7ILjT7vhd7yfI2DSqn-b_Xljy3RkmmGO2i7LhHxRRXaLtqw-R7aLI9q6mIfPfjWkVzjxWpO_IJxQcx8mQH8uHS1wWlusDcVqsW3YaRV-mYL7C-SYDN_Tp9yeDKbFTjzlkrW4Owde_eO_LE4QJPh4P5qRGqLBKJhZi6IZLERWjBhZCBibpmxgmohY5hqqTYRBbaxgZXMC4umLlYlQQuoKyyUalKyQ9TK57k9QlhqJ8KMO62k41KFmYL2zKZAcYHTJtRt1G1AS14qJYyk0Tyu8E08vgng20aXHtTPz7yEdfkAEpvUiU3-SmwbdZqUJPW8KhJGlVQQOQvaqNek6ev1L_Ec_0c8J2jLj1euJ9MOai1el_YUCpJFdlb-ex-mcdj- priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen (Open Access) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46EbyIP3E6JQcP2yGYNmmTHHVM5kDx4GDgobT54UU7sZvD_96XrFWmePBW2rSE9_r6fS-v-R5C59RRBzBsiaHC-TJjQiTADklyp1miJefa70a-vUuHYz6aJJNaJMnvhflRv78YDQf3VHYhRee9mIl1tAEALENVNu1_lQuAhtBGt-f3TSuQE5T5V-jkjwpoAJbrHbRdM0J8uXThLlqz5R7aDH9m6mofPfpMkdzg2WJK_PpwRcx0XoC1cWhig_PSYN9DqNbahict8ndbYb9vBJvpC2T-cOb5ucKF76BkDS4-sG_WUT5VB2h8PXjoD0ndEYFoCMQZkSw1QgsmjIxEyi0zVlAtZAqRlWuTUAAXG1nJvI5o7lIV8FgAjbDAzKRkh6hVTkt7hLDUTsQFd1pJx6WKCwXZmM0B0SKnTazbqNsYLXtdCl9kjcTx0r6Zt28G9m2jK2_Ur2FesTqcAEdmdQBkXEtn41gVVBiuIi2BeKkEJiaY1vAdaKNO45KsDqMqY1RJBTNnURv1Gjd9X_5jPsf_GHuCtvxhWCWmHdSavc3tKdCMWXEWXrFPYqPJAw priority: 102 providerName: Springer Nature |
Title | Type-I two-Higgs-doublet model and gravitational waves from domain walls bounded by strings |
URI | https://link.springer.com/article/10.1007/JHEP08(2024)237 https://www.proquest.com/docview/3098954031 https://doaj.org/article/4c8fe229b07d491c85629571e73cc319 |
Volume | 2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA_1pNCXYr_oVT3y0Ad9CGaz2U3yVPS461WoSOmB0IdlNx8i2F3rnkr_e2dyWbWF9iWw2RDCTCbzm5lkhpCPPPAAatgzx1XAMGPBNKgdVtTB5oXVUlp8jfz1pFws5fFZcZYcbn26VjmcifGgdp1FH_lBzo02AC_y7NPVL4ZVozC6mkpobJBNAVCmGJHNo9nJ6beHOALgEz4k9OHq4HgxO-V6Dwx-uS-w9PkTXRRT9v-BM_8KjUaNM98iLxNUpIdr3r4iz3z7mjyPVzZt_4b8QBOSfaGru46h47hnrrtpgA00VrehdesoFhdKSbhhprv61vcUH5RQ1_2sL1roubzsaYOllbyjzW-KVTza8_4tWc5n36cLlkolMAsSumI6L52yKldOZ6qUPndecat0CSJXW1dw0Do-8zrHBKN1KE1U1ArwhQeaap2_I6O2a_17QrUNSjQyWKOD1EY0Bsw0X4Oqy4J1wo7J3kC06mqdEaMach-v6VshfSug75gcIVEfhmEq69jRXZ9XSTIqaXXwQpiGKydNZjUgMlPAwlRuLRwQY7IzsKRK8tVXj7thTPYHNj3-_sd6Pvx_qm3yAkdGjzHfIaPV9Y3fBcixaiZkQ88_T9Lugq-pkNiW00k04qFdisN7-zXXOw |
link.rule.ids | 315,782,786,866,2104,12772,21395,27931,27932,33380,33751,41126,41127,41530,42195,42196,42599,43607,43812,51583,52240,52241,74042,74309 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDI9gCMEF8SkeDMiBw3aIljZpk5wQoD3exjZx2KRJHKLWSaZJox3rGxP_PXZeuwESXPsRRXYc_2wn_jH2ViaZ0A1HEaRJVGashEW3I6omgarAag10G3n_oF4c6d3j6nhMuA3jscppT8wbdeiBcuRbSjrrEF6o4t35d0GsUVRdHSk0brM7WtWSgi87_3RdRUB0Iqd2PtJs7S62v0i7geG-3iyJ-Pw3T5Qb9v-BMv8qjGZ_M3_IHoxAkb9fafYRuxW7x-xuPrAJwxP2lQJIscOXV72gtPEgQn_ZohJ45rbhTRc4UQuNLbhxpKvmRxw4XSfhof_WnHb45Oxs4C0RK8XA25-cODy6k-EpO5pvH35ciJEoQQDa51JYVQcDRplgC1PrqEI0Eoyt0eAaCJVEnxOLaBW1F21S7bKbNoguIkrUWvWMrXV9F58zbiGZstUJnE3aurJ1GKTFBh1dkSCUMGMbk9D8-aofhp86H6_k60m-HuU7Yx9IqNefUSPr_KC_OPGjXXgNNsWydK00QbsCLOIxV-HEjALA7WHG1ieV-NG6Bn-zFmZsc1LTzet_zOfF_4d6w-4tDvf3_N7OweeX7D79lXPHcp2tLS8u4ysEH8v2dV5hvwBnS9RS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxUxFG4QonFDfMarqF2wgEVzO9POtF0RH1wvoISFJCQumpk-iAnOIHOR8O85p7cDaqLbeTTNefR87Tk9HyGbPPIIYTgwz1XENGPFNIQdVjXRicppKR3eRv5yWM-P5f5JdZLrn4ZcVjmuiWmh9r3DM_Kp4EYbgBeimMZcFnH0cbZz_pMhgxRmWjOdxj2ypiSYIt4an326zSgAUuFjax-upvvz3SOut2DrL7dLJEH_LSql5v1_IM6_kqQp9swekfUMGum7pZYfk5XQPSH3U_GmG56Sb7iZZHt0cdUzPEIemO8vW1AITTw3tOk8RZqh3I4bRrpqfoWB4tUS6vsfzfcOnpydDbRFkqXgaXtNkc-jOx2ekePZ7tcPc5ZJE5gDX10wLWqvnBLK60LVMggfFHdK1-B8jfMVh_gTiqAFthptYm1SyFaANAJIV2vxnKx2fRdeEKpdVGUrozM6Sm3K1sCGLTQQ9IrofOkmZGsUmj1f9sawYxfkpXwtyteCfCfkPQr19jNsap0e9BenNvuIlU7HUJam5cpLUzgN2MxUMDElnIOlYkI2RpXY7GmDvbOLCdke1XT3-h_zefn_od6SB2Bc9vPe4cEr8hB_SsfIfIOsLi4uw2vAIYv2TTKwG1bj2IA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Type-I+two-Higgs-doublet+model+and+gravitational+waves+from+domain+walls+bounded+by+strings&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Fu%2C+Bowen&rft.au=Ghoshal%2C+Anish&rft.au=King%2C+Stephen+F&rft.au=Rahat%2C+Moinul+Hossain&rft.date=2024-08-30&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2024&rft.issue=8&rft.spage=237&rft_id=info:doi/10.1007%2FJHEP08%282024%29237&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |