Type-I two-Higgs-doublet model and gravitational waves from domain walls bounded by strings

A bstract The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by cosmic strings . The decay of this defect network leads to a unique gravitational wave signal spanning many orders in observable frequencies, t...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2024; no. 8; pp. 237 - 25
Main Authors Fu, Bowen, Ghoshal, Anish, King, Stephen F., Rahat, Moinul Hossain
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 30.08.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by cosmic strings . The decay of this defect network leads to a unique gravitational wave signal spanning many orders in observable frequencies, that can be distinguished from signals generated by other sources. We investigate the production of gravitational waves from this mechanism in the context of the type-I two-Higgs-doublet model extended by a U(1) R symmetry, that simultaneously accommodates the seesaw mechanism, anomaly cancellation, and eliminates flavour-changing neutral currents. The gravitational wave spectrum produced by the string-bounded-wall network can be detected for U(1) R breaking scale from 10 12 to 10 15 GeV in forthcoming interferometers including LISA and Einstein Telescope, with a distinctive f 3 slope and inflexion in the frequency range between microhertz and hertz.
AbstractList The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by cosmic strings. The decay of this defect network leads to a unique gravitational wave signal spanning many orders in observable frequencies, that can be distinguished from signals generated by other sources. We investigate the production of gravitational waves from this mechanism in the context of the type-I two-Higgs-doublet model extended by a U(1)R symmetry, that simultaneously accommodates the seesaw mechanism, anomaly cancellation, and eliminates flavour-changing neutral currents. The gravitational wave spectrum produced by the string-bounded-wall network can be detected for U(1)R breaking scale from 1012 to 1015 GeV in forthcoming interferometers including LISA and Einstein Telescope, with a distinctive f3 slope and inflexion in the frequency range between microhertz and hertz.
Abstract The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by cosmic strings. The decay of this defect network leads to a unique gravitational wave signal spanning many orders in observable frequencies, that can be distinguished from signals generated by other sources. We investigate the production of gravitational waves from this mechanism in the context of the type-I two-Higgs-doublet model extended by a U(1) R symmetry, that simultaneously accommodates the seesaw mechanism, anomaly cancellation, and eliminates flavour-changing neutral currents. The gravitational wave spectrum produced by the string-bounded-wall network can be detected for U(1) R breaking scale from 1012 to 1015 GeV in forthcoming interferometers including LISA and Einstein Telescope, with a distinctive f 3 slope and inflexion in the frequency range between microhertz and hertz.
The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by cosmic strings . The decay of this defect network leads to a unique gravitational wave signal spanning many orders in observable frequencies, that can be distinguished from signals generated by other sources. We investigate the production of gravitational waves from this mechanism in the context of the type-I two-Higgs-doublet model extended by a U(1) R symmetry, that simultaneously accommodates the seesaw mechanism, anomaly cancellation, and eliminates flavour-changing neutral currents. The gravitational wave spectrum produced by the string-bounded-wall network can be detected for U(1) R breaking scale from 10 12 to 10 15 GeV in forthcoming interferometers including LISA and Einstein Telescope, with a distinctive f 3 slope and inflexion in the frequency range between microhertz and hertz.
A bstract The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by cosmic strings . The decay of this defect network leads to a unique gravitational wave signal spanning many orders in observable frequencies, that can be distinguished from signals generated by other sources. We investigate the production of gravitational waves from this mechanism in the context of the type-I two-Higgs-doublet model extended by a U(1) R symmetry, that simultaneously accommodates the seesaw mechanism, anomaly cancellation, and eliminates flavour-changing neutral currents. The gravitational wave spectrum produced by the string-bounded-wall network can be detected for U(1) R breaking scale from 10 12 to 10 15 GeV in forthcoming interferometers including LISA and Einstein Telescope, with a distinctive f 3 slope and inflexion in the frequency range between microhertz and hertz.
ArticleNumber 237
Author Fu, Bowen
Rahat, Moinul Hossain
Ghoshal, Anish
King, Stephen F.
Author_xml – sequence: 1
  givenname: Bowen
  orcidid: 0000-0003-2270-8352
  surname: Fu
  fullname: Fu, Bowen
  organization: Tsung-Dao Lee Institute, Shanghai Jiao Tong University
– sequence: 2
  givenname: Anish
  orcidid: 0000-0001-7045-302X
  surname: Ghoshal
  fullname: Ghoshal, Anish
  organization: Institute of Theoretical Physics, Faculty of Physics, University of Warsaw
– sequence: 3
  givenname: Stephen F.
  orcidid: 0000-0002-4351-7507
  surname: King
  fullname: King, Stephen F.
  organization: School of Physics & Astronomy, University of Southampton
– sequence: 4
  givenname: Moinul Hossain
  orcidid: 0000-0001-6371-6426
  surname: Rahat
  fullname: Rahat, Moinul Hossain
  email: moinul.rahat@ific.uv.es
  organization: Instituto de Física Corpuscular, Universidad de Valencia and CSIC, Edificio Institutos Investigación
BookMark eNp1kU1P3DAQhq2KSnyUM1dLvcAhZSZOYvtYIWC3QqIHeuJgee1JlFU23tpZ0P57vKRqe-E0o9G8z3y8p-xoDCMxdoHwDQHk9Y_F7U9QlyWU1VUp5Cd2glDqQlVSH_2XH7PTlNYAWKOGE_b8tN9SseTTaygWfdelwofdaqCJb4KngdvR8y7al36yUx9GO_BX-0KJtzFsuA8b24-5MgyJr8Ju9OT5as_TFPuxS1_Y59YOic7_xDP26-726WZRPDzeL2--PxROAE6FEo2XTgrpFcqmIuFJgpOqqRGs83XeXBOSEoigbdtooVDVEiRSXYFS4owtZ64Pdm22sd_YuDfB9ua9EGJnbJx6N5CpnGqpLPUKpK80OlU3pa4zSQrnBOrM-jqztjH83lGazDrsYr47GQFa6TxRYO66nrtcDClFav9ORTAHN8zshjm4YbIbWQGzIm0Pv6H4j_uR5A3_g4uG
Cites_doi 10.1016/0550-3213(82)90135-3
10.1103/PhysRevD.8.1226
10.1088/0305-4470/9/8/029
10.1103/PhysRevD.59.102001
10.1007/JHEP01(2019)081
10.1103/PhysRevD.106.075030
10.1103/PhysRevD.67.075019
10.1088/0264-9381/23/15/008
10.1016/j.physletb.2024.138516
10.1016/j.cpc.2012.04.004
10.1007/JHEP04(2020)025
10.1103/PhysRevD.101.103508
10.1007/JHEP08(2011)020
10.1103/PhysRevD.96.115024
10.1103/PhysRevD.109.123014
10.1016/j.physrep.2012.02.002
10.1007/JHEP09(2023)036
10.1088/1475-7516/2023/04/009
10.1103/PhysRevD.79.083519
10.1007/JHEP12(2021)021
10.1007/JHEP01(2014)016
10.1103/PhysRevD.26.435
10.1111/j.1365-2966.2003.07176.x
10.1140/epjc/s10052-024-12574-3
10.1007/JHEP12(2014)024
10.1103/PhysRevD.106.075027
10.1088/1475-7516/2019/07/007
10.1103/PhysRevD.15.1966
10.1103/PhysRevLett.77.2879
10.1007/JHEP11(2022)061
10.1103/PhysRevD.73.064006
10.1088/1475-7516/2020/05/011
10.1103/PhysRevLett.118.151105
10.1103/PhysRevD.84.084004
10.1103/PhysRevD.79.123519
10.1007/978-1-4684-7197-7_15
10.1007/JHEP07(2018)007
10.1103/PhysRevD.15.1958
10.1140/epjc/s10052-017-5197-7
10.1007/JHEP08(2017)092
10.1088/1475-7516/2020/07/032
10.1007/JHEP11(2023)071
10.1103/PhysRevLett.131.231801
10.1007/JHEP10(2020)081
10.1093/mnras/stt207
10.1038/s41467-018-08204-8
10.1016/j.physletb.2012.09.019
10.1016/0370-2693(77)90435-X
10.1103/PhysRevLett.44.912
10.22323/1.405.0010
10.3390/universe3020040
10.1088/1475-7516/2020/04/034
10.1103/PhysRevResearch.2.043321
10.1007/JHEP05(2023)119
10.1103/PhysRevD.97.115007
10.1016/0370-2693(82)90829-2
10.1007/JHEP01(2021)045
10.1088/1475-7516/2023/02/026
10.22323/1.414.0529
10.1103/PhysRevD.31.3052
10.1016/j.ppnp.2017.03.001
10.1016/S0550-3213(02)00264-X
10.1103/PhysRevD.89.022001
10.1007/JHEP08(2020)131
10.1016/0550-3213(85)90022-7
10.5696/2156-9614-5-9.68
10.1007/JHEP11(2014)054
10.1016/j.physletb.2023.138127
10.1103/PhysRevD.73.042001
10.1103/PhysRevD.82.022002
10.22323/1.215.0037
10.1103/PhysRevD.47.2324
10.1103/PhysRevD.88.023516
10.1007/s10686-021-09709-9
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP08(2024)237
DatabaseName SpringerOpen (Open Access)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Access via ProQuest (Open Access)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen (Open Access)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 25
ExternalDocumentID oai_doaj_org_article_4c8fe229b07d491c85629571e73cc319
10_1007_JHEP08_2024_237
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
AAYZJ
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBXF
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S1Z
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c301t-836d7c737d81764e3de70c786510acd50299e1e831109af69381857071e540883
IEDL.DBID BENPR
ISSN 1029-8479
IngestDate Mon Nov 25 20:31:34 EST 2024
Sun Nov 24 05:24:37 EST 2024
Wed Nov 27 12:55:56 EST 2024
Sun Nov 24 01:29:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Cosmology of Theories BSM
Multi-Higgs Models
Early Universe Particle Physics
Phase Transitions in the Early Universe
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c301t-836d7c737d81764e3de70c786510acd50299e1e831109af69381857071e540883
ORCID 0000-0001-6371-6426
0000-0001-7045-302X
0000-0003-2270-8352
0000-0002-4351-7507
OpenAccessLink https://www.proquest.com/docview/3098954031?pq-origsite=%requestingapplication%
PQID 3098954031
PQPubID 2034718
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_4c8fe229b07d491c85629571e73cc319
proquest_journals_3098954031
crossref_primary_10_1007_JHEP08_2024_237
springer_journals_10_1007_JHEP08_2024_237
PublicationCentury 2000
PublicationDate 2024-08-30
PublicationDateYYYYMMDD 2024-08-30
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-30
  day: 30
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References Blanco-PilladoJJOlumKDStochastic gravitational wave background from smoothed cosmic string loopsPhys. Rev. D2017962017PhRvD..96j4046B386586310.1103/PhysRevD.96.104046[arXiv:1709.02693] [INSPIRE]
T.W.B. Kibble, G. Lazarides and Q. Shafi, Strings in SO(10), Phys. Lett. B113 (1982) 237 [INSPIRE].
P. Minkowski, μ → eγ at a Rate of One Out of 109Muon Decays?, Phys. Lett. B67 (1977) 421 [INSPIRE].
WangYAnalysis of W± + 4γ in the 2HDM Type-I at the LHCJHEP2021120212021JHEP...12..021W10.1007/JHEP12(2021)021[arXiv:2107.01451] [INSPIRE]
AdamsMRCornishNJDiscriminating between a Stochastic Gravitational Wave Background and Instrument NoisePhys. Rev. D2010822010PhRvD..82b2002A10.1103/PhysRevD.82.022002[arXiv:1002.1291] [INSPIRE]
S. Kawamura et al., Current status of space gravitational wave antenna DECIGO and B-DECIGO, PTEP2021 (2021) 05A105 [arXiv:2006.13545] [INSPIRE].
SaikawaKA review of gravitational waves from cosmic domain wallsUniverse20173402017Univ....3...40S10.3390/universe3020040[arXiv:1703.02576] [INSPIRE]
AfzalAShafiQTiwariAGravitational wave emission from metastable current-carrying strings in E6Phys. Lett. B202485010.1016/j.physletb.2024.138516[arXiv:2311.05564] [INSPIRE]
RosadoPAGravitational wave background from binary systemsPhys. Rev. D2011842011PhRvD..84h4004R10.1103/PhysRevD.84.084004[arXiv:1106.5795] [INSPIRE]
C. Cutler and J. Harms, BBO and the neutron-star-binary subtraction problem, Phys. Rev. D73 (2006) 042001 [gr-qc/0511092] [INSPIRE].
LiuWWangLZhangYDirect production of light scalars in the type-I two-Higgs-doublet model at the lifetime frontier of the LHCPhys. Rev. D202411010.1103/PhysRevD.110.015016[arXiv:2403.16623] [INSPIRE]
GouttenoireYServantGSimakachornPBeyond the Standard Models with Cosmic StringsJCAP2020070322020JCAP...07..032G421064310.1088/1475-7516/2020/07/032[arXiv:1912.02569] [INSPIRE]
AdamsMRCornishNJDetecting a Stochastic Gravitational Wave Background in the presence of a Galactic Foreground and Instrument NoisePhys. Rev. D2014892014PhRvD..89b2001A10.1103/PhysRevD.89.022001[arXiv:1307.4116] [INSPIRE]
H. Kudoh, A. Taruya, T. Hiramatsu and Y. Himemoto, Detecting a gravitational-wave background with next-generation space interferometers, Phys. Rev. D73 (2006) 064006 [gr-qc/0511145] [INSPIRE].
E.W. Kolb and M.S. Turner, The early universe. Reprints, Addison-Wesley (1988) [INSPIRE].
ArhribAMulti-photon production in the Type-I 2HDMJHEP2018070072018JHEP...07..007A10.1007/JHEP07(2018)007[arXiv:1712.05332] [INSPIRE]
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CepedaMReport from Working Group 2: Higgs Physics at the HL-LHC and HE-LHCCERN Yellow Rep. Monogr.20197221[arXiv:1902.00134] [INSPIRE]
ZhuX-JHowellEJBlairDGZhuZ-HOn the gravitational wave background from compact binary coalescences in the band of ground-based interferometersMon. Not. Roy. Astron. Soc.20134318822013MNRAS.431..882Z10.1093/mnras/stt207[arXiv:1209.0595] [INSPIRE]
MorettiSSemlaliSShepherd-ThemistocleousCHA novel experimental search channel for very light higgs bosons in the 2HDM type IEur. Phys. J. C2024842452024EPJC...84..245M10.1140/epjc/s10052-024-12574-3[arXiv:2207.03007] [INSPIRE]
CuiYLewickiMMorrisseyDEWellsJDProbing the pre-BBN universe with gravitational waves from cosmic stringsJHEP2019010812019JHEP...01..081C10.1007/JHEP01(2019)081[arXiv:1808.08968] [INSPIRE]
T.D. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D8 (1973) 1226 [INSPIRE].
LazaridesGMajiRShafiQSuperheavy quasistable strings and walls bounded by strings in the light of NANOGrav 15 year dataPhys. Rev. D20231082023PhRvD.108i5041L10.1103/PhysRevD.108.095041[arXiv:2306.17788] [INSPIRE]
LazaridesGShafiQTiwariAComposite topological structures in SO(10)JHEP2023051192023JHEP...05..119L459017410.1007/JHEP05(2023)119[arXiv:2303.15159] [INSPIRE]
CuiYLewickiMMorrisseyDEGravitational Wave Bursts as Harbingers of Cosmic Strings Diluted by InflationPhys. Rev. Lett.20201252020PhRvL.125u1302C418043410.1103/PhysRevLett.125.211302[arXiv:1912.08832] [INSPIRE]
MajiRParkW-IShafiQGravitational waves from walls bounded by strings in SO(10) model of pseudo-Goldstone dark matterPhys. Lett. B202384510.1016/j.physletb.2023.138127[arXiv:2305.11775] [INSPIRE]
D.I. Kosenko and K.A. Postnov, On the gravitational wave noise from unresolved extragalactic binaries, Astron. Astrophys.336 (1998) 786 [astro-ph/9801032] [INSPIRE].
AEDGE collaboration, AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space, EPJ Quant. Technol.7 (2020) 6 [arXiv:1908.00802] [INSPIRE].
KAGRA et al. collaborations, Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo’s third observing run, Phys. Rev. D104 (2021) 022004 [arXiv:2101.12130] [INSPIRE].
AuclairPBlasiSBrdarVSchmitzKGravitational waves from current-carrying cosmic stringsJCAP2023040092023JCAP...04..009A459202810.1088/1475-7516/2023/04/009[arXiv:2207.03510] [INSPIRE]
BrancoGCTheory and phenomenology of two-Higgs-doublet modelsPhys. Rept.201251612012PhR...516....1B10.1016/j.physrep.2012.02.002[arXiv:1106.0034] [INSPIRE]
NANOGrav collaboration, The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett.951 (2023) L8 [arXiv:2306.16213] [INSPIRE].
Di BariPKingSFRahatMHGravitational waves from phase transitions and cosmic strings in neutrino mass models with multiple majoronsJHEP202405068474435110.5696/2156-9614-5-9.68[arXiv:2306.04680] [INSPIRE]
L. Delle Rose, S. Khalil and S. Moretti, Explanation of the 17 MeV Atomki anomaly in a U(1)’-extended two Higgs doublet model, Phys. Rev. D96 (2017) 115024 [arXiv:1704.03436] [INSPIRE].
Delle RoseLPanicoGRediMTesiAGravitational Waves from Supercool AxionsJHEP202004025409702410.1007/JHEP04(2020)025[arXiv:1912.06139] [INSPIRE]
LIGO Scientific and Virgo collaborations, GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett.116 (2016) 241103 [arXiv:1606.04855] [INSPIRE].
ATLAS collaboration, A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery, Nature607 (2022) 52 [Erratum ibid.612 (2022) E24] [arXiv:2207.00092] [INSPIRE].
AnFPrecision Higgs physics at the CEPCChin. Phys. C2019432019ChPhC..43d3002A10.1088/1674-1137/43/4/043002[arXiv:1810.09037] [INSPIRE]
Blanco-PilladoJJOlumKDShlaerBThe number of cosmic string loopsPhys. Rev. D2014892014PhRvD..89b3512B10.1103/PhysRevD.89.023512[arXiv:1309.6637] [INSPIRE]
SesanaAUnveiling the gravitational universe at μ-Hz frequenciesExper. Astron.20215113332021ExA....51.1333S10.1007/s10686-021-09709-9[arXiv:1908.11391] [INSPIRE]
T.W.B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A9 (1976) 1387 [INSPIRE].
DasguptaADevPSBGhoshalAMazumdarAGravitational wave pathway to testable leptogenesisPhys. Rev. D20221062022PhRvD.106g5027D10.1103/PhysRevD.106.075027[arXiv:2206.07032] [INSPIRE]
A. Vilenkin and E.P.S. Shellard, Cosmic Strings and Other Topological Defects, Cambridge University Press (2000).
T. Vachaspati and A. Vilenkin, Gravitational Radiation from Cosmic Strings, Phys. Rev. D31 (1985) 3052 [INSPIRE].
P.S. Bhupal Dev and A. Pilaftsis, Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment, JHEP12 (2014) 024 [Erratum ibid.11 (2015) 147] [arXiv:1408.3405] [INSPIRE].
R. Enberg, W. Klemm, S. Moretti and S. Munir, Signatures of the Type-I 2HDM at the LHC, PoSCORFU2018 (2018) 013 [arXiv:1812.08623] [INSPIRE].
HanTHeavy Higgs bosons in 2HDM at a muon colliderPhys. Rev. D20211042021PhRvD.104e5029H10.1103/PhysRevD.104.055029[arXiv:2102.08386] [INSPIRE]
CapriniCDurrerRKonstandinTServantGGeneral Properties of the Gravitational Wave Spectrum from Phase TransitionsPhys. Rev. D2009792009PhRvD..79h3519C10.1103/PhysRevD.79.083519[arXiv:0901.1661] [INSPIRE]
EPTA and InPTA: collaborations, The second data release from the European Pulsar Timing Array — III. Search for gravitational wave signals, Astron. Astrophys.678 (2023) A50 [arXiv:2306.16214] [INSPIRE].
BattyeRABrawnGDPilaftsisAVacuum Topology of the Two Higgs Doublet ModelJHEP2011080202011JHEP...08..020B10.1007/JHEP08(2011)020[arXiv:1106.3482] [INSPIRE]
A. Conaci, L. Delle Rose, P.S.B. Dev and A. Ghoshal, Slaying Axion-Like Particles via Gravitational Waves and Primordial Black Holes from Supercooled Phase Transition, arXiv:2401.09411 [INSPIRE].
KingSFMarfatiaDRahatMHToward distinguishing Dirac from Majorana neutrino mass with gravitational wavesPhys. Rev. D20241092024PhRvD.109c5014K10.1103/PhysRevD.109.035014[arXiv:2306.05389] [INSPIRE]
MondalTMorettiSMunirSSanyalPElectroweak Multi-Higgs Production: A Smoking Gun for the Type-I Two-Higgs-Doublet ModelPhys. Rev. Lett.20231312023PhRvL.131w1801M10.1103/PhysRevLett.131.231801[arXiv:2304.07719] [INSPIRE]
E. Witten, Superconducting Strings, Nucl. Phys. B249 (1985) 557 [INSPIRE].
X. Martin and A. Vilenkin, Gravitational wave background from hybrid topological defects, Phys. Rev. Lett.77 (1996) 2879 [astro-ph/9606022] [INSPIRE].
E.A. Paschos, Diagonal Neutral Currents, Phys. Rev. D15 (1977) 1966 [INSPIRE].
M. Breitbach et al., Dark, Cold, and Noisy: Constraining Secluded Hidden Sectors with Gravitational Waves, JCAP07 (2019) 007 [arXiv:1811.11175] [INSPIRE].
T. Yanagida, Horizontal Gauge Symmetry and Masses of Neutrinos, in the proceedings of the Workshop on Unified Theory and Baryon Number of the Universe, Tsukuba, Japan (1979).
LIGO Scientific and Virgo collaborations, Binary Black Hole Mergers in the first Advanced LIGO Observing Run, Phys. Rev. X6 (2016) 041015 [Erratum ibid.8 (2018) 039903] [arXiv:1606.04856] [INSPIRE].
FuBGhoshalAKingSFCosmic string gravitational waves from global U (1)B−Lsymmetry breaking as a probe of the type I seesaw scaleJHEP2023110712023JHEP...11..071F10.1007/JHEP11(2023)071[arXiv:2306.07334] [INSPIRE]
B. Allen and J.D. Romano, Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities, Phys. Rev
P Ko (24371_CR12) 2012; 717
Y Cui (24371_CR58) 2020; 125
GSF Guedes (24371_CR57) 2018; 98
24371_CR78
P Auclair (24371_CR77) 2020; 04
RA Battye (24371_CR66) 2020; 102
PA Rosado (24371_CR111) 2011; 84
24371_CR80
L Delle Rose (24371_CR121) 2020; 04
P Ko (24371_CR14) 2014; 11
24371_CR82
24371_CR81
M Cepeda (24371_CR6) 2019; 7
24371_CR84
24371_CR83
L Bian (24371_CR34) 2018; 97
P Ko (24371_CR13) 2014; 01
G Lazarides (24371_CR49) 2023; 108
W Liu (24371_CR30) 2024; 110
RA Battye (24371_CR67) 2021; 01
24371_CR86
24371_CR107
Y Cui (24371_CR72) 2019; 01
24371_CR88
24371_CR108
T Regimbau (24371_CR109) 2017; 118
Y Cui (24371_CR75) 2018; 97
24371_CR87
24371_CR89
24371_CR103
24371_CR104
24371_CR105
P Auclair (24371_CR64) 2023; 04
MR Adams (24371_CR114) 2010; 82
24371_CR91
JT Mäkinen (24371_CR44) 2019; 10
24371_CR93
24371_CR92
24371_CR94
F An (24371_CR5) 2019; 43
Y Jiang (24371_CR90) 2023; 02
P Di Bari (24371_CR101) 2024; 05
24371_CR17
24371_CR16
24371_CR19
24371_CR18
T Han (24371_CR33) 2021; 01
24371_CR119
T Han (24371_CR32) 2021; 104
24371_CR113
24371_CR110
MR Adams (24371_CR115) 2014; 89
X-J Zhu (24371_CR116) 2013; 431
24371_CR27
Y Wang (24371_CR24) 2021; 12
24371_CR29
F Ferrer (24371_CR59) 2023; 09
A Dasgupta (24371_CR99) 2022; 106
SF King (24371_CR102) 2024; 109
24371_CR20
A Arhrib (24371_CR22) 2018; 07
S Blasi (24371_CR76) 2020; 2
JA Dror (24371_CR98) 2020; 124
E Thrane (24371_CR118) 2013; 88
24371_CR23
24371_CR25
24371_CR120
L Leblond (24371_CR68) 2009; 79
24371_CR122
24371_CR123
G Lazarides (24371_CR43) 2023; 05
GC Branco (24371_CR10) 2012; 516
RA Battye (24371_CR65) 2011; 08
S Moretti (24371_CR26) 2024; 84
24371_CR4
24371_CR39
24371_CR3
24371_CR38
24371_CR8
24371_CR7
B Fu (24371_CR100) 2023; 11
24371_CR9
T Mondal (24371_CR28) 2023; 131
L Badurina (24371_CR85) 2020; 05
C Caprini (24371_CR117) 2016; 04
24371_CR37
24371_CR36
CL Wainwright (24371_CR54) 2012; 183
24371_CR40
A Afzal (24371_CR62) 2024; 850
24371_CR2
24371_CR1
R-G Cai (24371_CR96) 2020; 102
24371_CR42
24371_CR41
24371_CR46
H Song (24371_CR106) 2024; 109
24371_CR45
K Saikawa (24371_CR53) 2017; 3
R Maji (24371_CR48) 2023; 845
24371_CR51
24371_CR50
MD Campos (24371_CR15) 2017; 08
L Sousa (24371_CR74) 2013; 88
N Chen (24371_CR35) 2020; 10
D Brzeminski (24371_CR97) 2022; 11
Y Gouttenoire (24371_CR73) 2020; 07
JJ Blanco-Pillado (24371_CR71) 2014; 89
24371_CR52
24371_CR55
IP Ivanov (24371_CR11) 2017; 95
24371_CR56
A Sesana (24371_CR79) 2021; 51
24371_CR60
24371_CR61
CJ Moore (24371_CR112) 2015; 32
N Chen (24371_CR31) 2020; 08
DI Dunsky (24371_CR47) 2022; 106
A Arhrib (24371_CR21) 2017; 77
C Caprini (24371_CR95) 2009; 79
24371_CR69
JJ Blanco-Pillado (24371_CR70) 2017; 96
L Sousa (24371_CR63) 2020; 101
References_xml – ident: 24371_CR17
– ident: 24371_CR42
  doi: 10.1016/0550-3213(82)90135-3
– ident: 24371_CR7
  doi: 10.1103/PhysRevD.8.1226
– ident: 24371_CR39
  doi: 10.1088/0305-4470/9/8/029
– ident: 24371_CR123
  doi: 10.1103/PhysRevD.59.102001
– ident: 24371_CR46
– ident: 24371_CR84
– ident: 24371_CR104
– volume: 89
  year: 2014
  ident: 24371_CR71
  publication-title: Phys. Rev. D
  contributor:
    fullname: JJ Blanco-Pillado
– volume: 01
  start-page: 081
  year: 2019
  ident: 24371_CR72
  publication-title: JHEP
  doi: 10.1007/JHEP01(2019)081
  contributor:
    fullname: Y Cui
– volume: 106
  year: 2022
  ident: 24371_CR47
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.075030
  contributor:
    fullname: DI Dunsky
– ident: 24371_CR50
  doi: 10.1103/PhysRevD.67.075019
– ident: 24371_CR83
  doi: 10.1088/0264-9381/23/15/008
– ident: 24371_CR23
– volume: 850
  year: 2024
  ident: 24371_CR62
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2024.138516
  contributor:
    fullname: A Afzal
– volume: 109
  year: 2024
  ident: 24371_CR102
  publication-title: Phys. Rev. D
  contributor:
    fullname: SF King
– volume: 102
  year: 2020
  ident: 24371_CR96
  publication-title: Phys. Rev. D
  contributor:
    fullname: R-G Cai
– volume: 183
  start-page: 2006
  year: 2012
  ident: 24371_CR54
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.04.004
  contributor:
    fullname: CL Wainwright
– ident: 24371_CR89
– ident: 24371_CR37
– volume: 88
  year: 2013
  ident: 24371_CR118
  publication-title: Phys. Rev. D
  contributor:
    fullname: E Thrane
– volume: 04
  start-page: 025
  year: 2020
  ident: 24371_CR121
  publication-title: JHEP
  doi: 10.1007/JHEP04(2020)025
  contributor:
    fullname: L Delle Rose
– volume: 101
  year: 2020
  ident: 24371_CR63
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.103508
  contributor:
    fullname: L Sousa
– ident: 24371_CR107
– volume: 08
  start-page: 020
  year: 2011
  ident: 24371_CR65
  publication-title: JHEP
  doi: 10.1007/JHEP08(2011)020
  contributor:
    fullname: RA Battye
– ident: 24371_CR36
  doi: 10.1103/PhysRevD.96.115024
– volume: 109
  year: 2024
  ident: 24371_CR106
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.123014
  contributor:
    fullname: H Song
– volume: 516
  start-page: 1
  year: 2012
  ident: 24371_CR10
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2012.02.002
  contributor:
    fullname: GC Branco
– ident: 24371_CR113
– volume: 98
  year: 2018
  ident: 24371_CR57
  publication-title: Phys. Rev. D
  contributor:
    fullname: GSF Guedes
– ident: 24371_CR3
– volume: 09
  start-page: 036
  year: 2023
  ident: 24371_CR59
  publication-title: JHEP
  doi: 10.1007/JHEP09(2023)036
  contributor:
    fullname: F Ferrer
– volume: 04
  start-page: 009
  year: 2023
  ident: 24371_CR64
  publication-title: JCAP
  doi: 10.1088/1475-7516/2023/04/009
  contributor:
    fullname: P Auclair
– volume: 79
  year: 2009
  ident: 24371_CR95
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.79.083519
  contributor:
    fullname: C Caprini
– volume: 12
  start-page: 021
  year: 2021
  ident: 24371_CR24
  publication-title: JHEP
  doi: 10.1007/JHEP12(2021)021
  contributor:
    fullname: Y Wang
– volume: 01
  start-page: 105
  year: 2021
  ident: 24371_CR67
  publication-title: JHEP
  contributor:
    fullname: RA Battye
– ident: 24371_CR25
– ident: 24371_CR82
– volume: 01
  start-page: 016
  year: 2014
  ident: 24371_CR13
  publication-title: JHEP
  doi: 10.1007/JHEP01(2014)016
  contributor:
    fullname: P Ko
– volume: 104
  year: 2021
  ident: 24371_CR32
  publication-title: Phys. Rev. D
  contributor:
    fullname: T Han
– ident: 24371_CR41
  doi: 10.1103/PhysRevD.26.435
– ident: 24371_CR122
– ident: 24371_CR110
  doi: 10.1111/j.1365-2966.2003.07176.x
– volume: 84
  start-page: 245
  year: 2024
  ident: 24371_CR26
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-024-12574-3
  contributor:
    fullname: S Moretti
– ident: 24371_CR87
– ident: 24371_CR93
– volume: 7
  start-page: 221
  year: 2019
  ident: 24371_CR6
  publication-title: CERN Yellow Rep. Monogr.
  contributor:
    fullname: M Cepeda
– ident: 24371_CR52
  doi: 10.1007/JHEP12(2014)024
– volume: 102
  year: 2020
  ident: 24371_CR66
  publication-title: Phys. Rev. D
  contributor:
    fullname: RA Battye
– ident: 24371_CR105
– volume: 106
  year: 2022
  ident: 24371_CR99
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.075027
  contributor:
    fullname: A Dasgupta
– ident: 24371_CR119
  doi: 10.1088/1475-7516/2019/07/007
– ident: 24371_CR9
  doi: 10.1103/PhysRevD.15.1966
– volume: 108
  year: 2023
  ident: 24371_CR49
  publication-title: Phys. Rev. D
  contributor:
    fullname: G Lazarides
– volume: 125
  year: 2020
  ident: 24371_CR58
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Y Cui
– volume: 96
  year: 2017
  ident: 24371_CR70
  publication-title: Phys. Rev. D
  contributor:
    fullname: JJ Blanco-Pillado
– ident: 24371_CR69
  doi: 10.1103/PhysRevLett.77.2879
– volume: 32
  year: 2015
  ident: 24371_CR112
  publication-title: Class. Quant. Grav.
  contributor:
    fullname: CJ Moore
– volume: 11
  start-page: 061
  year: 2022
  ident: 24371_CR97
  publication-title: JHEP
  doi: 10.1007/JHEP11(2022)061
  contributor:
    fullname: D Brzeminski
– volume: 04
  start-page: 001
  year: 2016
  ident: 24371_CR117
  publication-title: JCAP
  contributor:
    fullname: C Caprini
– ident: 24371_CR81
  doi: 10.1103/PhysRevD.73.064006
– volume: 05
  start-page: 011
  year: 2020
  ident: 24371_CR85
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/05/011
  contributor:
    fullname: L Badurina
– volume: 118
  year: 2017
  ident: 24371_CR109
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.151105
  contributor:
    fullname: T Regimbau
– volume: 84
  year: 2011
  ident: 24371_CR111
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.84.084004
  contributor:
    fullname: PA Rosado
– ident: 24371_CR88
– volume: 79
  year: 2009
  ident: 24371_CR68
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.79.123519
  contributor:
    fullname: L Leblond
– ident: 24371_CR19
  doi: 10.1007/978-1-4684-7197-7_15
– volume: 07
  start-page: 007
  year: 2018
  ident: 24371_CR22
  publication-title: JHEP
  doi: 10.1007/JHEP07(2018)007
  contributor:
    fullname: A Arhrib
– ident: 24371_CR8
  doi: 10.1103/PhysRevD.15.1958
– volume: 77
  start-page: 621
  year: 2017
  ident: 24371_CR21
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-5197-7
  contributor:
    fullname: A Arhrib
– ident: 24371_CR80
– volume: 08
  start-page: 092
  year: 2017
  ident: 24371_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP08(2017)092
  contributor:
    fullname: MD Campos
– ident: 24371_CR94
– ident: 24371_CR2
– volume: 07
  start-page: 032
  year: 2020
  ident: 24371_CR73
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/07/032
  contributor:
    fullname: Y Gouttenoire
– volume: 11
  start-page: 071
  year: 2023
  ident: 24371_CR100
  publication-title: JHEP
  doi: 10.1007/JHEP11(2023)071
  contributor:
    fullname: B Fu
– volume: 131
  year: 2023
  ident: 24371_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.131.231801
  contributor:
    fullname: T Mondal
– volume: 10
  start-page: 081
  year: 2020
  ident: 24371_CR35
  publication-title: JHEP
  doi: 10.1007/JHEP10(2020)081
  contributor:
    fullname: N Chen
– volume: 431
  start-page: 882
  year: 2013
  ident: 24371_CR116
  publication-title: Mon. Not. Roy. Astron. Soc.
  doi: 10.1093/mnras/stt207
  contributor:
    fullname: X-J Zhu
– volume: 10
  start-page: 237
  year: 2019
  ident: 24371_CR44
  publication-title: Nature Commun.
  doi: 10.1038/s41467-018-08204-8
  contributor:
    fullname: JT Mäkinen
– ident: 24371_CR91
– volume: 717
  start-page: 202
  year: 2012
  ident: 24371_CR12
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.09.019
  contributor:
    fullname: P Ko
– ident: 24371_CR16
  doi: 10.1016/0370-2693(77)90435-X
– ident: 24371_CR20
  doi: 10.1103/PhysRevLett.44.912
– ident: 24371_CR120
– ident: 24371_CR51
  doi: 10.22323/1.405.0010
– volume: 3
  start-page: 40
  year: 2017
  ident: 24371_CR53
  publication-title: Universe
  doi: 10.3390/universe3020040
  contributor:
    fullname: K Saikawa
– ident: 24371_CR103
– volume: 04
  start-page: 034
  year: 2020
  ident: 24371_CR77
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/04/034
  contributor:
    fullname: P Auclair
– volume: 2
  year: 2020
  ident: 24371_CR76
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.043321
  contributor:
    fullname: S Blasi
– volume: 05
  start-page: 119
  year: 2023
  ident: 24371_CR43
  publication-title: JHEP
  doi: 10.1007/JHEP05(2023)119
  contributor:
    fullname: G Lazarides
– volume: 97
  year: 2018
  ident: 24371_CR34
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.115007
  contributor:
    fullname: L Bian
– ident: 24371_CR60
  doi: 10.1016/0370-2693(82)90829-2
– volume: 97
  year: 2018
  ident: 24371_CR75
  publication-title: Phys. Rev. D
  contributor:
    fullname: Y Cui
– volume: 124
  year: 2020
  ident: 24371_CR98
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: JA Dror
– ident: 24371_CR92
– volume: 01
  start-page: 045
  year: 2021
  ident: 24371_CR33
  publication-title: JHEP
  doi: 10.1007/JHEP01(2021)045
  contributor:
    fullname: T Han
– volume: 02
  start-page: 026
  year: 2023
  ident: 24371_CR90
  publication-title: JCAP
  doi: 10.1088/1475-7516/2023/02/026
  contributor:
    fullname: Y Jiang
– ident: 24371_CR27
  doi: 10.22323/1.414.0529
– ident: 24371_CR38
– ident: 24371_CR40
  doi: 10.1103/PhysRevD.31.3052
– ident: 24371_CR86
– volume: 95
  start-page: 160
  year: 2017
  ident: 24371_CR11
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2017.03.001
  contributor:
    fullname: IP Ivanov
– ident: 24371_CR56
  doi: 10.1016/S0550-3213(02)00264-X
– volume: 89
  year: 2014
  ident: 24371_CR115
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.022001
  contributor:
    fullname: MR Adams
– volume: 110
  year: 2024
  ident: 24371_CR30
  publication-title: Phys. Rev. D
  contributor:
    fullname: W Liu
– volume: 08
  start-page: 131
  year: 2020
  ident: 24371_CR31
  publication-title: JHEP
  doi: 10.1007/JHEP08(2020)131
  contributor:
    fullname: N Chen
– ident: 24371_CR61
  doi: 10.1016/0550-3213(85)90022-7
– volume: 05
  start-page: 068
  year: 2024
  ident: 24371_CR101
  publication-title: JHEP
  doi: 10.5696/2156-9614-5-9.68
  contributor:
    fullname: P Di Bari
– ident: 24371_CR29
– ident: 24371_CR4
– volume: 11
  start-page: 054
  year: 2014
  ident: 24371_CR14
  publication-title: JHEP
  doi: 10.1007/JHEP11(2014)054
  contributor:
    fullname: P Ko
– ident: 24371_CR18
– volume: 845
  year: 2023
  ident: 24371_CR48
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2023.138127
  contributor:
    fullname: R Maji
– ident: 24371_CR108
  doi: 10.1103/PhysRevD.73.042001
– volume: 82
  year: 2010
  ident: 24371_CR114
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.82.022002
  contributor:
    fullname: MR Adams
– ident: 24371_CR78
  doi: 10.22323/1.215.0037
– ident: 24371_CR45
  doi: 10.1103/PhysRevD.47.2324
– ident: 24371_CR55
– volume: 88
  year: 2013
  ident: 24371_CR74
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.023516
  contributor:
    fullname: L Sousa
– volume: 51
  start-page: 1333
  year: 2021
  ident: 24371_CR79
  publication-title: Exper. Astron.
  doi: 10.1007/s10686-021-09709-9
  contributor:
    fullname: A Sesana
– volume: 43
  year: 2019
  ident: 24371_CR5
  publication-title: Chin. Phys. C
  contributor:
    fullname: F An
– ident: 24371_CR1
SSID ssj0015190
Score 2.5027874
Snippet A bstract The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by...
The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by cosmic...
Abstract The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 237
SubjectTerms Classical and Quantum Gravitation
Cosmology of Theories BSM
Defects
Domain walls
Early Universe Particle Physics
Elementary Particles
Flavors
Frequency ranges
Gravitational waves
Lie groups
Multi-Higgs Models
Neutral currents
Neutrinos
Phase transitions
Phase Transitions in the Early Universe
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quarks
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Strings
Symmetry
Wave spectra
SummonAdditionalLinks – databaseName: DOAJ Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSgMxFA1SENyIT6xWycJFuwjNTDKTZKnSUguKCwsFF8NMHiLUqTitxb_3Zh5aBXHjdmYIl3MnnHvzOAehc-qoAxq2xFDh_DZjRCTQDolSp1mkJefa30a-uY1HEz6eRtM1qy9_JqySB66A63MtnQ1DlVFhuAq0BMJWkQisYFqzoLq6R3nTTNX7B1CX0EbIh4r-eDS4o7ILjT7vhd7yfI2DSqn-b_Xljy3RkmmGO2i7LhHxRRXaLtqw-R7aLI9q6mIfPfjWkVzjxWpO_IJxQcx8mQH8uHS1wWlusDcVqsW3YaRV-mYL7C-SYDN_Tp9yeDKbFTjzlkrW4Owde_eO_LE4QJPh4P5qRGqLBKJhZi6IZLERWjBhZCBibpmxgmohY5hqqTYRBbaxgZXMC4umLlYlQQuoKyyUalKyQ9TK57k9QlhqJ8KMO62k41KFmYL2zKZAcYHTJtRt1G1AS14qJYyk0Tyu8E08vgng20aXHtTPz7yEdfkAEpvUiU3-SmwbdZqUJPW8KhJGlVQQOQvaqNek6ev1L_Ec_0c8J2jLj1euJ9MOai1el_YUCpJFdlb-ex-mcdj-
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen (Open Access)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46EbyIP3E6JQcP2yGYNmmTHHVM5kDx4GDgobT54UU7sZvD_96XrFWmePBW2rSE9_r6fS-v-R5C59RRBzBsiaHC-TJjQiTADklyp1miJefa70a-vUuHYz6aJJNaJMnvhflRv78YDQf3VHYhRee9mIl1tAEALENVNu1_lQuAhtBGt-f3TSuQE5T5V-jkjwpoAJbrHbRdM0J8uXThLlqz5R7aDH9m6mofPfpMkdzg2WJK_PpwRcx0XoC1cWhig_PSYN9DqNbahict8ndbYb9vBJvpC2T-cOb5ucKF76BkDS4-sG_WUT5VB2h8PXjoD0ndEYFoCMQZkSw1QgsmjIxEyi0zVlAtZAqRlWuTUAAXG1nJvI5o7lIV8FgAjbDAzKRkh6hVTkt7hLDUTsQFd1pJx6WKCwXZmM0B0SKnTazbqNsYLXtdCl9kjcTx0r6Zt28G9m2jK2_Ur2FesTqcAEdmdQBkXEtn41gVVBiuIi2BeKkEJiaY1vAdaKNO45KsDqMqY1RJBTNnURv1Gjd9X_5jPsf_GHuCtvxhWCWmHdSavc3tKdCMWXEWXrFPYqPJAw
  priority: 102
  providerName: Springer Nature
Title Type-I two-Higgs-doublet model and gravitational waves from domain walls bounded by strings
URI https://link.springer.com/article/10.1007/JHEP08(2024)237
https://www.proquest.com/docview/3098954031
https://doaj.org/article/4c8fe229b07d491c85629571e73cc319
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA_1pNCXYr_oVT3y0Ad9CGaz2U3yVPS461WoSOmB0IdlNx8i2F3rnkr_e2dyWbWF9iWw2RDCTCbzm5lkhpCPPPAAatgzx1XAMGPBNKgdVtTB5oXVUlp8jfz1pFws5fFZcZYcbn26VjmcifGgdp1FH_lBzo02AC_y7NPVL4ZVozC6mkpobJBNAVCmGJHNo9nJ6beHOALgEz4k9OHq4HgxO-V6Dwx-uS-w9PkTXRRT9v-BM_8KjUaNM98iLxNUpIdr3r4iz3z7mjyPVzZt_4b8QBOSfaGru46h47hnrrtpgA00VrehdesoFhdKSbhhprv61vcUH5RQ1_2sL1roubzsaYOllbyjzW-KVTza8_4tWc5n36cLlkolMAsSumI6L52yKldOZ6qUPndecat0CSJXW1dw0Do-8zrHBKN1KE1U1ArwhQeaap2_I6O2a_17QrUNSjQyWKOD1EY0Bsw0X4Oqy4J1wo7J3kC06mqdEaMach-v6VshfSug75gcIVEfhmEq69jRXZ9XSTIqaXXwQpiGKydNZjUgMlPAwlRuLRwQY7IzsKRK8tVXj7thTPYHNj3-_sd6Pvx_qm3yAkdGjzHfIaPV9Y3fBcixaiZkQ88_T9Lugq-pkNiW00k04qFdisN7-zXXOw
link.rule.ids 315,782,786,866,2104,12772,21395,27931,27932,33380,33751,41126,41127,41530,42195,42196,42599,43607,43812,51583,52240,52241,74042,74309
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDI9gCMEF8SkeDMiBw3aIljZpk5wQoD3exjZx2KRJHKLWSaZJox3rGxP_PXZeuwESXPsRRXYc_2wn_jH2ViaZ0A1HEaRJVGashEW3I6omgarAag10G3n_oF4c6d3j6nhMuA3jscppT8wbdeiBcuRbSjrrEF6o4t35d0GsUVRdHSk0brM7WtWSgi87_3RdRUB0Iqd2PtJs7S62v0i7geG-3iyJ-Pw3T5Qb9v-BMv8qjGZ_M3_IHoxAkb9fafYRuxW7x-xuPrAJwxP2lQJIscOXV72gtPEgQn_ZohJ45rbhTRc4UQuNLbhxpKvmRxw4XSfhof_WnHb45Oxs4C0RK8XA25-cODy6k-EpO5pvH35ciJEoQQDa51JYVQcDRplgC1PrqEI0Eoyt0eAaCJVEnxOLaBW1F21S7bKbNoguIkrUWvWMrXV9F58zbiGZstUJnE3aurJ1GKTFBh1dkSCUMGMbk9D8-aofhp86H6_k60m-HuU7Yx9IqNefUSPr_KC_OPGjXXgNNsWydK00QbsCLOIxV-HEjALA7WHG1ieV-NG6Bn-zFmZsc1LTzet_zOfF_4d6w-4tDvf3_N7OweeX7D79lXPHcp2tLS8u4ysEH8v2dV5hvwBnS9RS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxUxFG4QonFDfMarqF2wgEVzO9POtF0RH1wvoISFJCQumpk-iAnOIHOR8O85p7cDaqLbeTTNefR87Tk9HyGbPPIIYTgwz1XENGPFNIQdVjXRicppKR3eRv5yWM-P5f5JdZLrn4ZcVjmuiWmh9r3DM_Kp4EYbgBeimMZcFnH0cbZz_pMhgxRmWjOdxj2ypiSYIt4an326zSgAUuFjax-upvvz3SOut2DrL7dLJEH_LSql5v1_IM6_kqQp9swekfUMGum7pZYfk5XQPSH3U_GmG56Sb7iZZHt0cdUzPEIemO8vW1AITTw3tOk8RZqh3I4bRrpqfoWB4tUS6vsfzfcOnpydDbRFkqXgaXtNkc-jOx2ekePZ7tcPc5ZJE5gDX10wLWqvnBLK60LVMggfFHdK1-B8jfMVh_gTiqAFthptYm1SyFaANAJIV2vxnKx2fRdeEKpdVGUrozM6Sm3K1sCGLTQQ9IrofOkmZGsUmj1f9sawYxfkpXwtyteCfCfkPQr19jNsap0e9BenNvuIlU7HUJam5cpLUzgN2MxUMDElnIOlYkI2RpXY7GmDvbOLCdke1XT3-h_zefn_od6SB2Bc9vPe4cEr8hB_SsfIfIOsLi4uw2vAIYv2TTKwG1bj2IA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Type-I+two-Higgs-doublet+model+and+gravitational+waves+from+domain+walls+bounded+by+strings&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Fu%2C+Bowen&rft.au=Ghoshal%2C+Anish&rft.au=King%2C+Stephen+F&rft.au=Rahat%2C+Moinul+Hossain&rft.date=2024-08-30&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2024&rft.issue=8&rft.spage=237&rft_id=info:doi/10.1007%2FJHEP08%282024%29237&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon