On Adaptive Sketch-and-Project for Solving Linear Systems

We generalize the concept of adaptive sampling rules to the sketch-and-project method for solving linear systems. Analyzing adaptive sampling rules in the sketch-and-project setting yields convergence results that apply to all special cases at once, including the Kaczmarz and coordinate descent. Thi...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on matrix analysis and applications Vol. 42; no. 2; pp. 954 - 989
Main Authors Gower, Robert M., Molitor, Denali, Moorman, Jacob, Needell, Deanna
Format Journal Article
LanguageEnglish
Published Society for Industrial and Applied Mathematics 01.01.2021
Subjects
Online AccessGet full text
ISSN0895-4798
1095-7162
DOI10.1137/19M1285846

Cover

Loading…
Abstract We generalize the concept of adaptive sampling rules to the sketch-and-project method for solving linear systems. Analyzing adaptive sampling rules in the sketch-and-project setting yields convergence results that apply to all special cases at once, including the Kaczmarz and coordinate descent. This eliminates the need to separately analyze analogous adaptive sampling rules in each special case. To deduce new sampling rules, we show how the progress of one step of the sketch-and-project method depends directly on a sketched residual. Based on this insight, we derive a (1) max-distance sampling rule, by sampling the sketch with the largest sketched residual, (2) a proportional sampling rule, by sampling proportional to the sketched residual, and finally (3) a capped sampling rule. The capped sampling rule is a generalization of the recently introduced adaptive sampling rules for the Kaczmarz method [Z.-Z. Bai and W.-T. Wu, SIAM J. Sci. Comput., 40 (2018), pp. A592-A606]. We provide a global exponential convergence theorem for each sampling rule and show that the max-distance sampling rule enjoys the fastest convergence. This finding is also verified in extensive numerical experiments that lead us to conclude that the max-distance sampling rule is superior both experimentally and theoretically to the capped sampling rule. We also provide numerical insights into implementing the adaptive strategies so that the per iteration cost is of the same order as using a fixed sampling strategy when the product of the number of sketches with the sketch size is not significantly larger than the number of columns.
AbstractList We generalize the concept of adaptive sampling rules to the sketch-and-project method for solving linear systems. Analyzing adaptive sampling rules in the sketch-and-project setting yields convergence results that apply to all special cases at once, including the Kaczmarz and coordinate descent. This eliminates the need to separately analyze analogous adaptive sampling rules in each special case. To deduce new sampling rules, we show how the progress of one step of the sketch-and-project method depends directly on a sketched residual. Based on this insight, we derive a (1) max-distance sampling rule, by sampling the sketch with the largest sketched residual, (2) a proportional sampling rule, by sampling proportional to the sketched residual, and finally (3) a capped sampling rule. The capped sampling rule is a generalization of the recently introduced adaptive sampling rules for the Kaczmarz method [Z.-Z. Bai and W.-T. Wu, SIAM J. Sci. Comput., 40 (2018), pp. A592-A606]. We provide a global exponential convergence theorem for each sampling rule and show that the max-distance sampling rule enjoys the fastest convergence. This finding is also verified in extensive numerical experiments that lead us to conclude that the max-distance sampling rule is superior both experimentally and theoretically to the capped sampling rule. We also provide numerical insights into implementing the adaptive strategies so that the per iteration cost is of the same order as using a fixed sampling strategy when the product of the number of sketches with the sketch size is not significantly larger than the number of columns.
Author Moorman, Jacob
Needell, Deanna
Molitor, Denali
Gower, Robert M.
Author_xml – sequence: 1
  givenname: Robert M.
  surname: Gower
  fullname: Gower, Robert M.
– sequence: 2
  givenname: Denali
  surname: Molitor
  fullname: Molitor, Denali
– sequence: 3
  givenname: Jacob
  orcidid: 0000-0002-4291-1561
  surname: Moorman
  fullname: Moorman, Jacob
– sequence: 4
  givenname: Deanna
  orcidid: 0000-0002-8058-8638
  surname: Needell
  fullname: Needell, Deanna
BackLink https://telecom-paris.hal.science/hal-04182656$$DView record in HAL
BookMark eNptkE1LAzEQhoNUsK1e_AV7VVjN7OZrj6WoFVYqVM9Lkk1s6jYpm1Dov3dLRUE8zczL88zhnaCRD94gdA34DqDk91C9QCGoIOwMjQFXNOfAihEaYzHshFfiAk1i3GAMjFQwRtXSZ7NW7pLbm2z1aZJe59K3-WsfNkanzIY-W4Vu7_xHVjtv5HAeYjLbeInOreyiufqeU_T--PA2X-T18ul5PqtzXWJIOS8VtZKxtpWq4LrCSpKSWqqw1pozEJwqSrTkAitihCh4YTGzGshgUK7KKbo5_V3Lrtn1biv7QxOkaxazujlmmIAoGGV7GNjbE6v7EGNv7I8AuDkW1PwWNMD4D6xdkskFn3rpuv-UL1bsZ_0
CitedBy_id crossref_primary_10_1016_j_amc_2023_127892
crossref_primary_10_1137_22M1517196
crossref_primary_10_1002_nla_2429
crossref_primary_10_1016_j_cam_2024_116067
crossref_primary_10_1016_j_laa_2023_03_003
crossref_primary_10_1007_s10092_021_00429_2
crossref_primary_10_1007_s10092_024_00577_1
crossref_primary_10_1007_s11075_022_01473_x
crossref_primary_10_1002_nla_2470
crossref_primary_10_1016_j_laa_2024_07_009
crossref_primary_10_3934_math_2024122
crossref_primary_10_1093_imaiai_iaab029
crossref_primary_10_1007_s11075_022_01431_7
crossref_primary_10_1016_j_apnum_2023_01_013
crossref_primary_10_1137_23M1545537
crossref_primary_10_1007_s10092_024_00621_0
crossref_primary_10_1088_1361_6420_ad5fb1
crossref_primary_10_1002_nla_2458
crossref_primary_10_1137_23M1567503
crossref_primary_10_1137_22M1488715
crossref_primary_10_1007_s40840_024_01739_8
crossref_primary_10_1007_s10543_024_01024_x
crossref_primary_10_1002_nla_2552
crossref_primary_10_1007_s11075_023_01540_x
crossref_primary_10_1016_j_cam_2022_114374
crossref_primary_10_4236_apm_2022_124020
crossref_primary_10_1088_1361_6420_aca78a
crossref_primary_10_1016_j_amc_2022_127339
crossref_primary_10_1007_s11075_022_01468_8
crossref_primary_10_1137_23M1575883
Cites_doi 10.1137/16M1062053
10.1137/15M1025487
10.1016/j.laa.2019.05.005
10.1007/s10107-015-0864-7
10.1002/nla.2237
10.1007/s10543-014-0526-9
10.1007/s10543-018-0737-6
10.1137/16M1060182
10.1137/15M1014425
10.1137/120889897
10.1137/100802001
10.1007/s10107-014-0800-2
10.1016/j.laa.2012.04.052
10.1007/BF00939948
10.1016/j.laa.2012.12.022
10.1007/s00041-008-9030-4
10.1145/62038.62043
10.1049/el:19740097
10.1016/j.aml.2020.106294
10.1016/0022-5193(70)90109-8
10.1137/19M1307044
10.1007/BF02941906
10.4153/CJM-1954-038-x
10.1088/0967-3334/34/6/595
10.1007/s10957-016-1058-z
10.1007/s11075-016-0118-7
10.1137/17M1137747
10.1007/s10851-014-0539-7
10.6028/jres.049.044
10.1016/j.aml.2018.03.008
10.1016/j.laa.2015.06.027
10.1007/s10107-012-0614-z
10.1137/16M1073807
10.1287/moor.1100.0456
10.1137/0328011
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1137/19M1285846
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1095-7162
EndPage 989
ExternalDocumentID oai_HAL_hal_04182656v1
10_1137_19M1285846
GroupedDBID -~X
.4S
.DC
123
186
4.4
7WY
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8G5
8V8
AALVN
AASXH
AAYXX
ABDBF
ABDPE
ABJCF
ABKAD
ABMZU
ABUWG
ACGFO
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AEMOZ
AENEX
AFFNX
AFKRA
AFRAH
AHQJS
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ANXRF
ARAPS
ARCSS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
CCPQU
CITATION
CS3
CZ9
D0L
D1I
D1J
D1K
DQ2
DU5
DWQXO
EAP
EBR
EBS
EBU
ECS
EDO
EJD
EMK
EST
ESX
FA8
FRNLG
GNUQQ
GUQSH
H13
HCIFZ
H~9
I-F
K1G
K6-
K60
K6V
K6~
K7-
KB.
KC.
L6V
LK5
LK8
M0C
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
P1Q
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
RJG
RNS
RSI
TH9
TN5
TUS
YNT
ZKB
ZY4
1XC
VOOES
ID FETCH-LOGICAL-c301t-73b5fa66ddab27c90ba435f5b0ccc761875b54ca780b4e88272f06fc14dda57b3
ISSN 0895-4798
IngestDate Fri May 09 12:20:27 EDT 2025
Tue Jul 01 01:26:11 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords adaptive sampling
68W20
68Q25
68W40
65Y20
randomized Kaczmarz
15B52
90C20
sketch-and-project adaptive sampling least squares randomized Kaczmarz coordinate descent AMS subject classifications. 15A06 15B52 65F10 68W20 65N75 65Y20 68Q25 68W40 90C20
sketch-and-project
65F10
coordinate descent AMS subject classifications. 15A06
least squares
65N75
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c301t-73b5fa66ddab27c90ba435f5b0ccc761875b54ca780b4e88272f06fc14dda57b3
ORCID 0000-0002-8058-8638
0000-0002-4291-1561
OpenAccessLink https://telecom-paris.hal.science/hal-04182656
PageCount 36
ParticipantIDs hal_primary_oai_HAL_hal_04182656v1
crossref_primary_10_1137_19M1285846
crossref_citationtrail_10_1137_19M1285846
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-00
2021-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-00
PublicationDecade 2020
PublicationTitle SIAM journal on matrix analysis and applications
PublicationYear 2021
Publisher Society for Industrial and Applied Mathematics
Publisher_xml – name: Society for Industrial and Applied Mathematics
References Nutini J. (atypb47) 2015
Zhao P. (atypb60) 2015
atypb29
atypb22
atypb44
atypb23
atypb45
atypb24
atypb46
atypb40
atypb41
Osokin A. (atypb49) 2016; 48
atypb20
atypb42
atypb21
Johnson R. (atypb25) 2013
atypb43
atypb61
Richtárik P. (atypb54) 2016; 17
Cuturi M. (atypb10) 2013
Davis T. A. (atypb11) 2011; 38
Kaczmarz M. S. (atypb26) 1937; 35
Csiba D. (atypb9) 2018; 19
atypb15
Kemp A. (atypb28) 1981; 30
atypb37
atypb59
atypb16
atypb18
atypb33
atypb55
atypb34
atypb13
atypb35
atypb57
atypb36
atypb58
atypb30
atypb52
atypb3
atypb31
atypb53
atypb5
atypb4
atypb7
atypb6
References_xml – ident: atypb20
  doi: 10.1137/16M1062053
– volume: 48
  start-page: 593
  year: 2016
  ident: atypb49
  publication-title: Proceedings of Machine Learning Research
– volume: 35
  start-page: 355
  year: 1937
  ident: atypb26
  publication-title: Bull. Int. Acad. Polonaise Sci. Lettres Classe Sci. Math. Naturelles Sér. A
– ident: atypb18
  doi: 10.1137/15M1025487
– ident: atypb6
  doi: 10.1016/j.laa.2019.05.005
– ident: atypb41
  doi: 10.1007/s10107-015-0864-7
– ident: atypb5
  doi: 10.1002/nla.2237
– ident: atypb15
  doi: 10.1007/s10543-014-0526-9
– ident: atypb23
  doi: 10.1007/s10543-018-0737-6
– ident: atypb45
  doi: 10.1137/16M1060182
– ident: atypb35
  doi: 10.1137/15M1014425
– ident: atypb61
  doi: 10.1137/120889897
– ident: atypb44
  doi: 10.1137/100802001
– start-page: 315
  year: 2013
  ident: atypb25
  publication-title: Advances in Neural Information Processing Systems
– ident: atypb33
  doi: 10.1007/s10107-014-0800-2
– ident: atypb21
  doi: 10.1016/j.laa.2012.04.052
– volume: 38
  start-page: 1
  year: 2011
  ident: atypb11
  publication-title: ACM Trans. Math. Software
– ident: atypb34
  doi: 10.1007/BF00939948
– ident: atypb42
  doi: 10.1016/j.laa.2012.12.022
– ident: atypb57
  doi: 10.1007/s00041-008-9030-4
– ident: atypb13
  doi: 10.1145/62038.62043
– start-page: 2292
  year: 2013
  ident: atypb10
  publication-title: Curran Associates
– volume: 17
  start-page: 1
  year: 2016
  ident: atypb54
  publication-title: J. Mach. Learn. Res.
– ident: atypb59
  doi: 10.1049/el:19740097
– ident: atypb46
  doi: 10.1016/j.aml.2020.106294
– ident: atypb16
  doi: 10.1016/0022-5193(70)90109-8
– ident: atypb22
  doi: 10.1137/19M1307044
– volume: 19
  start-page: 962
  year: 2018
  ident: atypb9
  publication-title: J. Mach. Learn. Res.
– ident: atypb53
  doi: 10.1007/BF02941906
– ident: atypb37
  doi: 10.4153/CJM-1954-038-x
– ident: atypb30
  doi: 10.1088/0967-3334/34/6/595
– ident: atypb40
  doi: 10.1007/s10957-016-1058-z
– ident: atypb52
  doi: 10.1007/s11075-016-0118-7
– ident: atypb3
  doi: 10.1137/17M1137747
– ident: atypb7
  doi: 10.1007/s10851-014-0539-7
– ident: atypb24
  doi: 10.6028/jres.049.044
– ident: atypb4
  doi: 10.1016/j.aml.2018.03.008
– ident: atypb43
  doi: 10.1016/j.laa.2015.06.027
– volume: 30
  start-page: 249
  year: 1981
  ident: atypb28
  publication-title: J. R. Stat. Soc. Ser. C Appl. Stat.
– start-page: 1632
  year: 2015
  ident: atypb47
  publication-title: Proceedings of the International Conference on Machine Learning
– ident: atypb55
  doi: 10.1007/s10107-012-0614-z
– ident: atypb31
  doi: 10.1137/16M1073807
– ident: atypb36
  doi: 10.1137/15M1014425
– start-page: 1
  year: 2015
  ident: atypb60
  publication-title: Proceedings of the International Conference on Machine Learning
– ident: atypb29
  doi: 10.1287/moor.1100.0456
– ident: atypb58
  doi: 10.1137/0328011
SSID ssj0016491
Score 2.539589
Snippet We generalize the concept of adaptive sampling rules to the sketch-and-project method for solving linear systems. Analyzing adaptive sampling rules in the...
SourceID hal
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 954
SubjectTerms Computer Science
Numerical Analysis
Title On Adaptive Sketch-and-Project for Solving Linear Systems
URI https://telecom-paris.hal.science/hal-04182656
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZCuMAB0VIEBapV4YIiwz5sb_aYFqqoagA1IHGLbK9XSFAHQUCIX8_M2vtow4FyWUWOx9LujMbz_IaQPZ6pVBZMUaGVoSwpNJV5IqhKNEN56fMcM7qjEzG8YD8v-WWn89zuLpmpA_38al_Je7gKa8BX7JL9D87Wh8IC_Ab-whM4DM838fjU9ga5vC2rf8bXyAAqbU7PXHSlrCAcT28eXSOTRcieNkC5N0nH4Mw3ABK29wdB-596skIrKdFcW2nuumIH56s1xdm90UHNPKypc2GAI4OGfvNH2aPgqnP1VDWRaJP7_MeRkdYN9K5iEXHUikV4lZVxjNU5jWqcSgUjjiJOVVvnsrglW3FLgWYOUtrfxZkbLzSv5h1QQDaC2xUtqOYyqxL4_9xxdeVh6fMk6aShXSCLMbgYcZcsfjs-Oftd56AEc_MWq3fy4LZAfdhQ_2XOLFxV0fjSOjlfJSverQgGTkY-kI6xH8nyqMbkvV8j2akNKmkJ5qUlAGkJvLQETloCLy2fyMWP4_PvQ-oHZ1AN-npG00TxQgqR51LFqc5CJcEqLrgKtdapiMBHVZxpmfZDxQz4WGlchKLQEQMKnqpknXTt1JoNEoAH0AcqGYY6Z4zBQWDjCbR7E84UizbJfvX-E-1R5XG4yc1k_ktvkt16763DUnl111f4jPUGhD8fDn5NcC1k6A1z8Rh9ftNRW2SpkdJt0p3dPZgdsCFn6otn9gvGEG46
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Adaptive+Sketch-and-Project+for+Solving+Linear+Systems&rft.jtitle=SIAM+journal+on+matrix+analysis+and+applications&rft.au=Gower%2C+Robert+M.&rft.au=Molitor%2C+Denali&rft.au=Moorman%2C+Jacob&rft.au=Needell%2C+Deanna&rft.date=2021-01-01&rft.issn=0895-4798&rft.eissn=1095-7162&rft.volume=42&rft.issue=2&rft.spage=954&rft.epage=989&rft_id=info:doi/10.1137%2F19M1285846&rft.externalDBID=n%2Fa&rft.externalDocID=10_1137_19M1285846
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4798&client=summon