On Adaptive Sketch-and-Project for Solving Linear Systems
We generalize the concept of adaptive sampling rules to the sketch-and-project method for solving linear systems. Analyzing adaptive sampling rules in the sketch-and-project setting yields convergence results that apply to all special cases at once, including the Kaczmarz and coordinate descent. Thi...
Saved in:
Published in | SIAM journal on matrix analysis and applications Vol. 42; no. 2; pp. 954 - 989 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Society for Industrial and Applied Mathematics
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0895-4798 1095-7162 |
DOI | 10.1137/19M1285846 |
Cover
Loading…
Abstract | We generalize the concept of adaptive sampling rules to the sketch-and-project method for solving linear systems. Analyzing adaptive sampling rules in the sketch-and-project setting yields convergence results that apply to all special cases at once, including the Kaczmarz and coordinate descent. This eliminates the need to separately analyze analogous adaptive sampling rules in each special case. To deduce new sampling rules, we show how the progress of one step of the sketch-and-project method depends directly on a sketched residual. Based on this insight, we derive a (1) max-distance sampling rule, by sampling the sketch with the largest sketched residual, (2) a proportional sampling rule, by sampling proportional to the sketched residual, and finally (3) a capped sampling rule. The capped sampling rule is a generalization of the recently introduced adaptive sampling rules for the Kaczmarz method [Z.-Z. Bai and W.-T. Wu, SIAM J. Sci. Comput., 40 (2018), pp. A592-A606]. We provide a global exponential convergence theorem for each sampling rule and show that the max-distance sampling rule enjoys the fastest convergence. This finding is also verified in extensive numerical experiments that lead us to conclude that the max-distance sampling rule is superior both experimentally and theoretically to the capped sampling rule. We also provide numerical insights into implementing the adaptive strategies so that the per iteration cost is of the same order as using a fixed sampling strategy when the product of the number of sketches with the sketch size is not significantly larger than the number of columns. |
---|---|
AbstractList | We generalize the concept of adaptive sampling rules to the sketch-and-project method for solving linear systems. Analyzing adaptive sampling rules in the sketch-and-project setting yields convergence results that apply to all special cases at once, including the Kaczmarz and coordinate descent. This eliminates the need to separately analyze analogous adaptive sampling rules in each special case. To deduce new sampling rules, we show how the progress of one step of the sketch-and-project method depends directly on a sketched residual. Based on this insight, we derive a (1) max-distance sampling rule, by sampling the sketch with the largest sketched residual, (2) a proportional sampling rule, by sampling proportional to the sketched residual, and finally (3) a capped sampling rule. The capped sampling rule is a generalization of the recently introduced adaptive sampling rules for the Kaczmarz method [Z.-Z. Bai and W.-T. Wu, SIAM J. Sci. Comput., 40 (2018), pp. A592-A606]. We provide a global exponential convergence theorem for each sampling rule and show that the max-distance sampling rule enjoys the fastest convergence. This finding is also verified in extensive numerical experiments that lead us to conclude that the max-distance sampling rule is superior both experimentally and theoretically to the capped sampling rule. We also provide numerical insights into implementing the adaptive strategies so that the per iteration cost is of the same order as using a fixed sampling strategy when the product of the number of sketches with the sketch size is not significantly larger than the number of columns. |
Author | Moorman, Jacob Needell, Deanna Molitor, Denali Gower, Robert M. |
Author_xml | – sequence: 1 givenname: Robert M. surname: Gower fullname: Gower, Robert M. – sequence: 2 givenname: Denali surname: Molitor fullname: Molitor, Denali – sequence: 3 givenname: Jacob orcidid: 0000-0002-4291-1561 surname: Moorman fullname: Moorman, Jacob – sequence: 4 givenname: Deanna orcidid: 0000-0002-8058-8638 surname: Needell fullname: Needell, Deanna |
BackLink | https://telecom-paris.hal.science/hal-04182656$$DView record in HAL |
BookMark | eNptkE1LAzEQhoNUsK1e_AV7VVjN7OZrj6WoFVYqVM9Lkk1s6jYpm1Dov3dLRUE8zczL88zhnaCRD94gdA34DqDk91C9QCGoIOwMjQFXNOfAihEaYzHshFfiAk1i3GAMjFQwRtXSZ7NW7pLbm2z1aZJe59K3-WsfNkanzIY-W4Vu7_xHVjtv5HAeYjLbeInOreyiufqeU_T--PA2X-T18ul5PqtzXWJIOS8VtZKxtpWq4LrCSpKSWqqw1pozEJwqSrTkAitihCh4YTGzGshgUK7KKbo5_V3Lrtn1biv7QxOkaxazujlmmIAoGGV7GNjbE6v7EGNv7I8AuDkW1PwWNMD4D6xdkskFn3rpuv-UL1bsZ_0 |
CitedBy_id | crossref_primary_10_1016_j_amc_2023_127892 crossref_primary_10_1137_22M1517196 crossref_primary_10_1002_nla_2429 crossref_primary_10_1016_j_cam_2024_116067 crossref_primary_10_1016_j_laa_2023_03_003 crossref_primary_10_1007_s10092_021_00429_2 crossref_primary_10_1007_s10092_024_00577_1 crossref_primary_10_1007_s11075_022_01473_x crossref_primary_10_1002_nla_2470 crossref_primary_10_1016_j_laa_2024_07_009 crossref_primary_10_3934_math_2024122 crossref_primary_10_1093_imaiai_iaab029 crossref_primary_10_1007_s11075_022_01431_7 crossref_primary_10_1016_j_apnum_2023_01_013 crossref_primary_10_1137_23M1545537 crossref_primary_10_1007_s10092_024_00621_0 crossref_primary_10_1088_1361_6420_ad5fb1 crossref_primary_10_1002_nla_2458 crossref_primary_10_1137_23M1567503 crossref_primary_10_1137_22M1488715 crossref_primary_10_1007_s40840_024_01739_8 crossref_primary_10_1007_s10543_024_01024_x crossref_primary_10_1002_nla_2552 crossref_primary_10_1007_s11075_023_01540_x crossref_primary_10_1016_j_cam_2022_114374 crossref_primary_10_4236_apm_2022_124020 crossref_primary_10_1088_1361_6420_aca78a crossref_primary_10_1016_j_amc_2022_127339 crossref_primary_10_1007_s11075_022_01468_8 crossref_primary_10_1137_23M1575883 |
Cites_doi | 10.1137/16M1062053 10.1137/15M1025487 10.1016/j.laa.2019.05.005 10.1007/s10107-015-0864-7 10.1002/nla.2237 10.1007/s10543-014-0526-9 10.1007/s10543-018-0737-6 10.1137/16M1060182 10.1137/15M1014425 10.1137/120889897 10.1137/100802001 10.1007/s10107-014-0800-2 10.1016/j.laa.2012.04.052 10.1007/BF00939948 10.1016/j.laa.2012.12.022 10.1007/s00041-008-9030-4 10.1145/62038.62043 10.1049/el:19740097 10.1016/j.aml.2020.106294 10.1016/0022-5193(70)90109-8 10.1137/19M1307044 10.1007/BF02941906 10.4153/CJM-1954-038-x 10.1088/0967-3334/34/6/595 10.1007/s10957-016-1058-z 10.1007/s11075-016-0118-7 10.1137/17M1137747 10.1007/s10851-014-0539-7 10.6028/jres.049.044 10.1016/j.aml.2018.03.008 10.1016/j.laa.2015.06.027 10.1007/s10107-012-0614-z 10.1137/16M1073807 10.1287/moor.1100.0456 10.1137/0328011 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1137/19M1285846 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1095-7162 |
EndPage | 989 |
ExternalDocumentID | oai_HAL_hal_04182656v1 10_1137_19M1285846 |
GroupedDBID | -~X .4S .DC 123 186 4.4 7WY 7X2 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8G5 8V8 AALVN AASXH AAYXX ABDBF ABDPE ABJCF ABKAD ABMZU ABUWG ACGFO ACGOD ACIWK ACPRK ACUHS ADBBV AEMOZ AENEX AFFNX AFKRA AFRAH AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS ANXRF ARAPS ARCSS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BPHCQ CCPQU CITATION CS3 CZ9 D0L D1I D1J D1K DQ2 DU5 DWQXO EAP EBR EBS EBU ECS EDO EJD EMK EST ESX FA8 FRNLG GNUQQ GUQSH H13 HCIFZ H~9 I-F K1G K6- K60 K6V K6~ K7- KB. KC. L6V LK5 LK8 M0C M0K M1Q M2O M2P M7P M7R M7S P1Q P2P P62 PATMY PDBOC PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY RJG RNS RSI TH9 TN5 TUS YNT ZKB ZY4 1XC VOOES |
ID | FETCH-LOGICAL-c301t-73b5fa66ddab27c90ba435f5b0ccc761875b54ca780b4e88272f06fc14dda57b3 |
ISSN | 0895-4798 |
IngestDate | Fri May 09 12:20:27 EDT 2025 Tue Jul 01 01:26:11 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | adaptive sampling 68W20 68Q25 68W40 65Y20 randomized Kaczmarz 15B52 90C20 sketch-and-project adaptive sampling least squares randomized Kaczmarz coordinate descent AMS subject classifications. 15A06 15B52 65F10 68W20 65N75 65Y20 68Q25 68W40 90C20 sketch-and-project 65F10 coordinate descent AMS subject classifications. 15A06 least squares 65N75 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c301t-73b5fa66ddab27c90ba435f5b0ccc761875b54ca780b4e88272f06fc14dda57b3 |
ORCID | 0000-0002-8058-8638 0000-0002-4291-1561 |
OpenAccessLink | https://telecom-paris.hal.science/hal-04182656 |
PageCount | 36 |
ParticipantIDs | hal_primary_oai_HAL_hal_04182656v1 crossref_primary_10_1137_19M1285846 crossref_citationtrail_10_1137_19M1285846 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-00 2021-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-00 |
PublicationDecade | 2020 |
PublicationTitle | SIAM journal on matrix analysis and applications |
PublicationYear | 2021 |
Publisher | Society for Industrial and Applied Mathematics |
Publisher_xml | – name: Society for Industrial and Applied Mathematics |
References | Nutini J. (atypb47) 2015 Zhao P. (atypb60) 2015 atypb29 atypb22 atypb44 atypb23 atypb45 atypb24 atypb46 atypb40 atypb41 Osokin A. (atypb49) 2016; 48 atypb20 atypb42 atypb21 Johnson R. (atypb25) 2013 atypb43 atypb61 Richtárik P. (atypb54) 2016; 17 Cuturi M. (atypb10) 2013 Davis T. A. (atypb11) 2011; 38 Kaczmarz M. S. (atypb26) 1937; 35 Csiba D. (atypb9) 2018; 19 atypb15 Kemp A. (atypb28) 1981; 30 atypb37 atypb59 atypb16 atypb18 atypb33 atypb55 atypb34 atypb13 atypb35 atypb57 atypb36 atypb58 atypb30 atypb52 atypb3 atypb31 atypb53 atypb5 atypb4 atypb7 atypb6 |
References_xml | – ident: atypb20 doi: 10.1137/16M1062053 – volume: 48 start-page: 593 year: 2016 ident: atypb49 publication-title: Proceedings of Machine Learning Research – volume: 35 start-page: 355 year: 1937 ident: atypb26 publication-title: Bull. Int. Acad. Polonaise Sci. Lettres Classe Sci. Math. Naturelles Sér. A – ident: atypb18 doi: 10.1137/15M1025487 – ident: atypb6 doi: 10.1016/j.laa.2019.05.005 – ident: atypb41 doi: 10.1007/s10107-015-0864-7 – ident: atypb5 doi: 10.1002/nla.2237 – ident: atypb15 doi: 10.1007/s10543-014-0526-9 – ident: atypb23 doi: 10.1007/s10543-018-0737-6 – ident: atypb45 doi: 10.1137/16M1060182 – ident: atypb35 doi: 10.1137/15M1014425 – ident: atypb61 doi: 10.1137/120889897 – ident: atypb44 doi: 10.1137/100802001 – start-page: 315 year: 2013 ident: atypb25 publication-title: Advances in Neural Information Processing Systems – ident: atypb33 doi: 10.1007/s10107-014-0800-2 – ident: atypb21 doi: 10.1016/j.laa.2012.04.052 – volume: 38 start-page: 1 year: 2011 ident: atypb11 publication-title: ACM Trans. Math. Software – ident: atypb34 doi: 10.1007/BF00939948 – ident: atypb42 doi: 10.1016/j.laa.2012.12.022 – ident: atypb57 doi: 10.1007/s00041-008-9030-4 – ident: atypb13 doi: 10.1145/62038.62043 – start-page: 2292 year: 2013 ident: atypb10 publication-title: Curran Associates – volume: 17 start-page: 1 year: 2016 ident: atypb54 publication-title: J. Mach. Learn. Res. – ident: atypb59 doi: 10.1049/el:19740097 – ident: atypb46 doi: 10.1016/j.aml.2020.106294 – ident: atypb16 doi: 10.1016/0022-5193(70)90109-8 – ident: atypb22 doi: 10.1137/19M1307044 – volume: 19 start-page: 962 year: 2018 ident: atypb9 publication-title: J. Mach. Learn. Res. – ident: atypb53 doi: 10.1007/BF02941906 – ident: atypb37 doi: 10.4153/CJM-1954-038-x – ident: atypb30 doi: 10.1088/0967-3334/34/6/595 – ident: atypb40 doi: 10.1007/s10957-016-1058-z – ident: atypb52 doi: 10.1007/s11075-016-0118-7 – ident: atypb3 doi: 10.1137/17M1137747 – ident: atypb7 doi: 10.1007/s10851-014-0539-7 – ident: atypb24 doi: 10.6028/jres.049.044 – ident: atypb4 doi: 10.1016/j.aml.2018.03.008 – ident: atypb43 doi: 10.1016/j.laa.2015.06.027 – volume: 30 start-page: 249 year: 1981 ident: atypb28 publication-title: J. R. Stat. Soc. Ser. C Appl. Stat. – start-page: 1632 year: 2015 ident: atypb47 publication-title: Proceedings of the International Conference on Machine Learning – ident: atypb55 doi: 10.1007/s10107-012-0614-z – ident: atypb31 doi: 10.1137/16M1073807 – ident: atypb36 doi: 10.1137/15M1014425 – start-page: 1 year: 2015 ident: atypb60 publication-title: Proceedings of the International Conference on Machine Learning – ident: atypb29 doi: 10.1287/moor.1100.0456 – ident: atypb58 doi: 10.1137/0328011 |
SSID | ssj0016491 |
Score | 2.539589 |
Snippet | We generalize the concept of adaptive sampling rules to the sketch-and-project method for solving linear systems. Analyzing adaptive sampling rules in the... |
SourceID | hal crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
StartPage | 954 |
SubjectTerms | Computer Science Numerical Analysis |
Title | On Adaptive Sketch-and-Project for Solving Linear Systems |
URI | https://telecom-paris.hal.science/hal-04182656 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZCuMAB0VIEBapV4YIiwz5sb_aYFqqoagA1IHGLbK9XSFAHQUCIX8_M2vtow4FyWUWOx9LujMbz_IaQPZ6pVBZMUaGVoSwpNJV5IqhKNEN56fMcM7qjEzG8YD8v-WWn89zuLpmpA_38al_Je7gKa8BX7JL9D87Wh8IC_Ab-whM4DM838fjU9ga5vC2rf8bXyAAqbU7PXHSlrCAcT28eXSOTRcieNkC5N0nH4Mw3ABK29wdB-596skIrKdFcW2nuumIH56s1xdm90UHNPKypc2GAI4OGfvNH2aPgqnP1VDWRaJP7_MeRkdYN9K5iEXHUikV4lZVxjNU5jWqcSgUjjiJOVVvnsrglW3FLgWYOUtrfxZkbLzSv5h1QQDaC2xUtqOYyqxL4_9xxdeVh6fMk6aShXSCLMbgYcZcsfjs-Oftd56AEc_MWq3fy4LZAfdhQ_2XOLFxV0fjSOjlfJSverQgGTkY-kI6xH8nyqMbkvV8j2akNKmkJ5qUlAGkJvLQETloCLy2fyMWP4_PvQ-oHZ1AN-npG00TxQgqR51LFqc5CJcEqLrgKtdapiMBHVZxpmfZDxQz4WGlchKLQEQMKnqpknXTt1JoNEoAH0AcqGYY6Z4zBQWDjCbR7E84UizbJfvX-E-1R5XG4yc1k_ktvkt16763DUnl111f4jPUGhD8fDn5NcC1k6A1z8Rh9ftNRW2SpkdJt0p3dPZgdsCFn6otn9gvGEG46 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Adaptive+Sketch-and-Project+for+Solving+Linear+Systems&rft.jtitle=SIAM+journal+on+matrix+analysis+and+applications&rft.au=Gower%2C+Robert+M.&rft.au=Molitor%2C+Denali&rft.au=Moorman%2C+Jacob&rft.au=Needell%2C+Deanna&rft.date=2021-01-01&rft.issn=0895-4798&rft.eissn=1095-7162&rft.volume=42&rft.issue=2&rft.spage=954&rft.epage=989&rft_id=info:doi/10.1137%2F19M1285846&rft.externalDBID=n%2Fa&rft.externalDocID=10_1137_19M1285846 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4798&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4798&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4798&client=summon |