Construction of risk prediction model of type 2 diabetes mellitus based on logistic regression

Objective: to construct multi factor prediction model for the individual risk of T2DM, and to explore new ideas for early warning, prevention and personalized health services for T2DM. Methods: using logistic regression techniques to screen the risk factors for T2DM and construct the risk prediction...

Full description

Saved in:
Bibliographic Details
Published inBIO web of conferences Vol. 8; p. 2002
Main Authors Li, Jian, Huang, Qin, Dong, Minghua, Qiu, Wei, Jiang, Lixia, Luo, Xiaoting, Huang, Zhengchun, Chen, Shuiqin, Wu, Qinfeng, Ou-Yang, Lu, Wu, Qin, Liu, Lihua, Li, Shumei
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective: to construct multi factor prediction model for the individual risk of T2DM, and to explore new ideas for early warning, prevention and personalized health services for T2DM. Methods: using logistic regression techniques to screen the risk factors for T2DM and construct the risk prediction model of T2DM. Results: Male’s risk prediction model logistic regression equation: logit(P)=BMI × 0.735+ vegetables × (−0.671) + age × 0.838+ diastolic pressure × 0.296+ physical activity× (−2.287) + sleep ×(−0.009) +smoking ×0.214; Female’s risk prediction model logistic regression equation: logit(P)=BMI ×1.979+ vegetables× (−0.292) + age × 1.355+ diastolic pressure× 0.522+ physical activity × (−2.287) + sleep × (−0.010).The area under the ROC curve of male was 0.83, the sensitivity was 0.72, the specificity was 0.86, the area under the ROC curve of female was 0.84, the sensitivity was 0.75, the specificity was 0.90. Conclusion: This study model data is from a compared study of nested case, the risk prediction model has been established by using the more mature logistic regression techniques, and the model is higher predictive sensitivity, specificity and stability.
AbstractList Objective: to construct multi factor prediction model for the individual risk of T2DM, and to explore new ideas for early warning, prevention and personalized health services for T2DM. Methods: using logistic regression techniques to screen the risk factors for T2DM and construct the risk prediction model of T2DM. Results: Male’s risk prediction model logistic regression equation: logit(P)=BMI × 0.735+ vegetables × (−0.671) + age × 0.838+ diastolic pressure × 0.296+ physical activity× (−2.287) + sleep ×(−0.009) +smoking ×0.214; Female’s risk prediction model logistic regression equation: logit(P)=BMI ×1.979+ vegetables× (−0.292) + age × 1.355+ diastolic pressure× 0.522+ physical activity × (−2.287) + sleep × (−0.010).The area under the ROC curve of male was 0.83, the sensitivity was 0.72, the specificity was 0.86, the area under the ROC curve of female was 0.84, the sensitivity was 0.75, the specificity was 0.90. Conclusion: This study model data is from a compared study of nested case, the risk prediction model has been established by using the more mature logistic regression techniques, and the model is higher predictive sensitivity, specificity and stability.
Author Ou-Yang, Lu
Wu, Qin
Huang, Zhengchun
Wu, Qinfeng
Chen, Shuiqin
Jiang, Lixia
Li, Shumei
Huang, Qin
Qiu, Wei
Luo, Xiaoting
Liu, Lihua
Li, Jian
Dong, Minghua
Author_xml – sequence: 1
  givenname: Jian
  surname: Li
  fullname: Li, Jian
– sequence: 2
  givenname: Qin
  surname: Huang
  fullname: Huang, Qin
– sequence: 3
  givenname: Minghua
  surname: Dong
  fullname: Dong, Minghua
– sequence: 4
  givenname: Wei
  surname: Qiu
  fullname: Qiu, Wei
– sequence: 5
  givenname: Lixia
  surname: Jiang
  fullname: Jiang, Lixia
– sequence: 6
  givenname: Xiaoting
  surname: Luo
  fullname: Luo, Xiaoting
– sequence: 7
  givenname: Zhengchun
  surname: Huang
  fullname: Huang, Zhengchun
– sequence: 8
  givenname: Shuiqin
  surname: Chen
  fullname: Chen, Shuiqin
– sequence: 9
  givenname: Qinfeng
  surname: Wu
  fullname: Wu, Qinfeng
– sequence: 10
  givenname: Lu
  surname: Ou-Yang
  fullname: Ou-Yang, Lu
– sequence: 11
  givenname: Qin
  surname: Wu
  fullname: Wu, Qin
– sequence: 12
  givenname: Lihua
  surname: Liu
  fullname: Liu, Lihua
– sequence: 13
  givenname: Shumei
  surname: Li
  fullname: Li, Shumei
BookMark eNpdkU1rHDEMhk1Jockmv6AXQy69bCLb4485liVfEOilvcZ4bHnxdna8sWcO-fdxuiGE6iIhPRKS3jNyMuUJCfnO4IqBZNdDyj5P8ZoD02CAA_Av5JQzptddJ83Jp_gbuah1B816JkDLU_K0yVOdy-LnlCeaIy2p_qWHgiEdU_sccHwrzC8HpJyG5AacsdI9jmOal0oHVzHQho55m-qcPC24LVhraz8nX6MbK168-xX5c3vze3O_fvx197D5-bj2Ati81lzGwTNj2IC9VBFjh4YjY0r3EDAobpQMEgaD0UfhBsaiBI8O3dChDmJFHo5zQ3Y7eyhp78qLzS7Zf4lcttaVttqIFjgT6B2XSvsOFOt7aYTohXcqxr79ZUV-HGcdSn5esM52n6pv17oJ81ItV0J1Wne9aOjlf-guL2Vql1oOUnWgjTCNEkfKl1xrwfixIAP7JqF9l9B-klC8AqzgkkY
ContentType Journal Article
Conference Proceeding
Copyright 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SN
7TM
8AO
8FE
8FH
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
DOA
DOI 10.1051/bioconf/20170802002
DatabaseName CrossRef
Ecology Abstracts
Nucleic Acids Abstracts
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Publicly Available Content Database
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2117-4458
ExternalDocumentID oai_doaj_org_article_0213eca2567c406199583393ca6ff991
10_1051_bioconf_20170802002
Genre Conference Proceeding
GroupedDBID 4.4
5VS
8AO
8FE
8FH
AAFWJ
AAHBH
AAOGA
AAYXX
ABZDU
ACACO
ACPRK
ACRPL
ADBBV
ADMLS
ADNMO
AEUYN
AFKRA
AFPKN
AFRAH
AGQPQ
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EBS
EJD
GI~
GROUPED_DOAJ
GX1
HCIFZ
IPNFZ
KQ8
LK8
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
RIG
RNS
7SN
7TM
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c301t-725fbc1881be956fef4e82e116790ded62865d50b8efcf3ab11f50ceaeab4e7d3
IEDL.DBID DOA
ISSN 2117-4458
2273-1709
IngestDate Wed Aug 27 01:29:20 EDT 2025
Fri Jul 11 15:32:58 EDT 2025
Fri Jul 25 10:39:20 EDT 2025
Tue Jul 01 03:07:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c301t-725fbc1881be956fef4e82e116790ded62865d50b8efcf3ab11f50ceaeab4e7d3
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/0213eca2567c406199583393ca6ff991
PQID 2056407838
PQPubID 2040557
ParticipantIDs doaj_primary_oai_doaj_org_article_0213eca2567c406199583393ca6ff991
proquest_miscellaneous_2636477493
proquest_journals_2056407838
crossref_primary_10_1051_bioconf_20170802002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-00-00
20170101
2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle BIO web of conferences
PublicationYear 2017
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Schulze (R7) 2009; 32
Li (R12) 2006; 22
Douglas (R2) 2011; 343
Zhang (R14) 2011; 40
Yang (R1) 2010; 362
Lindström (R6) 2003; 26
Liu (R10) 2009; 17
Almeda-Valdes (R4) 2010; 6
Chin (R11) 2012; 1
Glmer (R8) 2004; 3
Wu (R13) 2007; 1
Heikes (R9) 2008; 31
Mann (R3) 2010; 171
Buijsse (R5) 2011; 33
References_xml – volume: 362
  start-page: 1090
  year: 2010
  ident: R1
  publication-title: Prevalence of diabetes among men and women in China
– volume: 33
  start-page: 46
  year: 2011
  ident: R5
  publication-title: Risk Assessment Tools for Identifying Individuals at Risk of Developing Type 2 Diabetes,
– volume: 1
  start-page: 13
  year: 2012
  ident: R11
  publication-title: The ARIC predictive model reliably predicted risk of type II diabetes in Asian populations
– volume: 17
  start-page: 201
  year: 2009
  ident: R10
  publication-title: Evaluation of diabetes risk score in the evaluation of new onset diabetes
– volume: 3
  start-page: 727
  year: 2004
  ident: R8
  publication-title: A Danish Diabetes Risk Score for Targeted Screening
– volume: 32
  start-page: 2116
  year: 2009
  ident: R7
  publication-title: Use of multiple metabolic and genetic markers to improve the prediction of type 2 diabetes: the EpIC-potsdam Study
– volume: 31
  start-page: 1040
  year: 2008
  ident: R9
  publication-title: Diabetes Risk Calculator: a simple tool for detecting undiagnosed diabetes and pre-diabetes
– volume: 22
  start-page: 687
  year: 2006
  ident: R12
  publication-title: Effect evaluation of different screening methods for asymptomatic diabetes
– volume: 6
  start-page: 1
  year: 2010
  ident: R4
  publication-title: UKpDS Risk Engine, decode and diabetespHD models for the estimation of cardiovascular risk in patients with diabetes,
– volume: 26
  start-page: 725
  year: 2003
  ident: R6
  publication-title: The diabetes risk score: a practical tool to predict type 2 diabetes risk
– volume: 1
  start-page: 95
  year: 2007
  ident: R13
  publication-title: The risk assessment method for adults with diabetes in China
– volume: 343
  start-page: 7163
  year: 2011
  ident: R2
  publication-title: Risk models and scores for type 2 diabetes: systematic review
– volume: 171
  start-page: 980
  year: 2010
  ident: R3
  publication-title: Comparative Validity of 3 Diabetes Mellitus Risk prediction Scoring Models in a Multiethnic US Cohort The Multi-Ethnic Study of Atherosclerosis
– volume: 40
  start-page: 1885
  year: 2011
  ident: R14
  publication-title: Study on risk assessment of diabetes in community residents in Chongqing City
SSID ssj0000913075
Score 1.9833126
Snippet Objective: to construct multi factor prediction model for the individual risk of T2DM, and to explore new ideas for early warning, prevention and personalized...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2002
SubjectTerms Blood pressure
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diastolic pressure
equations
females
males
noninsulin-dependent diabetes mellitus
Physical activity
Prediction models
Regression analysis
Regression models
Risk analysis
Risk factors
Sensitivity
Simulation
Sleep
Smoking
Vegetables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66InjzseLqKhE8Guy7zUlYcRFBEVHYkyWPiezBdt3HwX_vTNquguA1CaFMMzNfZjLfMHahXCBtpENhjdUCIbUSEhInckVk5i6OlKQC54fH7O41uZ-kkzbgtmifVXY20RtqWxuKkeMlPW1yTsX17FNQ1yjKrrYtNDbZFprgAi9fW6Pbx6fndZSFWC8btt0I_bQI80B21ENpeKWnNV46He6NE0UQdcGVzj15Fv8_Rtp7nvEu6__U5PGntbfZYxtQ7bPtppXk1wF7o86bHRcsrx2nN-N8Nqc8jB_yLW9ogoKuPOJd0JV_ECXncrXg5NAsx6VNVdDU8Dm8N89kqz57Hd--3NyJtneCMKiyS5FHqdMmLBCVAl6BHLgEigh81iWwYH1Fqk0DXYAzLlY6DF0aGFCgdAK5jQ9Zr6orOGIc5adsYK0JUkiUMipMcpA6AwRLVuUwYJedyMpZQ5FR-tR2GpathMtfEh6wEYl1vZT4rf1APX8vW3UpEXnEYBTisdwQ5JCSqsNkbFTmHELaARt2P6VslW5R_hyRATtfT6O6UA5EVVCvcE1GhPl5IuPj_7c4YTv00U20Zch6-AfhFPHHUp-1h-wbY2Hblw
  priority: 102
  providerName: ProQuest
Title Construction of risk prediction model of type 2 diabetes mellitus based on logistic regression
URI https://www.proquest.com/docview/2056407838
https://www.proquest.com/docview/2636477493
https://doaj.org/article/0213eca2567c406199583393ca6ff991
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05SwQxFA6iCDbiieuxRLB0cK5sNqXKeoEi4oKVQ44XsXB22aOw8bf7XjIjCxY2NlMkgcm8N8m7v8fYifapcrnJEmedSVCl1omC0idSE5i5L3KtqMD5_qF3MyzvXsTLQqsvygmL8MCRcGcogwqwGiWztCR8lKI6IVVY3fNehbr1HGXegjEV7mCFd7MULcyQyM7M-wgNTI_GfiapvrR1pLSiKCD2_7qQg5S52mDrjXrIz-O2NtkS1FtsNTaM_Nxmr9Rfs0V85SPPKTOcjycUbQlDobENTZBrlee8da3yDwLenM2nnMSW47g01v68Wz6Bt5gMW--w4dXg-fImaTokJBYP5iyRufDGZn3UPQENHQ--hH4OIbaSOnCh7tSJ1PTBW19ok2VepBY0aFOCdMUuW65HNewxjtTSLnXOpgJKra3OSgnK9ABVIqcldNhpS6xqHIEwqhDAFlnV0LZaoG2HXRBBf5YSinUYQN5WDW-rv3jbYYctO6rmaE3xJSIGH_sddvwzjYeCIh26htEc1_QIFl-Wqtj_j30csDX6tOh5OWTLyGc4Ql1kZrps5WLw8PjUDb8fPq9vv74BBELf6Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrRDc-ChiaQEjwQ2LxEk2yQEhFVptabuqUCv1hHHscdUDybK7VdU_xW9kxom3SEjcerWtSB6PM29mPG8A3hqf1E41qXTWNZIgtZE15l6WhsnMfaZMzQXOx7PJ9Cz_el6cb8DvWAvDzyrjPzH8qF1nOUZOTnrR55yqT_NfkrtGcXY1ttDo1eIQb67JZVt-PPhC5_tOqf29089TOXQVkJaUeSVLVfjGphXhNSTnwKPPsVIY8hGJQxdqNV2RNBV66zPTpKkvEosGTZNj6TL67j3YzDNyZUawubs3O_m2juowy2bP7qsIF8i0TOpIdVSkH5rLjpxcT3uhiSpRMZgTzWHoGvCPUQiWbv8RbN3WAIqTtXV7DBvYPoH7fevKm6fwnTt9Ru5Z0XnBb9TFfMF5nzAUWuzwBAd5hRIxyCt-MgXo6mop2IA6QUv7KqRLKxZ40T_Lbbfg7E6k-gxGbdficxAkP-MS52xSYG6MNWleYt1MkMCZMyWO4X0UmZ73lBw6pNKLVA8S1n9JeAy7LNb1UubTDgPd4kIP11MT0snQGsJ_pWWIU9dcjVZn1ky8Jwg9hp14KHq45Et9q5JjeLOepuvJORfTYndFayZM0F_mdfbi_594DQ-mp8dH-uhgdrgND3kDfaRnB0Z0mviSsM-qeTUonIAfd63jfwCn7xqL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=BIO+web+of+conferences&rft.atitle=Construction+of+risk+prediction+model+of+type+2+diabetes+mellitus+based+on+logistic+regression&rft.au=Li%2C+Jian&rft.au=Huang%2C+Qin&rft.au=Dong%2C+Minghua&rft.au=Qiu%2C+Wei&rft.date=2017-01-01&rft.pub=EDP+Sciences&rft.issn=2273-1709&rft.eissn=2117-4458&rft.volume=8&rft_id=info:doi/10.1051%2Fbioconf%2F20170802002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2117-4458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2117-4458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2117-4458&client=summon