Construction of risk prediction model of type 2 diabetes mellitus based on logistic regression
Objective: to construct multi factor prediction model for the individual risk of T2DM, and to explore new ideas for early warning, prevention and personalized health services for T2DM. Methods: using logistic regression techniques to screen the risk factors for T2DM and construct the risk prediction...
Saved in:
Published in | BIO web of conferences Vol. 8; p. 2002 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Les Ulis
EDP Sciences
2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective: to construct multi factor prediction model for the individual risk of T2DM, and to explore new ideas for early warning, prevention and personalized health services for T2DM. Methods: using logistic regression techniques to screen the risk factors for T2DM and construct the risk prediction model of T2DM. Results: Male’s risk prediction model logistic regression equation: logit(P)=BMI × 0.735+ vegetables × (−0.671) + age × 0.838+ diastolic pressure × 0.296+ physical activity× (−2.287) + sleep ×(−0.009) +smoking ×0.214; Female’s risk prediction model logistic regression equation: logit(P)=BMI ×1.979+ vegetables× (−0.292) + age × 1.355+ diastolic pressure× 0.522+ physical activity × (−2.287) + sleep × (−0.010).The area under the ROC curve of male was 0.83, the sensitivity was 0.72, the specificity was 0.86, the area under the ROC curve of female was 0.84, the sensitivity was 0.75, the specificity was 0.90. Conclusion: This study model data is from a compared study of nested case, the risk prediction model has been established by using the more mature logistic regression techniques, and the model is higher predictive sensitivity, specificity and stability. |
---|---|
AbstractList | Objective: to construct multi factor prediction model for the individual risk of T2DM, and to explore new ideas for early warning, prevention and personalized health services for T2DM. Methods: using logistic regression techniques to screen the risk factors for T2DM and construct the risk prediction model of T2DM. Results: Male’s risk prediction model logistic regression equation: logit(P)=BMI × 0.735+ vegetables × (−0.671) + age × 0.838+ diastolic pressure × 0.296+ physical activity× (−2.287) + sleep ×(−0.009) +smoking ×0.214; Female’s risk prediction model logistic regression equation: logit(P)=BMI ×1.979+ vegetables× (−0.292) + age × 1.355+ diastolic pressure× 0.522+ physical activity × (−2.287) + sleep × (−0.010).The area under the ROC curve of male was 0.83, the sensitivity was 0.72, the specificity was 0.86, the area under the ROC curve of female was 0.84, the sensitivity was 0.75, the specificity was 0.90. Conclusion: This study model data is from a compared study of nested case, the risk prediction model has been established by using the more mature logistic regression techniques, and the model is higher predictive sensitivity, specificity and stability. |
Author | Ou-Yang, Lu Wu, Qin Huang, Zhengchun Wu, Qinfeng Chen, Shuiqin Jiang, Lixia Li, Shumei Huang, Qin Qiu, Wei Luo, Xiaoting Liu, Lihua Li, Jian Dong, Minghua |
Author_xml | – sequence: 1 givenname: Jian surname: Li fullname: Li, Jian – sequence: 2 givenname: Qin surname: Huang fullname: Huang, Qin – sequence: 3 givenname: Minghua surname: Dong fullname: Dong, Minghua – sequence: 4 givenname: Wei surname: Qiu fullname: Qiu, Wei – sequence: 5 givenname: Lixia surname: Jiang fullname: Jiang, Lixia – sequence: 6 givenname: Xiaoting surname: Luo fullname: Luo, Xiaoting – sequence: 7 givenname: Zhengchun surname: Huang fullname: Huang, Zhengchun – sequence: 8 givenname: Shuiqin surname: Chen fullname: Chen, Shuiqin – sequence: 9 givenname: Qinfeng surname: Wu fullname: Wu, Qinfeng – sequence: 10 givenname: Lu surname: Ou-Yang fullname: Ou-Yang, Lu – sequence: 11 givenname: Qin surname: Wu fullname: Wu, Qin – sequence: 12 givenname: Lihua surname: Liu fullname: Liu, Lihua – sequence: 13 givenname: Shumei surname: Li fullname: Li, Shumei |
BookMark | eNpdkU1rHDEMhk1Jockmv6AXQy69bCLb4485liVfEOilvcZ4bHnxdna8sWcO-fdxuiGE6iIhPRKS3jNyMuUJCfnO4IqBZNdDyj5P8ZoD02CAA_Av5JQzptddJ83Jp_gbuah1B816JkDLU_K0yVOdy-LnlCeaIy2p_qWHgiEdU_sccHwrzC8HpJyG5AacsdI9jmOal0oHVzHQho55m-qcPC24LVhraz8nX6MbK168-xX5c3vze3O_fvx197D5-bj2Ati81lzGwTNj2IC9VBFjh4YjY0r3EDAobpQMEgaD0UfhBsaiBI8O3dChDmJFHo5zQ3Y7eyhp78qLzS7Zf4lcttaVttqIFjgT6B2XSvsOFOt7aYTohXcqxr79ZUV-HGcdSn5esM52n6pv17oJ81ItV0J1Wne9aOjlf-guL2Vql1oOUnWgjTCNEkfKl1xrwfixIAP7JqF9l9B-klC8AqzgkkY |
ContentType | Journal Article Conference Proceeding |
Copyright | 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SN 7TM 8AO 8FE 8FH ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 DOA |
DOI | 10.1051/bioconf/20170802002 |
DatabaseName | CrossRef Ecology Abstracts Nucleic Acids Abstracts ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Ecology Abstracts ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2117-4458 |
ExternalDocumentID | oai_doaj_org_article_0213eca2567c406199583393ca6ff991 10_1051_bioconf_20170802002 |
Genre | Conference Proceeding |
GroupedDBID | 4.4 5VS 8AO 8FE 8FH AAFWJ AAHBH AAOGA AAYXX ABZDU ACACO ACPRK ACRPL ADBBV ADMLS ADNMO AEUYN AFKRA AFPKN AFRAH AGQPQ ALMA_UNASSIGNED_HOLDINGS ARCSS BBNVY BCNDV BENPR BHPHI CCPQU CITATION EBS EJD GI~ GROUPED_DOAJ GX1 HCIFZ IPNFZ KQ8 LK8 M7P M~E OK1 PHGZM PHGZT PIMPY PROAC RIG RNS 7SN 7TM ABUWG AZQEC C1K DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c301t-725fbc1881be956fef4e82e116790ded62865d50b8efcf3ab11f50ceaeab4e7d3 |
IEDL.DBID | DOA |
ISSN | 2117-4458 2273-1709 |
IngestDate | Wed Aug 27 01:29:20 EDT 2025 Fri Jul 11 15:32:58 EDT 2025 Fri Jul 25 10:39:20 EDT 2025 Tue Jul 01 03:07:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c301t-725fbc1881be956fef4e82e116790ded62865d50b8efcf3ab11f50ceaeab4e7d3 |
Notes | ObjectType-Conference Proceeding-1 SourceType-Conference Papers & Proceedings-1 content type line 21 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/0213eca2567c406199583393ca6ff991 |
PQID | 2056407838 |
PQPubID | 2040557 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0213eca2567c406199583393ca6ff991 proquest_miscellaneous_2636477493 proquest_journals_2056407838 crossref_primary_10_1051_bioconf_20170802002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 20170101 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Les Ulis |
PublicationPlace_xml | – name: Les Ulis |
PublicationTitle | BIO web of conferences |
PublicationYear | 2017 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Schulze (R7) 2009; 32 Li (R12) 2006; 22 Douglas (R2) 2011; 343 Zhang (R14) 2011; 40 Yang (R1) 2010; 362 Lindström (R6) 2003; 26 Liu (R10) 2009; 17 Almeda-Valdes (R4) 2010; 6 Chin (R11) 2012; 1 Glmer (R8) 2004; 3 Wu (R13) 2007; 1 Heikes (R9) 2008; 31 Mann (R3) 2010; 171 Buijsse (R5) 2011; 33 |
References_xml | – volume: 362 start-page: 1090 year: 2010 ident: R1 publication-title: Prevalence of diabetes among men and women in China – volume: 33 start-page: 46 year: 2011 ident: R5 publication-title: Risk Assessment Tools for Identifying Individuals at Risk of Developing Type 2 Diabetes, – volume: 1 start-page: 13 year: 2012 ident: R11 publication-title: The ARIC predictive model reliably predicted risk of type II diabetes in Asian populations – volume: 17 start-page: 201 year: 2009 ident: R10 publication-title: Evaluation of diabetes risk score in the evaluation of new onset diabetes – volume: 3 start-page: 727 year: 2004 ident: R8 publication-title: A Danish Diabetes Risk Score for Targeted Screening – volume: 32 start-page: 2116 year: 2009 ident: R7 publication-title: Use of multiple metabolic and genetic markers to improve the prediction of type 2 diabetes: the EpIC-potsdam Study – volume: 31 start-page: 1040 year: 2008 ident: R9 publication-title: Diabetes Risk Calculator: a simple tool for detecting undiagnosed diabetes and pre-diabetes – volume: 22 start-page: 687 year: 2006 ident: R12 publication-title: Effect evaluation of different screening methods for asymptomatic diabetes – volume: 6 start-page: 1 year: 2010 ident: R4 publication-title: UKpDS Risk Engine, decode and diabetespHD models for the estimation of cardiovascular risk in patients with diabetes, – volume: 26 start-page: 725 year: 2003 ident: R6 publication-title: The diabetes risk score: a practical tool to predict type 2 diabetes risk – volume: 1 start-page: 95 year: 2007 ident: R13 publication-title: The risk assessment method for adults with diabetes in China – volume: 343 start-page: 7163 year: 2011 ident: R2 publication-title: Risk models and scores for type 2 diabetes: systematic review – volume: 171 start-page: 980 year: 2010 ident: R3 publication-title: Comparative Validity of 3 Diabetes Mellitus Risk prediction Scoring Models in a Multiethnic US Cohort The Multi-Ethnic Study of Atherosclerosis – volume: 40 start-page: 1885 year: 2011 ident: R14 publication-title: Study on risk assessment of diabetes in community residents in Chongqing City |
SSID | ssj0000913075 |
Score | 1.9833126 |
Snippet | Objective: to construct multi factor prediction model for the individual risk of T2DM, and to explore new ideas for early warning, prevention and personalized... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 2002 |
SubjectTerms | Blood pressure Diabetes mellitus Diabetes mellitus (non-insulin dependent) Diastolic pressure equations females males noninsulin-dependent diabetes mellitus Physical activity Prediction models Regression analysis Regression models Risk analysis Risk factors Sensitivity Simulation Sleep Smoking Vegetables |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA66InjzseLqKhE8Guy7zUlYcRFBEVHYkyWPiezBdt3HwX_vTNquguA1CaFMMzNfZjLfMHahXCBtpENhjdUCIbUSEhInckVk5i6OlKQC54fH7O41uZ-kkzbgtmifVXY20RtqWxuKkeMlPW1yTsX17FNQ1yjKrrYtNDbZFprgAi9fW6Pbx6fndZSFWC8btt0I_bQI80B21ENpeKWnNV46He6NE0UQdcGVzj15Fv8_Rtp7nvEu6__U5PGntbfZYxtQ7bPtppXk1wF7o86bHRcsrx2nN-N8Nqc8jB_yLW9ogoKuPOJd0JV_ECXncrXg5NAsx6VNVdDU8Dm8N89kqz57Hd--3NyJtneCMKiyS5FHqdMmLBCVAl6BHLgEigh81iWwYH1Fqk0DXYAzLlY6DF0aGFCgdAK5jQ9Zr6orOGIc5adsYK0JUkiUMipMcpA6AwRLVuUwYJedyMpZQ5FR-tR2GpathMtfEh6wEYl1vZT4rf1APX8vW3UpEXnEYBTisdwQ5JCSqsNkbFTmHELaARt2P6VslW5R_hyRATtfT6O6UA5EVVCvcE1GhPl5IuPj_7c4YTv00U20Zch6-AfhFPHHUp-1h-wbY2Hblw priority: 102 providerName: ProQuest |
Title | Construction of risk prediction model of type 2 diabetes mellitus based on logistic regression |
URI | https://www.proquest.com/docview/2056407838 https://www.proquest.com/docview/2636477493 https://doaj.org/article/0213eca2567c406199583393ca6ff991 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05SwQxFA6iCDbiieuxRLB0cK5sNqXKeoEi4oKVQ44XsXB22aOw8bf7XjIjCxY2NlMkgcm8N8m7v8fYifapcrnJEmedSVCl1omC0idSE5i5L3KtqMD5_qF3MyzvXsTLQqsvygmL8MCRcGcogwqwGiWztCR8lKI6IVVY3fNehbr1HGXegjEV7mCFd7MULcyQyM7M-wgNTI_GfiapvrR1pLSiKCD2_7qQg5S52mDrjXrIz-O2NtkS1FtsNTaM_Nxmr9Rfs0V85SPPKTOcjycUbQlDobENTZBrlee8da3yDwLenM2nnMSW47g01v68Wz6Bt5gMW--w4dXg-fImaTokJBYP5iyRufDGZn3UPQENHQ--hH4OIbaSOnCh7tSJ1PTBW19ok2VepBY0aFOCdMUuW65HNewxjtTSLnXOpgJKra3OSgnK9ABVIqcldNhpS6xqHIEwqhDAFlnV0LZaoG2HXRBBf5YSinUYQN5WDW-rv3jbYYctO6rmaE3xJSIGH_sddvwzjYeCIh26htEc1_QIFl-Wqtj_j30csDX6tOh5OWTLyGc4Ql1kZrps5WLw8PjUDb8fPq9vv74BBELf6Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrRDc-ChiaQEjwQ2LxEk2yQEhFVptabuqUCv1hHHscdUDybK7VdU_xW9kxom3SEjcerWtSB6PM29mPG8A3hqf1E41qXTWNZIgtZE15l6WhsnMfaZMzQXOx7PJ9Cz_el6cb8DvWAvDzyrjPzH8qF1nOUZOTnrR55yqT_NfkrtGcXY1ttDo1eIQb67JZVt-PPhC5_tOqf29089TOXQVkJaUeSVLVfjGphXhNSTnwKPPsVIY8hGJQxdqNV2RNBV66zPTpKkvEosGTZNj6TL67j3YzDNyZUawubs3O_m2juowy2bP7qsIF8i0TOpIdVSkH5rLjpxcT3uhiSpRMZgTzWHoGvCPUQiWbv8RbN3WAIqTtXV7DBvYPoH7fevKm6fwnTt9Ru5Z0XnBb9TFfMF5nzAUWuzwBAd5hRIxyCt-MgXo6mop2IA6QUv7KqRLKxZ40T_Lbbfg7E6k-gxGbdficxAkP-MS52xSYG6MNWleYt1MkMCZMyWO4X0UmZ73lBw6pNKLVA8S1n9JeAy7LNb1UubTDgPd4kIP11MT0snQGsJ_pWWIU9dcjVZn1ky8Jwg9hp14KHq45Et9q5JjeLOepuvJORfTYndFayZM0F_mdfbi_594DQ-mp8dH-uhgdrgND3kDfaRnB0Z0mviSsM-qeTUonIAfd63jfwCn7xqL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=BIO+web+of+conferences&rft.atitle=Construction+of+risk+prediction+model+of+type+2+diabetes+mellitus+based+on+logistic+regression&rft.au=Li%2C+Jian&rft.au=Huang%2C+Qin&rft.au=Dong%2C+Minghua&rft.au=Qiu%2C+Wei&rft.date=2017-01-01&rft.pub=EDP+Sciences&rft.issn=2273-1709&rft.eissn=2117-4458&rft.volume=8&rft_id=info:doi/10.1051%2Fbioconf%2F20170802002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2117-4458&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2117-4458&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2117-4458&client=summon |