Minimax bounds for Besov classes in density estimation
We study the problem of density estimation on $[0,1]$ under $\mathbb{L}^p$ norm. We carry out a new piecewise polynomial estimator and prove that it is simultaneously (near)-minimax over a very wide range of Besov classes $\mathcal{B}_{\pi,\infty}^{\alpha}(R)$. In particular, we may deal with unboun...
Saved in:
Published in | Electronic journal of statistics Vol. 15; no. 1; pp. 3184 - 3216 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Shaker Heights, OH : Institute of Mathematical Statistics
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the problem of density estimation on $[0,1]$ under $\mathbb{L}^p$ norm. We carry out a new piecewise polynomial estimator and prove that it is simultaneously (near)-minimax over a very wide range of Besov classes $\mathcal{B}_{\pi,\infty}^{\alpha}(R)$. In particular, we may deal with unbounded densities and shed light on the minimax rates of convergence when $\pi < p$ and $\alpha \in (1/\pi-1/p, 1/\pi]$. |
---|---|
AbstractList | We study the problem of density estimation on $[0,1]$ under $\mathbb{L}^p$ norm. We carry out a new piecewise polynomial estimator and prove that it is simultaneously (near)-minimax over a very wide range of Besov classes $\mathcal{B}_{\pi,\infty}^{\alpha}(R)$. In particular, we may deal with unbounded densities and shed light on the minimax rates of convergence when $\pi < p$ and $\alpha \in (1/\pi-1/p, 1/\pi]$. |
Author | Sart, Mathieu |
Author_xml | – sequence: 1 givenname: Mathieu surname: Sart fullname: Sart, Mathieu organization: Univ Lyon, Université Jean Monnet Saint-Étienne, CNRS UMR 5208, Institut Camille Jordan, F-42023 Saint-Etienne, France |
BackLink | https://hal.science/hal-02550114$$DView record in HAL |
BookMark | eNptkEFLAzEQhYNUsK1e_AW5Kqxmkmyye6ylWqXiQT2HbHYWI2sim7XYf-_WVhDxNMPwvXmPNyGjEAMScgrsAjjISw7Z4u4RilwdkDGUIs90zuXo135EJim9MpYXXKkxUfc--Df7Sav4EepEm9jRK0xxTV1rU8JEfaA1huT7DcXUD2zvYzgmh41tE57s55Q8Xy-e5sts9XBzO5-tMicY9BlvWFmg0AXTShQo0TJQEmuBUjvFStQVVKUUBa-klkNqzhvrGLe61rasGjElZ7u_L7Y1793g3m1MtN4sZyuzvTGe5wxArsXAsh3ruphSh41xvv9O23fWtwaY2XZkOJh9R4Pk_I_kx-Mf-Ask0Gcn |
CitedBy_id | crossref_primary_10_3150_22_BEJ1543 crossref_primary_10_1214_24_EJS2306 |
Cites_doi | 10.3103/S1066530712010012 10.1007/s003659910001 10.1214/aos/1032894451 10.1007/BFb0064610 10.1214/13-AIHP551 10.1214/aos/1069362377 10.1214/11-EJS653 10.1007/s004400050210 10.1214/14-AOS1306 10.1093/acprof:oso/9780199535255.001.0001 10.1137/1136085 10.1007/978-3-540-27819-1_26 10.1214/11-AOS883 10.1006/acha.1996.0017 10.1016/j.anihpb.2005.04.004 10.1016/j.jspi.2010.05.017 10.2307/3318720 10.3150/bj/1082380217 10.1051/ps:2002007 10.1214/18-AOS1687 10.1090/S0002-9947-1988-0920166-3 10.1007/978-3-662-02888-9_10 10.1007/s00440-007-0126-6 10.1090/S0025-5718-1990-1035930-5 10.1007/978-1-4612-1880-7_4 10.1017/S0962492900002816 10.1214/09-AOS790 10.3150/bj/1106314849 10.1214/009053607000000965 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1214/21-EJS1856 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Statistics |
EISSN | 1935-7524 |
EndPage | 3216 |
ExternalDocumentID | oai_HAL_hal_02550114v3 10_1214_21_EJS1856 |
GroupedDBID | 2WC 5VS AAYXX AENEX AFFOW ALMA_UNASSIGNED_HOLDINGS CITATION CS3 E3Z GR0 GROUPED_DOAJ J9A KQ8 M~E OK1 P2P RBV RPE TR2 1XC C1A VOOES |
ID | FETCH-LOGICAL-c301t-2f098e37807638e4ea0164ed3e47c609e7b1b94382b47485622fac02a7d7a9bf3 |
ISSN | 1935-7524 |
IngestDate | Tue Jun 17 06:51:24 EDT 2025 Thu Apr 24 23:11:54 EDT 2025 Tue Jul 01 04:33:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 62G07 density estimation minimax risk December 2020. 2010 Mathematics Subject Classification. 62G05 Besov spaces |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c301t-2f098e37807638e4ea0164ed3e47c609e7b1b94382b47485622fac02a7d7a9bf3 |
OpenAccessLink | http://dx.doi.org/10.1214/21-EJS1856 |
PageCount | 33 |
ParticipantIDs | hal_primary_oai_HAL_hal_02550114v3 crossref_citationtrail_10_1214_21_EJS1856 crossref_primary_10_1214_21_EJS1856 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-1-1 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-1-1 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Electronic journal of statistics |
PublicationYear | 2021 |
Publisher | Shaker Heights, OH : Institute of Mathematical Statistics |
Publisher_xml | – name: Shaker Heights, OH : Institute of Mathematical Statistics |
References | 22 23 24 25 26 27 28 29 30 31 32 10 11 33 12 34 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 1 doi: 10.3103/S1066530712010012 – ident: 13 doi: 10.1007/s003659910001 – ident: 19 doi: 10.1214/aos/1032894451 – ident: 6 doi: 10.1007/BFb0064610 – ident: 34 doi: 10.1214/13-AIHP551 – ident: 21 doi: 10.1214/aos/1069362377 – ident: 2 doi: 10.1214/11-EJS653 – ident: 5 doi: 10.1007/s004400050210 – ident: 30 doi: 10.1214/14-AOS1306 – ident: 10 doi: 10.1093/acprof:oso/9780199535255.001.0001 – ident: 16 – ident: 28 – ident: 29 doi: 10.1137/1136085 – ident: 14 doi: 10.1007/978-3-540-27819-1_26 – ident: 25 doi: 10.1214/11-AOS883 – ident: 9 – ident: 18 doi: 10.1006/acha.1996.0017 – ident: 26 – ident: 8 doi: 10.1016/j.anihpb.2005.04.004 – ident: 33 doi: 10.1016/j.jspi.2010.05.017 – ident: 12 doi: 10.2307/3318720 – ident: 27 doi: 10.3150/bj/1082380217 – ident: 3 doi: 10.1051/ps:2002007 – ident: 31 doi: 10.1214/18-AOS1687 – ident: 22 doi: 10.1090/S0002-9947-1988-0920166-3 – ident: 20 doi: 10.1007/978-3-662-02888-9_10 – ident: 32 – ident: 4 doi: 10.1007/s00440-007-0126-6 – ident: 23 doi: 10.1090/S0025-5718-1990-1035930-5 – ident: 11 doi: 10.1007/978-1-4612-1880-7_4 – ident: 17 doi: 10.1017/S0962492900002816 – ident: 15 doi: 10.1214/09-AOS790 – ident: 7 doi: 10.3150/bj/1106314849 – ident: 24 doi: 10.1214/009053607000000965 |
SSID | ssj0058266 |
Score | 2.1950717 |
Snippet | We study the problem of density estimation on $[0,1]$ under $\mathbb{L}^p$ norm. We carry out a new piecewise polynomial estimator and prove that it is... |
SourceID | hal crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
StartPage | 3184 |
SubjectTerms | Mathematics Statistics |
Title | Minimax bounds for Besov classes in density estimation |
URI | https://hal.science/hal-02550114 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7RcikHBAVEeWkFXFDksl6vX8cArUxpClJaqTdrX1aiUhe1boX49cx413ai-lC4WNFmldjzfZmdmex8S8j70DLDc5MEIjEsEJViQV7pKtDMRlzryBiD9Y7ZUVKciIPT-HQoZbfdJY3a1X9G-0r-B1UYA1yxS_YfkO0_FAbgNeALV0AYrnfCeLasl-fy90Th2UitsMLkk726uJlojImt3-pat9suUE3jfIChK8YPp-CsaEhgl5ETcO4LMLJr7WkWS3u9WivgQ5VgvpBn9hK1s8DSLUG-F23NYW1LwqxXikUlkvWvcu4xR4HL2HU979qRsc6nxre44xwkuBCxsthG3HVa3nLkPBTYqxIGewdzCClG1LKL6bz88WW_PPx69G393V42u5gelgtAFfMmTPxuog1yn0M-EXa5t1uyY8ixErf9wD2K17GFm_g43MJa5LKx6ArvbSBy_Ig89BkEnTo6PCb3bL1NHgxGvdomW4NVn5DEs4Q6llBgCW1ZQj1L6LKmniV0YMlTcrK_d_y5CPxpGYEGJ90EvGJ5ZqM0Y7BkZFZYiepp1kRWpDphuU1VqHL831eJVMDzcF5JzbhMTSpzVUXPyGZ9UdvnhKoMkkwjMhXnRqRcZpIJU9lMqgx-v4rvkA-dJUrtpeTxRJOfJaaUYLWSh6W32g5518_95QRURme9RaC6CePgvbjLpJdkC5nvqmSvyGZzeW1fQ9zYqDct5n8BKMhvEw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimax+bounds+for+Besov+classes+in+density+estimation&rft.jtitle=Electronic+journal+of+statistics&rft.au=Sart%2C+Mathieu&rft.date=2021&rft.pub=Shaker+Heights%2C+OH+%3A+Institute+of+Mathematical+Statistics&rft.issn=1935-7524&rft.eissn=1935-7524&rft.volume=15&rft.issue=1&rft.spage=3184&rft.epage=3216&rft_id=info:doi/10.1214%2F21-EJS1856&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02550114v3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-7524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-7524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-7524&client=summon |