Clustering Single-Cell RNA Sequence Data Using Information Maximized and Noise-Invariant Representations

Single-cell RNA sequencing (scRNA-seq) is a revolutionary methodology that helps to analyze transcriptome or genome information from a single cell. However, high dimensionality and sparsity in data due to dropout events pose computational challenges for existing state-of-the-art scRNA-seq clustering...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on computational biology and bioinformatics Vol. 20; no. 3; pp. 1983 - 1994
Main Authors Mondal, Arnab Kumar, Joshi, Indu, Singh, Pravendra, AP, Prathosh
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single-cell RNA sequencing (scRNA-seq) is a revolutionary methodology that helps to analyze transcriptome or genome information from a single cell. However, high dimensionality and sparsity in data due to dropout events pose computational challenges for existing state-of-the-art scRNA-seq clustering methods. Learning efficient representations becomes even more challenging due to the presence of noise in scRNA-seq data. To overcome the effect of noise and learn effective representations, this paper proposes sc-INDC ( S ingle- C ell I nformation Maximized N oise-Invariant D eep C lustering), a deep neural network that facilitates learning of informative and noise-invariant representations of scRNA-seq data. Furthermore, the time complexity of the proposed sc-INDC is significantly lower compared to state-of-the-art scRNA-seq clustering methods. Extensive experimentation on fourteen publicly available scRNA-seq datasets illustrates the efficacy of the proposed model. Additionally, visualizations of t-SNE plots and several ablation studies are also conducted to provide insights into the improved representation ability of sc-INDC. Code of the proposed sc-INDC will be available at: https://github.com/arnabkmondal/sc-INDC .
AbstractList Single-cell RNA sequencing (scRNA-seq) is a revolutionary methodology that helps to analyze transcriptome or genome information from a single cell. However, high dimensionality and sparsity in data due to dropout events pose computational challenges for existing state-of-the-art scRNA-seq clustering methods. Learning efficient representations becomes even more challenging due to the presence of noise in scRNA-seq data. To overcome the effect of noise and learn effective representations, this paper proposes sc-INDC ( S ingle- C ell I nformation Maximized N oise-Invariant D eep C lustering), a deep neural network that facilitates learning of informative and noise-invariant representations of scRNA-seq data. Furthermore, the time complexity of the proposed sc-INDC is significantly lower compared to state-of-the-art scRNA-seq clustering methods. Extensive experimentation on fourteen publicly available scRNA-seq datasets illustrates the efficacy of the proposed model. Additionally, visualizations of t-SNE plots and several ablation studies are also conducted to provide insights into the improved representation ability of sc-INDC. Code of the proposed sc-INDC will be available at: https://github.com/arnabkmondal/sc-INDC .
Single-cell RNA sequencing (scRNA-seq) is a revolutionary methodology that helps to analyze transcriptome or genome information from a single cell. However, high dimensionality and sparsity in data due to dropout events pose computational challenges for existing state-of-the-art scRNA-seq clustering methods. Learning efficient representations becomes even more challenging due to the presence of noise in scRNA-seq data. To overcome the effect of noise and learn effective representations, this paper proposes sc-INDC (Single-Cell Information Maximized Noise-Invariant Deep Clustering), a deep neural network that facilitates learning of informative and noise-invariant representations of scRNA-seq data. Furthermore, the time complexity of the proposed sc-INDC is significantly lower compared to state-of-the-art scRNA-seq clustering methods. Extensive experimentation on fourteen publicly available scRNA-seq datasets illustrates the efficacy of the proposed model. Additionally, visualizations of t-SNE plots and several ablation studies are also conducted to provide insights into the improved representation ability of sc-INDC. Code of the proposed sc-INDC will be available at: https://github.com/arnabkmondal/sc-INDC.
Author Mondal, Arnab Kumar
AP, Prathosh
Joshi, Indu
Singh, Pravendra
Author_xml – sequence: 1
  givenname: Arnab Kumar
  orcidid: 0000-0001-7297-374X
  surname: Mondal
  fullname: Mondal, Arnab Kumar
  email: arnabkumarmondal123@gmail.com
  organization: IIT Delhi, New Delhi, Delhi, India
– sequence: 2
  givenname: Indu
  orcidid: 0000-0002-2755-9416
  surname: Joshi
  fullname: Joshi, Indu
  email: indu.joshi@inria.fr
  organization: INRIA Sophia Antipolis, Valbonne, France
– sequence: 3
  givenname: Pravendra
  surname: Singh
  fullname: Singh, Pravendra
  email: pravendra.singh@cs.iitr.ac.in
  organization: IIT Roorkee, Roorkee, Uttarakhand, India
– sequence: 4
  givenname: Prathosh
  orcidid: 0000-0002-8699-5760
  surname: AP
  fullname: AP, Prathosh
  email: prathoshap@gmail.com
  organization: Department of Electrical Communication Engineering, Indian Institute of Science (IISc), Bengaluru, Karnataka, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37015582$$D View this record in MEDLINE/PubMed
BookMark eNpdkclOxDAMhiMEYn8AhIQiceHSIVvT5ghlG4lFYjlHmdaFoDYdkhYBT0_KDBy42Jb82frtfwutus4BQnuUTCgl6vixOD2dMMLYhDOWxWIFbdI0zRKlpFgda5EmqZJ8A22F8EoIE4qIdbTBMxK5nG2il6IZQg_eumf8EEMDSQFNg-9vT_ADvA3gSsBnpjf4KYzM1NWdb01vO4dvzIdt7RdU2LgK33Y2QDJ178Zb43p8D3MPAVz_A4cdtFabJsDuMm-jp4vzx-Iqub67nBYn10nJCe0TZkrDCSe5InlNQVApacqVkMCJlKkwWcbrisoyL2VlFACfiVxKZmay5mld8m10tNg7912UH3rd2lDGk4yDbgiaZUpSSXIhI3r4D33tBu-iOs1yxqkS8bWRoguq9F0IHmo997Y1_lNTokcb9GiDHm3QSxvizMFy8zBrofqb-P17BPYXgAWAv7ZSGRVS8G-83Yxm
CODEN ITCBCY
Cites_doi 10.1016/j.cell.2015.04.044
10.1038/s41467-021-22008-3
10.1038/nmeth.4207
10.1016/j.stem.2016.05.010
10.1038/nn.4462
10.1038/ncomms14049
10.1186/s13059-017-1188-0
10.1016/j.cell.2018.02.001
10.1073/pnas.1817715116
10.1242/dev.151142
10.1186/s12859-021-04210-8
10.1016/j.cell.2015.05.002
10.1038/s41467-021-22197-x
10.1038/s41592-019-0654-x
10.1038/s41467-018-07931-2
10.1109/BIBM49941.2020.9313569
10.1109/TCBB.2021.3128576
10.1016/j.stem.2010.03.015
10.1093/bioinformatics/btl406
10.1007/s11010-021-04095-4
10.1016/j.stem.2010.04.008
10.1016/j.cels.2016.09.002
10.1016/0377-0427(87)90125-7
10.1038/nbt.3192
10.1016/j.cell.2020.05.006
10.1038/nmeth.2967
10.1186/s12859-020-3401-5
10.1007/BF01908075
10.1038/s41592-018-0229-2
10.1038/s41422-020-00455-9
10.1093/bioinformatics/btaa293
10.1038/s41586-018-0590-4
10.1126/science.aat1699
10.24963/ijcai.2017/243
10.1016/j.molcel.2019.05.003
10.1101/gr.267070.120
10.1109/TCBB.2021.3098394
10.1038/s41598-019-56911-z
10.1371/journal.pcbi.1007794
10.1126/science.aaa1934
10.1038/s42256-019-0037-0
10.1038/s41576-018-0088-9
10.1186/gb-2002-3-7-research0036
10.1101/gr.191098.115
10.1038/nmeth.4236
10.1093/bioinformatics/btv088
10.1038/s41467-020-15851-3
10.1109/JBHI.2016.2565561
10.1093/bioinformatics/btw607
10.1109/TPAMI.2018.2858821
10.1186/s13059-016-1010-4
10.1093/bioinformatics/btx490
10.1038/s41592-019-0576-7
10.1093/nargab/lqaa039
10.1038/nature14966
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TCBB.2022.3227202
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
EndPage 1994
ExternalDocumentID 10_1109_TCBB_2022_3227202
37015582
9971464
Genre orig-research
Journal Article
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AASAJ
AAWTV
AAYOK
ABQJQ
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
ADPZR
AEBYY
AENEX
AENSD
AETIX
AFRAH
AFWIH
AFWXC
AIBXA
AIKLT
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIC
RIE
RIG
RNI
RNS
ROL
RZB
TN5
W7O
XOL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c301t-2aca30308908f1e4166153946e306654a773fd16c8c6da9ee3b48662ab6f35fc3
IEDL.DBID RIE
ISSN 1545-5963
IngestDate Thu Jul 25 09:38:44 EDT 2024
Thu Oct 10 20:36:34 EDT 2024
Fri Aug 23 00:32:37 EDT 2024
Wed Oct 16 00:39:38 EDT 2024
Mon Nov 04 11:48:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c301t-2aca30308908f1e4166153946e306654a773fd16c8c6da9ee3b48662ab6f35fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7297-374X
0000-0002-8699-5760
0000-0002-2755-9416
PMID 37015582
PQID 2823194022
PQPubID 85499
PageCount 12
ParticipantIDs ieee_primary_9971464
proquest_journals_2823194022
crossref_primary_10_1109_TCBB_2022_3227202
pubmed_primary_37015582
proquest_miscellaneous_2796160846
PublicationCentury 2000
PublicationDate 2023-May-June-1
2023 May-Jun
2023-5-1
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-May-June-1
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationTitleAbbrev TCBB
PublicationTitleAlternate IEEE/ACM Trans Comput Biol Bioinform
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
chapelle (ref49) 2005
ref17
ref16
ref19
bishop (ref68) 2006; 4
ref51
van der maaten (ref62) 2008; 9
ref46
ref45
ref42
ref41
ref44
ref43
miyato (ref18) 2016
grandvalet (ref50) 2004
ref8
ref7
ref9
ref4
ref3
ref6
yau (ref31) 2016; 17
xie (ref40) 2016
vinh (ref63) 2010; 11
hu (ref48) 2017
ref35
ref34
ref37
ref33
flores (ref5) 2021
ref32
ref2
gomes (ref47) 2010
ref1
ref39
ref38
ref24
ref23
ref67
ref26
ref25
ref20
ref64
prabhakaran (ref36) 2016
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
yotsukura (ref30) 2016; 17
ref61
References_xml – ident: ref58
  doi: 10.1016/j.cell.2015.04.044
– year: 2016
  ident: ref18
  article-title: Distributional smoothing with virtual adversarial training
  publication-title: Proc Int Conf Learn Representations
  contributor:
    fullname: miyato
– ident: ref44
  doi: 10.1038/s41467-021-22008-3
– ident: ref35
  doi: 10.1038/nmeth.4207
– ident: ref61
  doi: 10.1016/j.stem.2016.05.010
– ident: ref53
  doi: 10.1038/nn.4462
– ident: ref57
  doi: 10.1038/ncomms14049
– ident: ref19
  doi: 10.1186/s13059-017-1188-0
– ident: ref59
  doi: 10.1016/j.cell.2018.02.001
– ident: ref20
  doi: 10.1073/pnas.1817715116
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref62
  article-title: Viualizing data using t-SNE
  publication-title: J Mach Learn Res
  contributor:
    fullname: van der maaten
– ident: ref54
  doi: 10.1242/dev.151142
– ident: ref24
  doi: 10.1186/s12859-021-04210-8
– ident: ref60
  doi: 10.1016/j.cell.2015.05.002
– ident: ref46
  doi: 10.1038/s41467-021-22197-x
– ident: ref2
  doi: 10.1038/s41592-019-0654-x
– ident: ref15
  doi: 10.1038/s41467-018-07931-2
– ident: ref45
  doi: 10.1109/BIBM49941.2020.9313569
– ident: ref12
  doi: 10.1109/TCBB.2021.3128576
– ident: ref4
  doi: 10.1016/j.stem.2010.03.015
– ident: ref66
  doi: 10.1093/bioinformatics/btl406
– ident: ref8
  doi: 10.1007/s11010-021-04095-4
– ident: ref3
  doi: 10.1016/j.stem.2010.04.008
– ident: ref55
  doi: 10.1016/j.cels.2016.09.002
– ident: ref67
  doi: 10.1016/0377-0427(87)90125-7
– ident: ref22
  doi: 10.1038/nbt.3192
– volume: 11
  start-page: 2837
  year: 2010
  ident: ref63
  article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance
  publication-title: J Mach Learn Res
  contributor:
    fullname: vinh
– ident: ref10
  doi: 10.1016/j.cell.2020.05.006
– ident: ref1
  doi: 10.1038/nmeth.2967
– ident: ref43
  doi: 10.1186/s12859-020-3401-5
– ident: ref64
  doi: 10.1007/BF01908075
– ident: ref27
  doi: 10.1038/s41592-018-0229-2
– ident: ref9
  doi: 10.1038/s41422-020-00455-9
– ident: ref42
  doi: 10.1093/bioinformatics/btaa293
– ident: ref52
  doi: 10.1038/s41586-018-0590-4
– volume: 4
  year: 2006
  ident: ref68
  publication-title: Pattern Recognition and Machine Learning
  contributor:
    fullname: bishop
– ident: ref56
  doi: 10.1126/science.aat1699
– ident: ref41
  doi: 10.24963/ijcai.2017/243
– ident: ref7
  doi: 10.1016/j.molcel.2019.05.003
– ident: ref14
  doi: 10.1101/gr.267070.120
– ident: ref17
  doi: 10.1109/TCBB.2021.3098394
– ident: ref21
  doi: 10.1038/s41598-019-56911-z
– ident: ref23
  doi: 10.1371/journal.pcbi.1007794
– ident: ref39
  doi: 10.1126/science.aaa1934
– start-page: 529
  year: 2004
  ident: ref50
  article-title: Semi-supervised learning by entropy minimization
  publication-title: Proc 17th Int Conf Neural Inf Process Syst
  contributor:
    fullname: grandvalet
– ident: ref13
  doi: 10.1038/s42256-019-0037-0
– ident: ref11
  doi: 10.1038/s41576-018-0088-9
– volume: 17
  start-page: 1
  year: 2016
  ident: ref30
  article-title: CellTree: An R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data
  publication-title: BMC Bioinf
  contributor:
    fullname: yotsukura
– ident: ref65
  doi: 10.1186/gb-2002-3-7-research0036
– start-page: 1070
  year: 2016
  ident: ref36
  article-title: Dirichlet process mixture model for correcting technical variation in single-cell gene expression data
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: prabhakaran
– year: 2021
  ident: ref5
  article-title: Deep learning tackles single-cell analysis a survey of deep learning for scRNA-seq analysis
  contributor:
    fullname: flores
– ident: ref6
  doi: 10.1101/gr.191098.115
– ident: ref29
  doi: 10.1038/nmeth.4236
– ident: ref33
  doi: 10.1093/bioinformatics/btv088
– ident: ref25
  doi: 10.1038/s41467-020-15851-3
– ident: ref34
  doi: 10.1109/JBHI.2016.2565561
– ident: ref38
  doi: 10.1093/bioinformatics/btw607
– volume: 17
  start-page: 1
  year: 2016
  ident: ref31
  article-title: pcaReduce: Hierarchical clustering of single cell transcriptional profiles
  publication-title: BMC Bioinf
  contributor:
    fullname: yau
– ident: ref51
  doi: 10.1109/TPAMI.2018.2858821
– ident: ref32
  doi: 10.1186/s13059-016-1010-4
– year: 2017
  ident: ref48
  article-title: Learning discrete representations via information maximizing self-augmented training
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: hu
– start-page: 57
  year: 2005
  ident: ref49
  article-title: Semi-supervised classification by low density separation
  publication-title: Proc Int Workshop Artif Intell Statist
  contributor:
    fullname: chapelle
– ident: ref37
  doi: 10.1093/bioinformatics/btx490
– ident: ref16
  doi: 10.1038/s41592-019-0576-7
– ident: ref26
  doi: 10.1093/nargab/lqaa039
– ident: ref28
  doi: 10.1038/nature14966
– start-page: 775
  year: 2010
  ident: ref47
  article-title: Discriminative clustering by regularized information maximization
  publication-title: Proc 23rd Int Conf Neural Inf Process Syst
  contributor:
    fullname: gomes
– start-page: 478
  year: 2016
  ident: ref40
  article-title: Unsupervised deep embedding for clustering analysis
  publication-title: Proc 33rd Int Conf Mach Learn
  contributor:
    fullname: xie
SSID ssj0024904
Score 2.3797991
Snippet Single-cell RNA sequencing (scRNA-seq) is a revolutionary methodology that helps to analyze transcriptome or genome information from a single cell. However,...
SourceID proquest
crossref
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1983
SubjectTerms Ablation
Algorithms
Artificial neural networks
Base Sequence
Cluster Analysis
Clustering
Clustering algorithms
Clustering methods
clustering of scRNA-seq data
Data models
Deep learning
Dimensionality reduction of scRNA-seq data
Gene Expression Profiling - methods
Gene sequencing
Genomes
Invariants
Machine learning
Neural networks
noise-invariant representation learning
Nucleotide sequence
Representation learning
Representations
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
Training
Transcriptomes
Title Clustering Single-Cell RNA Sequence Data Using Information Maximized and Noise-Invariant Representations
URI https://ieeexplore.ieee.org/document/9971464
https://www.ncbi.nlm.nih.gov/pubmed/37015582
https://www.proquest.com/docview/2823194022
https://search.proquest.com/docview/2796160846
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lUC90EJ5LC3ISJwQ3ia248THdqEqSLuHPqTeIr8iVixZxCYI-us7dryLQCBxiSzFefmb0XyTGc8AvBbS2Uq6jOqcSSrQhaCmsYxKh7Yi16pisXzxdCbPr8XHm-JmC95u9sJ472PymR-HYYzlu6Xtw6-yY6VKVGyxDdulUsNerV919VRsFRgYAS1QqlIEM8_U8dXk9BQ9QcbGKL0lDnbhPi8DWajYb-Yo9lf5N9WMJudsD6brlx0yTT6P-86M7e0fdRz_92v24UHinuRkEJaHsOXbR3Bv6Eb58wA-TRZ9KJuAxoxc4mHh6cQvFuRidkIuU8Y1eac7TWKeAUk7mQKyZKp_zL_Mb70junVktpyvPP3QfkdHHJEjFzHdNu1yaleP4frs_dXknKZGDNSi_neUaat5KGyjsqrJPXK4QBOVkJ7H7sW6LHnjcmkrK51W3nMjKimZNrLhRWP5E9hpl61_BkQUXDROZ9aIQhhhVWYqzXUorGe5qYoRvFnjUX8d6m3U0U_JVB1wrAOOdcJxBAdhWTcT04qO4GiNYJ00clWzEO9U6C3jVa82p1GXQoBEt37Z45xSyVxmSMlG8HRAfnPvtcA8__szD2E3NKIfUiGPYKf71vsXSFc68zLK6R0pFeLK
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4aQ8BeuI1LYYCReEK4S2LHsR-3wtTB2oetk_YW2Y4jqnUpogmC_XqOHbcIBBIvUaQ4N3_HOd_JuQG84aKyUlQJ1WkmKEcTgpraZlRUqCtSrWQWyhdPpmJ8zj9e5Bdb8G6TC-OcC8Fnbuh3gy-_WtrO_yrbV6rAhc1vwE3k1VL02Vq_Kuup0CzQcwKao1xFH2aaqP3Z6PAQbcEsG6L8FrizA7dZ4emCzH5TSKHDyr_JZlA6R_dgsn7cPtbkcti1Zmiv_6jk-L_vcx_uRvZJDnpxeQBbrnkIt_p-lD924fNo0fnCCajOyBluFo6O3GJBTqcH5CzGXJP3utUkRBqQmMvksSUT_X1-Nb92FdFNRabL-crR4-YbmuKIHTkNAbcxz6lZPYLzow-z0ZjGVgzU4hegpZm2mvnSNiqRdeqQxXmiqLhwLPQv1kXB6ioVVlpRaeUcM1wKkWkjapbXlj2G7WbZuKdAeM54XenEGp5zw61KjNRM-9J6lhmZD-DtGo_yS19xowyWSqJKj2PpcSwjjgPY9dO6GRhndAB7awTLuCZXZeY9ngrtZTzr9eYwribvItGNW3Y4plAiFQmSsgE86ZHfXHstMM_-fs9XcGc8m5yUJ8fTT89hx7el7wMj92C7_dq5F0heWvMyyOxPLUbmFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+Single-Cell+RNA+Sequence+Data+Using+Information+Maximized+and+Noise-Invariant+Representations&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Mondal%2C+Arnab+Kumar&rft.au=Joshi%2C+Indu&rft.au=Singh%2C+Pravendra&rft.au=Prathosh%2C+A+P&rft.date=2023-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5963&rft.eissn=1557-9964&rft.volume=20&rft.issue=3&rft.spage=1983&rft_id=info:doi/10.1109%2FTCBB.2022.3227202&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon