Clustering Single-Cell RNA Sequence Data Using Information Maximized and Noise-Invariant Representations
Single-cell RNA sequencing (scRNA-seq) is a revolutionary methodology that helps to analyze transcriptome or genome information from a single cell. However, high dimensionality and sparsity in data due to dropout events pose computational challenges for existing state-of-the-art scRNA-seq clustering...
Saved in:
Published in | IEEE/ACM transactions on computational biology and bioinformatics Vol. 20; no. 3; pp. 1983 - 1994 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single-cell RNA sequencing (scRNA-seq) is a revolutionary methodology that helps to analyze transcriptome or genome information from a single cell. However, high dimensionality and sparsity in data due to dropout events pose computational challenges for existing state-of-the-art scRNA-seq clustering methods. Learning efficient representations becomes even more challenging due to the presence of noise in scRNA-seq data. To overcome the effect of noise and learn effective representations, this paper proposes sc-INDC ( S ingle- C ell I nformation Maximized N oise-Invariant D eep C lustering), a deep neural network that facilitates learning of informative and noise-invariant representations of scRNA-seq data. Furthermore, the time complexity of the proposed sc-INDC is significantly lower compared to state-of-the-art scRNA-seq clustering methods. Extensive experimentation on fourteen publicly available scRNA-seq datasets illustrates the efficacy of the proposed model. Additionally, visualizations of t-SNE plots and several ablation studies are also conducted to provide insights into the improved representation ability of sc-INDC. Code of the proposed sc-INDC will be available at: https://github.com/arnabkmondal/sc-INDC . |
---|---|
AbstractList | Single-cell RNA sequencing (scRNA-seq) is a revolutionary methodology that helps to analyze transcriptome or genome information from a single cell. However, high dimensionality and sparsity in data due to dropout events pose computational challenges for existing state-of-the-art scRNA-seq clustering methods. Learning efficient representations becomes even more challenging due to the presence of noise in scRNA-seq data. To overcome the effect of noise and learn effective representations, this paper proposes sc-INDC ( S ingle- C ell I nformation Maximized N oise-Invariant D eep C lustering), a deep neural network that facilitates learning of informative and noise-invariant representations of scRNA-seq data. Furthermore, the time complexity of the proposed sc-INDC is significantly lower compared to state-of-the-art scRNA-seq clustering methods. Extensive experimentation on fourteen publicly available scRNA-seq datasets illustrates the efficacy of the proposed model. Additionally, visualizations of t-SNE plots and several ablation studies are also conducted to provide insights into the improved representation ability of sc-INDC. Code of the proposed sc-INDC will be available at: https://github.com/arnabkmondal/sc-INDC . Single-cell RNA sequencing (scRNA-seq) is a revolutionary methodology that helps to analyze transcriptome or genome information from a single cell. However, high dimensionality and sparsity in data due to dropout events pose computational challenges for existing state-of-the-art scRNA-seq clustering methods. Learning efficient representations becomes even more challenging due to the presence of noise in scRNA-seq data. To overcome the effect of noise and learn effective representations, this paper proposes sc-INDC (Single-Cell Information Maximized Noise-Invariant Deep Clustering), a deep neural network that facilitates learning of informative and noise-invariant representations of scRNA-seq data. Furthermore, the time complexity of the proposed sc-INDC is significantly lower compared to state-of-the-art scRNA-seq clustering methods. Extensive experimentation on fourteen publicly available scRNA-seq datasets illustrates the efficacy of the proposed model. Additionally, visualizations of t-SNE plots and several ablation studies are also conducted to provide insights into the improved representation ability of sc-INDC. Code of the proposed sc-INDC will be available at: https://github.com/arnabkmondal/sc-INDC. |
Author | Mondal, Arnab Kumar AP, Prathosh Joshi, Indu Singh, Pravendra |
Author_xml | – sequence: 1 givenname: Arnab Kumar orcidid: 0000-0001-7297-374X surname: Mondal fullname: Mondal, Arnab Kumar email: arnabkumarmondal123@gmail.com organization: IIT Delhi, New Delhi, Delhi, India – sequence: 2 givenname: Indu orcidid: 0000-0002-2755-9416 surname: Joshi fullname: Joshi, Indu email: indu.joshi@inria.fr organization: INRIA Sophia Antipolis, Valbonne, France – sequence: 3 givenname: Pravendra surname: Singh fullname: Singh, Pravendra email: pravendra.singh@cs.iitr.ac.in organization: IIT Roorkee, Roorkee, Uttarakhand, India – sequence: 4 givenname: Prathosh orcidid: 0000-0002-8699-5760 surname: AP fullname: AP, Prathosh email: prathoshap@gmail.com organization: Department of Electrical Communication Engineering, Indian Institute of Science (IISc), Bengaluru, Karnataka, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37015582$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkclOxDAMhiMEYn8AhIQiceHSIVvT5ghlG4lFYjlHmdaFoDYdkhYBT0_KDBy42Jb82frtfwutus4BQnuUTCgl6vixOD2dMMLYhDOWxWIFbdI0zRKlpFgda5EmqZJ8A22F8EoIE4qIdbTBMxK5nG2il6IZQg_eumf8EEMDSQFNg-9vT_ADvA3gSsBnpjf4KYzM1NWdb01vO4dvzIdt7RdU2LgK33Y2QDJ178Zb43p8D3MPAVz_A4cdtFabJsDuMm-jp4vzx-Iqub67nBYn10nJCe0TZkrDCSe5InlNQVApacqVkMCJlKkwWcbrisoyL2VlFACfiVxKZmay5mld8m10tNg7912UH3rd2lDGk4yDbgiaZUpSSXIhI3r4D33tBu-iOs1yxqkS8bWRoguq9F0IHmo997Y1_lNTokcb9GiDHm3QSxvizMFy8zBrofqb-P17BPYXgAWAv7ZSGRVS8G-83Yxm |
CODEN | ITCBCY |
Cites_doi | 10.1016/j.cell.2015.04.044 10.1038/s41467-021-22008-3 10.1038/nmeth.4207 10.1016/j.stem.2016.05.010 10.1038/nn.4462 10.1038/ncomms14049 10.1186/s13059-017-1188-0 10.1016/j.cell.2018.02.001 10.1073/pnas.1817715116 10.1242/dev.151142 10.1186/s12859-021-04210-8 10.1016/j.cell.2015.05.002 10.1038/s41467-021-22197-x 10.1038/s41592-019-0654-x 10.1038/s41467-018-07931-2 10.1109/BIBM49941.2020.9313569 10.1109/TCBB.2021.3128576 10.1016/j.stem.2010.03.015 10.1093/bioinformatics/btl406 10.1007/s11010-021-04095-4 10.1016/j.stem.2010.04.008 10.1016/j.cels.2016.09.002 10.1016/0377-0427(87)90125-7 10.1038/nbt.3192 10.1016/j.cell.2020.05.006 10.1038/nmeth.2967 10.1186/s12859-020-3401-5 10.1007/BF01908075 10.1038/s41592-018-0229-2 10.1038/s41422-020-00455-9 10.1093/bioinformatics/btaa293 10.1038/s41586-018-0590-4 10.1126/science.aat1699 10.24963/ijcai.2017/243 10.1016/j.molcel.2019.05.003 10.1101/gr.267070.120 10.1109/TCBB.2021.3098394 10.1038/s41598-019-56911-z 10.1371/journal.pcbi.1007794 10.1126/science.aaa1934 10.1038/s42256-019-0037-0 10.1038/s41576-018-0088-9 10.1186/gb-2002-3-7-research0036 10.1101/gr.191098.115 10.1038/nmeth.4236 10.1093/bioinformatics/btv088 10.1038/s41467-020-15851-3 10.1109/JBHI.2016.2565561 10.1093/bioinformatics/btw607 10.1109/TPAMI.2018.2858821 10.1186/s13059-016-1010-4 10.1093/bioinformatics/btx490 10.1038/s41592-019-0576-7 10.1093/nargab/lqaa039 10.1038/nature14966 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TCBB.2022.3227202 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1557-9964 |
EndPage | 1994 |
ExternalDocumentID | 10_1109_TCBB_2022_3227202 37015582 9971464 |
Genre | orig-research Journal Article |
GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AALFJ AASAJ AAWTV AAYOK ABQJQ ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADL ADPZR AEBYY AENEX AENSD AETIX AFRAH AFWIH AFWXC AIBXA AIKLT AKJIK ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIC RIE RIG RNI RNS ROL RZB TN5 W7O XOL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c301t-2aca30308908f1e4166153946e306654a773fd16c8c6da9ee3b48662ab6f35fc3 |
IEDL.DBID | RIE |
ISSN | 1545-5963 |
IngestDate | Thu Jul 25 09:38:44 EDT 2024 Thu Oct 10 20:36:34 EDT 2024 Fri Aug 23 00:32:37 EDT 2024 Wed Oct 16 00:39:38 EDT 2024 Mon Nov 04 11:48:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c301t-2aca30308908f1e4166153946e306654a773fd16c8c6da9ee3b48662ab6f35fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7297-374X 0000-0002-8699-5760 0000-0002-2755-9416 |
PMID | 37015582 |
PQID | 2823194022 |
PQPubID | 85499 |
PageCount | 12 |
ParticipantIDs | ieee_primary_9971464 proquest_journals_2823194022 crossref_primary_10_1109_TCBB_2022_3227202 pubmed_primary_37015582 proquest_miscellaneous_2796160846 |
PublicationCentury | 2000 |
PublicationDate | 2023-May-June-1 2023 May-Jun 2023-5-1 20230501 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-May-June-1 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE/ACM transactions on computational biology and bioinformatics |
PublicationTitleAbbrev | TCBB |
PublicationTitleAlternate | IEEE/ACM Trans Comput Biol Bioinform |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 chapelle (ref49) 2005 ref17 ref16 ref19 bishop (ref68) 2006; 4 ref51 van der maaten (ref62) 2008; 9 ref46 ref45 ref42 ref41 ref44 ref43 miyato (ref18) 2016 grandvalet (ref50) 2004 ref8 ref7 ref9 ref4 ref3 ref6 yau (ref31) 2016; 17 xie (ref40) 2016 vinh (ref63) 2010; 11 hu (ref48) 2017 ref35 ref34 ref37 ref33 flores (ref5) 2021 ref32 ref2 gomes (ref47) 2010 ref1 ref39 ref38 ref24 ref23 ref67 ref26 ref25 ref20 ref64 prabhakaran (ref36) 2016 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 yotsukura (ref30) 2016; 17 ref61 |
References_xml | – ident: ref58 doi: 10.1016/j.cell.2015.04.044 – year: 2016 ident: ref18 article-title: Distributional smoothing with virtual adversarial training publication-title: Proc Int Conf Learn Representations contributor: fullname: miyato – ident: ref44 doi: 10.1038/s41467-021-22008-3 – ident: ref35 doi: 10.1038/nmeth.4207 – ident: ref61 doi: 10.1016/j.stem.2016.05.010 – ident: ref53 doi: 10.1038/nn.4462 – ident: ref57 doi: 10.1038/ncomms14049 – ident: ref19 doi: 10.1186/s13059-017-1188-0 – ident: ref59 doi: 10.1016/j.cell.2018.02.001 – ident: ref20 doi: 10.1073/pnas.1817715116 – volume: 9 start-page: 2579 year: 2008 ident: ref62 article-title: Viualizing data using t-SNE publication-title: J Mach Learn Res contributor: fullname: van der maaten – ident: ref54 doi: 10.1242/dev.151142 – ident: ref24 doi: 10.1186/s12859-021-04210-8 – ident: ref60 doi: 10.1016/j.cell.2015.05.002 – ident: ref46 doi: 10.1038/s41467-021-22197-x – ident: ref2 doi: 10.1038/s41592-019-0654-x – ident: ref15 doi: 10.1038/s41467-018-07931-2 – ident: ref45 doi: 10.1109/BIBM49941.2020.9313569 – ident: ref12 doi: 10.1109/TCBB.2021.3128576 – ident: ref4 doi: 10.1016/j.stem.2010.03.015 – ident: ref66 doi: 10.1093/bioinformatics/btl406 – ident: ref8 doi: 10.1007/s11010-021-04095-4 – ident: ref3 doi: 10.1016/j.stem.2010.04.008 – ident: ref55 doi: 10.1016/j.cels.2016.09.002 – ident: ref67 doi: 10.1016/0377-0427(87)90125-7 – ident: ref22 doi: 10.1038/nbt.3192 – volume: 11 start-page: 2837 year: 2010 ident: ref63 article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance publication-title: J Mach Learn Res contributor: fullname: vinh – ident: ref10 doi: 10.1016/j.cell.2020.05.006 – ident: ref1 doi: 10.1038/nmeth.2967 – ident: ref43 doi: 10.1186/s12859-020-3401-5 – ident: ref64 doi: 10.1007/BF01908075 – ident: ref27 doi: 10.1038/s41592-018-0229-2 – ident: ref9 doi: 10.1038/s41422-020-00455-9 – ident: ref42 doi: 10.1093/bioinformatics/btaa293 – ident: ref52 doi: 10.1038/s41586-018-0590-4 – volume: 4 year: 2006 ident: ref68 publication-title: Pattern Recognition and Machine Learning contributor: fullname: bishop – ident: ref56 doi: 10.1126/science.aat1699 – ident: ref41 doi: 10.24963/ijcai.2017/243 – ident: ref7 doi: 10.1016/j.molcel.2019.05.003 – ident: ref14 doi: 10.1101/gr.267070.120 – ident: ref17 doi: 10.1109/TCBB.2021.3098394 – ident: ref21 doi: 10.1038/s41598-019-56911-z – ident: ref23 doi: 10.1371/journal.pcbi.1007794 – ident: ref39 doi: 10.1126/science.aaa1934 – start-page: 529 year: 2004 ident: ref50 article-title: Semi-supervised learning by entropy minimization publication-title: Proc 17th Int Conf Neural Inf Process Syst contributor: fullname: grandvalet – ident: ref13 doi: 10.1038/s42256-019-0037-0 – ident: ref11 doi: 10.1038/s41576-018-0088-9 – volume: 17 start-page: 1 year: 2016 ident: ref30 article-title: CellTree: An R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data publication-title: BMC Bioinf contributor: fullname: yotsukura – ident: ref65 doi: 10.1186/gb-2002-3-7-research0036 – start-page: 1070 year: 2016 ident: ref36 article-title: Dirichlet process mixture model for correcting technical variation in single-cell gene expression data publication-title: Proc Int Conf Mach Learn contributor: fullname: prabhakaran – year: 2021 ident: ref5 article-title: Deep learning tackles single-cell analysis a survey of deep learning for scRNA-seq analysis contributor: fullname: flores – ident: ref6 doi: 10.1101/gr.191098.115 – ident: ref29 doi: 10.1038/nmeth.4236 – ident: ref33 doi: 10.1093/bioinformatics/btv088 – ident: ref25 doi: 10.1038/s41467-020-15851-3 – ident: ref34 doi: 10.1109/JBHI.2016.2565561 – ident: ref38 doi: 10.1093/bioinformatics/btw607 – volume: 17 start-page: 1 year: 2016 ident: ref31 article-title: pcaReduce: Hierarchical clustering of single cell transcriptional profiles publication-title: BMC Bioinf contributor: fullname: yau – ident: ref51 doi: 10.1109/TPAMI.2018.2858821 – ident: ref32 doi: 10.1186/s13059-016-1010-4 – year: 2017 ident: ref48 article-title: Learning discrete representations via information maximizing self-augmented training publication-title: Proc Int Conf Mach Learn contributor: fullname: hu – start-page: 57 year: 2005 ident: ref49 article-title: Semi-supervised classification by low density separation publication-title: Proc Int Workshop Artif Intell Statist contributor: fullname: chapelle – ident: ref37 doi: 10.1093/bioinformatics/btx490 – ident: ref16 doi: 10.1038/s41592-019-0576-7 – ident: ref26 doi: 10.1093/nargab/lqaa039 – ident: ref28 doi: 10.1038/nature14966 – start-page: 775 year: 2010 ident: ref47 article-title: Discriminative clustering by regularized information maximization publication-title: Proc 23rd Int Conf Neural Inf Process Syst contributor: fullname: gomes – start-page: 478 year: 2016 ident: ref40 article-title: Unsupervised deep embedding for clustering analysis publication-title: Proc 33rd Int Conf Mach Learn contributor: fullname: xie |
SSID | ssj0024904 |
Score | 2.3797991 |
Snippet | Single-cell RNA sequencing (scRNA-seq) is a revolutionary methodology that helps to analyze transcriptome or genome information from a single cell. However,... |
SourceID | proquest crossref pubmed ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1983 |
SubjectTerms | Ablation Algorithms Artificial neural networks Base Sequence Cluster Analysis Clustering Clustering algorithms Clustering methods clustering of scRNA-seq data Data models Deep learning Dimensionality reduction of scRNA-seq data Gene Expression Profiling - methods Gene sequencing Genomes Invariants Machine learning Neural networks noise-invariant representation learning Nucleotide sequence Representation learning Representations Sequence Analysis, RNA - methods Single-Cell Analysis - methods Training Transcriptomes |
Title | Clustering Single-Cell RNA Sequence Data Using Information Maximized and Noise-Invariant Representations |
URI | https://ieeexplore.ieee.org/document/9971464 https://www.ncbi.nlm.nih.gov/pubmed/37015582 https://www.proquest.com/docview/2823194022 https://search.proquest.com/docview/2796160846 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lUC90EJ5LC3ISJwQ3ia248THdqEqSLuHPqTeIr8iVixZxCYI-us7dryLQCBxiSzFefmb0XyTGc8AvBbS2Uq6jOqcSSrQhaCmsYxKh7Yi16pisXzxdCbPr8XHm-JmC95u9sJ472PymR-HYYzlu6Xtw6-yY6VKVGyxDdulUsNerV919VRsFRgYAS1QqlIEM8_U8dXk9BQ9QcbGKL0lDnbhPi8DWajYb-Yo9lf5N9WMJudsD6brlx0yTT6P-86M7e0fdRz_92v24UHinuRkEJaHsOXbR3Bv6Eb58wA-TRZ9KJuAxoxc4mHh6cQvFuRidkIuU8Y1eac7TWKeAUk7mQKyZKp_zL_Mb70junVktpyvPP3QfkdHHJEjFzHdNu1yaleP4frs_dXknKZGDNSi_neUaat5KGyjsqrJPXK4QBOVkJ7H7sW6LHnjcmkrK51W3nMjKimZNrLhRWP5E9hpl61_BkQUXDROZ9aIQhhhVWYqzXUorGe5qYoRvFnjUX8d6m3U0U_JVB1wrAOOdcJxBAdhWTcT04qO4GiNYJ00clWzEO9U6C3jVa82p1GXQoBEt37Z45xSyVxmSMlG8HRAfnPvtcA8__szD2E3NKIfUiGPYKf71vsXSFc68zLK6R0pFeLK |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4aQ8BeuI1LYYCReEK4S2LHsR-3wtTB2oetk_YW2Y4jqnUpogmC_XqOHbcIBBIvUaQ4N3_HOd_JuQG84aKyUlQJ1WkmKEcTgpraZlRUqCtSrWQWyhdPpmJ8zj9e5Bdb8G6TC-OcC8Fnbuh3gy-_WtrO_yrbV6rAhc1vwE3k1VL02Vq_Kuup0CzQcwKao1xFH2aaqP3Z6PAQbcEsG6L8FrizA7dZ4emCzH5TSKHDyr_JZlA6R_dgsn7cPtbkcti1Zmiv_6jk-L_vcx_uRvZJDnpxeQBbrnkIt_p-lD924fNo0fnCCajOyBluFo6O3GJBTqcH5CzGXJP3utUkRBqQmMvksSUT_X1-Nb92FdFNRabL-crR4-YbmuKIHTkNAbcxz6lZPYLzow-z0ZjGVgzU4hegpZm2mvnSNiqRdeqQxXmiqLhwLPQv1kXB6ioVVlpRaeUcM1wKkWkjapbXlj2G7WbZuKdAeM54XenEGp5zw61KjNRM-9J6lhmZD-DtGo_yS19xowyWSqJKj2PpcSwjjgPY9dO6GRhndAB7awTLuCZXZeY9ngrtZTzr9eYwribvItGNW3Y4plAiFQmSsgE86ZHfXHstMM_-fs9XcGc8m5yUJ8fTT89hx7el7wMj92C7_dq5F0heWvMyyOxPLUbmFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+Single-Cell+RNA+Sequence+Data+Using+Information+Maximized+and+Noise-Invariant+Representations&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Mondal%2C+Arnab+Kumar&rft.au=Joshi%2C+Indu&rft.au=Singh%2C+Pravendra&rft.au=Prathosh%2C+A+P&rft.date=2023-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5963&rft.eissn=1557-9964&rft.volume=20&rft.issue=3&rft.spage=1983&rft_id=info:doi/10.1109%2FTCBB.2022.3227202&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |