Clustering Single-Cell RNA Sequence Data Using Information Maximized and Noise-Invariant Representations

Single-cell RNA sequencing (scRNA-seq) is a revolutionary methodology that helps to analyze transcriptome or genome information from a single cell. However, high dimensionality and sparsity in data due to dropout events pose computational challenges for existing state-of-the-art scRNA-seq clustering...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on computational biology and bioinformatics Vol. 20; no. 3; pp. 1983 - 1994
Main Authors Mondal, Arnab Kumar, Joshi, Indu, Singh, Pravendra, AP, Prathosh
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Single-cell RNA sequencing (scRNA-seq) is a revolutionary methodology that helps to analyze transcriptome or genome information from a single cell. However, high dimensionality and sparsity in data due to dropout events pose computational challenges for existing state-of-the-art scRNA-seq clustering methods. Learning efficient representations becomes even more challenging due to the presence of noise in scRNA-seq data. To overcome the effect of noise and learn effective representations, this paper proposes sc-INDC ( S ingle- C ell I nformation Maximized N oise-Invariant D eep C lustering), a deep neural network that facilitates learning of informative and noise-invariant representations of scRNA-seq data. Furthermore, the time complexity of the proposed sc-INDC is significantly lower compared to state-of-the-art scRNA-seq clustering methods. Extensive experimentation on fourteen publicly available scRNA-seq datasets illustrates the efficacy of the proposed model. Additionally, visualizations of t-SNE plots and several ablation studies are also conducted to provide insights into the improved representation ability of sc-INDC. Code of the proposed sc-INDC will be available at: https://github.com/arnabkmondal/sc-INDC .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1545-5963
1557-9964
DOI:10.1109/TCBB.2022.3227202