Using Fully Convolutional Network to Locate Transcription Factor Binding Sites Based on DNA Sequence and Conservation Information

Transcription factors (TFs) play a part in gene expression. TFs can form complex gene expression regulation system by combining with DNA. Thereby, identifying the binding regions has become an indispensable step for understanding the regulatory mechanism of gene expression. Due to the great achievem...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on computational biology and bioinformatics Vol. 20; no. 5; pp. 2690 - 2699
Main Authors Zhang, Qinhu, Xu, Youhong, Wang, Siguo, Wu, Yong, Ye, Yuannong, Yuan, Chang-An, Gribova, Valeriya, Filaretov, Vladimir Fedorovich, Huang, De-Shuang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transcription factors (TFs) play a part in gene expression. TFs can form complex gene expression regulation system by combining with DNA. Thereby, identifying the binding regions has become an indispensable step for understanding the regulatory mechanism of gene expression. Due to the great achievements of applying deep learning (DL) to computer vision and language processing in recent years, many scholars are inspired to use these methods to predict TF binding sites (TFBSs), achieving extraordinary results. However, these methods mainly focus on whether DNA sequences include TFBSs. In this paper, we propose a fully convolutional network (FCN) coupled with refinement residual block (RRB) and global average pooling layer (GAPL), namely FCNARRB. Our model could classify binding sequences at nucleotide level by outputting dense label for input data. Experimental results on human ChIP-seq datasets show that the RRB and GAPL structures are very useful for improving model performance. Adding GAPL improves the performance by 9.32% and 7.61% in terms of IoU (Intersection of Union) and PRAUC (Area Under Curve of Precision and Recall), and adding RRB improves the performance by 7.40% and 4.64%, respectively. In addition, we find that conservation information can help locate TFBSs.
AbstractList Transcription factors (TFs) play a part in gene expression. TFs can form complex gene expression regulation system by combining with DNA. Thereby, identifying the binding regions has become an indispensable step for understanding the regulatory mechanism of gene expression. Due to the great achievements of applying deep learning (DL) to computer vision and language processing in recent years, many scholars are inspired to use these methods to predict TF binding sites (TFBSs), achieving extraordinary results. However, these methods mainly focus on whether DNA sequences include TFBSs. In this paper, we propose a fully convolutional network (FCN) coupled with refinement residual block (RRB) and global average pooling layer (GAPL), namely FCNARRB. Our model could classify binding sequences at nucleotide level by outputting dense label for input data. Experimental results on human ChIP-seq datasets show that the RRB and GAPL structures are very useful for improving model performance. Adding GAPL improves the performance by 9.32% and 7.61% in terms of IoU (Intersection of Union) and PRAUC (Area Under Curve of Precision and Recall), and adding RRB improves the performance by 7.40% and 4.64%, respectively. In addition, we find that conservation information can help locate TFBSs.
Author Wu, Yong
Ye, Yuannong
Gribova, Valeriya
Xu, Youhong
Zhang, Qinhu
Filaretov, Vladimir Fedorovich
Wang, Siguo
Yuan, Chang-An
Huang, De-Shuang
Author_xml – sequence: 1
  givenname: Qinhu
  surname: Zhang
  fullname: Zhang, Qinhu
  email: zhangqinhu1@qq.com
  organization: Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
– sequence: 2
  givenname: Youhong
  orcidid: 0000-0003-0085-8202
  surname: Xu
  fullname: Xu, Youhong
  email: youhongxu@126.com
  organization: Institute of Machine Learning and Systems Biology, School of Electronics and Information Engineering, Tongji University, Shanghai, China
– sequence: 3
  givenname: Siguo
  orcidid: 0000-0002-3244-3629
  surname: Wang
  fullname: Wang, Siguo
  email: siguo_wang@163.com
  organization: Institute of Machine Learning and Systems Biology, School of Electronics and Information Engineering, Tongji University, Shanghai, China
– sequence: 4
  givenname: Yong
  orcidid: 0000-0001-5628-1858
  surname: Wu
  fullname: Wu, Yong
  email: wuyong_tj@163.com
  organization: Institute of Machine Learning and Systems Biology, School of Electronics and Information Engineering, Tongji University, Shanghai, China
– sequence: 5
  givenname: Yuannong
  surname: Ye
  fullname: Ye, Yuannong
  email: yyn@gmc.edu.cn
  organization: College of Health, Guizhou Medical University, Guiyang, Guizhou, China
– sequence: 6
  givenname: Chang-An
  surname: Yuan
  fullname: Yuan, Chang-An
  email: changanyuan@163.com
  organization: Guangxi Academy of Science, Nanning, Guangxi, China
– sequence: 7
  givenname: Valeriya
  surname: Gribova
  fullname: Gribova, Valeriya
  email: gribova@dvo.ru
  organization: Institute of Automation and Control Processes, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
– sequence: 8
  givenname: Vladimir Fedorovich
  surname: Filaretov
  fullname: Filaretov, Vladimir Fedorovich
  email: filaretov@inbox.ru
  organization: Institute of Automation and Control Processes, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
– sequence: 9
  givenname: De-Shuang
  orcidid: 0000-0002-6759-2691
  surname: Huang
  fullname: Huang, De-Shuang
  email: dshuang@eias.ac.cn
  organization: EIT Institute for Advanced Study, Ningbo, Zhejiang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36374878$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1PGzEQhq0KVCDtD6gqVZZ66WWDvz-OJCUtUgQHwnllvLPV0o2d2rtUHPvP8ZKUA4fRjDTP-2o07xk6CjEAQp8omVNK7PlmuVjMGWFszhm1htN36JRKqStrlTiaZiEraRU_QWc5PxDChCXiPTrhimthtDlF_-5yF37h1dj3T3gZw2Psx6GLwfX4Goa_Mf3GQ8Tr6N0AeJNcyD51u4nAK-eHmPCiC81kcdsNkPHCZWhw2X6_vsC38GeE4AG70EzmGdKje9FehTam7cv8AR23rs_w8dBn6G51uVn-rNY3P66WF-vKc0KHimog1hCinBOldEskt5pqZQg457zhWt9bYykzUreKECNMa51tG225p8Bn6Nved5diOSsP9bbLHvreBYhjrpnmSilBS5-hr2_Qhzim8pNCGS2lYVrzQtE95VPMOUFb71K3demppqSe8qmnfOopn_qQT9F8OTiP91toXhX_AynA5z3QAcDr2lpJBGP8GZhClZo
CODEN ITCBCY
Cites_doi 10.1126/science.1105136
10.1093/bib/bbab525
10.1038/nbt1246
10.1007/978-3-030-26969-2_36
10.1109/TCBB.2020.2981335
10.1109/TCBB.2019.2947461
10.1145/3219819.3219869
10.1093/bib/bbaa435
10.7717/peerj.10845
10.1093/nar/gkg618
10.1038/nmeth1156
10.1109/ICCV.2017.324
10.1016/j.cell.2013.02.014
10.1038/s41398-020-01138-0
10.1038/nrg2538
10.1109/CVPR.2019.00075
10.1038/s41598-017-03554-7
10.1093/bioinformatics/16.1.16
10.1093/bib/bbab273
10.1109/CVPR.2016.89
10.1038/s41598-019-44966-x
10.1016/j.cels.2016.07.001
10.1109/TPAMI.2020.2981890
10.1016/j.cell.2018.09.045
10.1093/nar/gkx1106
10.1093/bioinformatics/18.suppl_1.S354
10.1109/TCBB.2018.2864203
10.1093/nar/gkt437
10.1093/nar/gkw226
10.1109/TCBB.2018.2819660
10.1007/978-3-319-94968-0_23
10.1038/nbt.3300
10.1145/2964284.2967274
10.2174/1574893615999200711165743
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TCBB.2022.3219831
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore (IEEE/IET Electronic Library - IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
EndPage 2699
ExternalDocumentID 10_1109_TCBB_2022_3219831
36374878
9950422
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Guangxi Natural Science Foundation
  grantid: 2021JJA170204; 2021JJA170199
– fundername: National Key R&D Program of China
  grantid: 2018YFA0902600; 2018AAA0100100
– fundername: National Natural Science Foundation of China
  grantid: 62002266; 61932008; U22A2039; 62073231
  funderid: 10.13039/501100001809
– fundername: Introduction Plan of High-End Foreign Experts
  grantid: G2021033002L
– fundername: Key Project of Science and Technology of Guangxi
  grantid: 2021AB20147
– fundername: Guangxi Science and Technology Base and Talents Special Project
  grantid: 2021AC19354; 2021AC19394
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AASAJ
AAWTV
AAYOK
ABQJQ
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
ADPZR
AEBYY
AENEX
AENSD
AETIX
AFMIJ
AFRAH
AFWIH
AFWXC
AIBXA
AIKLT
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIC
RIE
RIG
RNI
RNS
ROL
RZB
TN5
W7O
XOL
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c301t-17e098006aa46aa7f0539717680eaaac8377b98912857f600848f9a9fd793c1e3
IEDL.DBID RIE
ISSN 1545-5963
IngestDate Wed Dec 04 07:00:44 EST 2024
Thu Oct 10 17:09:03 EDT 2024
Fri Dec 06 07:30:00 EST 2024
Sat Sep 28 08:21:13 EDT 2024
Wed Jul 31 06:01:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c301t-17e098006aa46aa7f0539717680eaaac8377b98912857f600848f9a9fd793c1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0085-8202
0000-0002-3244-3629
0000-0002-6759-2691
0000-0001-5628-1858
PMID 36374878
PQID 2875582773
PQPubID 85499
PageCount 10
ParticipantIDs proquest_miscellaneous_2736664127
proquest_journals_2875582773
crossref_primary_10_1109_TCBB_2022_3219831
ieee_primary_9950422
pubmed_primary_36374878
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationTitleAbbrev TCBB
PublicationTitleAlternate IEEE/ACM Trans Comput Biol Bioinform
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
Pevzner (ref9)
Zheng (ref36) 2019
ref1
ref17
ref16
ref38
Zhang (ref41) 2020; 17
Glorot (ref27)
ref18
Long (ref19)
Saurabh (ref7) 2003; 31
Zhu (ref39)
ref24
ref23
ref26
ref25
ref20
ref42
ref22
Kingma (ref28)
He (ref37) 2021; 34
Eleazar (ref8) 2002; 18
Yu (ref21)
ref29
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref22
  doi: 10.1126/science.1105136
– ident: ref32
  doi: 10.1093/bib/bbab525
– ident: ref11
  doi: 10.1038/nbt1246
– ident: ref40
  doi: 10.1007/978-3-030-26969-2_36
– ident: ref18
  doi: 10.1109/TCBB.2020.2981335
– ident: ref30
  doi: 10.1109/TCBB.2019.2947461
– start-page: 141
  volume-title: Proc. IEEE Int. Conf. Bioinf. Biomed.
  ident: ref39
  article-title: Imputation of ChIP-Seq datasets via low rank convex Co-Embedding
  contributor:
    fullname: Zhu
– start-page: 3431
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  ident: ref19
  article-title: Fully convolutional networks for semantic seg-mentation
  contributor:
    fullname: Long
– ident: ref38
  doi: 10.1145/3219819.3219869
– ident: ref29
  doi: 10.1093/bib/bbaa435
– ident: ref6
  doi: 10.7717/peerj.10845
– volume: 31
  start-page: 3586
  issue: 13
  year: 2003
  ident: ref7
  article-title: YMF: A program for discovery of novel transcription factor binding sites by statistical overrepresentation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg618
  contributor:
    fullname: Saurabh
– ident: ref10
  doi: 10.1038/nmeth1156
– ident: ref26
  doi: 10.1109/ICCV.2017.324
– ident: ref28
  article-title: Adam: A method for stochastic optimization
  contributor:
    fullname: Kingma
– ident: ref4
  doi: 10.1016/j.cell.2013.02.014
– ident: ref5
  doi: 10.1038/s41398-020-01138-0
– ident: ref2
  doi: 10.1038/nrg2538
– ident: ref35
  doi: 10.1109/CVPR.2019.00075
– ident: ref42
  doi: 10.1038/s41598-017-03554-7
– ident: ref3
  doi: 10.1093/bioinformatics/16.1.16
– ident: ref16
  doi: 10.1093/bib/bbab273
– ident: ref25
  doi: 10.1109/CVPR.2016.89
– ident: ref15
  doi: 10.1038/s41598-019-44966-x
– ident: ref20
  doi: 10.1016/j.cels.2016.07.001
– ident: ref24
  doi: 10.1109/TPAMI.2020.2981890
– ident: ref1
  doi: 10.1016/j.cell.2018.09.045
– ident: ref23
  doi: 10.1093/nar/gkx1106
– volume: 18
  start-page: S354
  year: 2002
  ident: ref8
  article-title: Finding composite regulatory patterns in DNA sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_1.S354
  contributor:
    fullname: Eleazar
– start-page: 249
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  ident: ref27
  article-title: Understanding the difficulty of training deep feedforward neural networks
  contributor:
    fullname: Glorot
– volume: 17
  start-page: 679
  issue: 2
  year: 2020
  ident: ref41
  article-title: Weakly-Supervised convolutional neural network architecture for predicting protein-DNA binding
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2018.2864203
  contributor:
    fullname: Zhang
– ident: ref31
  doi: 10.1093/nar/gkt437
– volume: 34
  start-page: 20230
  year: 2021
  ident: ref37
  article-title: α-IoU: A family of power intersection over union losses for bounding box regression
  contributor:
    fullname: He
– ident: ref13
  doi: 10.1093/nar/gkw226
– ident: ref14
  doi: 10.1109/TCBB.2018.2819660
– ident: ref33
  doi: 10.1007/978-3-319-94968-0_23
– year: 2019
  ident: ref36
  article-title: Distance-IoU loss: Faster and better learning for bounding box regression
  contributor:
    fullname: Zheng
– start-page: 269
  volume-title: Proc. Int. Conf. Intell. Syst. Mol. Biol.
  ident: ref9
  article-title: Combinatorial approaches to finding subtle signals in DNA sequences
  contributor:
    fullname: Pevzner
– ident: ref12
  doi: 10.1038/nbt.3300
– ident: ref34
  doi: 10.1145/2964284.2967274
– ident: ref17
  doi: 10.2174/1574893615999200711165743
– start-page: 1857
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  ident: ref21
  article-title: Learning a discriminative feature network for seman-tic segmentation
  contributor:
    fullname: Yu
SSID ssj0024904
Score 2.387562
Snippet Transcription factors (TFs) play a part in gene expression. TFs can form complex gene expression regulation system by combining with DNA. Thereby, identifying...
SourceID proquest
crossref
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2690
SubjectTerms Binding sites
Computer vision
conservation information
Conserved sequence
Convolutional codes
Decoding
Deep learning
Deoxyribonucleic acid
DNA
Feature extraction
Fully convolutional network
Gene expression
Gene sequencing
global average pooling layer
Mathematical models
Natural language processing
Nucleotide sequence
Nucleotides
Performance enhancement
refinement residual block
Regulation
Regulatory mechanisms (biology)
transcription factor binding sites
Transcription factors
Title Using Fully Convolutional Network to Locate Transcription Factor Binding Sites Based on DNA Sequence and Conservation Information
URI https://ieeexplore.ieee.org/document/9950422
https://www.ncbi.nlm.nih.gov/pubmed/36374878
https://www.proquest.com/docview/2875582773
https://search.proquest.com/docview/2736664127
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-QwEB9UEHy589Q76-kRwafDrm2TNM2ju3fLIu6-uAu-lTRN4RBaObuCvvmf3yRNeyIe3EMhJUk_MjOZmWQyP4Az1KJUMh2HPK5kyEqehoqJCgWv4HhnZOqwDueLdLZiV7f8dgPOh7MwxhgXfGZGtuj28stGr-1S2YWU3Kas2oRNIdPurNbfvHrSQQVaiyDkyFV-BzOO5MVyMh6jJ5gkI4rymVGLDkNTm3fFgqu9UkcOX-XfpqZTOdOPMO8_tos0uRut22Kkn9_kcfzfv9mFD972JJcds3yCDVPvwXaHRvm0Dy8ufIBYp_SJTJr60XMldll0weKkbch1Y2OoiNNx_YxDpg61h4x_uTMy5Abt2AcyRgVZEqz9sbgkNz5km6i6tA8fFoOJPxBlywewmv5cTmahR2gINU4MbRgLE0k0OVOlGF6iQpGW6CCmWWSUUhq9X1HITKIS5KJKXfL-SipZlTgt6NjQz7BVN7U5BFKgpVTohGkqSlbSrGCxibIK-2lRUaMD-N4TKr_vEnHkzoGJZG4JnFsC557AAezb8R4a-qEO4Lgnbe5F9SFHl5HzLBGCBnA6VKOQ2Z0TVZtmjW0ERTePxYkI4EvHEsOze046ev-dX2HHItR3YWnHsNX-XpsTtGPa4ptj4D_qiewj
link.rule.ids 314,780,784,796,27924,27925,54758
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9tQ2h7YYMBC9vASDxNpEtiO44f20JVoO3LOmlvkeM4EkJKpi1FKm_855wdJyA0JB4iObKdD9-d784-3w_gHWpRKpmOQx5XMmQlT0PFRIWCV3C8MzJ1WIfLVTq_Zp9v-M0OvB_OwhhjXPCZGdmi28svG72xS2WXUnKbsmoXHnGGdm53Wut3Zj3pwAKtTRBy5Cu_hxlH8nI9nUzQF0ySEUUJzajFh6Gpzbxi4dX-UEgOYeXfxqZTOrNDWPaf28WafBtt2mKkf_yVyfF__-cInnjrk4w7dnkKO6Z-Bo87PMrtMfx0AQTEuqVbMm3q754vscuqCxcnbUMWjY2iIk7L9XMOmTncHjL56k7JkCu0ZO_JBFVkSbD2w2pMrnzQNlF1aR8-LAcTfyTKlp_D9ezjejoPPUZDqHFqaMNYmEii0ZkqxfASFQq1RBcxzSKjlNLo_4pCZhLVIBdV6tL3V1LJqsSJQceGvoC9uqnNCZACbaVCJ0xTUbKSZgWLTZRV2E-LihodwEVPqPy2S8WROxcmkrklcG4JnHsCB3Bsx3to6Ic6gLOetLkX1vscnUbOs0QIGsDboRrFzO6dqNo0G2wjKDp6LE5EAC87lhie3XPSq4ff-Qb25-vlIl98Wn05hQOLV98FqZ3BXnu3Medo1bTFa8fMvwB-vO92
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Fully+Convolutional+Network+to+Locate+Transcription+Factor+Binding+Sites+Based+on+DNA+Sequence+and+Conservation+Information&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Zhang%2C+Qinhu&rft.au=Xu%2C+Youhong&rft.au=Wang%2C+Siguo&rft.au=Wu%2C+Yong&rft.date=2023-09-01&rft.eissn=1557-9964&rft.volume=PP&rft_id=info:doi/10.1109%2FTCBB.2022.3219831&rft_id=info%3Apmid%2F36374878&rft.externalDocID=36374878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon