Using Fully Convolutional Network to Locate Transcription Factor Binding Sites Based on DNA Sequence and Conservation Information
Transcription factors (TFs) play a part in gene expression. TFs can form complex gene expression regulation system by combining with DNA. Thereby, identifying the binding regions has become an indispensable step for understanding the regulatory mechanism of gene expression. Due to the great achievem...
Saved in:
Published in | IEEE/ACM transactions on computational biology and bioinformatics Vol. 20; no. 5; pp. 2690 - 2699 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transcription factors (TFs) play a part in gene expression. TFs can form complex gene expression regulation system by combining with DNA. Thereby, identifying the binding regions has become an indispensable step for understanding the regulatory mechanism of gene expression. Due to the great achievements of applying deep learning (DL) to computer vision and language processing in recent years, many scholars are inspired to use these methods to predict TF binding sites (TFBSs), achieving extraordinary results. However, these methods mainly focus on whether DNA sequences include TFBSs. In this paper, we propose a fully convolutional network (FCN) coupled with refinement residual block (RRB) and global average pooling layer (GAPL), namely FCNARRB. Our model could classify binding sequences at nucleotide level by outputting dense label for input data. Experimental results on human ChIP-seq datasets show that the RRB and GAPL structures are very useful for improving model performance. Adding GAPL improves the performance by 9.32% and 7.61% in terms of IoU (Intersection of Union) and PRAUC (Area Under Curve of Precision and Recall), and adding RRB improves the performance by 7.40% and 4.64%, respectively. In addition, we find that conservation information can help locate TFBSs. |
---|---|
AbstractList | Transcription factors (TFs) play a part in gene expression. TFs can form complex gene expression regulation system by combining with DNA. Thereby, identifying the binding regions has become an indispensable step for understanding the regulatory mechanism of gene expression. Due to the great achievements of applying deep learning (DL) to computer vision and language processing in recent years, many scholars are inspired to use these methods to predict TF binding sites (TFBSs), achieving extraordinary results. However, these methods mainly focus on whether DNA sequences include TFBSs. In this paper, we propose a fully convolutional network (FCN) coupled with refinement residual block (RRB) and global average pooling layer (GAPL), namely FCNARRB. Our model could classify binding sequences at nucleotide level by outputting dense label for input data. Experimental results on human ChIP-seq datasets show that the RRB and GAPL structures are very useful for improving model performance. Adding GAPL improves the performance by 9.32% and 7.61% in terms of IoU (Intersection of Union) and PRAUC (Area Under Curve of Precision and Recall), and adding RRB improves the performance by 7.40% and 4.64%, respectively. In addition, we find that conservation information can help locate TFBSs. |
Author | Wu, Yong Ye, Yuannong Gribova, Valeriya Xu, Youhong Zhang, Qinhu Filaretov, Vladimir Fedorovich Wang, Siguo Yuan, Chang-An Huang, De-Shuang |
Author_xml | – sequence: 1 givenname: Qinhu surname: Zhang fullname: Zhang, Qinhu email: zhangqinhu1@qq.com organization: Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China – sequence: 2 givenname: Youhong orcidid: 0000-0003-0085-8202 surname: Xu fullname: Xu, Youhong email: youhongxu@126.com organization: Institute of Machine Learning and Systems Biology, School of Electronics and Information Engineering, Tongji University, Shanghai, China – sequence: 3 givenname: Siguo orcidid: 0000-0002-3244-3629 surname: Wang fullname: Wang, Siguo email: siguo_wang@163.com organization: Institute of Machine Learning and Systems Biology, School of Electronics and Information Engineering, Tongji University, Shanghai, China – sequence: 4 givenname: Yong orcidid: 0000-0001-5628-1858 surname: Wu fullname: Wu, Yong email: wuyong_tj@163.com organization: Institute of Machine Learning and Systems Biology, School of Electronics and Information Engineering, Tongji University, Shanghai, China – sequence: 5 givenname: Yuannong surname: Ye fullname: Ye, Yuannong email: yyn@gmc.edu.cn organization: College of Health, Guizhou Medical University, Guiyang, Guizhou, China – sequence: 6 givenname: Chang-An surname: Yuan fullname: Yuan, Chang-An email: changanyuan@163.com organization: Guangxi Academy of Science, Nanning, Guangxi, China – sequence: 7 givenname: Valeriya surname: Gribova fullname: Gribova, Valeriya email: gribova@dvo.ru organization: Institute of Automation and Control Processes, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia – sequence: 8 givenname: Vladimir Fedorovich surname: Filaretov fullname: Filaretov, Vladimir Fedorovich email: filaretov@inbox.ru organization: Institute of Automation and Control Processes, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia – sequence: 9 givenname: De-Shuang orcidid: 0000-0002-6759-2691 surname: Huang fullname: Huang, De-Shuang email: dshuang@eias.ac.cn organization: EIT Institute for Advanced Study, Ningbo, Zhejiang, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36374878$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1PGzEQhq0KVCDtD6gqVZZ66WWDvz-OJCUtUgQHwnllvLPV0o2d2rtUHPvP8ZKUA4fRjDTP-2o07xk6CjEAQp8omVNK7PlmuVjMGWFszhm1htN36JRKqStrlTiaZiEraRU_QWc5PxDChCXiPTrhimthtDlF_-5yF37h1dj3T3gZw2Psx6GLwfX4Goa_Mf3GQ8Tr6N0AeJNcyD51u4nAK-eHmPCiC81kcdsNkPHCZWhw2X6_vsC38GeE4AG70EzmGdKje9FehTam7cv8AR23rs_w8dBn6G51uVn-rNY3P66WF-vKc0KHimog1hCinBOldEskt5pqZQg457zhWt9bYykzUreKECNMa51tG225p8Bn6Nved5diOSsP9bbLHvreBYhjrpnmSilBS5-hr2_Qhzim8pNCGS2lYVrzQtE95VPMOUFb71K3demppqSe8qmnfOopn_qQT9F8OTiP91toXhX_AynA5z3QAcDr2lpJBGP8GZhClZo |
CODEN | ITCBCY |
Cites_doi | 10.1126/science.1105136 10.1093/bib/bbab525 10.1038/nbt1246 10.1007/978-3-030-26969-2_36 10.1109/TCBB.2020.2981335 10.1109/TCBB.2019.2947461 10.1145/3219819.3219869 10.1093/bib/bbaa435 10.7717/peerj.10845 10.1093/nar/gkg618 10.1038/nmeth1156 10.1109/ICCV.2017.324 10.1016/j.cell.2013.02.014 10.1038/s41398-020-01138-0 10.1038/nrg2538 10.1109/CVPR.2019.00075 10.1038/s41598-017-03554-7 10.1093/bioinformatics/16.1.16 10.1093/bib/bbab273 10.1109/CVPR.2016.89 10.1038/s41598-019-44966-x 10.1016/j.cels.2016.07.001 10.1109/TPAMI.2020.2981890 10.1016/j.cell.2018.09.045 10.1093/nar/gkx1106 10.1093/bioinformatics/18.suppl_1.S354 10.1109/TCBB.2018.2864203 10.1093/nar/gkt437 10.1093/nar/gkw226 10.1109/TCBB.2018.2819660 10.1007/978-3-319-94968-0_23 10.1038/nbt.3300 10.1145/2964284.2967274 10.2174/1574893615999200711165743 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TCBB.2022.3219831 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore (IEEE/IET Electronic Library - IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1557-9964 |
EndPage | 2699 |
ExternalDocumentID | 10_1109_TCBB_2022_3219831 36374878 9950422 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Guangxi Natural Science Foundation grantid: 2021JJA170204; 2021JJA170199 – fundername: National Key R&D Program of China grantid: 2018YFA0902600; 2018AAA0100100 – fundername: National Natural Science Foundation of China grantid: 62002266; 61932008; U22A2039; 62073231 funderid: 10.13039/501100001809 – fundername: Introduction Plan of High-End Foreign Experts grantid: G2021033002L – fundername: Key Project of Science and Technology of Guangxi grantid: 2021AB20147 – fundername: Guangxi Science and Technology Base and Talents Special Project grantid: 2021AC19354; 2021AC19394 |
GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AALFJ AASAJ AAWTV AAYOK ABQJQ ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADL ADPZR AEBYY AENEX AENSD AETIX AFMIJ AFRAH AFWIH AFWXC AIBXA AIKLT AKJIK ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIC RIE RIG RNI RNS ROL RZB TN5 W7O XOL NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c301t-17e098006aa46aa7f0539717680eaaac8377b98912857f600848f9a9fd793c1e3 |
IEDL.DBID | RIE |
ISSN | 1545-5963 |
IngestDate | Wed Dec 04 07:00:44 EST 2024 Thu Oct 10 17:09:03 EDT 2024 Fri Dec 06 07:30:00 EST 2024 Sat Sep 28 08:21:13 EDT 2024 Wed Jul 31 06:01:58 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c301t-17e098006aa46aa7f0539717680eaaac8377b98912857f600848f9a9fd793c1e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0085-8202 0000-0002-3244-3629 0000-0002-6759-2691 0000-0001-5628-1858 |
PMID | 36374878 |
PQID | 2875582773 |
PQPubID | 85499 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2736664127 proquest_journals_2875582773 crossref_primary_10_1109_TCBB_2022_3219831 ieee_primary_9950422 pubmed_primary_36374878 |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE/ACM transactions on computational biology and bioinformatics |
PublicationTitleAbbrev | TCBB |
PublicationTitleAlternate | IEEE/ACM Trans Comput Biol Bioinform |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 Pevzner (ref9) Zheng (ref36) 2019 ref1 ref17 ref16 ref38 Zhang (ref41) 2020; 17 Glorot (ref27) ref18 Long (ref19) Saurabh (ref7) 2003; 31 Zhu (ref39) ref24 ref23 ref26 ref25 ref20 ref42 ref22 Kingma (ref28) He (ref37) 2021; 34 Eleazar (ref8) 2002; 18 Yu (ref21) ref29 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref22 doi: 10.1126/science.1105136 – ident: ref32 doi: 10.1093/bib/bbab525 – ident: ref11 doi: 10.1038/nbt1246 – ident: ref40 doi: 10.1007/978-3-030-26969-2_36 – ident: ref18 doi: 10.1109/TCBB.2020.2981335 – ident: ref30 doi: 10.1109/TCBB.2019.2947461 – start-page: 141 volume-title: Proc. IEEE Int. Conf. Bioinf. Biomed. ident: ref39 article-title: Imputation of ChIP-Seq datasets via low rank convex Co-Embedding contributor: fullname: Zhu – start-page: 3431 volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. ident: ref19 article-title: Fully convolutional networks for semantic seg-mentation contributor: fullname: Long – ident: ref38 doi: 10.1145/3219819.3219869 – ident: ref29 doi: 10.1093/bib/bbaa435 – ident: ref6 doi: 10.7717/peerj.10845 – volume: 31 start-page: 3586 issue: 13 year: 2003 ident: ref7 article-title: YMF: A program for discovery of novel transcription factor binding sites by statistical overrepresentation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg618 contributor: fullname: Saurabh – ident: ref10 doi: 10.1038/nmeth1156 – ident: ref26 doi: 10.1109/ICCV.2017.324 – ident: ref28 article-title: Adam: A method for stochastic optimization contributor: fullname: Kingma – ident: ref4 doi: 10.1016/j.cell.2013.02.014 – ident: ref5 doi: 10.1038/s41398-020-01138-0 – ident: ref2 doi: 10.1038/nrg2538 – ident: ref35 doi: 10.1109/CVPR.2019.00075 – ident: ref42 doi: 10.1038/s41598-017-03554-7 – ident: ref3 doi: 10.1093/bioinformatics/16.1.16 – ident: ref16 doi: 10.1093/bib/bbab273 – ident: ref25 doi: 10.1109/CVPR.2016.89 – ident: ref15 doi: 10.1038/s41598-019-44966-x – ident: ref20 doi: 10.1016/j.cels.2016.07.001 – ident: ref24 doi: 10.1109/TPAMI.2020.2981890 – ident: ref1 doi: 10.1016/j.cell.2018.09.045 – ident: ref23 doi: 10.1093/nar/gkx1106 – volume: 18 start-page: S354 year: 2002 ident: ref8 article-title: Finding composite regulatory patterns in DNA sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.suppl_1.S354 contributor: fullname: Eleazar – start-page: 249 volume-title: Proc. Int. Conf. Artif. Intell. Statist. ident: ref27 article-title: Understanding the difficulty of training deep feedforward neural networks contributor: fullname: Glorot – volume: 17 start-page: 679 issue: 2 year: 2020 ident: ref41 article-title: Weakly-Supervised convolutional neural network architecture for predicting protein-DNA binding publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. doi: 10.1109/TCBB.2018.2864203 contributor: fullname: Zhang – ident: ref31 doi: 10.1093/nar/gkt437 – volume: 34 start-page: 20230 year: 2021 ident: ref37 article-title: α-IoU: A family of power intersection over union losses for bounding box regression contributor: fullname: He – ident: ref13 doi: 10.1093/nar/gkw226 – ident: ref14 doi: 10.1109/TCBB.2018.2819660 – ident: ref33 doi: 10.1007/978-3-319-94968-0_23 – year: 2019 ident: ref36 article-title: Distance-IoU loss: Faster and better learning for bounding box regression contributor: fullname: Zheng – start-page: 269 volume-title: Proc. Int. Conf. Intell. Syst. Mol. Biol. ident: ref9 article-title: Combinatorial approaches to finding subtle signals in DNA sequences contributor: fullname: Pevzner – ident: ref12 doi: 10.1038/nbt.3300 – ident: ref34 doi: 10.1145/2964284.2967274 – ident: ref17 doi: 10.2174/1574893615999200711165743 – start-page: 1857 volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. ident: ref21 article-title: Learning a discriminative feature network for seman-tic segmentation contributor: fullname: Yu |
SSID | ssj0024904 |
Score | 2.387562 |
Snippet | Transcription factors (TFs) play a part in gene expression. TFs can form complex gene expression regulation system by combining with DNA. Thereby, identifying... |
SourceID | proquest crossref pubmed ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2690 |
SubjectTerms | Binding sites Computer vision conservation information Conserved sequence Convolutional codes Decoding Deep learning Deoxyribonucleic acid DNA Feature extraction Fully convolutional network Gene expression Gene sequencing global average pooling layer Mathematical models Natural language processing Nucleotide sequence Nucleotides Performance enhancement refinement residual block Regulation Regulatory mechanisms (biology) transcription factor binding sites Transcription factors |
Title | Using Fully Convolutional Network to Locate Transcription Factor Binding Sites Based on DNA Sequence and Conservation Information |
URI | https://ieeexplore.ieee.org/document/9950422 https://www.ncbi.nlm.nih.gov/pubmed/36374878 https://www.proquest.com/docview/2875582773 https://search.proquest.com/docview/2736664127 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-QwEB9UEHy589Q76-kRwafDrm2TNM2ju3fLIu6-uAu-lTRN4RBaObuCvvmf3yRNeyIe3EMhJUk_MjOZmWQyP4Az1KJUMh2HPK5kyEqehoqJCgWv4HhnZOqwDueLdLZiV7f8dgPOh7MwxhgXfGZGtuj28stGr-1S2YWU3Kas2oRNIdPurNbfvHrSQQVaiyDkyFV-BzOO5MVyMh6jJ5gkI4rymVGLDkNTm3fFgqu9UkcOX-XfpqZTOdOPMO8_tos0uRut22Kkn9_kcfzfv9mFD972JJcds3yCDVPvwXaHRvm0Dy8ufIBYp_SJTJr60XMldll0weKkbch1Y2OoiNNx_YxDpg61h4x_uTMy5Abt2AcyRgVZEqz9sbgkNz5km6i6tA8fFoOJPxBlywewmv5cTmahR2gINU4MbRgLE0k0OVOlGF6iQpGW6CCmWWSUUhq9X1HITKIS5KJKXfL-SipZlTgt6NjQz7BVN7U5BFKgpVTohGkqSlbSrGCxibIK-2lRUaMD-N4TKr_vEnHkzoGJZG4JnFsC557AAezb8R4a-qEO4Lgnbe5F9SFHl5HzLBGCBnA6VKOQ2Z0TVZtmjW0ERTePxYkI4EvHEsOze046ev-dX2HHItR3YWnHsNX-XpsTtGPa4ptj4D_qiewj |
link.rule.ids | 314,780,784,796,27924,27925,54758 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9tQ2h7YYMBC9vASDxNpEtiO44f20JVoO3LOmlvkeM4EkJKpi1FKm_855wdJyA0JB4iObKdD9-d784-3w_gHWpRKpmOQx5XMmQlT0PFRIWCV3C8MzJ1WIfLVTq_Zp9v-M0OvB_OwhhjXPCZGdmi28svG72xS2WXUnKbsmoXHnGGdm53Wut3Zj3pwAKtTRBy5Cu_hxlH8nI9nUzQF0ySEUUJzajFh6Gpzbxi4dX-UEgOYeXfxqZTOrNDWPaf28WafBtt2mKkf_yVyfF__-cInnjrk4w7dnkKO6Z-Bo87PMrtMfx0AQTEuqVbMm3q754vscuqCxcnbUMWjY2iIk7L9XMOmTncHjL56k7JkCu0ZO_JBFVkSbD2w2pMrnzQNlF1aR8-LAcTfyTKlp_D9ezjejoPPUZDqHFqaMNYmEii0ZkqxfASFQq1RBcxzSKjlNLo_4pCZhLVIBdV6tL3V1LJqsSJQceGvoC9uqnNCZACbaVCJ0xTUbKSZgWLTZRV2E-LihodwEVPqPy2S8WROxcmkrklcG4JnHsCB3Bsx3to6Ic6gLOetLkX1vscnUbOs0QIGsDboRrFzO6dqNo0G2wjKDp6LE5EAC87lhie3XPSq4ff-Qb25-vlIl98Wn05hQOLV98FqZ3BXnu3Medo1bTFa8fMvwB-vO92 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Fully+Convolutional+Network+to+Locate+Transcription+Factor+Binding+Sites+Based+on+DNA+Sequence+and+Conservation+Information&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Zhang%2C+Qinhu&rft.au=Xu%2C+Youhong&rft.au=Wang%2C+Siguo&rft.au=Wu%2C+Yong&rft.date=2023-09-01&rft.eissn=1557-9964&rft.volume=PP&rft_id=info:doi/10.1109%2FTCBB.2022.3219831&rft_id=info%3Apmid%2F36374878&rft.externalDocID=36374878 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |