Continuous Intercropping Increases the Depletion of Soil Available and Non-Labile Phosphorus

Background and aims: This research aimed to evaluate the effects of consecutive intercropping on soil phosphorus (P) partitioning, concentrations, and sensitivity to P fertilizer application, elucidating its impact on soil P bioavailability. Methods: A field experiment investigated soil P fractions...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 14; no. 6; p. 1121
Main Authors He, Jianyang, He, Jun, Li, Haiye, Yu, Yumei, Qian, Ling, Tang, Li, Zheng, Yi, Xiao, Jingxiu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background and aims: This research aimed to evaluate the effects of consecutive intercropping on soil phosphorus (P) partitioning, concentrations, and sensitivity to P fertilizer application, elucidating its impact on soil P bioavailability. Methods: A field experiment investigated soil P fractions and content under continuous wheat and faba bean intercropping. Three P levels (0, 45, and 90 kg P2O5 ha−1 denoted as P0, P1, and P2, respectively) and three planting patterns (monocropped wheat (MW), monocropped faba bean (MF), and wheat and faba bean intercropping (W//F)) were established since 2014. Aboveground P uptake by wheat and faba bean was determined. The soil P fractions and content were analyzed after six-, seven-, and eight-year continuous field experiments. Results: Wheat and faba bean intercropping increased wheat aboveground P uptake by 28.3–42.7% compared to MW under P1 and P2 levels and presented a P uptake advantage (LERPuptake > 1), although W//F had no impact on faba bean P uptake. Consequently, continuous intercropping for 8 years decreased soil available P reserves by 9.0–23.4% in comparison to the weighted average value of MW and MF (It). Faba bean consumed greater non-labile and labile P than wheat with low P input. W//F had nearly no impact on the labile P pool but reduced the non-labile P pool by 5.0–12.1% under all P levels and lowered the moderately labile P pool by 1.7–4.7% at P0 and P1 levels compared to It with consecutive intercropping for 8 years. Consecutive intercropping of wheat and faba bean primarily decreased the proportion of Resin-P in the labile P pool and the proportion of Residual-P in the non-labile P pool. According to the structural equation model, crop P uptake mainly originated from soil available P, which was directly affected by non-labile P (Residual-P and Conc. HCl-P). In addition, intercropping changed the contribution of each P faction to crop P uptake compared to MW and MF, and P uptake in intercropping primarily depended on Conc. HCl- P and Dil. HCl-P. Therefore, consecutive intercropping decreased soil non-labile P and drove soil available P depletion, and intercropping’s increase of P uptake was related to the non-labile P mobilized to moderately labile and labile P. Conclusions: Continuous wheat and faba bean intercropping reduced non-labile P and led to soil available P depletion under low P input. This practice stimulated non-labile P mobilization, enhancing soil P fraction effectiveness and facilitating P uptake in intercropping. Continuous intercropping of wheat and faba bean is as an effective method to maximize the biological availability of soil P and reduce P application rates.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy14061121