Entropy‐controlled deep features selection framework for grape leaf diseases recognition
Several countries are most reliant on agriculture either in terms of employment opportunities, national income, availability of a raw material, food production, to name but a few. However, it faces a big challenge such as climate changes, diseases, pets, weeds etc. Therefore, last decade has provide...
Saved in:
Published in | Expert systems Vol. 39; no. 7 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0266-4720 1468-0394 |
DOI | 10.1111/exsy.12569 |
Cover
Loading…
Abstract | Several countries are most reliant on agriculture either in terms of employment opportunities, national income, availability of a raw material, food production, to name but a few. However, it faces a big challenge such as climate changes, diseases, pets, weeds etc. Therefore, last decade has provided a machine learning‐based solution to the agricultural community, which helped farmers to identify the diseases at the early stages. In this article, our focus is on grape diseases, and proposes a novel framework to identify and classify the selected diseases at the early stages. A deep learning‐based solution is embedded into a conventional architecture for optimal performance. Three primary steps are involved; (a) feature extraction after applying transfer learning on pre‐trained deep models, AlexNet and ResNet101, (b) selection of best features using proposed Yager Entropy along with Kurtosis (YEaK) technique, (c) fusion of strong features using proposed parallel approach and later subject to classification step using least squared support vector machine (LS‐SVM). The simulations are performed on infected grape leaves obtained from the plant village dataset to achieving an accuracy of 99%. From the simulation results, we sincerely believe that our proposed approach performed exceptionally compared to several existing methods. |
---|---|
AbstractList | Several countries are most reliant on agriculture either in terms of employment opportunities, national income, availability of a raw material, food production, to name but a few. However, it faces a big challenge such as climate changes, diseases, pets, weeds etc. Therefore, last decade has provided a machine learning‐based solution to the agricultural community, which helped farmers to identify the diseases at the early stages. In this article, our focus is on grape diseases, and proposes a novel framework to identify and classify the selected diseases at the early stages. A deep learning‐based solution is embedded into a conventional architecture for optimal performance. Three primary steps are involved; (a) feature extraction after applying transfer learning on pre‐trained deep models, AlexNet and ResNet101, (b) selection of best features using proposed Yager Entropy along with Kurtosis (YEaK) technique, (c) fusion of strong features using proposed parallel approach and later subject to classification step using least squared support vector machine (LS‐SVM). The simulations are performed on infected grape leaves obtained from the plant village dataset to achieving an accuracy of 99%. From the simulation results, we sincerely believe that our proposed approach performed exceptionally compared to several existing methods. |
Author | Akram, Tallha Yasmin, Mussarat Adeel, Alishba Sharif, Abida Saba, Tanzila Javed, Kashif Khan, Muhammad Attique |
Author_xml | – sequence: 1 givenname: Alishba surname: Adeel fullname: Adeel, Alishba organization: COMSATS University Islamabad, Wah Campus – sequence: 2 givenname: Muhammad Attique surname: Khan fullname: Khan, Muhammad Attique email: attique@ciitwah.edu.pk organization: HITEC University Taxila – sequence: 3 givenname: Tallha surname: Akram fullname: Akram, Tallha organization: COMSATS University Islamabad, Wah Campus – sequence: 4 givenname: Abida surname: Sharif fullname: Sharif, Abida organization: COMSATS University Islamabad, Vehari Campus – sequence: 5 givenname: Mussarat orcidid: 0000-0001-8604-276X surname: Yasmin fullname: Yasmin, Mussarat email: mussaratabdullah@gmail.com organization: COMSATS University Islamabad, Wah Campus – sequence: 6 givenname: Tanzila surname: Saba fullname: Saba, Tanzila organization: Prince Sultan University – sequence: 7 givenname: Kashif surname: Javed fullname: Javed, Kashif organization: SMME NUST |
BookMark | eNp9kE1OwzAQhS1UJEphwwkssUNKsRPXiZeoKj9SJRaABGysqTOuUtI42KlKdhyBM3ISEsoKIWYzs_jeG713SAaVq5CQE87GvJtzfAvtmMcTqfbIkAuZRSxRYkCGLJYyEmnMDshhCCvGGE9TOSTPs6rxrm4_3z-M68-yxJzmiDW1CM3GY6ABSzRN4SpqPaxx6_wLtc7TpYcaaYlgaV4EhNCxHo1bVkVPH5F9C2XA4589Ig-Xs_vpdTS_vbqZXswjkzCuIrS5EFYxmwKYhOeSKTALqzJUCYNFirkESCYsFl2uTpDlmVJiYRjECCCTZEROd761d68bDI1euY2vupc6llnGRZYK2VFnO8p4F4JHq2tfrMG3mjPdd6f77vR3dx3MfsGmaKAP1Xgoyr8lfCfZFiW2_5jr2ePd007zBah-hyQ |
CitedBy_id | crossref_primary_10_1007_s11042_020_09354_y crossref_primary_10_1109_ACCESS_2024_3349477 crossref_primary_10_1016_j_micpro_2021_104027 crossref_primary_10_1007_s13369_024_09192_2 crossref_primary_10_1007_s11042_021_10889_x crossref_primary_10_1016_j_ecoinf_2025_103069 crossref_primary_10_1007_s11042_024_18948_9 crossref_primary_10_1080_0954898X_2023_2275722 crossref_primary_10_1007_s11042_020_09669_w crossref_primary_10_1007_s11042_023_16281_1 crossref_primary_10_1051_itmconf_20257003017 crossref_primary_10_3390_s21227584 crossref_primary_10_3934_math_2024561 crossref_primary_10_1109_ACCESS_2021_3094802 crossref_primary_10_32604_cmc_2023_035860 crossref_primary_10_1007_s11042_021_10811_5 crossref_primary_10_1049_cit2_12352 crossref_primary_10_1080_13682199_2022_2161696 crossref_primary_10_1155_2022_3114525 crossref_primary_10_3390_s24196211 crossref_primary_10_1007_s11042_020_09244_3 crossref_primary_10_4018_IJISMD_315126 crossref_primary_10_3389_fpls_2024_1269423 crossref_primary_10_1049_ipr2_12183 crossref_primary_10_1002_jemt_23686 crossref_primary_10_1002_jemt_23688 crossref_primary_10_1007_s00500_023_09071_2 crossref_primary_10_3390_app112411901 crossref_primary_10_1002_jemt_23659 crossref_primary_10_1007_s40031_023_00907_x crossref_primary_10_1016_j_dsp_2023_103907 crossref_primary_10_1038_s41598_024_64072_x crossref_primary_10_3390_biomimetics8050417 crossref_primary_10_1007_s10341_025_01265_2 crossref_primary_10_1007_s10462_022_10278_2 crossref_primary_10_3390_s23031358 crossref_primary_10_1007_s11042_020_10309_6 crossref_primary_10_1007_s11042_020_10406_6 crossref_primary_10_1016_j_rinp_2021_104088 crossref_primary_10_1615_JFlowVisImageProc_2023047476 crossref_primary_10_1007_s11042_021_11036_2 crossref_primary_10_1016_j_compag_2020_105802 |
Cites_doi | 10.1016/j.suscom.2019.08.002 10.1109/ICIIP.2013.6707647 10.1016/j.ijleo.2017.11.190 10.1016/j.future.2018.04.065 10.1002/jemt.23238 10.1109/ICARCV.2014.7064414 10.1016/j.patrec.2019.12.024 10.1016/j.patrec.2018.01.021 10.1016/j.compag.2017.11.024 10.1002/jemt.23320 10.1016/j.inpa.2016.10.005 10.1109/CDMA47397.2020.00031 10.1002/jemt.23009 10.1109/TIAR.2017.8273700 10.1109/ACCESS.2019.2908040 10.3389/fpls.2016.01419 10.1111/ppa.12741 10.1109/RISE.2017.8378160 10.1002/jemt.23447 10.1007/s00521-017-3067-8 10.1109/I2CT.2017.8226270 10.1016/j.patrec.2019.11.019 10.1016/j.compag.2018.06.035 10.1016/j.compag.2018.04.023 10.1166/jmihi.2017.2280 10.1007/s10916-019-1428-9 10.1016/j.future.2018.07.057 10.1007/978-981-15-2021-1_8 10.5220/0006196204790486 10.1007/978-981-13-2414-7_28 10.1016/j.future.2018.05.002 10.1007/978-3-319-90403-0_6 10.1016/S0031-3203(02)00262-5 10.1016/j.compag.2018.02.016 10.1007/s40815-015-0062-z 10.1186/s12885-018-4465-8 10.1186/s13640-017-0236-8 10.1049/iet-ipr.2017.0368 10.1101/066910 10.1007/s10916-019-1413-3 10.1016/j.jksuci.2018.06.002 10.1016/j.compag.2018.01.009 10.1007/s11831-018-9255-6 10.1142/S0219519419500556 10.1016/j.compag.2009.01.003 10.1109/SPIN.2016.7566749 10.1007/978-981-13-1927-3_3 10.1002/jemt.23220 10.1109/ECTICON.2008.4600483 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons, Ltd 2022 John Wiley & Sons, Ltd |
Copyright_xml | – notice: 2020 John Wiley & Sons, Ltd – notice: 2022 John Wiley & Sons, Ltd |
DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1111/exsy.12569 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1468-0394 |
EndPage | n/a |
ExternalDocumentID | 10_1111_exsy_12569 EXSY12569 |
Genre | article |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0B8 0R~ 10A 1OB 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 77K 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHC ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AI. AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ TAE TH9 TN5 TUS UB1 VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZL0 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SC 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3019-efd44f90f7aac31d609acbf98e930ab7ed6aa350241250198d8994bc0a2eaa633 |
IEDL.DBID | DR2 |
ISSN | 0266-4720 |
IngestDate | Mon Jul 14 10:39:35 EDT 2025 Thu Apr 24 23:06:38 EDT 2025 Tue Jul 01 02:13:45 EDT 2025 Wed Jan 22 16:23:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3019-efd44f90f7aac31d609acbf98e930ab7ed6aa350241250198d8994bc0a2eaa633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8604-276X |
PQID | 2688148746 |
PQPubID | 32130 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2688148746 crossref_primary_10_1111_exsy_12569 crossref_citationtrail_10_1111_exsy_12569 wiley_primary_10_1111_exsy_12569_EXSY12569 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Expert systems |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2017; 5 2009; 66 2019; 7 2017; 7 2017; 1 2017; 3 2017; 4 2017; 2017 2019; 31 2002; 5 2018; 145 2018; 147 2018; 81 2008 2003; 36 2019; 19 2020; 129 2018; 67 2016; 18 2018; 88 2018; 87 2018; 18 2016; 7 2019; 82 2018; 151 2018; 150 2020; 131 2019; 43 2020 2018; 157 2019; 26 2017; 12 2019 2018 2017 2016 2015 2014 2017; 142 2013 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 Raja N. S. M. (e_1_2_8_49_1) 2018 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 Fernandes S. L. (e_1_2_8_15_1) 2019 Zhu J. (e_1_2_8_67_1) 2019 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Gupta T. (e_1_2_8_18_1) 2017; 5 e_1_2_8_38_1 e_1_2_8_57_1 Picon A. (e_1_2_8_46_1) 2018 Riečan B. (e_1_2_8_53_1) 2002; 5 Gopinath S. (e_1_2_8_17_1) 2017; 3 e_1_2_8_32_1 e_1_2_8_55_1 Khan M. A. (e_1_2_8_25_1) 2020 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_27_1 e_1_2_8_48_1 Kharde P. K. (e_1_2_8_33_1) 2016 e_1_2_8_2_1 e_1_2_8_4_1 Khan M. A. (e_1_2_8_26_1) 2018 e_1_2_8_6_1 e_1_2_8_8_1 Rashid M. (e_1_2_8_51_1) 2018 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 Elemmi M. C. (e_1_2_8_12_1) 2017; 1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 7 start-page: 1841 issue: 8 year: 2017 end-page: 1850 article-title: A novel fusion approach for early lung cancer detection using computer aided diagnosis techniques publication-title: Journal of Medical Imaging and Health Informatics – volume: 5 start-page: 1 year: 2002 end-page: 14 article-title: On the Yager entropy of dynamical systems publication-title: Acta Mathematica Nitriensia – volume: 87 start-page: 290 year: 2018 end-page: 297 article-title: Big data analysis for brain tumor detection: Deep convolutional neural networks publication-title: Future Generation Computer Systems – volume: 3 issue: 08 year: 2017 article-title: Plant disesase detection by using image processing techniques publication-title: International Journal of Research and Innovation in Engineering Technology – volume: 7 start-page: 1419 year: 2016 article-title: Using deep learning for image‐based plant disease detection publication-title: Frontiers in Plant Science – volume: 43 start-page: 289 issue: 9 year: 2019 article-title: Region extraction and classification of skin cancer: A heterogeneous framework of deep CNN features fusion and reduction publication-title: Journal of Medical Systems – volume: 67 start-page: 399 issue: 2 year: 2018 end-page: 410 article-title: Automated identification of sugar beet diseases using smartphones publication-title: Plant Pathology – volume: 43 start-page: 302 issue: 9 year: 2019 article-title: Automated detection of Alzheimer's disease using brain MRI images–a study with various feature extraction techniques publication-title: Journal of Medical Systems – year: 2018 – start-page: 61 year: 2020 end-page: 69 – year: 2014 – year: 2020 article-title: Classification of stomach infections: A paradigm of convolutional neural network along with classical features fusion and selection publication-title: Microscopy research and technique – volume: 147 start-page: 70 year: 2018 end-page: 90 article-title: Deep learning in agriculture: A survey publication-title: Computers and Electronics in Agriculture – start-page: 1 year: 2018 end-page: 27 article-title: Object detection and classification: A joint selection and fusion strategy of deep convolutional neural network and SIFT point features publication-title: Multimedia Tools and Applications – year: 2018 article-title: A framework for offline signature verification system: Best features selection approach publication-title: Pattern Recognition Letters – start-page: 23 year: 2019 end-page: 31 – volume: 7 start-page: 46261 year: 2019 end-page: 46277 article-title: An optimized method for segmentation and classification of apple diseases based on strong correlation and genetic algorithm based feature selection publication-title: IEEE Access – year: 2008 – volume: 88 start-page: 28 year: 2018 end-page: 39 article-title: Appearance based pedestrians' gender recognition by employing stacked auto encoders in deep learning publication-title: Future Generation Computer Systems – volume: 150 start-page: 220 year: 2018 end-page: 234 article-title: Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection publication-title: Computers and Electronics in Agriculture – start-page: 1 year: 2019 end-page: 12 article-title: A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians publication-title: Neural Computing and Applications – volume: 19 issue: 06 year: 2019 article-title: Robust discrimination of leukocytes protuberant types for early diagnosis of leukemia publication-title: Journal of Mechanics in Medicine and Biology – volume: 131 start-page: 193 year: 2020 end-page: 204 article-title: Gastrointestinal diseases segmentation and classification based on duo‐deep architectures publication-title: Pattern Recognition Letters – volume: 7 start-page: 1419 year: 2016 article-title: Inference of plant diseases from leaf images through deep learning publication-title: Frontiers in Plant Science – year: 2015 – volume: 157 start-page: 866 year: 2018 end-page: 872 article-title: Plant diseased leaf segmentation and recognition by fusion of superpixel, K‐means and PHOG publication-title: Optik – start-page: 1 year: 2018 end-page: 12 article-title: Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation publication-title: Journal of Ambient Intelligence and Humanized Computing – year: 2018 article-title: Deep convolutional neural networks for mobile capture device‐based crop disease classification in the wild publication-title: Computers and Electronics in Agriculture – volume: 1 issue: 1 year: 2017 article-title: Vision based classification of different diseases of grape leaves and their severity publication-title: International Journal of Imaging Science and Pattern Recognition – volume: 82 start-page: 909 issue: 6 year: 2019 end-page: 922 article-title: Brain tumor detection and classification: A framework of marker‐based watershed algorithm and multilevel priority features selection publication-title: Microscopy Research and Technique – volume: 151 start-page: 311 year: 2018 end-page: 318 article-title: Automated grapevine cultivar classification based on machine learning using leaf morpho‐colorimetry, fractal dimension and near‐infrared spectroscopy parameters publication-title: Computers and Electronics in Agriculture – volume: 36 start-page: 1369 issue: 6 year: 2003 end-page: 1,381 article-title: Feature fusion: Parallel strategy vs. serial strategy publication-title: Pattern Recognition – volume: 18 start-page: 638 issue: 1 year: 2018 article-title: An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification publication-title: BMC Cancer – volume: 82 start-page: 741 year: 2019 end-page: 763 article-title: Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion publication-title: Microscopy research and technique – year: 2018 article-title: Fruits and vegetables quality evaluation using computer vision: A review publication-title: Journal of King Saud University‐Computer and Information Sciences – volume: 12 start-page: 200 issue: 2 year: 2017 end-page: 209 article-title: License number plate recognition system using entropy‐based features selection approach with SVM publication-title: IET Image Processing – volume: 4 start-page: 41 issue: 1 year: 2017 end-page: 49 article-title: Detection of plant leaf diseases using image segmentation and soft computing techniques publication-title: Information Processing in Agriculture – year: 2016 – volume: 26 start-page: 507 issue: 2 year: 2019 end-page: 530 article-title: Plants disease identification and classification through leaf images: A survey publication-title: Archives of Computational Methods in Engineering – volume: 129 start-page: 181 year: 2020 end-page: 189 article-title: Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images publication-title: Pattern Recognition Letters – volume: 82 start-page: 1542 year: 2019 end-page: 1556 article-title: Intelligent microscopic approach for identification and recognition of citrus deformities publication-title: Microscopy research and technique – start-page: 1 year: 2019 end-page: 13 article-title: Identification of grape diseases using image analysis and BP neural networks publication-title: Multimedia Tools and Applications – volume: 31 start-page: 1225 issue: 2 year: 2019 end-page: 1232 article-title: Plant disease leaf image segmentation based on superpixel clustering and EM algorithm publication-title: Neural Computing and Applications – start-page: 1 year: 2020 end-page: 30 article-title: An automated system for cucumber leaf diseased spot detection and classification using improved saliency method and deep features selection publication-title: Multimedia Tools and Applications – volume: 2017 start-page: 89 issue: 1 year: 2017 article-title: A framework of human detection and action recognition based on uniform segmentation and combination of Euclidean distance and joint entropy‐based features selection publication-title: EURASIP Journal on Image and Video Processing – start-page: 1 year: 2018 end-page: 21 article-title: An implementation of optimized framework for action classification using multilayers neural network on selected fused features publication-title: Pattern Analysis and Applications – year: 2020 – volume: 18 start-page: 98 issue: 1 year: 2016 end-page: 102 article-title: A local approach to Yager entropy of dynamical systems publication-title: International Journal of Fuzzy Systems – year: 2019 article-title: Diagnosis and recognition of grape leaf diseases: An automated system based on a novel saliency approach and canonical correlation analysis based multiple features fusion publication-title: Sustainable Computing: Informatics and Systems – volume: 142 start-page: 485 year: 2017 end-page: 493 article-title: Gradation of yellow mosaic virus disease of okra and bitter gourd based on entropy based binning and naive Bayes classifier after identification of leaves publication-title: Computers and Electronics in Agriculture – volume: 81 start-page: 528 issue: 6 year: 2018 end-page: 543 article-title: An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach publication-title: Microscopy Research and Technique – year: 2017 – start-page: 93 year: 2018 end-page: 117 – volume: 145 start-page: 311 year: 2018 end-page: 318 article-title: Deep learning models for plant disease detection and diagnosis publication-title: Computers and Electronics in Agriculture – volume: 5 start-page: 11 year: 2017 end-page: 17 article-title: Plant leaf disease analysis using image processing technique with modified SVM‐CS classifier publication-title: International Journal of Engineering & Managemnt Technology – start-page: 295 year: 2019 end-page: 312 – volume: 66 start-page: 121 issue: 2 year: 2009 end-page: 125 article-title: Image pattern classification for the identification of disease causing agents in plants publication-title: Computers and Electronics in Agriculture – year: 2013 – ident: e_1_2_8_3_1 doi: 10.1016/j.suscom.2019.08.002 – ident: e_1_2_8_22_1 doi: 10.1109/ICIIP.2013.6707647 – ident: e_1_2_8_65_1 doi: 10.1016/j.ijleo.2017.11.190 – ident: e_1_2_8_6_1 doi: 10.1016/j.future.2018.04.065 – start-page: 1 year: 2018 ident: e_1_2_8_49_1 article-title: Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation publication-title: Journal of Ambient Intelligence and Humanized Computing – start-page: 1 year: 2018 ident: e_1_2_8_51_1 article-title: Object detection and classification: A joint selection and fusion strategy of deep convolutional neural network and SIFT point features publication-title: Multimedia Tools and Applications – ident: e_1_2_8_30_1 doi: 10.1002/jemt.23238 – ident: e_1_2_8_35_1 doi: 10.1109/ICARCV.2014.7064414 – volume: 3 issue: 08 year: 2017 ident: e_1_2_8_17_1 article-title: Plant disesase detection by using image processing techniques publication-title: International Journal of Research and Innovation in Engineering Technology – ident: e_1_2_8_29_1 doi: 10.1016/j.patrec.2019.12.024 – ident: e_1_2_8_59_1 doi: 10.1016/j.patrec.2018.01.021 – ident: e_1_2_8_41_1 doi: 10.1016/j.compag.2017.11.024 – ident: e_1_2_8_55_1 doi: 10.1002/jemt.23320 – ident: e_1_2_8_44_1 – ident: e_1_2_8_62_1 doi: 10.1016/j.inpa.2016.10.005 – ident: e_1_2_8_7_1 doi: 10.1109/CDMA47397.2020.00031 – ident: e_1_2_8_42_1 doi: 10.1002/jemt.23009 – ident: e_1_2_8_47_1 doi: 10.1109/TIAR.2017.8273700 – ident: e_1_2_8_31_1 doi: 10.1109/ACCESS.2019.2908040 – ident: e_1_2_8_40_1 doi: 10.3389/fpls.2016.01419 – start-page: 1 year: 2019 ident: e_1_2_8_67_1 article-title: Identification of grape diseases using image analysis and BP neural networks publication-title: Multimedia Tools and Applications – ident: e_1_2_8_19_1 doi: 10.1111/ppa.12741 – year: 2018 ident: e_1_2_8_46_1 article-title: Deep convolutional neural networks for mobile capture device‐based crop disease classification in the wild publication-title: Computers and Electronics in Agriculture – volume: 5 start-page: 1 year: 2002 ident: e_1_2_8_53_1 article-title: On the Yager entropy of dynamical systems publication-title: Acta Mathematica Nitriensia – ident: e_1_2_8_4_1 doi: 10.1109/RISE.2017.8378160 – ident: e_1_2_8_36_1 doi: 10.1002/jemt.23447 – ident: e_1_2_8_39_1 doi: 10.3389/fpls.2016.01419 – ident: e_1_2_8_66_1 doi: 10.1007/s00521-017-3067-8 – volume: 5 start-page: 11 year: 2017 ident: e_1_2_8_18_1 article-title: Plant leaf disease analysis using image processing technique with modified SVM‐CS classifier publication-title: International Journal of Engineering & Managemnt Technology – ident: e_1_2_8_20_1 doi: 10.1109/I2CT.2017.8226270 – ident: e_1_2_8_61_1 doi: 10.1016/j.patrec.2019.11.019 – start-page: 1 year: 2020 ident: e_1_2_8_25_1 article-title: An automated system for cucumber leaf diseased spot detection and classification using improved saliency method and deep features selection publication-title: Multimedia Tools and Applications – ident: e_1_2_8_16_1 doi: 10.1016/j.compag.2018.06.035 – ident: e_1_2_8_60_1 doi: 10.1016/j.compag.2018.04.023 – ident: e_1_2_8_14_1 doi: 10.1166/jmihi.2017.2280 – ident: e_1_2_8_2_1 doi: 10.1007/s10916-019-1428-9 – ident: e_1_2_8_37_1 doi: 10.1016/j.future.2018.07.057 – ident: e_1_2_8_9_1 doi: 10.1007/978-981-15-2021-1_8 – ident: e_1_2_8_45_1 doi: 10.5220/0006196204790486 – ident: e_1_2_8_34_1 doi: 10.1007/978-981-13-2414-7_28 – ident: e_1_2_8_52_1 doi: 10.1016/j.future.2018.05.002 – ident: e_1_2_8_10_1 doi: 10.1007/978-3-319-90403-0_6 – ident: e_1_2_8_64_1 doi: 10.1016/S0031-3203(02)00262-5 – ident: e_1_2_8_21_1 – ident: e_1_2_8_23_1 doi: 10.1016/j.compag.2018.02.016 – ident: e_1_2_8_48_1 doi: 10.1007/s40815-015-0062-z – volume-title: An unique technique for grape leaf disease detection year: 2016 ident: e_1_2_8_33_1 – ident: e_1_2_8_28_1 doi: 10.1186/s12885-018-4465-8 – ident: e_1_2_8_5_1 – ident: e_1_2_8_58_1 doi: 10.1186/s13640-017-0236-8 – start-page: 1 year: 2019 ident: e_1_2_8_15_1 article-title: A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians publication-title: Neural Computing and Applications – ident: e_1_2_8_32_1 doi: 10.1049/iet-ipr.2017.0368 – ident: e_1_2_8_56_1 doi: 10.1101/066910 – ident: e_1_2_8_54_1 doi: 10.1007/s10916-019-1413-3 – ident: e_1_2_8_8_1 doi: 10.1016/j.jksuci.2018.06.002 – ident: e_1_2_8_13_1 doi: 10.1016/j.compag.2018.01.009 – ident: e_1_2_8_24_1 doi: 10.1007/s11831-018-9255-6 – start-page: 1 year: 2018 ident: e_1_2_8_26_1 article-title: An implementation of optimized framework for action classification using multilayers neural network on selected fused features publication-title: Pattern Analysis and Applications – ident: e_1_2_8_43_1 doi: 10.1142/S0219519419500556 – volume: 1 issue: 1 year: 2017 ident: e_1_2_8_12_1 article-title: Vision based classification of different diseases of grape leaves and their severity publication-title: International Journal of Imaging Science and Pattern Recognition – ident: e_1_2_8_57_1 – ident: e_1_2_8_11_1 doi: 10.1016/j.compag.2009.01.003 – ident: e_1_2_8_63_1 doi: 10.1109/SPIN.2016.7566749 – ident: e_1_2_8_50_1 doi: 10.1007/978-981-13-1927-3_3 – ident: e_1_2_8_27_1 doi: 10.1002/jemt.23220 – ident: e_1_2_8_38_1 doi: 10.1109/ECTICON.2008.4600483 |
SSID | ssj0001776 |
Score | 2.4974134 |
Snippet | Several countries are most reliant on agriculture either in terms of employment opportunities, national income, availability of a raw material, food... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | best features selection CNN Deep learning Entropy Feature extraction fruit diseases fusion Grapes Kurtosis Machine learning Plant diseases Raw materials Support vector machines |
Title | Entropy‐controlled deep features selection framework for grape leaf diseases recognition |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.12569 https://www.proquest.com/docview/2688148746 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6KXrxYn1itEtCLwpbtbppNwIuPFhH04AOqIEs2j4ulFreC9eRP8Df6S5yku62KCHrbw2RJMpnMzO433wDsJIqFXMooUNrGAcV0LRC8pQIjJccAgWbW13GfnbOTa3rabXUrsF_Wwoz5ISYf3Jxl-PvaGbjM8k9Gbp7zUQPdM3PVew6s5SKiiyl3VDPxneUwx2ABTaKw4CZ1MJ7p0K_eaBpifg5UvafpVOGunOMYYHLfeBpmDfXyjb7xv4tYgPkiBCUH4zOzCBXTX4Jq2d6BFNa-DLdth2IfjN5f3wpAe89ooo0ZEGs8H2hOct9GB3VLbInyIhgGE8eDbUjPSEuKX0A5mWCVHvorcN1pXx2dBEUrhkDhDSACYzWlVoQ2kVLFTc1CIVVmBTciDmWWGM2kjFvo8HExOIBrzONopkIZodZZHK_CTP-hb9aAGCps02LcmFiUNhFXFCettJBxJrTkNdgtVZKqgqfctcvopWW-4jYt9ZtWg-2J7GDMzvGjVL3UbFpYaJ5GjHNMBRPKarDnVfTLG9J29_LGP63_RXgD5iJXLeHxgnWYGT4-mU2MYYbZFsweHB4fdrb8mf0Akyfz7A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDnBhR5TVElxASpUmrmMfERQVaDmwSIVL5Hi5ULUVaSXKiU_gG_kSxq7TAkJIcMthHMUejz3jPL-H0EEiaciEiAKpTBwQKNcCzqoy0EIwSBBIZtw97uYVrd-Ri1a15bE59i7MiB9ifOBmI8Ot1zbA7YH0pyjXz_mwDPsz5dNo1kp6WwGD0-sJe1QlcdpyUGXQgCRR6NlJLZBn0vbrfjRJMj-nqm6vOVscCarmjqLQQkwey4N-VpYv3wgc_92NJbTgs1B8PJo2y2hKd1bQYqHwgH3Ar6KHmgWy94bvr28e097WCiute9hoRwma49wp6YB7sSmAXhgyYWypsDVua2Gw_wuU4zFcqdtZQ3dntduTeuDVGAIJiwAPtFGEGB6aRAgZVxQNuZCZ4UzzOBRZohUVIq7Cng-dgQZMQSlHMhmKCBxP43gdzXS6Hb2BsCbcVAykjokBax0xSeCjpeIizrgSrIQOC5-k0lOVW8WMdlqULHbQUjdoJbQ_tu2NCDp-tNouXJv6IM3TiDIG1WBCaAkdOR_98oa01rq5d0-bfzHeQ3P122YjbZxfXW6h-chennDwwW00038a6B1IafrZrpu4Hwfa9pQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5RkCouPNoiQgNYai9U2miz63htiQuCRNBHVNEiBSS08vpxIdpEbCKRnvoT-hv5JYyd3SQghERvexjv2h6PZ8b7-RuAz4liIZcyCpS2cUAxXQsEb6nASMkxQKCZ9fe4f3TZ6QX92mv1luCwugsz5YeYHbg5y_D7tTPwobYLRm7uikkD3TMTb2CF4hcdoOvkfE4e1Ux8aTlMMlhAkygsyUkdjmfe9rE7mseYi5GqdzWddbiuOjlFmNw0xqOsof484W_831FswFoZg5Kj6aLZhCWTv4P1qr4DKc39PVy1HYx9OLn_-69EtPeNJtqYIbHGE4IWpPB1dFC5xFYwL4JxMHFE2Ib0jbSk_AdUkBlYaZB_gItO-_fxaVDWYggUbgEiMFZTakVoEylV3NQsFFJlVnAj4lBmidFMyriFHh8Hgw24xkSOZiqUEaqdxfEWLOeD3GwDMVTYpsXAMbEobSKuKHZaaSHjTGjJa3BQqSRVJVG5q5fRT6uExU1a6ietBp9mssMpPcezUvVKs2lpokUaMc4xF0woq8EXr6IX3pC2e78u_dPOa4T34e3Pk076_az77SOsRu7mhMcO1mF5dDs2uxjPjLI9v2wfAFhM9Uw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy%E2%80%90controlled+deep+features+selection+framework+for+grape+leaf+diseases+recognition&rft.jtitle=Expert+systems&rft.au=Adeel%2C+Alishba&rft.au=Khan%2C+Muhammad+Attique&rft.au=Akram%2C+Tallha&rft.au=Sharif%2C+Abida&rft.date=2022-08-01&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=39&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fexsy.12569&rft.externalDBID=10.1111%252Fexsy.12569&rft.externalDocID=EXSY12569 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon |