Entropy‐controlled deep features selection framework for grape leaf diseases recognition

Several countries are most reliant on agriculture either in terms of employment opportunities, national income, availability of a raw material, food production, to name but a few. However, it faces a big challenge such as climate changes, diseases, pets, weeds etc. Therefore, last decade has provide...

Full description

Saved in:
Bibliographic Details
Published inExpert systems Vol. 39; no. 7
Main Authors Adeel, Alishba, Khan, Muhammad Attique, Akram, Tallha, Sharif, Abida, Yasmin, Mussarat, Saba, Tanzila, Javed, Kashif
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.08.2022
Subjects
Online AccessGet full text
ISSN0266-4720
1468-0394
DOI10.1111/exsy.12569

Cover

Loading…
Abstract Several countries are most reliant on agriculture either in terms of employment opportunities, national income, availability of a raw material, food production, to name but a few. However, it faces a big challenge such as climate changes, diseases, pets, weeds etc. Therefore, last decade has provided a machine learning‐based solution to the agricultural community, which helped farmers to identify the diseases at the early stages. In this article, our focus is on grape diseases, and proposes a novel framework to identify and classify the selected diseases at the early stages. A deep learning‐based solution is embedded into a conventional architecture for optimal performance. Three primary steps are involved; (a) feature extraction after applying transfer learning on pre‐trained deep models, AlexNet and ResNet101, (b) selection of best features using proposed Yager Entropy along with Kurtosis (YEaK) technique, (c) fusion of strong features using proposed parallel approach and later subject to classification step using least squared support vector machine (LS‐SVM). The simulations are performed on infected grape leaves obtained from the plant village dataset to achieving an accuracy of 99%. From the simulation results, we sincerely believe that our proposed approach performed exceptionally compared to several existing methods.
AbstractList Several countries are most reliant on agriculture either in terms of employment opportunities, national income, availability of a raw material, food production, to name but a few. However, it faces a big challenge such as climate changes, diseases, pets, weeds etc. Therefore, last decade has provided a machine learning‐based solution to the agricultural community, which helped farmers to identify the diseases at the early stages. In this article, our focus is on grape diseases, and proposes a novel framework to identify and classify the selected diseases at the early stages. A deep learning‐based solution is embedded into a conventional architecture for optimal performance. Three primary steps are involved; (a) feature extraction after applying transfer learning on pre‐trained deep models, AlexNet and ResNet101, (b) selection of best features using proposed Yager Entropy along with Kurtosis (YEaK) technique, (c) fusion of strong features using proposed parallel approach and later subject to classification step using least squared support vector machine (LS‐SVM). The simulations are performed on infected grape leaves obtained from the plant village dataset to achieving an accuracy of 99%. From the simulation results, we sincerely believe that our proposed approach performed exceptionally compared to several existing methods.
Author Akram, Tallha
Yasmin, Mussarat
Adeel, Alishba
Sharif, Abida
Saba, Tanzila
Javed, Kashif
Khan, Muhammad Attique
Author_xml – sequence: 1
  givenname: Alishba
  surname: Adeel
  fullname: Adeel, Alishba
  organization: COMSATS University Islamabad, Wah Campus
– sequence: 2
  givenname: Muhammad Attique
  surname: Khan
  fullname: Khan, Muhammad Attique
  email: attique@ciitwah.edu.pk
  organization: HITEC University Taxila
– sequence: 3
  givenname: Tallha
  surname: Akram
  fullname: Akram, Tallha
  organization: COMSATS University Islamabad, Wah Campus
– sequence: 4
  givenname: Abida
  surname: Sharif
  fullname: Sharif, Abida
  organization: COMSATS University Islamabad, Vehari Campus
– sequence: 5
  givenname: Mussarat
  orcidid: 0000-0001-8604-276X
  surname: Yasmin
  fullname: Yasmin, Mussarat
  email: mussaratabdullah@gmail.com
  organization: COMSATS University Islamabad, Wah Campus
– sequence: 6
  givenname: Tanzila
  surname: Saba
  fullname: Saba, Tanzila
  organization: Prince Sultan University
– sequence: 7
  givenname: Kashif
  surname: Javed
  fullname: Javed, Kashif
  organization: SMME NUST
BookMark eNp9kE1OwzAQhS1UJEphwwkssUNKsRPXiZeoKj9SJRaABGysqTOuUtI42KlKdhyBM3ISEsoKIWYzs_jeG713SAaVq5CQE87GvJtzfAvtmMcTqfbIkAuZRSxRYkCGLJYyEmnMDshhCCvGGE9TOSTPs6rxrm4_3z-M68-yxJzmiDW1CM3GY6ABSzRN4SpqPaxx6_wLtc7TpYcaaYlgaV4EhNCxHo1bVkVPH5F9C2XA4589Ig-Xs_vpdTS_vbqZXswjkzCuIrS5EFYxmwKYhOeSKTALqzJUCYNFirkESCYsFl2uTpDlmVJiYRjECCCTZEROd761d68bDI1euY2vupc6llnGRZYK2VFnO8p4F4JHq2tfrMG3mjPdd6f77vR3dx3MfsGmaKAP1Xgoyr8lfCfZFiW2_5jr2ePd007zBah-hyQ
CitedBy_id crossref_primary_10_1007_s11042_020_09354_y
crossref_primary_10_1109_ACCESS_2024_3349477
crossref_primary_10_1016_j_micpro_2021_104027
crossref_primary_10_1007_s13369_024_09192_2
crossref_primary_10_1007_s11042_021_10889_x
crossref_primary_10_1016_j_ecoinf_2025_103069
crossref_primary_10_1007_s11042_024_18948_9
crossref_primary_10_1080_0954898X_2023_2275722
crossref_primary_10_1007_s11042_020_09669_w
crossref_primary_10_1007_s11042_023_16281_1
crossref_primary_10_1051_itmconf_20257003017
crossref_primary_10_3390_s21227584
crossref_primary_10_3934_math_2024561
crossref_primary_10_1109_ACCESS_2021_3094802
crossref_primary_10_32604_cmc_2023_035860
crossref_primary_10_1007_s11042_021_10811_5
crossref_primary_10_1049_cit2_12352
crossref_primary_10_1080_13682199_2022_2161696
crossref_primary_10_1155_2022_3114525
crossref_primary_10_3390_s24196211
crossref_primary_10_1007_s11042_020_09244_3
crossref_primary_10_4018_IJISMD_315126
crossref_primary_10_3389_fpls_2024_1269423
crossref_primary_10_1049_ipr2_12183
crossref_primary_10_1002_jemt_23686
crossref_primary_10_1002_jemt_23688
crossref_primary_10_1007_s00500_023_09071_2
crossref_primary_10_3390_app112411901
crossref_primary_10_1002_jemt_23659
crossref_primary_10_1007_s40031_023_00907_x
crossref_primary_10_1016_j_dsp_2023_103907
crossref_primary_10_1038_s41598_024_64072_x
crossref_primary_10_3390_biomimetics8050417
crossref_primary_10_1007_s10341_025_01265_2
crossref_primary_10_1007_s10462_022_10278_2
crossref_primary_10_3390_s23031358
crossref_primary_10_1007_s11042_020_10309_6
crossref_primary_10_1007_s11042_020_10406_6
crossref_primary_10_1016_j_rinp_2021_104088
crossref_primary_10_1615_JFlowVisImageProc_2023047476
crossref_primary_10_1007_s11042_021_11036_2
crossref_primary_10_1016_j_compag_2020_105802
Cites_doi 10.1016/j.suscom.2019.08.002
10.1109/ICIIP.2013.6707647
10.1016/j.ijleo.2017.11.190
10.1016/j.future.2018.04.065
10.1002/jemt.23238
10.1109/ICARCV.2014.7064414
10.1016/j.patrec.2019.12.024
10.1016/j.patrec.2018.01.021
10.1016/j.compag.2017.11.024
10.1002/jemt.23320
10.1016/j.inpa.2016.10.005
10.1109/CDMA47397.2020.00031
10.1002/jemt.23009
10.1109/TIAR.2017.8273700
10.1109/ACCESS.2019.2908040
10.3389/fpls.2016.01419
10.1111/ppa.12741
10.1109/RISE.2017.8378160
10.1002/jemt.23447
10.1007/s00521-017-3067-8
10.1109/I2CT.2017.8226270
10.1016/j.patrec.2019.11.019
10.1016/j.compag.2018.06.035
10.1016/j.compag.2018.04.023
10.1166/jmihi.2017.2280
10.1007/s10916-019-1428-9
10.1016/j.future.2018.07.057
10.1007/978-981-15-2021-1_8
10.5220/0006196204790486
10.1007/978-981-13-2414-7_28
10.1016/j.future.2018.05.002
10.1007/978-3-319-90403-0_6
10.1016/S0031-3203(02)00262-5
10.1016/j.compag.2018.02.016
10.1007/s40815-015-0062-z
10.1186/s12885-018-4465-8
10.1186/s13640-017-0236-8
10.1049/iet-ipr.2017.0368
10.1101/066910
10.1007/s10916-019-1413-3
10.1016/j.jksuci.2018.06.002
10.1016/j.compag.2018.01.009
10.1007/s11831-018-9255-6
10.1142/S0219519419500556
10.1016/j.compag.2009.01.003
10.1109/SPIN.2016.7566749
10.1007/978-981-13-1927-3_3
10.1002/jemt.23220
10.1109/ECTICON.2008.4600483
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd
2022 John Wiley & Sons, Ltd
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd
– notice: 2022 John Wiley & Sons, Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1111/exsy.12569
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1468-0394
EndPage n/a
ExternalDocumentID 10_1111_exsy_12569
EXSY12569
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0B8
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
77K
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHC
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3019-efd44f90f7aac31d609acbf98e930ab7ed6aa350241250198d8994bc0a2eaa633
IEDL.DBID DR2
ISSN 0266-4720
IngestDate Mon Jul 14 10:39:35 EDT 2025
Thu Apr 24 23:06:38 EDT 2025
Tue Jul 01 02:13:45 EDT 2025
Wed Jan 22 16:23:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3019-efd44f90f7aac31d609acbf98e930ab7ed6aa350241250198d8994bc0a2eaa633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8604-276X
PQID 2688148746
PQPubID 32130
PageCount 17
ParticipantIDs proquest_journals_2688148746
crossref_primary_10_1111_exsy_12569
crossref_citationtrail_10_1111_exsy_12569
wiley_primary_10_1111_exsy_12569_EXSY12569
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Expert systems
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2017; 5
2009; 66
2019; 7
2017; 7
2017; 1
2017; 3
2017; 4
2017; 2017
2019; 31
2002; 5
2018; 145
2018; 147
2018; 81
2008
2003; 36
2019; 19
2020; 129
2018; 67
2016; 18
2018; 88
2018; 87
2018; 18
2016; 7
2019; 82
2018; 151
2018; 150
2020; 131
2019; 43
2020
2018; 157
2019; 26
2017; 12
2019
2018
2017
2016
2015
2014
2017; 142
2013
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
Raja N. S. M. (e_1_2_8_49_1) 2018
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
Fernandes S. L. (e_1_2_8_15_1) 2019
Zhu J. (e_1_2_8_67_1) 2019
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Gupta T. (e_1_2_8_18_1) 2017; 5
e_1_2_8_38_1
e_1_2_8_57_1
Picon A. (e_1_2_8_46_1) 2018
Riečan B. (e_1_2_8_53_1) 2002; 5
Gopinath S. (e_1_2_8_17_1) 2017; 3
e_1_2_8_32_1
e_1_2_8_55_1
Khan M. A. (e_1_2_8_25_1) 2020
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_27_1
e_1_2_8_48_1
Kharde P. K. (e_1_2_8_33_1) 2016
e_1_2_8_2_1
e_1_2_8_4_1
Khan M. A. (e_1_2_8_26_1) 2018
e_1_2_8_6_1
e_1_2_8_8_1
Rashid M. (e_1_2_8_51_1) 2018
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
Elemmi M. C. (e_1_2_8_12_1) 2017; 1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 7
  start-page: 1841
  issue: 8
  year: 2017
  end-page: 1850
  article-title: A novel fusion approach for early lung cancer detection using computer aided diagnosis techniques
  publication-title: Journal of Medical Imaging and Health Informatics
– volume: 5
  start-page: 1
  year: 2002
  end-page: 14
  article-title: On the Yager entropy of dynamical systems
  publication-title: Acta Mathematica Nitriensia
– volume: 87
  start-page: 290
  year: 2018
  end-page: 297
  article-title: Big data analysis for brain tumor detection: Deep convolutional neural networks
  publication-title: Future Generation Computer Systems
– volume: 3
  issue: 08
  year: 2017
  article-title: Plant disesase detection by using image processing techniques
  publication-title: International Journal of Research and Innovation in Engineering Technology
– volume: 7
  start-page: 1419
  year: 2016
  article-title: Using deep learning for image‐based plant disease detection
  publication-title: Frontiers in Plant Science
– volume: 43
  start-page: 289
  issue: 9
  year: 2019
  article-title: Region extraction and classification of skin cancer: A heterogeneous framework of deep CNN features fusion and reduction
  publication-title: Journal of Medical Systems
– volume: 67
  start-page: 399
  issue: 2
  year: 2018
  end-page: 410
  article-title: Automated identification of sugar beet diseases using smartphones
  publication-title: Plant Pathology
– volume: 43
  start-page: 302
  issue: 9
  year: 2019
  article-title: Automated detection of Alzheimer's disease using brain MRI images–a study with various feature extraction techniques
  publication-title: Journal of Medical Systems
– year: 2018
– start-page: 61
  year: 2020
  end-page: 69
– year: 2014
– year: 2020
  article-title: Classification of stomach infections: A paradigm of convolutional neural network along with classical features fusion and selection
  publication-title: Microscopy research and technique
– volume: 147
  start-page: 70
  year: 2018
  end-page: 90
  article-title: Deep learning in agriculture: A survey
  publication-title: Computers and Electronics in Agriculture
– start-page: 1
  year: 2018
  end-page: 27
  article-title: Object detection and classification: A joint selection and fusion strategy of deep convolutional neural network and SIFT point features
  publication-title: Multimedia Tools and Applications
– year: 2018
  article-title: A framework for offline signature verification system: Best features selection approach
  publication-title: Pattern Recognition Letters
– start-page: 23
  year: 2019
  end-page: 31
– volume: 7
  start-page: 46261
  year: 2019
  end-page: 46277
  article-title: An optimized method for segmentation and classification of apple diseases based on strong correlation and genetic algorithm based feature selection
  publication-title: IEEE Access
– year: 2008
– volume: 88
  start-page: 28
  year: 2018
  end-page: 39
  article-title: Appearance based pedestrians' gender recognition by employing stacked auto encoders in deep learning
  publication-title: Future Generation Computer Systems
– volume: 150
  start-page: 220
  year: 2018
  end-page: 234
  article-title: Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection
  publication-title: Computers and Electronics in Agriculture
– start-page: 1
  year: 2019
  end-page: 12
  article-title: A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians
  publication-title: Neural Computing and Applications
– volume: 19
  issue: 06
  year: 2019
  article-title: Robust discrimination of leukocytes protuberant types for early diagnosis of leukemia
  publication-title: Journal of Mechanics in Medicine and Biology
– volume: 131
  start-page: 193
  year: 2020
  end-page: 204
  article-title: Gastrointestinal diseases segmentation and classification based on duo‐deep architectures
  publication-title: Pattern Recognition Letters
– volume: 7
  start-page: 1419
  year: 2016
  article-title: Inference of plant diseases from leaf images through deep learning
  publication-title: Frontiers in Plant Science
– year: 2015
– volume: 157
  start-page: 866
  year: 2018
  end-page: 872
  article-title: Plant diseased leaf segmentation and recognition by fusion of superpixel, K‐means and PHOG
  publication-title: Optik
– start-page: 1
  year: 2018
  end-page: 12
  article-title: Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– year: 2018
  article-title: Deep convolutional neural networks for mobile capture device‐based crop disease classification in the wild
  publication-title: Computers and Electronics in Agriculture
– volume: 1
  issue: 1
  year: 2017
  article-title: Vision based classification of different diseases of grape leaves and their severity
  publication-title: International Journal of Imaging Science and Pattern Recognition
– volume: 82
  start-page: 909
  issue: 6
  year: 2019
  end-page: 922
  article-title: Brain tumor detection and classification: A framework of marker‐based watershed algorithm and multilevel priority features selection
  publication-title: Microscopy Research and Technique
– volume: 151
  start-page: 311
  year: 2018
  end-page: 318
  article-title: Automated grapevine cultivar classification based on machine learning using leaf morpho‐colorimetry, fractal dimension and near‐infrared spectroscopy parameters
  publication-title: Computers and Electronics in Agriculture
– volume: 36
  start-page: 1369
  issue: 6
  year: 2003
  end-page: 1,381
  article-title: Feature fusion: Parallel strategy vs. serial strategy
  publication-title: Pattern Recognition
– volume: 18
  start-page: 638
  issue: 1
  year: 2018
  article-title: An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification
  publication-title: BMC Cancer
– volume: 82
  start-page: 741
  year: 2019
  end-page: 763
  article-title: Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion
  publication-title: Microscopy research and technique
– year: 2018
  article-title: Fruits and vegetables quality evaluation using computer vision: A review
  publication-title: Journal of King Saud University‐Computer and Information Sciences
– volume: 12
  start-page: 200
  issue: 2
  year: 2017
  end-page: 209
  article-title: License number plate recognition system using entropy‐based features selection approach with SVM
  publication-title: IET Image Processing
– volume: 4
  start-page: 41
  issue: 1
  year: 2017
  end-page: 49
  article-title: Detection of plant leaf diseases using image segmentation and soft computing techniques
  publication-title: Information Processing in Agriculture
– year: 2016
– volume: 26
  start-page: 507
  issue: 2
  year: 2019
  end-page: 530
  article-title: Plants disease identification and classification through leaf images: A survey
  publication-title: Archives of Computational Methods in Engineering
– volume: 129
  start-page: 181
  year: 2020
  end-page: 189
  article-title: Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images
  publication-title: Pattern Recognition Letters
– volume: 82
  start-page: 1542
  year: 2019
  end-page: 1556
  article-title: Intelligent microscopic approach for identification and recognition of citrus deformities
  publication-title: Microscopy research and technique
– start-page: 1
  year: 2019
  end-page: 13
  article-title: Identification of grape diseases using image analysis and BP neural networks
  publication-title: Multimedia Tools and Applications
– volume: 31
  start-page: 1225
  issue: 2
  year: 2019
  end-page: 1232
  article-title: Plant disease leaf image segmentation based on superpixel clustering and EM algorithm
  publication-title: Neural Computing and Applications
– start-page: 1
  year: 2020
  end-page: 30
  article-title: An automated system for cucumber leaf diseased spot detection and classification using improved saliency method and deep features selection
  publication-title: Multimedia Tools and Applications
– volume: 2017
  start-page: 89
  issue: 1
  year: 2017
  article-title: A framework of human detection and action recognition based on uniform segmentation and combination of Euclidean distance and joint entropy‐based features selection
  publication-title: EURASIP Journal on Image and Video Processing
– start-page: 1
  year: 2018
  end-page: 21
  article-title: An implementation of optimized framework for action classification using multilayers neural network on selected fused features
  publication-title: Pattern Analysis and Applications
– year: 2020
– volume: 18
  start-page: 98
  issue: 1
  year: 2016
  end-page: 102
  article-title: A local approach to Yager entropy of dynamical systems
  publication-title: International Journal of Fuzzy Systems
– year: 2019
  article-title: Diagnosis and recognition of grape leaf diseases: An automated system based on a novel saliency approach and canonical correlation analysis based multiple features fusion
  publication-title: Sustainable Computing: Informatics and Systems
– volume: 142
  start-page: 485
  year: 2017
  end-page: 493
  article-title: Gradation of yellow mosaic virus disease of okra and bitter gourd based on entropy based binning and naive Bayes classifier after identification of leaves
  publication-title: Computers and Electronics in Agriculture
– volume: 81
  start-page: 528
  issue: 6
  year: 2018
  end-page: 543
  article-title: An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach
  publication-title: Microscopy Research and Technique
– year: 2017
– start-page: 93
  year: 2018
  end-page: 117
– volume: 145
  start-page: 311
  year: 2018
  end-page: 318
  article-title: Deep learning models for plant disease detection and diagnosis
  publication-title: Computers and Electronics in Agriculture
– volume: 5
  start-page: 11
  year: 2017
  end-page: 17
  article-title: Plant leaf disease analysis using image processing technique with modified SVM‐CS classifier
  publication-title: International Journal of Engineering & Managemnt Technology
– start-page: 295
  year: 2019
  end-page: 312
– volume: 66
  start-page: 121
  issue: 2
  year: 2009
  end-page: 125
  article-title: Image pattern classification for the identification of disease causing agents in plants
  publication-title: Computers and Electronics in Agriculture
– year: 2013
– ident: e_1_2_8_3_1
  doi: 10.1016/j.suscom.2019.08.002
– ident: e_1_2_8_22_1
  doi: 10.1109/ICIIP.2013.6707647
– ident: e_1_2_8_65_1
  doi: 10.1016/j.ijleo.2017.11.190
– ident: e_1_2_8_6_1
  doi: 10.1016/j.future.2018.04.065
– start-page: 1
  year: 2018
  ident: e_1_2_8_49_1
  article-title: Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– start-page: 1
  year: 2018
  ident: e_1_2_8_51_1
  article-title: Object detection and classification: A joint selection and fusion strategy of deep convolutional neural network and SIFT point features
  publication-title: Multimedia Tools and Applications
– ident: e_1_2_8_30_1
  doi: 10.1002/jemt.23238
– ident: e_1_2_8_35_1
  doi: 10.1109/ICARCV.2014.7064414
– volume: 3
  issue: 08
  year: 2017
  ident: e_1_2_8_17_1
  article-title: Plant disesase detection by using image processing techniques
  publication-title: International Journal of Research and Innovation in Engineering Technology
– ident: e_1_2_8_29_1
  doi: 10.1016/j.patrec.2019.12.024
– ident: e_1_2_8_59_1
  doi: 10.1016/j.patrec.2018.01.021
– ident: e_1_2_8_41_1
  doi: 10.1016/j.compag.2017.11.024
– ident: e_1_2_8_55_1
  doi: 10.1002/jemt.23320
– ident: e_1_2_8_44_1
– ident: e_1_2_8_62_1
  doi: 10.1016/j.inpa.2016.10.005
– ident: e_1_2_8_7_1
  doi: 10.1109/CDMA47397.2020.00031
– ident: e_1_2_8_42_1
  doi: 10.1002/jemt.23009
– ident: e_1_2_8_47_1
  doi: 10.1109/TIAR.2017.8273700
– ident: e_1_2_8_31_1
  doi: 10.1109/ACCESS.2019.2908040
– ident: e_1_2_8_40_1
  doi: 10.3389/fpls.2016.01419
– start-page: 1
  year: 2019
  ident: e_1_2_8_67_1
  article-title: Identification of grape diseases using image analysis and BP neural networks
  publication-title: Multimedia Tools and Applications
– ident: e_1_2_8_19_1
  doi: 10.1111/ppa.12741
– year: 2018
  ident: e_1_2_8_46_1
  article-title: Deep convolutional neural networks for mobile capture device‐based crop disease classification in the wild
  publication-title: Computers and Electronics in Agriculture
– volume: 5
  start-page: 1
  year: 2002
  ident: e_1_2_8_53_1
  article-title: On the Yager entropy of dynamical systems
  publication-title: Acta Mathematica Nitriensia
– ident: e_1_2_8_4_1
  doi: 10.1109/RISE.2017.8378160
– ident: e_1_2_8_36_1
  doi: 10.1002/jemt.23447
– ident: e_1_2_8_39_1
  doi: 10.3389/fpls.2016.01419
– ident: e_1_2_8_66_1
  doi: 10.1007/s00521-017-3067-8
– volume: 5
  start-page: 11
  year: 2017
  ident: e_1_2_8_18_1
  article-title: Plant leaf disease analysis using image processing technique with modified SVM‐CS classifier
  publication-title: International Journal of Engineering & Managemnt Technology
– ident: e_1_2_8_20_1
  doi: 10.1109/I2CT.2017.8226270
– ident: e_1_2_8_61_1
  doi: 10.1016/j.patrec.2019.11.019
– start-page: 1
  year: 2020
  ident: e_1_2_8_25_1
  article-title: An automated system for cucumber leaf diseased spot detection and classification using improved saliency method and deep features selection
  publication-title: Multimedia Tools and Applications
– ident: e_1_2_8_16_1
  doi: 10.1016/j.compag.2018.06.035
– ident: e_1_2_8_60_1
  doi: 10.1016/j.compag.2018.04.023
– ident: e_1_2_8_14_1
  doi: 10.1166/jmihi.2017.2280
– ident: e_1_2_8_2_1
  doi: 10.1007/s10916-019-1428-9
– ident: e_1_2_8_37_1
  doi: 10.1016/j.future.2018.07.057
– ident: e_1_2_8_9_1
  doi: 10.1007/978-981-15-2021-1_8
– ident: e_1_2_8_45_1
  doi: 10.5220/0006196204790486
– ident: e_1_2_8_34_1
  doi: 10.1007/978-981-13-2414-7_28
– ident: e_1_2_8_52_1
  doi: 10.1016/j.future.2018.05.002
– ident: e_1_2_8_10_1
  doi: 10.1007/978-3-319-90403-0_6
– ident: e_1_2_8_64_1
  doi: 10.1016/S0031-3203(02)00262-5
– ident: e_1_2_8_21_1
– ident: e_1_2_8_23_1
  doi: 10.1016/j.compag.2018.02.016
– ident: e_1_2_8_48_1
  doi: 10.1007/s40815-015-0062-z
– volume-title: An unique technique for grape leaf disease detection
  year: 2016
  ident: e_1_2_8_33_1
– ident: e_1_2_8_28_1
  doi: 10.1186/s12885-018-4465-8
– ident: e_1_2_8_5_1
– ident: e_1_2_8_58_1
  doi: 10.1186/s13640-017-0236-8
– start-page: 1
  year: 2019
  ident: e_1_2_8_15_1
  article-title: A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians
  publication-title: Neural Computing and Applications
– ident: e_1_2_8_32_1
  doi: 10.1049/iet-ipr.2017.0368
– ident: e_1_2_8_56_1
  doi: 10.1101/066910
– ident: e_1_2_8_54_1
  doi: 10.1007/s10916-019-1413-3
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jksuci.2018.06.002
– ident: e_1_2_8_13_1
  doi: 10.1016/j.compag.2018.01.009
– ident: e_1_2_8_24_1
  doi: 10.1007/s11831-018-9255-6
– start-page: 1
  year: 2018
  ident: e_1_2_8_26_1
  article-title: An implementation of optimized framework for action classification using multilayers neural network on selected fused features
  publication-title: Pattern Analysis and Applications
– ident: e_1_2_8_43_1
  doi: 10.1142/S0219519419500556
– volume: 1
  issue: 1
  year: 2017
  ident: e_1_2_8_12_1
  article-title: Vision based classification of different diseases of grape leaves and their severity
  publication-title: International Journal of Imaging Science and Pattern Recognition
– ident: e_1_2_8_57_1
– ident: e_1_2_8_11_1
  doi: 10.1016/j.compag.2009.01.003
– ident: e_1_2_8_63_1
  doi: 10.1109/SPIN.2016.7566749
– ident: e_1_2_8_50_1
  doi: 10.1007/978-981-13-1927-3_3
– ident: e_1_2_8_27_1
  doi: 10.1002/jemt.23220
– ident: e_1_2_8_38_1
  doi: 10.1109/ECTICON.2008.4600483
SSID ssj0001776
Score 2.4974134
Snippet Several countries are most reliant on agriculture either in terms of employment opportunities, national income, availability of a raw material, food...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms best features selection
CNN
Deep learning
Entropy
Feature extraction
fruit diseases
fusion
Grapes
Kurtosis
Machine learning
Plant diseases
Raw materials
Support vector machines
Title Entropy‐controlled deep features selection framework for grape leaf diseases recognition
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.12569
https://www.proquest.com/docview/2688148746
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6KXrxYn1itEtCLwpbtbppNwIuPFhH04AOqIEs2j4ulFreC9eRP8Df6S5yku62KCHrbw2RJMpnMzO433wDsJIqFXMooUNrGAcV0LRC8pQIjJccAgWbW13GfnbOTa3rabXUrsF_Wwoz5ISYf3Jxl-PvaGbjM8k9Gbp7zUQPdM3PVew6s5SKiiyl3VDPxneUwx2ABTaKw4CZ1MJ7p0K_eaBpifg5UvafpVOGunOMYYHLfeBpmDfXyjb7xv4tYgPkiBCUH4zOzCBXTX4Jq2d6BFNa-DLdth2IfjN5f3wpAe89ooo0ZEGs8H2hOct9GB3VLbInyIhgGE8eDbUjPSEuKX0A5mWCVHvorcN1pXx2dBEUrhkDhDSACYzWlVoQ2kVLFTc1CIVVmBTciDmWWGM2kjFvo8HExOIBrzONopkIZodZZHK_CTP-hb9aAGCps02LcmFiUNhFXFCettJBxJrTkNdgtVZKqgqfctcvopWW-4jYt9ZtWg-2J7GDMzvGjVL3UbFpYaJ5GjHNMBRPKarDnVfTLG9J29_LGP63_RXgD5iJXLeHxgnWYGT4-mU2MYYbZFsweHB4fdrb8mf0Akyfz7A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDnBhR5TVElxASpUmrmMfERQVaDmwSIVL5Hi5ULUVaSXKiU_gG_kSxq7TAkJIcMthHMUejz3jPL-H0EEiaciEiAKpTBwQKNcCzqoy0EIwSBBIZtw97uYVrd-Ri1a15bE59i7MiB9ifOBmI8Ot1zbA7YH0pyjXz_mwDPsz5dNo1kp6WwGD0-sJe1QlcdpyUGXQgCRR6NlJLZBn0vbrfjRJMj-nqm6vOVscCarmjqLQQkwey4N-VpYv3wgc_92NJbTgs1B8PJo2y2hKd1bQYqHwgH3Ar6KHmgWy94bvr28e097WCiute9hoRwma49wp6YB7sSmAXhgyYWypsDVua2Gw_wuU4zFcqdtZQ3dntduTeuDVGAIJiwAPtFGEGB6aRAgZVxQNuZCZ4UzzOBRZohUVIq7Cng-dgQZMQSlHMhmKCBxP43gdzXS6Hb2BsCbcVAykjokBax0xSeCjpeIizrgSrIQOC5-k0lOVW8WMdlqULHbQUjdoJbQ_tu2NCDp-tNouXJv6IM3TiDIG1WBCaAkdOR_98oa01rq5d0-bfzHeQ3P122YjbZxfXW6h-chennDwwW00038a6B1IafrZrpu4Hwfa9pQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5RkCouPNoiQgNYai9U2miz63htiQuCRNBHVNEiBSS08vpxIdpEbCKRnvoT-hv5JYyd3SQghERvexjv2h6PZ8b7-RuAz4liIZcyCpS2cUAxXQsEb6nASMkxQKCZ9fe4f3TZ6QX92mv1luCwugsz5YeYHbg5y_D7tTPwobYLRm7uikkD3TMTb2CF4hcdoOvkfE4e1Ux8aTlMMlhAkygsyUkdjmfe9rE7mseYi5GqdzWddbiuOjlFmNw0xqOsof484W_831FswFoZg5Kj6aLZhCWTv4P1qr4DKc39PVy1HYx9OLn_-69EtPeNJtqYIbHGE4IWpPB1dFC5xFYwL4JxMHFE2Ib0jbSk_AdUkBlYaZB_gItO-_fxaVDWYggUbgEiMFZTakVoEylV3NQsFFJlVnAj4lBmidFMyriFHh8Hgw24xkSOZiqUEaqdxfEWLOeD3GwDMVTYpsXAMbEobSKuKHZaaSHjTGjJa3BQqSRVJVG5q5fRT6uExU1a6ietBp9mssMpPcezUvVKs2lpokUaMc4xF0woq8EXr6IX3pC2e78u_dPOa4T34e3Pk076_az77SOsRu7mhMcO1mF5dDs2uxjPjLI9v2wfAFhM9Uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy%E2%80%90controlled+deep+features+selection+framework+for+grape+leaf+diseases+recognition&rft.jtitle=Expert+systems&rft.au=Adeel%2C+Alishba&rft.au=Khan%2C+Muhammad+Attique&rft.au=Akram%2C+Tallha&rft.au=Sharif%2C+Abida&rft.date=2022-08-01&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=39&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fexsy.12569&rft.externalDBID=10.1111%252Fexsy.12569&rft.externalDocID=EXSY12569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon