Theoretical study on the translocation of partially charged polymers through nanopore

ABSTRACT The translocation time τ of partially charged polymers through a neutral nanopore is calculated using Fokker–Planck equation with adsorbing–adsorbing boundary conditions. For the polymer with one charged monomer, we find that τ is dependent on the position of the charged monomer and on the...

Full description

Saved in:
Bibliographic Details
Published inJournal of polymer science. Part B, Polymer physics Vol. 55; no. 13; pp. 1017 - 1025
Main Authors Wu, Fan, Yang, Xiao, Luo, Meng‐Bo
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT The translocation time τ of partially charged polymers through a neutral nanopore is calculated using Fokker–Planck equation with adsorbing–adsorbing boundary conditions. For the polymer with one charged monomer, we find that τ is dependent on the position of the charged monomer and on the magnitude of the driving force f inside the nanopore. When the charge is located at the front half of the polymer chain, τ is larger than that of neutral polymer and increases with f. When the charge is located at the back half, it is smaller than that of the neutral polymer and decreases with increasing f. We have also studied the behavior of a symmetrical polymer with two like charges located symmetrically in the chain and that of an asymmetrical polymer with two unlike charges. Moreover, we have calculated the translocation time for a general condition of polymer with two randomly distributed charges. All results show that τ is dependent on the positions of charges in the polymer chain and on the magnitude of the driving force. The results can be explained qualitatively by the free‐energy landscape of polymer translocation. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 1017–1025 The translocation time of partially charged polymers through a nanopore is calculated using the Fokker–Planck equation with adsorbing–adsorbing boundary conditions. Three cases were investigated: a polymer with one charged monomer, a polymer with two like charges, and a polymer with two unlike charges. Results show that the translocation time is dependent on the positions of charges and on the driving force. The results can be explained qualitatively by the free‐energy landscape of polymer translocation.
AbstractList ABSTRACT The translocation time τ of partially charged polymers through a neutral nanopore is calculated using Fokker–Planck equation with adsorbing–adsorbing boundary conditions. For the polymer with one charged monomer, we find that τ is dependent on the position of the charged monomer and on the magnitude of the driving force f inside the nanopore. When the charge is located at the front half of the polymer chain, τ is larger than that of neutral polymer and increases with f . When the charge is located at the back half, it is smaller than that of the neutral polymer and decreases with increasing f . We have also studied the behavior of a symmetrical polymer with two like charges located symmetrically in the chain and that of an asymmetrical polymer with two unlike charges. Moreover, we have calculated the translocation time for a general condition of polymer with two randomly distributed charges. All results show that τ is dependent on the positions of charges in the polymer chain and on the magnitude of the driving force. The results can be explained qualitatively by the free‐energy landscape of polymer translocation. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1017–1025
The translocation time τ of partially charged polymers through a neutral nanopore is calculated using Fokker-Planck equation with adsorbing-adsorbing boundary conditions. For the polymer with one charged monomer, we find that τ is dependent on the position of the charged monomer and on the magnitude of the driving force f inside the nanopore. When the charge is located at the front half of the polymer chain, τ is larger than that of neutral polymer and increases with f. When the charge is located at the back half, it is smaller than that of the neutral polymer and decreases with increasing f. We have also studied the behavior of a symmetrical polymer with two like charges located symmetrically in the chain and that of an asymmetrical polymer with two unlike charges. Moreover, we have calculated the translocation time for a general condition of polymer with two randomly distributed charges. All results show that τ is dependent on the positions of charges in the polymer chain and on the magnitude of the driving force. The results can be explained qualitatively by the free-energy landscape of polymer translocation. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 1017-1025
ABSTRACT The translocation time τ of partially charged polymers through a neutral nanopore is calculated using Fokker–Planck equation with adsorbing–adsorbing boundary conditions. For the polymer with one charged monomer, we find that τ is dependent on the position of the charged monomer and on the magnitude of the driving force f inside the nanopore. When the charge is located at the front half of the polymer chain, τ is larger than that of neutral polymer and increases with f. When the charge is located at the back half, it is smaller than that of the neutral polymer and decreases with increasing f. We have also studied the behavior of a symmetrical polymer with two like charges located symmetrically in the chain and that of an asymmetrical polymer with two unlike charges. Moreover, we have calculated the translocation time for a general condition of polymer with two randomly distributed charges. All results show that τ is dependent on the positions of charges in the polymer chain and on the magnitude of the driving force. The results can be explained qualitatively by the free‐energy landscape of polymer translocation. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 1017–1025 The translocation time of partially charged polymers through a nanopore is calculated using the Fokker–Planck equation with adsorbing–adsorbing boundary conditions. Three cases were investigated: a polymer with one charged monomer, a polymer with two like charges, and a polymer with two unlike charges. Results show that the translocation time is dependent on the positions of charges and on the driving force. The results can be explained qualitatively by the free‐energy landscape of polymer translocation.
Author Luo, Meng‐Bo
Wu, Fan
Yang, Xiao
Author_xml – sequence: 1
  givenname: Fan
  surname: Wu
  fullname: Wu, Fan
  organization: Zhejiang University
– sequence: 2
  givenname: Xiao
  surname: Yang
  fullname: Yang, Xiao
  organization: Zhejiang University
– sequence: 3
  givenname: Meng‐Bo
  surname: Luo
  fullname: Luo, Meng‐Bo
  email: luomengbo@zju.edu.cn
  organization: Collaborative Innovation Center of Advanced Microstructures
BookMark eNp9kFFLwzAUhYNMcJu--AsCvgmdSdOmyaMOp8JgPmzPIU1v146uqUmL9N-bWZ99unDvd885nAWatbYFhO4pWVFC4qfONvkqTlgqr9CcEikjkggxQ3MiRBbxmPMbtPD-REi4pXKODvsKrIO-NrrBvh-KEdsW9xXg3unWN9bovg4bW-JOu77WTTNiU2l3hAIHt_EMzgfe2eFY4Va3tgtyt-i61I2Hu7-5RIfN6379Hm13bx_r521kGKEyihnjaS6JKDiUNKaC5YawlGUhp06S1GS5LhNCDYcLQDMpCkOKEiAHkfKELdHDpNs5-zWA79XJDq4NlooKmXEW00wE6nGijLPeOyhV5-qzdqOiRF1qU5fa1G9tAaYT_F03MP5Dqs_d9mX6-QGEZHKY
CitedBy_id crossref_primary_10_1039_D1SM00007A
Cites_doi 10.1002/anie.201303529
10.1063/1.2868777
10.1063/1.4896153
10.1017/S0033583500004662
10.1103/PhysRevLett.99.228106
10.1038/nnano.2009.12
10.1103/RevModPhys.80.141
10.1103/PhysRevLett.86.3435
10.1002/1522-2683(200208)23:16<2583::AID-ELPS2583>3.0.CO;2-H
10.1021/ma1003826
10.1126/science.288.5468.1026
10.1063/1.480386
10.1063/1.4961505
10.1103/PhysRevE.85.041801
10.1021/nl204273h
10.1038/nnano.2013.22
10.1063/1.1553753
10.1073/pnas.97.3.1079
10.1073/pnas.1001831107
10.1016/0092-8674(91)90455-8
10.1021/nl2045292
10.1103/PhysRevLett.99.148102
10.1103/PhysRevLett.110.048101
10.1038/nnano.2016.66
10.1021/nl101955a
10.1088/0953-8984/25/41/413101
10.1103/PhysRevE.78.061918
10.1039/C3NR06559F
10.1073/pnas.0901054106
10.1088/0305-4470/11/9/017
10.1063/1.4803022
10.1002/adfm.201670173
10.1016/S0006-3495(99)77027-X
10.1063/1.1785776
10.1038/ncomms3989
10.1038/nnano.2011.129
10.1039/c004265j
10.1103/PhysRevLett.77.783
10.1063/1.4742970
10.1073/pnas.81.2.456
10.1021/acs.nanolett.5b02309
10.1038/415447a
10.1103/PhysRevE.86.031914
10.1021/ma501308h
10.1083/jcb.128.1.139
10.1103/PhysRevE.65.011802
10.1063/1.4754632
10.1039/C4RA05909C
10.1016/j.polymer.2013.01.010
10.1073/pnas.0502947102
10.1021/nl048030d
10.1016/j.polymer.2007.10.041
10.1088/0953-8984/15/17/202
10.1039/c2cp43925e
10.1063/1.4737929
10.1021/nl102069z
10.1021/nl903631m
10.1039/b9nr00275h
10.1073/pnas.93.24.13770
10.1063/1.3464333
10.1073/pnas.0611085104
10.1063/1.4815918
10.1103/PhysRevE.91.022113
10.1103/PhysRevE.62.927
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7SR
7U5
8FD
JG9
L7M
DOI 10.1002/polb.24359
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1099-0488
EndPage 1025
ExternalDocumentID 10_1002_polb_24359
POLB24359
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11674277; 11374255
GroupedDBID -~X
.GA
05W
10A
1L6
1OC
1ZS
4.4
4ZD
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
7PT
8-1
8UM
930
A03
AAEVG
AAHBH
AAHHS
AANLZ
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
BDRZF
BRXPI
BY8
CS3
DCZOG
DR2
DRFUL
DRSTM
EBS
EJD
F00
F5P
G-S
GNP
GODZA
GYXMG
HBH
HGLYW
HHY
HHZ
IX1
KQQ
LATKE
LAW
LEEKS
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MRFUL
MSFUL
MSSTM
MXFUL
MXSTM
OIG
P2P
P2W
P4D
QB0
QRW
RNS
ROL
RWB
RWI
RYL
SUPJJ
TN5
UB1
UPT
V2E
W99
WH7
WIH
WJL
WOHZO
WQJ
WXSBR
XG1
XPP
XV2
YQT
ZZTAW
.Y3
1OB
31~
6TJ
AAYXX
ACBWZ
AI.
AZFZN
CITATION
FEDTE
HF~
HVGLF
LH4
M6T
MRSTM
RIWAO
SAMSI
VH1
7SR
7U5
8FD
JG9
L7M
ID FETCH-LOGICAL-c3019-23365b908d6ef12183bc03537266a445c7baf401c6e6ef11798dc0dfeebe85643
IEDL.DBID DR2
ISSN 0887-6266
IngestDate Fri Sep 13 07:31:35 EDT 2024
Fri Aug 23 03:27:04 EDT 2024
Sat Aug 24 01:03:56 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3019-23365b908d6ef12183bc03537266a445c7baf401c6e6ef11798dc0dfeebe85643
PQID 1897632178
PQPubID 1016371
PageCount 10
ParticipantIDs proquest_journals_1897632178
crossref_primary_10_1002_polb_24359
wiley_primary_10_1002_polb_24359_POLB24359
PublicationCentury 2000
PublicationDate July 1, 2017
2017-07-00
20170701
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: July 1, 2017
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of polymer science. Part B, Polymer physics
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2007; 104
2010; 10
2004; 121
2013; 25
2013; 4
2003; 118
2010; 107
2016; 145
2003; 15
2008; 78
2013; 8
2012; 12
2001; 86
1996; 77
2013; 15
2014; 4
2013; 54
2005; 102
2013; 52
2000; 97
1995; 128
2000; 62
2013; 110
2015; 91
2000; 288
2010; 2
2012; 137
2014; 6
2015; 15
1984; 81
1978; 11
1996; 93
2002; 415
2014; 47
2008; 128
1994
2011; 6
2007; 99
2001; 65
2016; 11
2010; 43
1991; 65
2013; 138
2002; 23
2013; 139
2005; 5
2010; 133
1999; 77
1992; 25
1999; 111
2009; 4
2014; 141
2016; 26
2008; 80
2012; 86
2007; 48
2012; 85
2009; 106
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 80
  start-page: 141
  year: 2008
  end-page: 165
  publication-title: Rev. Mod. Phys.
– volume: 111
  start-page: 10371
  year: 1999
  end-page: 10374
  publication-title: J. Chem. Phys.
– volume: 43
  start-page: 6877
  year: 2010
  end-page: 6885
  publication-title: Macromolecules
– volume: 48
  start-page: 7679
  year: 2007
  end-page: 7686
  publication-title: Polymer
– volume: 65
  start-page: 011802
  year: 2001
  publication-title: Phys. Rev. E.
– volume: 12
  start-page: 13318
  year: 2010
  end-page: 13322
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 1038
  year: 2012
  end-page: 1044
  publication-title: Nano Lett.
– volume: 139
  start-page: 044902
  year: 2013
  publication-title: J. Chem. Phys.
– volume: 137
  start-page: 064904
  year: 2012
  publication-title: J. Chem. Phys.
– volume: 47
  start-page: 7215
  year: 2014
  end-page: 7220
  publication-title: Macromolecules
– volume: 65
  start-page: 371
  year: 1991
  end-page: 380
  publication-title: Cell
– volume: 6
  start-page: 615
  year: 2011
  end-page: 624
  publication-title: Nat. Nanotech.
– volume: 102
  start-page: 12377
  year: 2005
  end-page: 12382
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 9006
  year: 2014
  end-page: 9016
  publication-title: Nanoscale
– volume: 15
  start-page: 6076
  year: 2015
  end-page: 6081
  publication-title: Nano Lett.
– volume: 86
  start-page: 3435
  year: 2001
  end-page: 3438
  publication-title: Phys. Rev. Lett.
– year: 1994
– volume: 15
  start-page: 3212
  year: 2013
  end-page: 3217
  publication-title: Phys. Chem. Chem. Phys.
– volume: 107
  start-page: 16060
  year: 2010
  end-page: 16065
  publication-title: Proc. Natl. Acad. Sci. USA.
– volume: 128
  start-page: 125104
  year: 2008
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 3633
  year: 2010
  end-page: 3637
  publication-title: Nano Lett.
– volume: 11
  start-page: 1833
  year: 1978
  end-page: 1842
  publication-title: J. Phys. A.
– volume: 26
  start-page: 4829
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 91
  start-page: 022113
  year: 2015
  publication-title: Phys. Rev. E.
– volume: 106
  start-page: 7702
  year: 2009
  end-page: 7707
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 2
  start-page: 468
  year: 2010
  end-page: 483
  publication-title: Nanoscale
– volume: 133
  start-page: 045101
  year: 2010
  publication-title: J. Chem. Phys.
– volume: 5
  start-page: 1193
  year: 2005
  end-page: 1197
  publication-title: Nano Lett.
– volume: 11
  start-page: 713
  year: 2016
  end-page: 718
  publication-title: Nat. Nanotechnol.
– volume: 4
  start-page: 50494
  year: 2014
  end-page: 50502
  publication-title: RSC Adv.
– volume: 23
  start-page: 2583
  year: 2002
  end-page: 2591
  publication-title: Electrophoresis
– volume: 99
  start-page: 148102
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 3163
  year: 2010
  end-page: 3167
  publication-title: Nano Lett.
– volume: 85
  start-page: 041801
  year: 2012
  publication-title: Phys. Rev. E.
– volume: 288
  start-page: 1026
  year: 2000
  end-page: 1029
  publication-title: Science
– volume: 8
  start-page: 288
  year: 2013
  end-page: 295
  publication-title: Bayley, Nat. Nanotech.
– volume: 15
  start-page: R581
  year: 2003
  end-page: R607
  publication-title: J. Phys.: Condens. Matter.
– volume: 4
  start-page: 2989
  year: 2013
  publication-title: Nat. Commun.
– volume: 25
  start-page: 171
  year: 1992
  end-page: 204
  publication-title: Q. Rev. Biophys.
– volume: 10
  start-page: 324
  year: 2010
  end-page: 328
  publication-title: Nano Lett.
– volume: 77
  start-page: 1824
  year: 1999
  end-page: 1838
  publication-title: Biophys. J.
– volume: 415
  start-page: 447
  year: 2002
  end-page: 450
  publication-title: Nature
– volume: 25
  start-page: 413101
  year: 2013
  publication-title: J. Phys.: Condens. Matter.
– volume: 4
  start-page: 265
  year: 2009
  end-page: 270
  publication-title: Nat. Nanotech.
– volume: 12
  start-page: 1597
  year: 2012
  end-page: 1960
  publication-title: Nano Lett.
– volume: 121
  start-page: 6042
  year: 2004
  end-page: 6051
  publication-title: J. Chem. Phys.
– volume: 81
  start-page: 456
  year: 1984
  end-page: 460
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 138
  start-page: 174902
  year: 2013
  publication-title: J. Chem. Phys.
– volume: 118
  start-page: 5174
  year: 2003
  end-page: 5184
  publication-title: J. Chem. Phys.
– volume: 97
  start-page: 1079
  year: 2000
  end-page: 1084
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 93
  start-page: 13770
  year: 1996
  end-page: 13773
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 86
  start-page: 031914
  year: 2012
  publication-title: Phys. Rev. E.
– volume: 145
  start-page: 084906
  year: 2016
  publication-title: J. Chem. Phys.
– volume: 104
  start-page: 8207
  year: 2007
  end-page: 8211
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 128
  start-page: 139
  year: 1995
  end-page: 155
  publication-title: J. Cell Bio.
– volume: 99
  start-page: 228106
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 137
  start-page: 034903
  year: 2012
  publication-title: J. Chem. Phys.
– volume: 141
  start-page: 124112
  year: 2014
  publication-title: J. Chem. Phys.
– volume: 110
  start-page: 048101
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 137
  start-page: 144903
  year: 2012
  publication-title: J. Chem. Phys.
– volume: 77
  start-page: 783
  year: 1996
  end-page: 786
  publication-title: Phys. Rev. Lett.
– volume: 52
  start-page: 13154
  year: 2013
  end-page: 13161
  publication-title: Angew. Chem. Int. Ed.
– volume: 62
  start-page: 927
  year: 2000
  end-page: 939
  publication-title: Phys. Rev. E.
– volume: 78
  start-page: 061918
  year: 2008
  publication-title: Phys. Rev. E.
– volume: 54
  start-page: 1448
  year: 2013
  end-page: 1454
  publication-title: Polymer
– ident: e_1_2_6_24_1
  doi: 10.1002/anie.201303529
– ident: e_1_2_6_58_1
  doi: 10.1063/1.2868777
– ident: e_1_2_6_66_1
  doi: 10.1063/1.4896153
– ident: e_1_2_6_10_1
  doi: 10.1017/S0033583500004662
– ident: e_1_2_6_39_1
  doi: 10.1103/PhysRevLett.99.228106
– ident: e_1_2_6_27_1
  doi: 10.1038/nnano.2009.12
– ident: e_1_2_6_3_1
  doi: 10.1103/RevModPhys.80.141
– ident: e_1_2_6_11_1
  doi: 10.1103/PhysRevLett.86.3435
– ident: e_1_2_6_55_1
  doi: 10.1002/1522-2683(200208)23:16<2583::AID-ELPS2583>3.0.CO;2-H
– ident: e_1_2_6_45_1
  doi: 10.1021/ma1003826
– ident: e_1_2_6_25_1
  doi: 10.1126/science.288.5468.1026
– ident: e_1_2_6_37_1
  doi: 10.1063/1.480386
– ident: e_1_2_6_53_1
  doi: 10.1063/1.4961505
– ident: e_1_2_6_40_1
  doi: 10.1103/PhysRevE.85.041801
– ident: e_1_2_6_60_1
  doi: 10.1021/nl204273h
– ident: e_1_2_6_22_1
  doi: 10.1038/nnano.2013.22
– ident: e_1_2_6_38_1
  doi: 10.1063/1.1553753
– ident: e_1_2_6_54_1
  doi: 10.1073/pnas.97.3.1079
– ident: e_1_2_6_20_1
  doi: 10.1073/pnas.1001831107
– ident: e_1_2_6_6_1
  doi: 10.1016/0092-8674(91)90455-8
– ident: e_1_2_6_65_1
  doi: 10.1021/nl2045292
– ident: e_1_2_6_44_1
  doi: 10.1103/PhysRevLett.99.148102
– ident: e_1_2_6_49_1
  doi: 10.1103/PhysRevLett.110.048101
– ident: e_1_2_6_61_1
  doi: 10.1038/nnano.2016.66
– ident: e_1_2_6_32_1
  doi: 10.1021/nl101955a
– ident: e_1_2_6_17_1
  doi: 10.1088/0953-8984/25/41/413101
– ident: e_1_2_6_56_1
  doi: 10.1103/PhysRevE.78.061918
– ident: e_1_2_6_50_1
  doi: 10.1039/C3NR06559F
– ident: e_1_2_6_33_1
  doi: 10.1073/pnas.0901054106
– ident: e_1_2_6_63_1
  doi: 10.1088/0305-4470/11/9/017
– ident: e_1_2_6_41_1
  doi: 10.1063/1.4803022
– ident: e_1_2_6_23_1
  doi: 10.1002/adfm.201670173
– ident: e_1_2_6_36_1
  doi: 10.1016/S0006-3495(99)77027-X
– ident: e_1_2_6_43_1
  doi: 10.1063/1.1785776
– ident: e_1_2_6_21_1
  doi: 10.1038/ncomms3989
– ident: e_1_2_6_16_1
  doi: 10.1038/nnano.2011.129
– ident: e_1_2_6_57_1
  doi: 10.1039/c004265j
– ident: e_1_2_6_35_1
  doi: 10.1103/PhysRevLett.77.783
– ident: e_1_2_6_62_1
  doi: 10.1063/1.4742970
– ident: e_1_2_6_8_1
  doi: 10.1073/pnas.81.2.456
– ident: e_1_2_6_18_1
  doi: 10.1021/acs.nanolett.5b02309
– ident: e_1_2_6_7_1
  doi: 10.1038/415447a
– ident: e_1_2_6_47_1
  doi: 10.1103/PhysRevE.86.031914
– ident: e_1_2_6_51_1
  doi: 10.1021/ma501308h
– ident: e_1_2_6_34_1
  doi: 10.1083/jcb.128.1.139
– ident: e_1_2_6_42_1
  doi: 10.1103/PhysRevE.65.011802
– ident: e_1_2_6_46_1
  doi: 10.1063/1.4754632
– ident: e_1_2_6_31_1
  doi: 10.1039/C4RA05909C
– ident: e_1_2_6_29_1
  doi: 10.1016/j.polymer.2013.01.010
– ident: e_1_2_6_5_1
– ident: e_1_2_6_19_1
  doi: 10.1073/pnas.0502947102
– ident: e_1_2_6_12_1
  doi: 10.1021/nl048030d
– ident: e_1_2_6_30_1
  doi: 10.1016/j.polymer.2007.10.041
– ident: e_1_2_6_9_1
  doi: 10.1088/0953-8984/15/17/202
– ident: e_1_2_6_28_1
  doi: 10.1039/c2cp43925e
– ident: e_1_2_6_59_1
  doi: 10.1063/1.4737929
– ident: e_1_2_6_4_1
  doi: 10.1021/nl102069z
– ident: e_1_2_6_13_1
  doi: 10.1021/nl903631m
– ident: e_1_2_6_14_1
  doi: 10.1039/b9nr00275h
– ident: e_1_2_6_2_1
  doi: 10.1073/pnas.93.24.13770
– ident: e_1_2_6_15_1
  doi: 10.1063/1.3464333
– ident: e_1_2_6_26_1
  doi: 10.1073/pnas.0611085104
– ident: e_1_2_6_48_1
  doi: 10.1063/1.4815918
– ident: e_1_2_6_52_1
  doi: 10.1103/PhysRevE.91.022113
– ident: e_1_2_6_64_1
  doi: 10.1103/PhysRevE.62.927
SSID ssj0009959
Score 2.256148
Snippet ABSTRACT The translocation time τ of partially charged polymers through a neutral nanopore is calculated using Fokker–Planck equation with adsorbing–adsorbing...
The translocation time τ of partially charged polymers through a neutral nanopore is calculated using Fokker-Planck equation with adsorbing-adsorbing boundary...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 1017
SubjectTerms Boundary conditions
calculation
Chains (polymeric)
computer modeling
Fokker-Planck equation
Mathematical analysis
Monomers
nanopore
partially charged polymer
Polymers
Porosity
statistical mechanics
translocation
Title Theoretical study on the translocation of partially charged polymers through nanopore
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpolb.24359
https://www.proquest.com/docview/1897632178/abstract/
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KQfTioypWqyzoSUibJpt0A160WIr4QlroRUJ2s7lYkmLbQ_31zmySRj0Iegth85pH5pth5xuACy-KtYqFtmztYoLiC2UFypZWLDhXgRvLJKKC_sOjPxzzu4k3qcFV2QuT80OsC27kGeZ_TQ4eyXmnIg2dZVPZdjDaU_ceMekRInqpuKOISKuk-UTU7q-5SZ1Oden3aFRBzK9A1USawQ68lu-YbzB5ay8Xsq0-ftA3_vcjdmG7gKDsOreZPajptAGb_XLyWwM2zLZQNd-H8ajqc2SGiZZlKUPMyBYU4ygQkmJZlrAZ2WA0na6YIV_SMcOnrqgqzopZQCyN0gzhvj6A8eB21B9axSAGS6H_B5bjur4nA1vEvk66BKqksl3P7aFYI8491ZNRgoma8jUtIA60WNlxotFChIeY5xDqaZbqI2AB7wV4VivpYlLOdeQoVI4TCEytBBd-E85LhYSznG8jzJmVnZCEFRphNaFV6iosfG4edgVCKxdTLNGESyP0X-4QPj_d35ij478sPoEth-K62a_bgvrifalPEZUs5Jmxvk82lt8M
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4oxuDFB2pEUTfRk0mh9MX2qESCCmgMJNya7nZ7kbRE4IC_3pltoerBRG9Ns23Teex8M5n9BuDaDSMlI64MU9mYoHhcGr40hRFxx5G-HYk4pIJ-f-B1R87j2B3nvTl0Fibjh1gX3Mgz9H5NDk4F6UbBGjpNJ6JuYbj3N2EL_d3VGdVrwR5FVForok_E7d6andRqFM9-j0cFyPwKVXWs6exlA1VnmqKQWkze6ou5qMuPHwSO__6NfdjNUSi7zczmADZUUoFyezX8rQLbujNUzg5hNCyOOjJNRsvShCFsZHMKcxQLSbcsjdmUzDCcTJZM8y-piOFXl1QYZ_k4IJaESYqIXx3BqHM_bHeNfBaDIXEL8A3Ltj1X-CaPPBU3CVcJadqu3UK5ho7jypYIY8zVpKdoAdGgRdKMYoVGwl2EPcdQStJEnQDznZaPd5UUNubljgotidqxfI7ZFXe4V4WrlUaCaUa5EWTkylZAwgq0sKpQWykryN1uFjQ5oisbsyxehRst9V_eELw89-701elfFl9CuTvs94Lew-DpDHYsCvO6fbcGpfn7Qp0jSJmLC22KnztP4y4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB584OPioypWqy7oSUibZjfpBryotfioVcSCFwnZRy6WpNh60F_v7KZp1IOgtxA2j52Z3flmmP0G4MiPlZaKa8fVFAOUgEsnlK5wFGdMhlSJJDYJ_dtecNln10_-0wycFGdhcn6IacLNrAy7X5sFPlRJoyQNHWYDUffQ24ezMM8C6hmbbj-U5FGGSavg-UTYHkzJSb1G-ex3d1RizK9I1bqazio8Fz-ZV5i81N_Goi4_fvA3_ncWa7AywaDkNDeadZjRaQWWzovWbxVYsHWhcrQB_cfyoCOxVLQkSwmCRjI2Ts54QqNZkiVkaIwwHgzeiWVf0orgV99NWpxMmgGRNE4zxPt6E_qdi8fzS2fSicGRuAGEjkdp4IvQ5SrQSdOgKiFd6tMWijVmzJctEScYqclAmwGGBE1JVyUaTYT7CHq2YC7NUr0NJGStEO9qKShG5UzHnkTleCHH2IozHlThsFBINMwJN6KcWtmLjLAiK6wq1ApdRZNFN4qaHLEVxRiLV-HYCv2XN0T3d90ze7Xzl8EHsHjf7kTdq97NLix7xsfb2t0azI1f3_QeIpSx2LeG-Amx1uHd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+study+on+the+translocation+of+partially+charged+polymers+through+nanopore&rft.jtitle=Journal+of+polymer+science.+Part+B%2C+Polymer+physics&rft.au=Wu%2C+Fan&rft.au=Yang%2C+Xiao&rft.au=Luo%2C+Meng%E2%80%90Bo&rft.date=2017-07-01&rft.issn=0887-6266&rft.eissn=1099-0488&rft.volume=55&rft.issue=13&rft.spage=1017&rft.epage=1025&rft_id=info:doi/10.1002%2Fpolb.24359&rft.externalDBID=10.1002%252Fpolb.24359&rft.externalDocID=POLB24359
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-6266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-6266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-6266&client=summon