Bat algorithm optimised extreme learning machine (Bat‐ELM): A novel approach for daily river water temperature modelling

Here, the capability of the Bat algorithm optimised extreme learning machines ELM (Bat‐ELM) is demonstrated for river water temperature (Tw) modelling in the Orda River, Poland. Results using the multilayer perceptron neural network (MLPNN), the classification and regression Tree (CART) and the mult...

Full description

Saved in:
Bibliographic Details
Published inThe Geographical journal Vol. 189; no. 1; pp. 78 - 89
Main Authors Heddam, Salim, Kim, Sungwon, Danandeh Mehr, Ali, Zounemat‐Kermani, Mohammad, Ptak, Mariusz, Elbeltagi, Ahmed, Malik, Anurag, Tikhamarine, Yazid
Format Journal Article
LanguageEnglish
Published London Blackwell Publishing Ltd 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Here, the capability of the Bat algorithm optimised extreme learning machines ELM (Bat‐ELM) is demonstrated for river water temperature (Tw) modelling in the Orda River, Poland. Results using the multilayer perceptron neural network (MLPNN), the classification and regression Tree (CART) and the multiple linear regression (MLR) models were presented for comparison. The models were developed according to two scenarios: (1) using air temperature (Ta) as input for predicting Tw, and (2) using Ta and the periodicity (i.e., day, month and year number). River Tw calibration and validation results derived from air temperature and the periodicity show its potential application. The Bat‐ELM accurately predicts the Tw and surpassed all other models with coefficient of correlation (R) values ranging within the limits of 0.973 to 0.981, and the Nash‐Sutcliffe efficiency (NSE) values will fall within the interval of 0.947 to 0.963. Findings from this research also highlight the robustness of the Bat‐ELM using the periodicity by enhancing its ability to estimate river Tw. Short New machine learning for better prediction of water temperature using Bat‐ELM model.
AbstractList Here, the capability of the Bat algorithm optimised extreme learning machines ELM (Bat‐ELM) is demonstrated for river water temperature (Tw) modelling in the Orda River, Poland. Results using the multilayer perceptron neural network (MLPNN), the classification and regression Tree (CART) and the multiple linear regression (MLR) models were presented for comparison. The models were developed according to two scenarios: (1) using air temperature (Ta) as input for predicting Tw, and (2) using Ta and the periodicity (i.e., day, month and year number). River Tw calibration and validation results derived from air temperature and the periodicity show its potential application. The Bat‐ELM accurately predicts the Tw and surpassed all other models with coefficient of correlation (R) values ranging within the limits of 0.973 to 0.981, and the Nash‐Sutcliffe efficiency (NSE) values will fall within the interval of 0.947 to 0.963. Findings from this research also highlight the robustness of the Bat‐ELM using the periodicity by enhancing its ability to estimate river Tw. Short New machine learning for better prediction of water temperature using Bat‐ELM model.
Abstract Here, the capability of the Bat algorithm optimised extreme learning machines ELM (Bat‐ELM) is demonstrated for river water temperature ( T w ) modelling in the Orda River, Poland. Results using the multilayer perceptron neural network (MLPNN), the classification and regression Tree (CART) and the multiple linear regression (MLR) models were presented for comparison. The models were developed according to two scenarios: (1) using air temperature ( T a ) as input for predicting T w , and (2) using T a and the periodicity (i.e., day, month and year number). River T w calibration and validation results derived from air temperature and the periodicity show its potential application. The Bat‐ELM accurately predicts the T w and surpassed all other models with coefficient of correlation ( R ) values ranging within the limits of 0.973 to 0.981, and the Nash‐Sutcliffe efficiency (NSE) values will fall within the interval of 0.947 to 0.963. Findings from this research also highlight the robustness of the Bat‐ELM using the periodicity by enhancing its ability to estimate river T w .
Here, the capability of the Bat algorithm optimised extreme learning machines ELM (Bat‐ELM) is demonstrated for river water temperature (Tw) modelling in the Orda River, Poland. Results using the multilayer perceptron neural network (MLPNN), the classification and regression Tree (CART) and the multiple linear regression (MLR) models were presented for comparison. The models were developed according to two scenarios: (1) using air temperature (Ta) as input for predicting Tw, and (2) using Ta and the periodicity (i.e., day, month and year number). River Tw calibration and validation results derived from air temperature and the periodicity show its potential application. The Bat‐ELM accurately predicts the Tw and surpassed all other models with coefficient of correlation (R) values ranging within the limits of 0.973 to 0.981, and the Nash‐Sutcliffe efficiency (NSE) values will fall within the interval of 0.947 to 0.963. Findings from this research also highlight the robustness of the Bat‐ELM using the periodicity by enhancing its ability to estimate river Tw.
Author Heddam, Salim
Zounemat‐Kermani, Mohammad
Malik, Anurag
Tikhamarine, Yazid
Elbeltagi, Ahmed
Kim, Sungwon
Ptak, Mariusz
Danandeh Mehr, Ali
Author_xml – sequence: 1
  givenname: Salim
  orcidid: 0000-0002-8055-8463
  surname: Heddam
  fullname: Heddam, Salim
  email: heddamsalim@yahoo.fr
  organization: Laboratory of Research in Biodiversity Interaction Ecosystem and Biotechnology
– sequence: 2
  givenname: Sungwon
  orcidid: 0000-0002-9371-8884
  surname: Kim
  fullname: Kim, Sungwon
  organization: Dongyang University
– sequence: 3
  givenname: Ali
  orcidid: 0000-0003-2769-106X
  surname: Danandeh Mehr
  fullname: Danandeh Mehr, Ali
  organization: Antalya Bilim University
– sequence: 4
  givenname: Mohammad
  orcidid: 0000-0002-1421-8671
  surname: Zounemat‐Kermani
  fullname: Zounemat‐Kermani, Mohammad
  organization: Shahid Bahonar University of Kerman
– sequence: 5
  givenname: Mariusz
  orcidid: 0000-0003-1225-1686
  surname: Ptak
  fullname: Ptak, Mariusz
  organization: Adam Mickiewicz University
– sequence: 6
  givenname: Ahmed
  orcidid: 0000-0002-5506-9502
  surname: Elbeltagi
  fullname: Elbeltagi, Ahmed
  organization: Mansoura University
– sequence: 7
  givenname: Anurag
  orcidid: 0000-0002-0298-5777
  surname: Malik
  fullname: Malik, Anurag
  organization: Regional Research Station
– sequence: 8
  givenname: Yazid
  orcidid: 0000-0001-6656-5360
  surname: Tikhamarine
  fullname: Tikhamarine, Yazid
  organization: University of Tamanrasset
BookMark eNp9kEFOwzAQRS1UJNrChhNYYgNIKXYcJza7UpUCKuoG1pGbTFpXSRwct6WsOAJn5CS4lDWz-LN5_8_o91CnNjUgdE7JgPq5WYBZDWgYJeIIdWmU8CCSXHZQlxAaBwmT4gT12nZF_Agad9HHnXJYlQtjtVtW2DROV7qFHMO7s1ABLkHZWtcLXKlsqWvAl97x_fk1nj5f3eIhrs0GSqyaxhoP4MJYnCtd7rDVG7B4q5xXB1UDVrm1BVyZHMrSJ56i40KVLZz97T56vR-_jB6C6WzyOBpOg4wRKrzyjElGmJyzOMkkk1lEeBgB4THjc-AEBEloEUaKhSIXEPN5LDLBs5BIQTjro4tDrn_xbQ2tS1dmbWt_Mg2TJJQyIYJ46vpAZda0rYUibayulN2llKT7btN9t-lvtx6mB3irS9j9Q6aT8ezp4PkBTkl-PA
CitedBy_id crossref_primary_10_1016_j_jenvman_2024_120756
crossref_primary_10_1016_j_jwpe_2024_105187
crossref_primary_10_1016_j_ecoinf_2023_102376
crossref_primary_10_1007_s00477_022_02371_3
crossref_primary_10_1016_j_ecolind_2024_111978
crossref_primary_10_1016_j_heliyon_2023_e21351
crossref_primary_10_1007_s00477_023_02657_0
crossref_primary_10_1016_j_scitotenv_2024_171954
Cites_doi 10.1016/j.jhydrol.2009.09.037
10.3390/w11061130
10.1007/s11356‐018‐3650‐2
10.1016/j.jhydrol.2020.125060
10.1029/1998WR900018
10.1007/s12665-019-8202-7
10.7717/peerj.4894
10.3390/w13131782
10.1016/j.jhydrol.2020.124929
10.1007/s40710-019-00385-8
10.1016/j.limno.2005.05.002
10.1111/1752‐1688.12778
10.1029/2019WR024922
10.1016/j.jhydrol.2020.125240
10.1016/j.jhydrol.2020.124809
10.1016/j.scitotenv.2020.139679
10.1016/j.chemosphere.2020.126169
10.1016/j.jhydrol.2019.124435
10.1016/j.jhydrol.2021.127418
10.1155/2020/8206245
10.15446/esrj.v20n2.43199
10.1016/j.jhydrol.2020.125130
10.13031/trans.58.10715
10.1007/978-3-030-02197-9_8
10.1016/j.scitotenv.2020.139729
10.1016/j.jhydrol.2020.124936
10.1002/ecs2.3137
10.1016/j.apgeochem.2012.04.004
10.1016/j.rse.2020.111721
10.1016/0022‐1694
10.1007/s11600‐020‐00480‐7
10.1016/B978-0-323-85597-6.00015-X
10.1007/978-3-030-50930-9_10
10.1016/j.earscirev.2019.103076
10.3390/su12135374
10.1002/lno.11390
10.1016/j.jhydrol.2019.124115
10.3354/cr030079
10.1007/s11356‐019‐04716‐y
10.1007/978-3-642-12538-6_6
10.1016/j.cageo.2013.12.013
10.1038/s43017‐020‐0067‐5
10.1016/j.limno.2005.04.002
10.1016/j.jenvrad.2012.04.006
10.1029/2019WR025316
ContentType Journal Article
Copyright The information, practices and views in this article are those of the author(s) and do not necessarily reflect the opinion of the Royal Geographical Society (with IBG). © 2022 Royal Geographical Society (with the Institute of British Geographers).
2023 Royal Geographical Society (with the Institute of British Geographers)
Copyright_xml – notice: The information, practices and views in this article are those of the author(s) and do not necessarily reflect the opinion of the Royal Geographical Society (with IBG). © 2022 Royal Geographical Society (with the Institute of British Geographers).
– notice: 2023 Royal Geographical Society (with the Institute of British Geographers)
DBID AAYXX
CITATION
8BJ
FQK
JBE
DOI 10.1111/geoj.12478
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList
CrossRef
International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1475-4959
EndPage 89
ExternalDocumentID 10_1111_geoj_12478
GEOJ12478
Genre article
GroupedDBID -ET
-~X
.3N
.4H
.GA
.Y3
0-V
05W
07C
0B8
0R~
10A
1OC
29H
2AX
31~
33P
3R3
3V.
4.4
41~
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
85S
88I
8AF
8FE
8FG
8FH
8G5
8R4
8R5
8UM
930
A04
AABNI
AAESR
AAHHS
AAONW
AAOUF
AASGY
AAXRX
AAYJJ
AAYOK
AAZKR
ABBHK
ABCQN
ABCQX
ABCUV
ABDBF
ABEML
ABJCF
ABJNI
ABLJU
ABPVW
ABSOO
ABTAH
ABUWG
ABXSQ
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHQT
ACIWK
ACNCT
ACPOU
ACSCC
ACXQS
ADACV
ADBBV
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADULT
ADXAS
ADZJE
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFPM
AFFTP
AFGKR
AFKFF
AFKRA
AFPWT
AFRAH
AFZJQ
AGTJU
AHBTC
AIAGR
AIBGX
AIFKG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALUQN
AMBMR
AMYDB
ANHSF
APXXL
ARALO
ASPBG
ASTYK
AS~
ATCPS
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BCR
BCU
BDRZF
BEC
BENPR
BES
BFHJK
BGLVJ
BHPHI
BKOMP
BKSAR
BLC
BMXJE
BNVMJ
BPHCQ
BQESF
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-C
D-D
DCZOG
DPXWK
DR2
DRFUL
DRSSH
DU5
DWQXO
EAD
EAP
EAS
EBS
EDH
EHI
EJD
EMK
EQZMY
ESI
ESX
F00
F01
F5P
FEDTE
FJW
FXEWX
G-S
G.N
G50
GNUQQ
GODZA
GUQSH
HCIFZ
HGD
HGLYW
HMHOC
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPL
JSODD
JST
K48
L6V
L7B
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LK5
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M2Q
M2R
M7R
M7S
MEWTI
MK4
MRFUL
MRSSH
MSFUL
MSSSH
MVM
MXFUL
MXSSH
N04
N06
N9A
NF~
O66
O9-
OIG
P-O
P2P
P2W
P2Y
P4C
PATMY
PCBAR
PEA
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QZG
R.K
R05
RIG
ROL
RWL
RX1
S0X
SA0
SJFOW
SUPJJ
TAE
TN5
TUS
UB1
UHB
V8K
W8V
W99
WBKPD
WH7
WIH
WII
WMRSR
WOHZO
WQZ
WRC
WSUWO
WXSBR
XG1
YCJ
YJ6
YYP
ZCG
ZY4
ZZTAW
~02
~45
~IA
~WP
AAYXX
CITATION
8BJ
FQK
JBE
ID FETCH-LOGICAL-c3018-c35c393039b367c939c40524e05635be50e8071f24a328d8e65b68c85c2098053
IEDL.DBID DR2
ISSN 0016-7398
IngestDate Mon Sep 09 22:40:49 EDT 2024
Fri Aug 23 01:53:45 EDT 2024
Sat Aug 24 01:12:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3018-c35c393039b367c939c40524e05635be50e8071f24a328d8e65b68c85c2098053
ORCID 0000-0002-8055-8463
0000-0002-9371-8884
0000-0002-1421-8671
0000-0003-2769-106X
0000-0003-1225-1686
0000-0002-0298-5777
0000-0002-5506-9502
0000-0001-6656-5360
PQID 2772997080
PQPubID 42292
PageCount 13
ParticipantIDs proquest_journals_2772997080
crossref_primary_10_1111_geoj_12478
wiley_primary_10_1111_geoj_12478_GEOJ12478
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle The Geographical journal
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2015; 58
2019; 6
2019; 55
2019; 11
2010
2020; 241
2020; 582
2020; 588
1970; 10
2020; 249
2020; 585
2020; 12
2020; 587
2020; 11
2020; 201
2009; 378
2014; 64
2021; 13
2018; 6
2020; 2020
2012; 113
2020; 1
2022
2021
2020; 590
2019; 26
1999; 35
2019; 578
2019
2016; 20
2005; 30
2020; 68
2012; 27
2020; 65
2022; 606
2020; 736
2005; 35
2020; 737
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 590
  year: 2020
  article-title: Impacts of cascade reservoirs on Yangtze River water temperature: Assessment and ecological implications
  publication-title: Journal of Hydrology
– start-page: 78
  year: 2019
  end-page: 202
  article-title: Extreme Learning Machine Based Prediction of Daily Water Temperature for Rivers
  publication-title: Environmental Earth Science
– volume: 378
  start-page: 325
  issue: 3–4
  year: 2009
  end-page: 342
  article-title: Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non‐linear dynamic models
  publication-title: Journal of Hydrology
– volume: 585
  year: 2020
  article-title: Forecasting surface water temperature in lakes: A comparison of approaches
  publication-title: Journal of Hydrology
– volume: 30
  start-page: 79
  issue: 1
  year: 2005
  end-page: 82
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Climate Research
– volume: 606
  year: 2022
  article-title: Critical factors for the use of machine learning to predict lake surface water temperature
  publication-title: Journal of Hydrology
– volume: 26
  start-page: 402
  issue: 1
  year: 2019
  end-page: 420
  article-title: Modeling daily water temperature for rivers: Comparison between adaptive neuro‐fuzzy inference systems and artificial neural networks models
  publication-title: Environmental Science and Pollution Research
– volume: 588
  year: 2020
  article-title: Reference rainfall estimating based on optimal input combination and hybrid artificial intelligent model: Hybridization of artificial neural network with grey wolf optimizer algorithm
  publication-title: Journal of Hydrology
– volume: 55
  start-page: 1382
  issue: 6
  year: 2019
  end-page: 1400
  article-title: Stream temperature modeling using functional regression models
  publication-title: JAWRA Journal of the American Water Resources Association
– volume: 736
  year: 2020
  article-title: River temperature research and practice: Recent challenges and emerging opportunities for managing thermal habitat conditions in stream ecosystems
  publication-title: Science of the Total Environment
– volume: 12
  issue: 13
  year: 2020
  article-title: Genetic‐algorithm‐optimized sequential model for water temperature prediction
  publication-title: Sustainability
– volume: 582
  year: 2020
  article-title: Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey wolf optimization (GWO) algorithm
  publication-title: Journal of Hydrology
– volume: 26
  start-page: 12622
  issue: 12
  year: 2019
  end-page: 12630
  article-title: Two hybrid data‐driven models for modeling water‐air temperature relationship in rivers
  publication-title: Environmental Science and Pollution Research
– volume: 2020
  year: 2020
  article-title: Hybridized extreme learning machine model with Salp swarm algorithm: A novel predictive model for hydrological application
  publication-title: Complexity
– volume: 6
  start-page: 789
  issue: 3
  year: 2019
  end-page: 804
  article-title: Modelling of Maximum Daily Water Temperature for Streams: Optimally Pruned Extreme Learning Machine (OPELM) versus Radial Basis Function Neural Networks (RBFNN)
  publication-title: Environmental Processes
– volume: 13
  issue: 13
  year: 2021
  article-title: Developing a novel water quality prediction model for a south African aquaculture farm
  publication-title: Water
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  article-title: River flow forecasting through conceptual models part I‐A discussion of principles
  publication-title: Journal of Hydrology
– volume: 20
  start-page: 1
  issue: 2
  year: 2016
  end-page: 11
  article-title: Water temperature prediction in a subtropical subalpine lake using soft computing techniques
  publication-title: Earth Sciences Research Journal
– volume: 64
  start-page: 136
  year: 2014
  end-page: 151
  article-title: Comparing large number of metaheuristics for artificial neural networks training to predict water temperature in a natural river
  publication-title: Computers & Geosciences
– volume: 68
  start-page: 1433
  year: 2020
  end-page: 1442
  article-title: River/stream water temperature forecasting using artificial intelligence models: A systematic review
  publication-title: Acta Geophysica
– volume: 241
  year: 2020
  article-title: Derivation of consistent, continuous daily river temperature data series by combining remote sensing and water temperature models
  publication-title: Remote Sensing of Environment
– volume: 1
  start-page: 388
  year: 2020
  end-page: 403
  article-title: Global lake responses to climate change
  publication-title: Nature Reviews Earth & Environment
– volume: 58
  start-page: 1763
  year: 2015
  end-page: 1785
  article-title: Hydrologic and water quality models: Performance measures and evaluation criteria
  publication-title: Transactions of the ASABE
– volume: 35
  start-page: 185
  issue: 3
  year: 2005
  end-page: 198
  article-title: Distribution of trace metals in the Odra River system: Water‐suspended matter‐sediments
  publication-title: Limnologica
– volume: 587
  year: 2020
  article-title: Paired air‐water annual temperature patterns reveal hydrogeological controls on stream thermal regimes at watershed to continental scales
  publication-title: Journal of Hydrology
– start-page: 287
  year: 2021
  end-page: 313
– volume: 27
  start-page: 1540
  issue: 8
  year: 2012
  end-page: 1545
  article-title: Multivariate analysis of sediment data from the upper and middle Odra River (Poland)
  publication-title: Applied Geochemistry
– volume: 65
  start-page: 1297
  issue: 6
  year: 2020
  end-page: 1317
  article-title: Long‐term forecast of water temperature and dissolved oxygen profiles in deep lakes using artificial neural networks conjugated with wavelet transform
  publication-title: Limnology and Oceanography
– start-page: 171
  year: 2019
  end-page: 183
– volume: 11
  year: 2019
  article-title: Assessing the predictability of an improved ANFIS model for monthly streamflow using lagged climate indices as predictors
  publication-title: Water
– volume: 201
  year: 2020
  article-title: Impact of deep learning‐based dropout on shallow neural networks applied to stream temperature modelling
  publication-title: Earth‐Science Reviews
– volume: 249
  year: 2020
  article-title: Hybrid decision tree‐based machine learning models for short‐term water quality prediction
  publication-title: Chemosphere
– volume: 578
  year: 2019
  article-title: Forecasting river water temperature time series using a wavelet‐neural network hybrid modelling approach
  publication-title: Journal of Hydrology
– volume: 35
  start-page: 233
  year: 1999
  end-page: 241
  article-title: Evaluating the use of ‘goodness‐of‐fit’ measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resources Research
– volume: 55
  start-page: 9173
  issue: 11
  year: 2019
  end-page: 9190
  article-title: Process‐guided deep learning predictions of lake water temperature
  publication-title: Water Resources Research
– volume: 11
  issue: 7
  year: 2020
  article-title: Comparing models using air and water temperature to forecast an aquatic invasive species response to climate change
  publication-title: Ecosphere
– volume: 55
  start-page: 4688
  issue: 6
  year: 2019
  end-page: 4703
  article-title: Spatial‐temporal variation of Lake surface water temperature and its driving factors in Yunnan‐Guizhou plateau
  publication-title: Water Resources Research
– volume: 587
  year: 2020
  article-title: An integrated framework for prediction of climate change impact on habitat suitability of a river in terms of water temperature, hydrological and hydraulic parameters
  publication-title: Journal of Hydrology
– volume: 737
  year: 2020
  article-title: Water temperature forecasting based on modified artificial neural network methods: Two cases of the Yangtze River
  publication-title: Science of the Total Environment
– volume: 6
  year: 2018
  article-title: Modelling daily water temperature from air temperature for the Missouri River
  publication-title: PeerJ
– volume: 35
  start-page: 123
  issue: 3
  year: 2005
  end-page: 131
  article-title: Flood hazards in the upper and middle Odra River basin‐a short review over the last century
  publication-title: Limnologica
– start-page: 65
  year: 2010
  end-page: 74
– volume: 113
  start-page: 63
  year: 2012
  end-page: 70
  article-title: The inflow of Pu and Pu from the Odra and Pomeranian rivers catchments area to the Baltic Sea
  publication-title: Journal of Environmental Radioactivity
– start-page: 243
  year: 2022
  end-page: 270
– volume: 588
  year: 2020
  article-title: Modelling of daily lake surface water temperature from air temperature: Extremely randomized trees (ERT) versus Air2Water, MARS, M5Tree, RF and MLPNN
  publication-title: Journal of Hydrology
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jhydrol.2009.09.037
– ident: e_1_2_7_4_1
  doi: 10.3390/w11061130
– ident: e_1_2_7_43_1
  doi: 10.1007/s11356‐018‐3650‐2
– ident: e_1_2_7_13_1
  doi: 10.1016/j.jhydrol.2020.125060
– ident: e_1_2_7_11_1
  doi: 10.1029/1998WR900018
– ident: e_1_2_7_42_1
  doi: 10.1007/s12665-019-8202-7
– ident: e_1_2_7_44_1
  doi: 10.7717/peerj.4894
– ident: e_1_2_7_5_1
  doi: 10.3390/w13131782
– ident: e_1_2_7_10_1
  doi: 10.1016/j.jhydrol.2020.124929
– ident: e_1_2_7_41_1
  doi: 10.1007/s40710-019-00385-8
– ident: e_1_2_7_3_1
  doi: 10.1016/j.limno.2005.05.002
– ident: e_1_2_7_2_1
  doi: 10.1111/1752‐1688.12778
– ident: e_1_2_7_21_1
  doi: 10.1029/2019WR024922
– ident: e_1_2_7_32_1
  doi: 10.1016/j.jhydrol.2020.125240
– ident: e_1_2_7_46_1
  doi: 10.1016/j.jhydrol.2020.124809
– ident: e_1_2_7_17_1
  doi: 10.1016/j.scitotenv.2020.139679
– ident: e_1_2_7_12_1
  doi: 10.1016/j.chemosphere.2020.126169
– ident: e_1_2_7_30_1
  doi: 10.1016/j.jhydrol.2019.124435
– ident: e_1_2_7_39_1
  doi: 10.1016/j.jhydrol.2021.127418
– ident: e_1_2_7_38_1
  doi: 10.1155/2020/8206245
– ident: e_1_2_7_26_1
  doi: 10.15446/esrj.v20n2.43199
– ident: e_1_2_7_9_1
  doi: 10.1016/j.jhydrol.2020.125130
– ident: e_1_2_7_14_1
  doi: 10.13031/trans.58.10715
– ident: e_1_2_7_22_1
  doi: 10.1007/978-3-030-02197-9_8
– ident: e_1_2_7_20_1
  doi: 10.1016/j.scitotenv.2020.139729
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jhydrol.2020.124936
– ident: e_1_2_7_31_1
  doi: 10.1002/ecs2.3137
– ident: e_1_2_7_6_1
  doi: 10.1016/j.apgeochem.2012.04.004
– ident: e_1_2_7_29_1
  doi: 10.1016/j.rse.2020.111721
– ident: e_1_2_7_16_1
  doi: 10.1016/0022‐1694
– ident: e_1_2_7_45_1
  doi: 10.1007/s11600‐020‐00480‐7
– ident: e_1_2_7_8_1
  doi: 10.1016/B978-0-323-85597-6.00015-X
– ident: e_1_2_7_35_1
  doi: 10.1007/978-3-030-50930-9_10
– ident: e_1_2_7_18_1
  doi: 10.1016/j.earscirev.2019.103076
– ident: e_1_2_7_27_1
  doi: 10.3390/su12135374
– ident: e_1_2_7_24_1
  doi: 10.1002/lno.11390
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jhydrol.2019.124115
– ident: e_1_2_7_33_1
  doi: 10.3354/cr030079
– ident: e_1_2_7_40_1
  doi: 10.1007/s11356‐019‐04716‐y
– ident: e_1_2_7_37_1
  doi: 10.1007/978-3-642-12538-6_6
– ident: e_1_2_7_19_1
  doi: 10.1016/j.cageo.2013.12.013
– ident: e_1_2_7_34_1
  doi: 10.1038/s43017‐020‐0067‐5
– ident: e_1_2_7_23_1
  doi: 10.1016/j.limno.2005.04.002
– ident: e_1_2_7_28_1
  doi: 10.1016/j.jenvrad.2012.04.006
– ident: e_1_2_7_36_1
  doi: 10.1029/2019WR025316
SSID ssj0000816
Score 2.4208257
Snippet Here, the capability of the Bat algorithm optimised extreme learning machines ELM (Bat‐ELM) is demonstrated for river water temperature (Tw) modelling in the...
Abstract Here, the capability of the Bat algorithm optimised extreme learning machines ELM (Bat‐ELM) is demonstrated for river water temperature ( T w )...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 78
SubjectTerms Air temperature
Algorithms
Artificial neural networks
Bat‐ELM
Calibration
CART
Learning
Machine learning
MLPNN
Modelling
Multilayer perceptrons
Neural networks
Periodicity
Regression analysis
Rivers
Robustness
Water
Water temperature
Title Bat algorithm optimised extreme learning machine (Bat‐ELM): A novel approach for daily river water temperature modelling
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeoj.12478
https://www.proquest.com/docview/2772997080/abstract/
Volume 189
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iRS--xdVVBvSgQmW3bbKJeFFZFfEBouBFSpNmV3F3K2tV9ORP8Df6S5xJW109CHopPSRDm3nkS5j5hrGVFg8TVdfCUyqueWESGE9xSrFCsMy59DWvUe3w8Yk4uAgPL_nlENsqa2FyfojPCzfyDBevycFjfT_g5G2bop_7YYMqfYlJjxDR2QB3lHR9TwnTeI1AyYKblNJ4vqZ-342-IOYgUHU7zd44uyq_MU8wud14yPSGeflB3_jfn5hgYwUEhe3cZibZkO1NsZGiG_r18zR72YkziDvttH-TXXchxaiC1mATwEBO14lQtJpoQ9elYlpYxRnvr2_No-O1TdiGXvpoO1DSlQPiYkjim84z9CkLBJ4Q3_aBSLEKRmdw_XioMH6GXew1z3cPvKJHg2cwNEh8chMo3AeVDkTDqEAZhIB-aBFYBVxbXrMSUUzLD-PAl4m0gmshjeTGrymJEWCWDffSnp1jENaNqsdGWSFQBo4NYi1IsGgJ2_KTClsudRXd5VQcUXmEoXWM3DpWWLVUY1S4433k0xlCNRAdV9i608cvEqL95umhe5v_y-AFNkqt6PP8tCobzvoPdhEBS6aXnGF-AN_C5qU
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTsMwELSgHODCG1GeK8EBkILaJHZtboAKBVqQEEjcosRxC6JtUAkgOPEJfCNfwq6TQuGABJfIB9tSbO96bI1nGFtvcj9W5Ug4SoUlx4897ShOFCsEy5xLN-IlejvcOBW1S__4il_l3Bx6C5PpQ3xeuFFk2HxNAU4X0gNR3jIJBrrrV-QwG8F45_ZEdT6gHiWt8ymhGqfiKZmrkxKR56vt9_3oC2QOQlW71xxMZIaq91aikCgmt9sPabStX34IOP77NybZeI5CYTdbNlNsyHSn2WhuiH79PMNe9sIUwnYr6d2k1x1IMLHggjAxYC6nG0XI3SZa0LFsTAMb2OL99a1ab2zuwC50k0fThr5iOSA0hji8aT9Dj4gg8IQQtweki5WLOoO15KG38bPs8qB6sV9zcpsGR2N2kPjl2lO4FarIExWtPKURBbq-QWzl8cjwkpEIZJquH3qujKURPBJSS67dkpKYBOZYoZt0zTwDv6xVOdTKCIF9YF0vjAR1LJrCNN24yNb6kxXcZWocQf8UQ-MY2HEssqX-PAZ5RN4HLh0jVAUBcpFt2Qn5pYfgsHp2bEsLf6m8ykZrF416UD86PVlkY-RMn9HVllgh7T2YZcQvabRiV-kHXEzqxw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VRWq5AC1FLLR0pPYAlVLt2rHXRlwK3aX_INRKe0FR4jjbFdtNtaSg9sQj8Ix9EsZO0i49VCqXKAd7lHj-PlvjbwDWMhGmup3IQOu4FYQpN4EWrsSKwLIQiiWi5e4OHxzK7eNwty_6M_C-vgtT8kNcH7g5z_Dx2jn4WZpNOfnA5uTnLOyoB_AwlJw5m976OkUepXzjUwdqgg7XqiIndXU8N3P_TUc3GHMaqfpU03sC3-qPLCtMvm-cF8mGubzF3_i_f_EUHlcYFDdLo5mHGTtegLmqHfrJxTO4_BAXGI8G-WRYnJxiTmGFzMGmSJHcnSdi1WtigKe-FtPiG5px9ftPd__g7TvcxHH-046w5itHAsaYxsPRBU5cGQj-IoA7QceKVVE6o2_I427GL8Jxr3v0cTuomjQEhmKDoqcwXFMi1AmXHaO5NoQBWWgJWXGRWNGyimBMxsKYM5UqK0UilVHCsJZWFAKeQ2Ocj-0LwLBtdDs22kpJMmgsjxPpBMtM2oylTVitdRWdlVwcUb2HcesY-XVswlKtxqjyxx8Rc5sI3SF43IR1r487JESfup93_dvL-wxegdkvW71of-dw7xU8cm3py1q1JWgUk3O7TOClSF57G_0LtH7pdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bat+algorithm+optimised+extreme+learning+machine+%28Bat%E2%80%90ELM%29%3A+A+novel+approach+for+daily+river+water+temperature+modelling&rft.jtitle=The+Geographical+journal&rft.au=Heddam%2C+Salim&rft.au=Kim%2C+Sungwon&rft.au=Danandeh+Mehr%2C+Ali&rft.au=Zounemat%E2%80%90Kermani%2C+Mohammad&rft.date=2023-03-01&rft.issn=0016-7398&rft.eissn=1475-4959&rft.volume=189&rft.issue=1&rft.spage=78&rft.epage=89&rft_id=info:doi/10.1111%2Fgeoj.12478&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_geoj_12478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7398&client=summon