Bagged ensembles with tunable parameters
Ensemble learning is a popular classification method where many individual simple learners contribute to a final prediction. Constructing an ensemble of learners has been shown to often improve prediction accuracy over a single learner. Bagging and boosting are the most common ensemble methods, each...
Saved in:
Published in | Computational intelligence Vol. 35; no. 1; pp. 184 - 203 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Blackwell Publishing Ltd
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ensemble learning is a popular classification method where many individual simple learners contribute to a final prediction. Constructing an ensemble of learners has been shown to often improve prediction accuracy over a single learner. Bagging and boosting are the most common ensemble methods, each with distinct advantages. While boosting methods are typically very tunable with numerous parameters, to date, the type of flexibility this allows has been missing for general bagging ensembles. In this paper, we propose a new tunable weighted bagged ensemble methodology, resulting in a very flexible method for classification. We explore the impact tunable weighting has on the votes of each learner in an ensemble and compare the results with pure bagging and the best known bagged ensemble method, namely, the random forest. |
---|---|
AbstractList | Ensemble learning is a popular classification method where many individual simple learners contribute to a final prediction. Constructing an ensemble of learners has been shown to often improve prediction accuracy over a single learner. Bagging and boosting are the most common ensemble methods, each with distinct advantages. While boosting methods are typically very tunable with numerous parameters, to date, the type of flexibility this allows has been missing for general bagging ensembles. In this paper, we propose a new tunable weighted bagged ensemble methodology, resulting in a very flexible method for classification. We explore the impact tunable weighting has on the votes of each learner in an ensemble and compare the results with pure bagging and the best known bagged ensemble method, namely, the random forest. Abstract Ensemble learning is a popular classification method where many individual simple learners contribute to a final prediction. Constructing an ensemble of learners has been shown to often improve prediction accuracy over a single learner. Bagging and boosting are the most common ensemble methods, each with distinct advantages. While boosting methods are typically very tunable with numerous parameters, to date, the type of flexibility this allows has been missing for general bagging ensembles. In this paper, we propose a new tunable weighted bagged ensemble methodology, resulting in a very flexible method for classification. We explore the impact tunable weighting has on the votes of each learner in an ensemble and compare the results with pure bagging and the best known bagged ensemble method, namely, the random forest. |
Author | Pham, Hieu Olafsson, Sigurdur |
Author_xml | – sequence: 1 givenname: Hieu orcidid: 0000-0001-7704-5053 surname: Pham fullname: Pham, Hieu email: htpham@iastate.edu organization: Iowa State University – sequence: 2 givenname: Sigurdur surname: Olafsson fullname: Olafsson, Sigurdur organization: Iowa State University |
BookMark | eNp9kMFKw0AQhhepYFu9-AQBLyKkzuxuks1RS9VCsRc9L5vNpKa0Sd1NKH17t8azc5n54ZsZ-CZs1LQNMXaLMMNQj7atmxlyzNUFG6NMs1ilEkZsDIrLOMtFcsUm3m8BAIVUY3b_bDYbKiNqPO2LHfnoWHdfUdc3JqToYJzZU0fOX7PLyuw83fz1Kft8WXzM3-LV-nU5f1rFVgCqWJYpcYsSOUBRQVpwyhNrU24yacBYrjjPBVZhVIajyAuRZiqRZSkCQkZM2d1w9-Da7558p7dt75rwUnPMpADgeRKoh4GyrvXeUaUPrt4bd9II-mxCn03oXxMBxgE-1js6_UPq-Xr5Puz8ACZMYHY |
CitedBy_id | crossref_primary_10_1111_coin_12315 crossref_primary_10_1016_j_scitotenv_2021_152880 crossref_primary_10_4018_IJISP_2022010112 crossref_primary_10_1109_ACCESS_2021_3077860 crossref_primary_10_1007_s11219_022_09612_2 crossref_primary_10_3390_f14010107 crossref_primary_10_1109_ACCESS_2021_3062763 crossref_primary_10_1080_17509653_2019_1633965 crossref_primary_10_1016_j_patcog_2020_107406 crossref_primary_10_3390_electronics9010099 crossref_primary_10_3390_rs13142678 crossref_primary_10_1016_j_mlwa_2022_100251 crossref_primary_10_3390_pr11030734 crossref_primary_10_3390_agronomy13051297 crossref_primary_10_1016_j_compag_2022_107289 crossref_primary_10_1093_jcde_qwad071 crossref_primary_10_1002_cpe_6566 crossref_primary_10_1109_ACCESS_2022_3185129 crossref_primary_10_1007_s11042_021_11319_8 crossref_primary_10_1109_ACCESS_2021_3133107 crossref_primary_10_3389_fpls_2020_01120 crossref_primary_10_1007_s11771_021_4730_x crossref_primary_10_3389_fsufs_2024_1334421 crossref_primary_10_1088_1748_9326_ab5268 crossref_primary_10_32604_cmc_2022_019125 crossref_primary_10_1142_S021759082048001X |
Cites_doi | 10.1023/A:1010933404324 10.1016/j.neunet.2014.09.003 10.1007/978-3-642-15883-4_11 10.1002/sam.11196 10.1007/3-540-45014-9_1 10.1016/j.patcog.2009.05.010 10.1007/s10844-017-0446-7 10.1016/S0031-3203(02)00121-8 10.1109/TIT.1967.1053964 10.1002/sam.10061 10.1111/j.2517-6161.1958.tb00292.x 10.1007/978-3-540-74690-4_33 10.1016/j.csda.2007.06.012 10.1007/978-3-642-31537-4_13 10.1214/ss/1009212519 10.1109/ICMCS.2014.6911187 10.1007/BF00058655 10.1057/s41273-017-0063-z 10.1007/978-3-319-19369-4_4 10.1016/j.neucom.2017.08.035 10.1007/978-0-387-21579-2_9 10.1037/h0042519 10.1016/S0004-3702(02)00190-X 10.1007/11494683_32 10.1007/BF00994018 10.5267/j.dsl.2015.7.001 10.32614/CRAN.package.titanic 10.1609/aaai.v29i1.9634 10.1109/TSMCC.2011.2161285 10.1016/j.ijforecast.2014.12.001 10.1111/coin.12070 10.1109/ICEBE.2010.99 |
ContentType | Journal Article |
Copyright | 2018 Wiley Periodicals, Inc. 2019 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. – notice: 2019 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1111/coin.12198 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1467-8640 |
EndPage | 203 |
ExternalDocumentID | 10_1111_coin_12198 COIN12198 |
Genre | article |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOD ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 UCJ VH1 W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~WT AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3018-4d6e2c141200bf06b2e95cc62a74a0ac2822931f0ac8a2139b367854dd32a7ea3 |
IEDL.DBID | DR2 |
ISSN | 0824-7935 |
IngestDate | Thu Oct 10 19:48:12 EDT 2024 Fri Aug 23 05:14:28 EDT 2024 Sat Aug 24 00:44:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3018-4d6e2c141200bf06b2e95cc62a74a0ac2822931f0ac8a2139b367854dd32a7ea3 |
ORCID | 0000-0001-7704-5053 |
PQID | 2174300295 |
PQPubID | 34323 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2174300295 crossref_primary_10_1111_coin_12198 wiley_primary_10_1111_coin_12198_COIN12198 |
PublicationCentury | 2000 |
PublicationDate | February 2019 2019-02-00 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Computational intelligence |
PublicationYear | 2019 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2013; 3 2011 2010 2006; 16 2015; 31 2016; 32 2003; 36 2002; 137 2007 2003; 171 1996 2000; 1857 2005 2012; 7376 1991 2007; 52 2001; 45 2013; 6 1995; 20 2016; 5 2010; 43 2018; 275 2010; 6322 2001 2015; 61 1999; 14 1958; 20 2019 1958; 65 1985 2017 1967; 13 2015 1984; 19 2018; 50 2014 2013 1996; 24 2009; 2 2012; 42 Pham H (e_1_2_5_22_1) 2019 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_43_1 e_1_2_5_29_1 Dop H (e_1_2_5_7_1) 1991 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 Hsu KW (e_1_2_5_28_1) 2013; 3 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 Breiman L (e_1_2_5_36_1) 1984 e_1_2_5_30_1 e_1_2_5_31_1 Buja A (e_1_2_5_10_1) 2006; 16 |
References_xml | – volume: 7376 start-page: 154 year: 2012 end-page: 168 – year: 2011 – year: 1985 – volume: 5 start-page: 157 issue: 1 year: 2016 end-page: 168 article-title: Solving group scheduling problem in no‐wait flexible flowshop with random machine breakdown publication-title: Decis Sci Lett – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Mach Learn – volume: 31 start-page: 943 issue: 3 year: 2015 end-page: 951 article-title: Limitations of ensemble Bayesian model averaging for forecasting social science problems publication-title: Int J Forecast – start-page: 1 year: 2017 end-page: 14 article-title: A hybrid simulation modeling framework for regional food hubs publication-title: J Simul – volume: 3 start-page: 560 issue: 5 year: 2013 end-page: 566 article-title: Weight‐adjusted bagging of classification algorithms sensitive to missing values publication-title: Int J Inf Educ Technol – volume: 6322 start-page: 162 year: 2010 end-page: 177 – start-page: 316 year: 2005 end-page: 325 – year: 2007 – year: 2001 – volume: 14 start-page: 382 issue: 4 year: 1999 end-page: 417 article-title: Bayesian model averaging: a tutorial publication-title: Stat Sci – volume: 137 start-page: 239 issue: 1‐2 year: 2002 end-page: 263 article-title: Ensembling neural networks: many could be better than all publication-title: Artif Intell – volume: 6 start-page: 496 issue: 6 year: 2013 end-page: 505 article-title: A weighted random forests approach to improve predictive performance publication-title: Stat Anal Data Min – year: 1996 – volume: 50 start-page: 97 issue: 1 year: 2018 end-page: 127 article-title: Multi‐class and feature selection extensions of roughly balanced bagging for imbalanced data publication-title: J Intell Inf Syst – volume: 171 start-page: 149 year: 2003 end-page: 171 – volume: 2 start-page: 412 issue: 5‐6 year: 2009 end-page: 426 article-title: Roughly balanced bagging for imbalanced data publication-title: Stat Anal Data Min – year: 2014 – volume: 65 start-page: 386 issue: 6 year: 1958 end-page: 408 article-title: The perceptron: a probabilistic model for information storage and organization in the brain publication-title: Psychol Rev – year: 2010 – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 article-title: Support‐vector networks publication-title: Mach Learn – volume: 61 start-page: 85 year: 2015 end-page: 117 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw – volume: 16 start-page: 323 issue: 2 year: 2006 end-page: 351 article-title: Observations on bagging publication-title: Stat Sin – volume: 36 start-page: 1291 issue: 6 year: 2003 end-page: 1302 article-title: Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets publication-title: Pattern Recogn – volume: 43 start-page: 143 issue: 1 year: 2010 end-page: 152 article-title: Out‐of‐bag estimation of the optimal sample size in bagging publication-title: Pattern Recogn – volume: 20 start-page: 215 issue: 2 year: 1958 end-page: 242 article-title: The regression analysis of binary sequences publication-title: J R Stat Soc Ser B Stat Methodol – volume: 275 start-page: 330 year: 2018 end-page: 340 article-title: A simple plug‐in bagging ensemble based on threshold‐moving for classifying binary and multiclass imbalanced data publication-title: Neurocomputing – volume: 42 start-page: 463 issue: 4 year: 2012 end-page: 484 article-title: A review on ensembles for the class imbalance problem: bagging‐, boosting‐, and hybrid‐based approaches publication-title: IEEE Trans Syst Man Cybern Part C Appl Rev – volume: 13 start-page: 21 issue: 1 year: 1967 end-page: 27 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans Inf Theory – year: 2019 article-title: On Cesaro averages for weighted trees in the random forest publication-title: J Classif – start-page: 36 year: 2015 end-page: 48 – volume: 1857 start-page: 1 year: 2000 end-page: 15 – year: 1991 – volume: 24 start-page: 123 issue: 2 year: 1996 end-page: 140 article-title: Bagging predictors publication-title: Mach Learn – volume: 19 year: 1984 – volume: 52 start-page: 362 issue: 1 year: 2007 end-page: 368 article-title: Trimmed bagging publication-title: Comput Stat Data Anal – year: 2015 – volume: 32 start-page: 615 issue: 4 year: 2016 end-page: 645 article-title: A multicriteria weighted vote‐based classifier ensemble for heart disease prediction publication-title: Comput Intell – year: 2013 – ident: e_1_2_5_2_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_5_13_1 doi: 10.1016/j.neunet.2014.09.003 – ident: e_1_2_5_20_1 doi: 10.1007/978-3-642-15883-4_11 – ident: e_1_2_5_27_1 doi: 10.1002/sam.11196 – ident: e_1_2_5_29_1 – ident: e_1_2_5_4_1 doi: 10.1007/3-540-45014-9_1 – ident: e_1_2_5_6_1 doi: 10.1016/j.patcog.2009.05.010 – ident: e_1_2_5_16_1 doi: 10.1007/s10844-017-0446-7 – ident: e_1_2_5_18_1 doi: 10.1016/S0031-3203(02)00121-8 – ident: e_1_2_5_37_1 – ident: e_1_2_5_38_1 doi: 10.1109/TIT.1967.1053964 – ident: e_1_2_5_15_1 doi: 10.1002/sam.10061 – volume: 16 start-page: 323 issue: 2 year: 2006 ident: e_1_2_5_10_1 article-title: Observations on bagging publication-title: Stat Sin contributor: fullname: Buja A – ident: e_1_2_5_42_1 – ident: e_1_2_5_41_1 doi: 10.1111/j.2517-6161.1958.tb00292.x – ident: e_1_2_5_11_1 doi: 10.1007/978-3-540-74690-4_33 – ident: e_1_2_5_19_1 doi: 10.1016/j.csda.2007.06.012 – ident: e_1_2_5_5_1 doi: 10.1007/978-3-642-31537-4_13 – ident: e_1_2_5_32_1 doi: 10.1214/ss/1009212519 – ident: e_1_2_5_30_1 – ident: e_1_2_5_24_1 doi: 10.1109/ICMCS.2014.6911187 – ident: e_1_2_5_9_1 doi: 10.1007/BF00058655 – ident: e_1_2_5_23_1 doi: 10.1057/s41273-017-0063-z – ident: e_1_2_5_26_1 doi: 10.1007/978-3-319-19369-4_4 – volume-title: Classification and Regression Trees year: 1984 ident: e_1_2_5_36_1 contributor: fullname: Breiman L – ident: e_1_2_5_17_1 doi: 10.1016/j.neucom.2017.08.035 – volume: 3 start-page: 560 issue: 5 year: 2013 ident: e_1_2_5_28_1 article-title: Weight‐adjusted bagging of classification algorithms sensitive to missing values publication-title: Int J Inf Educ Technol contributor: fullname: Hsu KW – volume-title: Air Pollution Modeling and Its Application VIII year: 1991 ident: e_1_2_5_7_1 contributor: fullname: Dop H – year: 2019 ident: e_1_2_5_22_1 article-title: On Cesaro averages for weighted trees in the random forest publication-title: J Classif contributor: fullname: Pham H – ident: e_1_2_5_12_1 doi: 10.1007/978-0-387-21579-2_9 – ident: e_1_2_5_40_1 doi: 10.1037/h0042519 – ident: e_1_2_5_3_1 doi: 10.1016/S0004-3702(02)00190-X – ident: e_1_2_5_21_1 – ident: e_1_2_5_35_1 doi: 10.1007/11494683_32 – ident: e_1_2_5_39_1 doi: 10.1007/BF00994018 – ident: e_1_2_5_31_1 doi: 10.5267/j.dsl.2015.7.001 – ident: e_1_2_5_43_1 doi: 10.32614/CRAN.package.titanic – ident: e_1_2_5_34_1 doi: 10.1609/aaai.v29i1.9634 – ident: e_1_2_5_14_1 doi: 10.1109/TSMCC.2011.2161285 – ident: e_1_2_5_33_1 doi: 10.1016/j.ijforecast.2014.12.001 – ident: e_1_2_5_8_1 doi: 10.1111/coin.12070 – ident: e_1_2_5_25_1 doi: 10.1109/ICEBE.2010.99 |
SSID | ssj0001348 |
Score | 2.3978083 |
Snippet | Ensemble learning is a popular classification method where many individual simple learners contribute to a final prediction. Constructing an ensemble of... Abstract Ensemble learning is a popular classification method where many individual simple learners contribute to a final prediction. Constructing an ensemble... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 184 |
SubjectTerms | Bagging bias‐variance tradeoff Classification ensemble learning Parameters |
Title | Bagged ensembles with tunable parameters |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcoin.12198 https://www.proquest.com/docview/2174300295 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-Mnbw4P3E6paAHETqaJmlT8KLTMQUniINdpCRtOkTXiesu_vXmpa2bHgS95ZCWvvB-fR957_cATjyRBb7GvJsQ3GWSRK7gKnVTvGWSMgsJwebku2EwGLHbMR834LzuhSn5Ib4SbogM-79GgEs1XwF5MnvOkRshwk5fQkOs57p6WHJHEWpHZxkTx1yjhLziJsUynuWj363R0sVcdVStpem34Kn-xrLA5KW7KFQ3-fhB3_hfITZgvXJBnYtSZzahofMtaNXjHZwK7dtweiknE506JtDVU_Wq5w4mbZ1iYdutHCQNn2IxzXwHRv3rx97ArQYruInBs3BZGmg_IYwYiKjMC5SvI54kgS9DJj2ZYGlpRElmlkL6xkdU1Ng0ztKUmi1a0l1o5rNc74FDMSRRWnhcEqaliFJKGdeKZSZS1KFqw3F9wPFbyZ8R13EHCh9b4dvQqc8-rjA0j22whLeGvA1n9hB_eUPcu78Z2tX-XzYfwJrxgKKyDLsDzeJ9oQ-Nl1GoI6tNn7yyy4E |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_oPOjF-YnTqQU9iFBZm6RLjzodm24TZIPdStKmQ3Sd2O7iX29e2rrpQdBbDmnhPfLL-8h7vwdw3uCx5yrMu3HObCoc3-ZMRnaEr0xCxE3Hwebk_sDrjOj9mI2L2hzshcn5Ib4SbogMc18jwDEhvYTycPacIDmCz1dhTeOd4OSG26cFe5RDzPAsbeSorY8hK9hJsZBn8e13e7RwMpddVWNr2tV8oGpqKAqxxOTlap7Jq_DjB4Hjv8XYgs3CC7Wu82OzDSsq2YFqOeHBKgC_Cxc3YjJRkaVjXTWVryq1MG9rZXPTcWUhb_gU62nSPRi174atjl3MVrBDDWlu08hTbuhQR6NExg1PuspnYei5oklFQ4RYXeoTJ9ZLLlztJkqizRqjUUT0FiXIPlSSWaIOwCIYlUjFG0w4VAnuR4RQpiSNdbComrIGZ6WGg7ecQiMoQw8UPjDC16BeKj8oYJQGJl7Ch0NWg0ujxV_-ELQeuwOzOvzL5lNY7wz7vaDXHTwcwYZ2iPy8KrsOlex9ro6105HJE3O0PgGBK8-Z |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7MCeLF-ROnUwt6EKGyNEmXghedjs0fU8TBLlKSJh2i64brLv71JmnrpgdBbzmkpS-8r-97ycv3AI7qLPY9ZfbdGKMu4ShwGRXSleaUifO4gZC5nHzX9ds9ct2n_RKcFXdhMn2Irw03gwz7vzYAH8t4DuTR6CUx2ggBW4BF4mvqayjR40w8CmHbO0vHOOJqL6S5OKmp45k9-z0czTjmPFO1oaZVgefiI7MKk9fTaSpOo48f-o3_tWIVVnIO6pxnTrMGJZWsQ6Xo7-DkcN-A4ws-GCjp6ExXDcWbmjhm19ZJp_a-lWNUw4emmmayCb3W1VOz7eadFdxIA5q5RPrKixBBGiMirvvCUwGNIt_jDcLrPDK1pQFGsR4y7mmSKLAOapRIifUUxfEWlJNRorbBwSYnEYrVKUdEcRZIjAlVgsQ6VVQNUYXDYoHDcSagERaJhzE-tMZXoVasfZiDaBLabMkcG9IqnNhF_OUNYfO-07Wjnb9MPoClh8tWeNvp3uzCsmZDQVaSXYNy-j5Ve5pxpGLfOtYnO6XOSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bagged+ensembles+with+tunable+parameters&rft.jtitle=Computational+intelligence&rft.au=Pham%2C+Hieu&rft.au=Olafsson%2C+Sigurdur&rft.date=2019-02-01&rft.issn=0824-7935&rft.eissn=1467-8640&rft.volume=35&rft.issue=1&rft.spage=184&rft.epage=203&rft_id=info:doi/10.1111%2Fcoin.12198&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_coin_12198 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0824-7935&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0824-7935&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0824-7935&client=summon |