Bagged ensembles with tunable parameters

Ensemble learning is a popular classification method where many individual simple learners contribute to a final prediction. Constructing an ensemble of learners has been shown to often improve prediction accuracy over a single learner. Bagging and boosting are the most common ensemble methods, each...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence Vol. 35; no. 1; pp. 184 - 203
Main Authors Pham, Hieu, Olafsson, Sigurdur
Format Journal Article
LanguageEnglish
Published Hoboken Blackwell Publishing Ltd 01.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ensemble learning is a popular classification method where many individual simple learners contribute to a final prediction. Constructing an ensemble of learners has been shown to often improve prediction accuracy over a single learner. Bagging and boosting are the most common ensemble methods, each with distinct advantages. While boosting methods are typically very tunable with numerous parameters, to date, the type of flexibility this allows has been missing for general bagging ensembles. In this paper, we propose a new tunable weighted bagged ensemble methodology, resulting in a very flexible method for classification. We explore the impact tunable weighting has on the votes of each learner in an ensemble and compare the results with pure bagging and the best known bagged ensemble method, namely, the random forest.
AbstractList Ensemble learning is a popular classification method where many individual simple learners contribute to a final prediction. Constructing an ensemble of learners has been shown to often improve prediction accuracy over a single learner. Bagging and boosting are the most common ensemble methods, each with distinct advantages. While boosting methods are typically very tunable with numerous parameters, to date, the type of flexibility this allows has been missing for general bagging ensembles. In this paper, we propose a new tunable weighted bagged ensemble methodology, resulting in a very flexible method for classification. We explore the impact tunable weighting has on the votes of each learner in an ensemble and compare the results with pure bagging and the best known bagged ensemble method, namely, the random forest.
Abstract Ensemble learning is a popular classification method where many individual simple learners contribute to a final prediction. Constructing an ensemble of learners has been shown to often improve prediction accuracy over a single learner. Bagging and boosting are the most common ensemble methods, each with distinct advantages. While boosting methods are typically very tunable with numerous parameters, to date, the type of flexibility this allows has been missing for general bagging ensembles. In this paper, we propose a new tunable weighted bagged ensemble methodology, resulting in a very flexible method for classification. We explore the impact tunable weighting has on the votes of each learner in an ensemble and compare the results with pure bagging and the best known bagged ensemble method, namely, the random forest.
Author Pham, Hieu
Olafsson, Sigurdur
Author_xml – sequence: 1
  givenname: Hieu
  orcidid: 0000-0001-7704-5053
  surname: Pham
  fullname: Pham, Hieu
  email: htpham@iastate.edu
  organization: Iowa State University
– sequence: 2
  givenname: Sigurdur
  surname: Olafsson
  fullname: Olafsson, Sigurdur
  organization: Iowa State University
BookMark eNp9kMFKw0AQhhepYFu9-AQBLyKkzuxuks1RS9VCsRc9L5vNpKa0Sd1NKH17t8azc5n54ZsZ-CZs1LQNMXaLMMNQj7atmxlyzNUFG6NMs1ilEkZsDIrLOMtFcsUm3m8BAIVUY3b_bDYbKiNqPO2LHfnoWHdfUdc3JqToYJzZU0fOX7PLyuw83fz1Kft8WXzM3-LV-nU5f1rFVgCqWJYpcYsSOUBRQVpwyhNrU24yacBYrjjPBVZhVIajyAuRZiqRZSkCQkZM2d1w9-Da7558p7dt75rwUnPMpADgeRKoh4GyrvXeUaUPrt4bd9II-mxCn03oXxMBxgE-1js6_UPq-Xr5Puz8ACZMYHY
CitedBy_id crossref_primary_10_1111_coin_12315
crossref_primary_10_1016_j_scitotenv_2021_152880
crossref_primary_10_4018_IJISP_2022010112
crossref_primary_10_1109_ACCESS_2021_3077860
crossref_primary_10_1007_s11219_022_09612_2
crossref_primary_10_3390_f14010107
crossref_primary_10_1109_ACCESS_2021_3062763
crossref_primary_10_1080_17509653_2019_1633965
crossref_primary_10_1016_j_patcog_2020_107406
crossref_primary_10_3390_electronics9010099
crossref_primary_10_3390_rs13142678
crossref_primary_10_1016_j_mlwa_2022_100251
crossref_primary_10_3390_pr11030734
crossref_primary_10_3390_agronomy13051297
crossref_primary_10_1016_j_compag_2022_107289
crossref_primary_10_1093_jcde_qwad071
crossref_primary_10_1002_cpe_6566
crossref_primary_10_1109_ACCESS_2022_3185129
crossref_primary_10_1007_s11042_021_11319_8
crossref_primary_10_1109_ACCESS_2021_3133107
crossref_primary_10_3389_fpls_2020_01120
crossref_primary_10_1007_s11771_021_4730_x
crossref_primary_10_3389_fsufs_2024_1334421
crossref_primary_10_1088_1748_9326_ab5268
crossref_primary_10_32604_cmc_2022_019125
crossref_primary_10_1142_S021759082048001X
Cites_doi 10.1023/A:1010933404324
10.1016/j.neunet.2014.09.003
10.1007/978-3-642-15883-4_11
10.1002/sam.11196
10.1007/3-540-45014-9_1
10.1016/j.patcog.2009.05.010
10.1007/s10844-017-0446-7
10.1016/S0031-3203(02)00121-8
10.1109/TIT.1967.1053964
10.1002/sam.10061
10.1111/j.2517-6161.1958.tb00292.x
10.1007/978-3-540-74690-4_33
10.1016/j.csda.2007.06.012
10.1007/978-3-642-31537-4_13
10.1214/ss/1009212519
10.1109/ICMCS.2014.6911187
10.1007/BF00058655
10.1057/s41273-017-0063-z
10.1007/978-3-319-19369-4_4
10.1016/j.neucom.2017.08.035
10.1007/978-0-387-21579-2_9
10.1037/h0042519
10.1016/S0004-3702(02)00190-X
10.1007/11494683_32
10.1007/BF00994018
10.5267/j.dsl.2015.7.001
10.32614/CRAN.package.titanic
10.1609/aaai.v29i1.9634
10.1109/TSMCC.2011.2161285
10.1016/j.ijforecast.2014.12.001
10.1111/coin.12070
10.1109/ICEBE.2010.99
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
– notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/coin.12198
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1467-8640
EndPage 203
ExternalDocumentID 10_1111_coin_12198
COIN12198
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOD
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
UCJ
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~WT
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3018-4d6e2c141200bf06b2e95cc62a74a0ac2822931f0ac8a2139b367854dd32a7ea3
IEDL.DBID DR2
ISSN 0824-7935
IngestDate Thu Oct 10 19:48:12 EDT 2024
Fri Aug 23 05:14:28 EDT 2024
Sat Aug 24 00:44:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3018-4d6e2c141200bf06b2e95cc62a74a0ac2822931f0ac8a2139b367854dd32a7ea3
ORCID 0000-0001-7704-5053
PQID 2174300295
PQPubID 34323
PageCount 20
ParticipantIDs proquest_journals_2174300295
crossref_primary_10_1111_coin_12198
wiley_primary_10_1111_coin_12198_COIN12198
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computational intelligence
PublicationYear 2019
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2013; 3
2011
2010
2006; 16
2015; 31
2016; 32
2003; 36
2002; 137
2007
2003; 171
1996
2000; 1857
2005
2012; 7376
1991
2007; 52
2001; 45
2013; 6
1995; 20
2016; 5
2010; 43
2018; 275
2010; 6322
2001
2015; 61
1999; 14
1958; 20
2019
1958; 65
1985
2017
1967; 13
2015
1984; 19
2018; 50
2014
2013
1996; 24
2009; 2
2012; 42
Pham H (e_1_2_5_22_1) 2019
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_43_1
e_1_2_5_29_1
Dop H (e_1_2_5_7_1) 1991
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
Hsu KW (e_1_2_5_28_1) 2013; 3
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Breiman L (e_1_2_5_36_1) 1984
e_1_2_5_30_1
e_1_2_5_31_1
Buja A (e_1_2_5_10_1) 2006; 16
References_xml – volume: 7376
  start-page: 154
  year: 2012
  end-page: 168
– year: 2011
– year: 1985
– volume: 5
  start-page: 157
  issue: 1
  year: 2016
  end-page: 168
  article-title: Solving group scheduling problem in no‐wait flexible flowshop with random machine breakdown
  publication-title: Decis Sci Lett
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach Learn
– volume: 31
  start-page: 943
  issue: 3
  year: 2015
  end-page: 951
  article-title: Limitations of ensemble Bayesian model averaging for forecasting social science problems
  publication-title: Int J Forecast
– start-page: 1
  year: 2017
  end-page: 14
  article-title: A hybrid simulation modeling framework for regional food hubs
  publication-title: J Simul
– volume: 3
  start-page: 560
  issue: 5
  year: 2013
  end-page: 566
  article-title: Weight‐adjusted bagging of classification algorithms sensitive to missing values
  publication-title: Int J Inf Educ Technol
– volume: 6322
  start-page: 162
  year: 2010
  end-page: 177
– start-page: 316
  year: 2005
  end-page: 325
– year: 2007
– year: 2001
– volume: 14
  start-page: 382
  issue: 4
  year: 1999
  end-page: 417
  article-title: Bayesian model averaging: a tutorial
  publication-title: Stat Sci
– volume: 137
  start-page: 239
  issue: 1‐2
  year: 2002
  end-page: 263
  article-title: Ensembling neural networks: many could be better than all
  publication-title: Artif Intell
– volume: 6
  start-page: 496
  issue: 6
  year: 2013
  end-page: 505
  article-title: A weighted random forests approach to improve predictive performance
  publication-title: Stat Anal Data Min
– year: 1996
– volume: 50
  start-page: 97
  issue: 1
  year: 2018
  end-page: 127
  article-title: Multi‐class and feature selection extensions of roughly balanced bagging for imbalanced data
  publication-title: J Intell Inf Syst
– volume: 171
  start-page: 149
  year: 2003
  end-page: 171
– volume: 2
  start-page: 412
  issue: 5‐6
  year: 2009
  end-page: 426
  article-title: Roughly balanced bagging for imbalanced data
  publication-title: Stat Anal Data Min
– year: 2014
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  end-page: 408
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol Rev
– year: 2010
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  article-title: Support‐vector networks
  publication-title: Mach Learn
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw
– volume: 16
  start-page: 323
  issue: 2
  year: 2006
  end-page: 351
  article-title: Observations on bagging
  publication-title: Stat Sin
– volume: 36
  start-page: 1291
  issue: 6
  year: 2003
  end-page: 1302
  article-title: Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets
  publication-title: Pattern Recogn
– volume: 43
  start-page: 143
  issue: 1
  year: 2010
  end-page: 152
  article-title: Out‐of‐bag estimation of the optimal sample size in bagging
  publication-title: Pattern Recogn
– volume: 20
  start-page: 215
  issue: 2
  year: 1958
  end-page: 242
  article-title: The regression analysis of binary sequences
  publication-title: J R Stat Soc Ser B Stat Methodol
– volume: 275
  start-page: 330
  year: 2018
  end-page: 340
  article-title: A simple plug‐in bagging ensemble based on threshold‐moving for classifying binary and multiclass imbalanced data
  publication-title: Neurocomputing
– volume: 42
  start-page: 463
  issue: 4
  year: 2012
  end-page: 484
  article-title: A review on ensembles for the class imbalance problem: bagging‐, boosting‐, and hybrid‐based approaches
  publication-title: IEEE Trans Syst Man Cybern Part C Appl Rev
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  end-page: 27
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans Inf Theory
– year: 2019
  article-title: On Cesaro averages for weighted trees in the random forest
  publication-title: J Classif
– start-page: 36
  year: 2015
  end-page: 48
– volume: 1857
  start-page: 1
  year: 2000
  end-page: 15
– year: 1991
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  end-page: 140
  article-title: Bagging predictors
  publication-title: Mach Learn
– volume: 19
  year: 1984
– volume: 52
  start-page: 362
  issue: 1
  year: 2007
  end-page: 368
  article-title: Trimmed bagging
  publication-title: Comput Stat Data Anal
– year: 2015
– volume: 32
  start-page: 615
  issue: 4
  year: 2016
  end-page: 645
  article-title: A multicriteria weighted vote‐based classifier ensemble for heart disease prediction
  publication-title: Comput Intell
– year: 2013
– ident: e_1_2_5_2_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_5_13_1
  doi: 10.1016/j.neunet.2014.09.003
– ident: e_1_2_5_20_1
  doi: 10.1007/978-3-642-15883-4_11
– ident: e_1_2_5_27_1
  doi: 10.1002/sam.11196
– ident: e_1_2_5_29_1
– ident: e_1_2_5_4_1
  doi: 10.1007/3-540-45014-9_1
– ident: e_1_2_5_6_1
  doi: 10.1016/j.patcog.2009.05.010
– ident: e_1_2_5_16_1
  doi: 10.1007/s10844-017-0446-7
– ident: e_1_2_5_18_1
  doi: 10.1016/S0031-3203(02)00121-8
– ident: e_1_2_5_37_1
– ident: e_1_2_5_38_1
  doi: 10.1109/TIT.1967.1053964
– ident: e_1_2_5_15_1
  doi: 10.1002/sam.10061
– volume: 16
  start-page: 323
  issue: 2
  year: 2006
  ident: e_1_2_5_10_1
  article-title: Observations on bagging
  publication-title: Stat Sin
  contributor:
    fullname: Buja A
– ident: e_1_2_5_42_1
– ident: e_1_2_5_41_1
  doi: 10.1111/j.2517-6161.1958.tb00292.x
– ident: e_1_2_5_11_1
  doi: 10.1007/978-3-540-74690-4_33
– ident: e_1_2_5_19_1
  doi: 10.1016/j.csda.2007.06.012
– ident: e_1_2_5_5_1
  doi: 10.1007/978-3-642-31537-4_13
– ident: e_1_2_5_32_1
  doi: 10.1214/ss/1009212519
– ident: e_1_2_5_30_1
– ident: e_1_2_5_24_1
  doi: 10.1109/ICMCS.2014.6911187
– ident: e_1_2_5_9_1
  doi: 10.1007/BF00058655
– ident: e_1_2_5_23_1
  doi: 10.1057/s41273-017-0063-z
– ident: e_1_2_5_26_1
  doi: 10.1007/978-3-319-19369-4_4
– volume-title: Classification and Regression Trees
  year: 1984
  ident: e_1_2_5_36_1
  contributor:
    fullname: Breiman L
– ident: e_1_2_5_17_1
  doi: 10.1016/j.neucom.2017.08.035
– volume: 3
  start-page: 560
  issue: 5
  year: 2013
  ident: e_1_2_5_28_1
  article-title: Weight‐adjusted bagging of classification algorithms sensitive to missing values
  publication-title: Int J Inf Educ Technol
  contributor:
    fullname: Hsu KW
– volume-title: Air Pollution Modeling and Its Application VIII
  year: 1991
  ident: e_1_2_5_7_1
  contributor:
    fullname: Dop H
– year: 2019
  ident: e_1_2_5_22_1
  article-title: On Cesaro averages for weighted trees in the random forest
  publication-title: J Classif
  contributor:
    fullname: Pham H
– ident: e_1_2_5_12_1
  doi: 10.1007/978-0-387-21579-2_9
– ident: e_1_2_5_40_1
  doi: 10.1037/h0042519
– ident: e_1_2_5_3_1
  doi: 10.1016/S0004-3702(02)00190-X
– ident: e_1_2_5_21_1
– ident: e_1_2_5_35_1
  doi: 10.1007/11494683_32
– ident: e_1_2_5_39_1
  doi: 10.1007/BF00994018
– ident: e_1_2_5_31_1
  doi: 10.5267/j.dsl.2015.7.001
– ident: e_1_2_5_43_1
  doi: 10.32614/CRAN.package.titanic
– ident: e_1_2_5_34_1
  doi: 10.1609/aaai.v29i1.9634
– ident: e_1_2_5_14_1
  doi: 10.1109/TSMCC.2011.2161285
– ident: e_1_2_5_33_1
  doi: 10.1016/j.ijforecast.2014.12.001
– ident: e_1_2_5_8_1
  doi: 10.1111/coin.12070
– ident: e_1_2_5_25_1
  doi: 10.1109/ICEBE.2010.99
SSID ssj0001348
Score 2.3978083
Snippet Ensemble learning is a popular classification method where many individual simple learners contribute to a final prediction. Constructing an ensemble of...
Abstract Ensemble learning is a popular classification method where many individual simple learners contribute to a final prediction. Constructing an ensemble...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 184
SubjectTerms Bagging
bias‐variance tradeoff
Classification
ensemble learning
Parameters
Title Bagged ensembles with tunable parameters
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcoin.12198
https://www.proquest.com/docview/2174300295
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-Mnbw4P3E6paAHETqaJmlT8KLTMQUniINdpCRtOkTXiesu_vXmpa2bHgS95ZCWvvB-fR957_cATjyRBb7GvJsQ3GWSRK7gKnVTvGWSMgsJwebku2EwGLHbMR834LzuhSn5Ib4SbogM-79GgEs1XwF5MnvOkRshwk5fQkOs57p6WHJHEWpHZxkTx1yjhLziJsUynuWj363R0sVcdVStpem34Kn-xrLA5KW7KFQ3-fhB3_hfITZgvXJBnYtSZzahofMtaNXjHZwK7dtweiknE506JtDVU_Wq5w4mbZ1iYdutHCQNn2IxzXwHRv3rx97ArQYruInBs3BZGmg_IYwYiKjMC5SvI54kgS9DJj2ZYGlpRElmlkL6xkdU1Ng0ztKUmi1a0l1o5rNc74FDMSRRWnhcEqaliFJKGdeKZSZS1KFqw3F9wPFbyZ8R13EHCh9b4dvQqc8-rjA0j22whLeGvA1n9hB_eUPcu78Z2tX-XzYfwJrxgKKyDLsDzeJ9oQ-Nl1GoI6tNn7yyy4E
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_oPOjF-YnTqQU9iFBZm6RLjzodm24TZIPdStKmQ3Sd2O7iX29e2rrpQdBbDmnhPfLL-8h7vwdw3uCx5yrMu3HObCoc3-ZMRnaEr0xCxE3Hwebk_sDrjOj9mI2L2hzshcn5Ib4SbogMc18jwDEhvYTycPacIDmCz1dhTeOd4OSG26cFe5RDzPAsbeSorY8hK9hJsZBn8e13e7RwMpddVWNr2tV8oGpqKAqxxOTlap7Jq_DjB4Hjv8XYgs3CC7Wu82OzDSsq2YFqOeHBKgC_Cxc3YjJRkaVjXTWVryq1MG9rZXPTcWUhb_gU62nSPRi174atjl3MVrBDDWlu08hTbuhQR6NExg1PuspnYei5oklFQ4RYXeoTJ9ZLLlztJkqizRqjUUT0FiXIPlSSWaIOwCIYlUjFG0w4VAnuR4RQpiSNdbComrIGZ6WGg7ecQiMoQw8UPjDC16BeKj8oYJQGJl7Ch0NWg0ujxV_-ELQeuwOzOvzL5lNY7wz7vaDXHTwcwYZ2iPy8KrsOlex9ro6105HJE3O0PgGBK8-Z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7MCeLF-ROnUwt6EKGyNEmXghedjs0fU8TBLlKSJh2i64brLv71JmnrpgdBbzmkpS-8r-97ycv3AI7qLPY9ZfbdGKMu4ShwGRXSleaUifO4gZC5nHzX9ds9ct2n_RKcFXdhMn2Irw03gwz7vzYAH8t4DuTR6CUx2ggBW4BF4mvqayjR40w8CmHbO0vHOOJqL6S5OKmp45k9-z0czTjmPFO1oaZVgefiI7MKk9fTaSpOo48f-o3_tWIVVnIO6pxnTrMGJZWsQ6Xo7-DkcN-A4ws-GCjp6ExXDcWbmjhm19ZJp_a-lWNUw4emmmayCb3W1VOz7eadFdxIA5q5RPrKixBBGiMirvvCUwGNIt_jDcLrPDK1pQFGsR4y7mmSKLAOapRIifUUxfEWlJNRorbBwSYnEYrVKUdEcRZIjAlVgsQ6VVQNUYXDYoHDcSagERaJhzE-tMZXoVasfZiDaBLabMkcG9IqnNhF_OUNYfO-07Wjnb9MPoClh8tWeNvp3uzCsmZDQVaSXYNy-j5Ve5pxpGLfOtYnO6XOSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bagged+ensembles+with+tunable+parameters&rft.jtitle=Computational+intelligence&rft.au=Pham%2C+Hieu&rft.au=Olafsson%2C+Sigurdur&rft.date=2019-02-01&rft.issn=0824-7935&rft.eissn=1467-8640&rft.volume=35&rft.issue=1&rft.spage=184&rft.epage=203&rft_id=info:doi/10.1111%2Fcoin.12198&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_coin_12198
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0824-7935&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0824-7935&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0824-7935&client=summon