Femtosecond laser writing of PPV‐doped three‐dimensional polymeric microstructures

ABSTRACT Poly(para‐phenylene vinylene) (PPV) is a key material for optoelectronics because it combines the potential of both polymers and semiconductors. PPV has been synthesized via solution‐processable precursor route, in which the precursor polymer poly(xylene tetrahydrothiophenium chloride) (PTH...

Full description

Saved in:
Bibliographic Details
Published inJournal of polymer science. Part B, Polymer physics Vol. 56; no. 6; pp. 479 - 483
Main Authors Avila, Oriana Ines, Tomazio, Nathália Beretta, Otuka, Adriano Jose Galvani, Stefanelo, Josiani Cristina, Andrade, Marcelo Barbosa, Balogh, Debora Terezia, Mendonca, Cleber Renato
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 15.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Poly(para‐phenylene vinylene) (PPV) is a key material for optoelectronics because it combines the potential of both polymers and semiconductors. PPV has been synthesized via solution‐processable precursor route, in which the precursor polymer poly(xylene tetrahydrothiophenium chloride) (PTHT) is thermally converted to PPV throughout the sample as a whole. Much effort has been devoted to fulfill spatial selectivity of PPV conversion. However, none of the methods proposed stand for PPV conversion three dimensionally, which would be appealing for the design of microdevices. Here, we demonstrate the potential of fs‐laser direct writing via two‐photon polymerization (2PP) to fabricate PPV‐doped 3D microstructures. PTHT is incorporated into the polymeric material and it is subsequently converted to PPV through a thermal treatment. Optical measurements, taken prior and after thermal conversion, confirm the PTHT to PPV conversion. Fs‐laser direct writing via 2PP can be exploited to fabricate a variety of 3D microdevices, thus opening new avenues in polymer‐based optoelectronics. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 479–483 The fabrication of 3D microstructures doped with the PPV precursor polymer (PTHT) by fs‐laser direct writing was demonstrated. This conjugated polymer receives considerable attention due to its luminescent and conductivity properties. The PTHT is subsequently converted into PPV by submitting the microstructures to a straightforward thermal treatment. As opposed to previous works, the methodology proposed in this paper stands for the PTHT to PPV conversion in three dimensions, thus configuring a promising way toward the design of microdevices.
AbstractList ABSTRACT Poly(para‐phenylene vinylene) (PPV) is a key material for optoelectronics because it combines the potential of both polymers and semiconductors. PPV has been synthesized via solution‐processable precursor route, in which the precursor polymer poly(xylene tetrahydrothiophenium chloride) (PTHT) is thermally converted to PPV throughout the sample as a whole. Much effort has been devoted to fulfill spatial selectivity of PPV conversion. However, none of the methods proposed stand for PPV conversion three dimensionally, which would be appealing for the design of microdevices. Here, we demonstrate the potential of fs‐laser direct writing via two‐photon polymerization (2PP) to fabricate PPV‐doped 3D microstructures. PTHT is incorporated into the polymeric material and it is subsequently converted to PPV through a thermal treatment. Optical measurements, taken prior and after thermal conversion, confirm the PTHT to PPV conversion. Fs‐laser direct writing via 2PP can be exploited to fabricate a variety of 3D microdevices, thus opening new avenues in polymer‐based optoelectronics. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 479–483 The fabrication of 3D microstructures doped with the PPV precursor polymer (PTHT) by fs‐laser direct writing was demonstrated. This conjugated polymer receives considerable attention due to its luminescent and conductivity properties. The PTHT is subsequently converted into PPV by submitting the microstructures to a straightforward thermal treatment. As opposed to previous works, the methodology proposed in this paper stands for the PTHT to PPV conversion in three dimensions, thus configuring a promising way toward the design of microdevices.
Poly(para-phenylene vinylene) (PPV) is a key material for optoelectronics because it combines the potential of both polymers and semiconductors. PPV has been synthesized via solution-processable precursor route, in which the precursor polymer poly(xylene tetrahydrothiophenium chloride) (PTHT) is thermally converted to PPV throughout the sample as a whole. Much effort has been devoted to fulfill spatial selectivity of PPV conversion. However, none of the methods proposed stand for PPV conversion three dimensionally, which would be appealing for the design of microdevices. Here, we demonstrate the potential of fs-laser direct writing via two-photon polymerization (2PP) to fabricate PPV-doped 3D microstructures. PTHT is incorporated into the polymeric material and it is subsequently converted to PPV through a thermal treatment. Optical measurements, taken prior and after thermal conversion, confirm the PTHT to PPV conversion. Fs-laser direct writing via 2PP can be exploited to fabricate a variety of 3D microdevices, thus opening new avenues in polymer-based optoelectronics. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 479-483
ABSTRACT Poly(para‐phenylene vinylene) (PPV) is a key material for optoelectronics because it combines the potential of both polymers and semiconductors. PPV has been synthesized via solution‐processable precursor route, in which the precursor polymer poly(xylene tetrahydrothiophenium chloride) (PTHT) is thermally converted to PPV throughout the sample as a whole. Much effort has been devoted to fulfill spatial selectivity of PPV conversion. However, none of the methods proposed stand for PPV conversion three dimensionally, which would be appealing for the design of microdevices. Here, we demonstrate the potential of fs‐laser direct writing via two‐photon polymerization (2PP) to fabricate PPV‐doped 3D microstructures. PTHT is incorporated into the polymeric material and it is subsequently converted to PPV through a thermal treatment. Optical measurements, taken prior and after thermal conversion, confirm the PTHT to PPV conversion. Fs‐laser direct writing via 2PP can be exploited to fabricate a variety of 3D microdevices, thus opening new avenues in polymer‐based optoelectronics. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56 , 479–483
Author Balogh, Debora Terezia
Tomazio, Nathália Beretta
Stefanelo, Josiani Cristina
Andrade, Marcelo Barbosa
Mendonca, Cleber Renato
Avila, Oriana Ines
Otuka, Adriano Jose Galvani
Author_xml – sequence: 1
  givenname: Oriana Ines
  orcidid: 0000-0002-9460-2250
  surname: Avila
  fullname: Avila, Oriana Ines
  organization: São Carlos Institute of Physics, University of São Paulo, PO Box 369
– sequence: 2
  givenname: Nathália Beretta
  surname: Tomazio
  fullname: Tomazio, Nathália Beretta
  organization: São Carlos Institute of Physics, University of São Paulo, PO Box 369
– sequence: 3
  givenname: Adriano Jose Galvani
  surname: Otuka
  fullname: Otuka, Adriano Jose Galvani
  organization: São Carlos Institute of Physics, University of São Paulo, PO Box 369
– sequence: 4
  givenname: Josiani Cristina
  surname: Stefanelo
  fullname: Stefanelo, Josiani Cristina
  organization: São Carlos Institute of Physics, University of São Paulo, PO Box 369
– sequence: 5
  givenname: Marcelo Barbosa
  surname: Andrade
  fullname: Andrade, Marcelo Barbosa
  organization: São Carlos Institute of Physics, University of São Paulo, PO Box 369
– sequence: 6
  givenname: Debora Terezia
  surname: Balogh
  fullname: Balogh, Debora Terezia
  organization: São Carlos Institute of Physics, University of São Paulo, PO Box 369
– sequence: 7
  givenname: Cleber Renato
  surname: Mendonca
  fullname: Mendonca, Cleber Renato
  email: Crmendon@ifsc.usp.br
  organization: São Carlos Institute of Physics, University of São Paulo, PO Box 369
BookMark eNp9kE1OwzAQhS1UJFpgwwkisUNKGefHsZdQUUCq1C6gW8tJJuAqiYudqOqOI3BGToJDWLMajd73Zp7ejExa0yIhVxTmFCC63Zs6n0dJyvgJmVIQIoSE8wmZAudZyCLGzsjMuR2A11IxJdslNp1xWJi2DGrl0AYHqzvdvgWmCjab7ffnV2n2WAbdu0UcNt1g67RpVR34d8cGrS6CRhfWuM72RddbdBfktFK1w8u_eU5elw8vi6dwtX58XtytwiIGysOEpSrJ8piXUZwhJFSVealUXnJQIo8pxMwLXCR5VWVMeQoiSCPKUwVceOM5uR7v7q356NF1cmd666M5SYVIgAoQzFM3IzVkdBYrube6UfYoKcihNzn0Jn978zAd4YOu8fgPKTfr1f3o-QHykXRu
CitedBy_id crossref_primary_10_1002_smll_201902687
crossref_primary_10_1016_j_colcom_2024_100770
crossref_primary_10_1039_D2RA05148F
crossref_primary_10_3390_polym11030553
crossref_primary_10_1039_D0TC02403A
Cites_doi 10.1002/adma.200802656
10.1088/0022-3727/20/11/007
10.1016/0379-6779(94)90215-1
10.1557/JMR.1996.0403
10.1016/S0379-6779(02)00051-6
10.1116/1.586604
10.1364/OPEX.14.000810
10.1103/PhysRevB.41.10744
10.1063/1.3517493
10.1016/S0079-6700(02)00140-5
10.1021/ma00025a015
10.1038/347539a0
10.1109/JSTQE.2011.2106764
10.1166/jnn.2009.1292
10.1021/ja803999r
10.1063/1.1728296
10.1063/1.453116
10.1039/C1PY00345C
10.1016/0379-6779(87)90812-5
10.1002/polb.24309
10.1103/PhysRevLett.39.1098
10.1002/adma.200401527
10.1103/PhysRevB.42.9830
10.1007/s00339-007-4367-0
10.1021/j100182a085
10.1002/1521-4095(200112)13:23<1753::AID-ADMA1753>3.0.CO;2-2
10.1002/adma.19960080506
10.1016/0379-6779(89)90281-6
10.1016/S0379-6779(97)80750-3
10.1002/adma.200800032
10.1002/app.1994.070520303
10.1016/0379-6779(95)03429-N
10.1016/S0032-3861(98)00250-X
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7SR
7U5
8FD
JG9
L7M
DOI 10.1002/polb.24568
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1099-0488
EndPage 483
ExternalDocumentID 10_1002_polb_24568
POLB24568
Genre article
GrantInformation_xml – fundername: CAPES
– fundername: FAPESP
  funderid: 2011/12399‐0 ; 2013/20884‐0 ; 2013/03487‐8 ; 2016/20094‐8
GroupedDBID -~X
.GA
05W
10A
1L6
1OC
1ZS
4.4
4ZD
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
7PT
8-1
8UM
930
A03
AAEVG
AAHBH
AAHHS
AANLZ
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
BDRZF
BRXPI
BY8
CS3
DCZOG
DR2
DRFUL
DRSTM
EBS
EJD
F00
F5P
G-S
GNP
GODZA
GYXMG
HBH
HGLYW
HHY
HHZ
IX1
KQQ
LATKE
LAW
LEEKS
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MRFUL
MSFUL
MSSTM
MXFUL
MXSTM
OIG
P2P
P2W
P4D
QB0
QRW
RNS
ROL
RWB
RWI
RYL
SUPJJ
TN5
UB1
UPT
V2E
W99
WH7
WIH
WJL
WOHZO
WQJ
WXSBR
XG1
XPP
XV2
YQT
ZZTAW
AAYXX
CITATION
7SR
7U5
8FD
JG9
L7M
ID FETCH-LOGICAL-c3018-465a47b38d237e041adbdaabd80a9b31036237894bff76ad2302052185a0897b3
IEDL.DBID DR2
ISSN 0887-6266
IngestDate Fri Sep 13 04:32:00 EDT 2024
Fri Aug 23 03:27:04 EDT 2024
Sat Aug 24 01:15:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3018-465a47b38d237e041adbdaabd80a9b31036237894bff76ad2302052185a0897b3
ORCID 0000-0002-9460-2250
PQID 1994019096
PQPubID 1016371
PageCount 5
ParticipantIDs proquest_journals_1994019096
crossref_primary_10_1002_polb_24568
wiley_primary_10_1002_polb_24568_POLB24568
PublicationCentury 2000
PublicationDate March 15, 2018
2018-03-15
20180315
PublicationDateYYYYMMDD 2018-03-15
PublicationDate_xml – month: 03
  year: 2018
  text: March 15, 2018
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of polymer science. Part B, Polymer physics
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 97
1990; 347
1997; 84
2009; 21
2006; 14
2012; 18
2005
1999; 40
1987; 17
2008; 90
1996; 76
1994; 62
1996; 11
1992; 96
1989; 29
1990; 41
1990; 42
1987; 20
2012; 3
2004; 95
1987; 87
1991; 24
1977; 39
1993; 11
2017; 55
2002; 129
2009; 9
2017
2003; 28
2008; 20
2001; 13
2005; 17
1994; 52
1996; 8
2008; 130
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
Smith E. (e_1_2_6_36_1) 2005
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
Avila O. I. (e_1_2_6_14_1) 2017
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 129
  start-page: 101
  year: 2002
  publication-title: Synth. Met.
– volume: 96
  start-page: 1490
  year: 1992
  publication-title: J. Phys. Chem.
– volume: 8
  start-page: 405
  year: 1996
  publication-title: Adv. Mater.
– year: 2005
– volume: 55
  start-page: 569
  year: 2017
  publication-title: J. Polym. Sci. B: Polym. Phys.
– volume: 14
  start-page: 810
  year: 2006
  publication-title: Opt. Express
– volume: 39
  start-page: 1098
  year: 1977
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 1753
  year: 2001
  publication-title: Adv. Mater.
– volume: 24
  start-page: 6653
  year: 1991
  publication-title: J. Macromol.
– volume: 90
  start-page: 633
  year: 2008
  publication-title: Appl. Phys. A: Mater. Sci. Process.
– volume: 130
  start-page: 13512
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 519
  year: 1999
  publication-title: Polymer (Guildf)
– volume: 29
  start-page: E91
  year: 1989
  publication-title: Synth. Met.
– volume: 41
  start-page: 10744
  year: 1990
  publication-title: Phys. Rev. B
– volume: 20
  start-page: 3668
  year: 2008
  publication-title: Adv. Mater.
– volume: 87
  start-page: 2349
  year: 1987
  publication-title: J. Chem. Phys.
– volume: 97
  start-page: 211105
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 17
  start-page: 639
  year: 1987
  publication-title: Synth. Met.
– volume: 18
  start-page: 176
  year: 2012
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 9
  start-page: 5845
  year: 2009
  publication-title: J. Nanosci. Nanotechnol.
– volume: 84
  start-page: 277
  year: 1997
  publication-title: Synth. Met.
– volume: 52
  start-page: 377
  year: 1994
  publication-title: J. Appl. Polym. Sci.
– volume: 95
  start-page: 6072
  year: 2004
  publication-title: J. Appl. Phys.
– volume: 20
  start-page: 1389
  year: 1987
  publication-title: J. Phys. D: Appl. Phys.
– volume: 17
  start-page: 541
  year: 2005
  publication-title: Adv. Mater.
– volume: 28
  start-page: 875
  year: 2003
  publication-title: Prog. Polym. Sci.
– volume: 21
  start-page: 781
  year: 2009
  publication-title: Adv. Mater.
– volume: 11
  start-page: 3174
  year: 1996
  publication-title: J. Mater. Res.
– volume: 62
  start-page: 265
  year: 1994
  publication-title: Synth. Met.
– year: 2017
  publication-title: J. Mater. Chem. C
– volume: 11
  start-page: 2794
  year: 1993
  publication-title: J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom.
– volume: 42
  start-page: 9830
  year: 1990
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 275
  year: 2012
  publication-title: Polym. Chem.
– volume: 347
  start-page: 539
  year: 1990
  publication-title: Nature
– volume: 76
  start-page: 109
  year: 1996
  publication-title: Synth. Met.
– ident: e_1_2_6_15_1
  doi: 10.1002/adma.200802656
– ident: e_1_2_6_10_1
  doi: 10.1088/0022-3727/20/11/007
– ident: e_1_2_6_6_1
  doi: 10.1016/0379-6779(94)90215-1
– ident: e_1_2_6_4_1
  doi: 10.1557/JMR.1996.0403
– ident: e_1_2_6_13_1
  doi: 10.1016/S0379-6779(02)00051-6
– year: 2017
  ident: e_1_2_6_14_1
  publication-title: J. Mater. Chem. C
  contributor:
    fullname: Avila O. I.
– ident: e_1_2_6_18_1
  doi: 10.1116/1.586604
– ident: e_1_2_6_19_1
  doi: 10.1364/OPEX.14.000810
– ident: e_1_2_6_34_1
  doi: 10.1103/PhysRevB.41.10744
– ident: e_1_2_6_21_1
  doi: 10.1063/1.3517493
– ident: e_1_2_6_8_1
  doi: 10.1016/S0079-6700(02)00140-5
– ident: e_1_2_6_26_1
  doi: 10.1021/ma00025a015
– ident: e_1_2_6_3_1
  doi: 10.1038/347539a0
– ident: e_1_2_6_29_1
  doi: 10.1109/JSTQE.2011.2106764
– ident: e_1_2_6_25_1
  doi: 10.1166/jnn.2009.1292
– volume-title: Modern Raman Spectroscopy – A Practical Approach
  year: 2005
  ident: e_1_2_6_36_1
  contributor:
    fullname: Smith E.
– ident: e_1_2_6_23_1
  doi: 10.1021/ja803999r
– ident: e_1_2_6_28_1
  doi: 10.1063/1.1728296
– ident: e_1_2_6_30_1
  doi: 10.1063/1.453116
– ident: e_1_2_6_9_1
  doi: 10.1039/C1PY00345C
– ident: e_1_2_6_5_1
  doi: 10.1016/0379-6779(87)90812-5
– ident: e_1_2_6_22_1
  doi: 10.1002/polb.24309
– ident: e_1_2_6_2_1
  doi: 10.1103/PhysRevLett.39.1098
– ident: e_1_2_6_20_1
  doi: 10.1002/adma.200401527
– ident: e_1_2_6_7_1
  doi: 10.1103/PhysRevB.42.9830
– ident: e_1_2_6_27_1
  doi: 10.1007/s00339-007-4367-0
– ident: e_1_2_6_33_1
  doi: 10.1021/j100182a085
– ident: e_1_2_6_16_1
  doi: 10.1002/1521-4095(200112)13:23<1753::AID-ADMA1753>3.0.CO;2-2
– ident: e_1_2_6_17_1
  doi: 10.1002/adma.19960080506
– ident: e_1_2_6_35_1
  doi: 10.1016/0379-6779(89)90281-6
– ident: e_1_2_6_12_1
  doi: 10.1016/S0379-6779(97)80750-3
– ident: e_1_2_6_24_1
  doi: 10.1002/adma.200800032
– ident: e_1_2_6_11_1
  doi: 10.1002/app.1994.070520303
– ident: e_1_2_6_31_1
  doi: 10.1016/0379-6779(95)03429-N
– ident: e_1_2_6_32_1
  doi: 10.1016/S0032-3861(98)00250-X
SSID ssj0009959
Score 2.2994518
Snippet ABSTRACT Poly(para‐phenylene vinylene) (PPV) is a key material for optoelectronics because it combines the potential of both polymers and semiconductors. PPV...
Poly(para-phenylene vinylene) (PPV) is a key material for optoelectronics because it combines the potential of both polymers and semiconductors. PPV has been...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 479
SubjectTerms Chemical synthesis
Conversion
Direct laser writing
electroluminescent polymers
femtosecond laser
Heat treatment
Lasers
Optical measurement
Optoelectronics
Polyphenylene vinylene
PPV conversion
Prepolymers
two‐photon polymerization
Xylene
Title Femtosecond laser writing of PPV‐doped three‐dimensional polymeric microstructures
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpolb.24568
https://www.proquest.com/docview/1994019096/abstract/
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMeHUhC9-BarVRb0JKRN0026AS9aLEV8FLGlFwn7igdtUmyK6MmP4Gf0k7iTNI16EPSWQDaP2dnd_2ZnfgtwqDQSXIRtKdagFhVCWLzphxZ3tNFytlAOxWzkyyuv26fnQ3dYguM8FybjQ8x_uGHLSPtrbOBcTOoFNHQcP4oaLtthpi-S9FAR3RTsKARp5ZhPo9q9OZvUqRdFv49GhcT8KlTTkaazAnf5O2YBJg-1aSJq8vUHvvG_H7EKyzMJSk4yn1mDko7WYbGd7_y2DgtpWKicbMCgo0dJPMFJsyJGZ-sn8owUpOiexCHp9QYfb-8qHmtFEuMTGs9wt4CM9EHMY1_SBSEywrC_DFU7NfP7Teh3zm7bXWu2E4MlTQfALOq5nLZEkymn2dI2bXAlFOdCMZv7ArcqMyqqxXwqwrDlcXOVUaFGGDCX28w3BbegHMWR3gaiHDuUNqPalppSLoV0fCa1kqHxpobSFTjIayQYZ8CNIEMrOwFaK0itVYFqXlnBrNFNAsQcY2q871XgKLX6L3cIetcXp-nRzl8u3oUlBy2CEX1uFcrGcnrPyJJE7Kfu9wm80uJi
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bT8IwFMdPFGPwxbsRRW2iTyaDMbrRPSqRoIISA8a3pbf5oDAiEKNPfgQ_o5_Eno6L-mCib1uybtnpaftve_o7AEdKI8FFuI5iJepQIYTDy2HscE8bLecK5VE8jdy8CuodenHn341jc_AsTMqHmC64Ycuw_TU2cFyQLs6oof3kURRw347Nw4Jp776dUd3M6FGI0pqAPo1uD6Z0Uq84K_t9PJqJzK9S1Y41tZU0oerAIgoxxOShMBqKgnz9AXD892-swvJYhZKT1G3WYE731iFbnSR_W4dFGxkqBxtwW9PdYTLAebMiRmrrJ_KMIKTePUli0mrdfry9q6SvFRkat9B4hwkDUtgHMZ99sXtCpIuRfymtdmSm-JvQqZ21q3VnnIzBkaYPYA4NfE4rosyUV65ol5a4EopzoZjLQ4HZyoyQqrCQijiuBNw8ZYSo0QbM5y4LTcEtyPSSnt4Gojw3li6j2pWaUi6F9EImtZKxcaiS0jk4nFRJ1E-ZG1FKV_YitFZkrZWD_KS2onG7G0RIOsbT8WGQg2Nr9l_eELWuG6f2aucvDx9Att5uNqLG-dXlLix5aB0M8PPzkDFW1HtGpQzFvvXFT-ld5oQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JTsMwEIZHBcRyYSkgCgUswQkpbeq6qSNxgZaqQIEKAeKCIm_hADQVbYXgxCPwjDwJnqShwAEJbokUZxmP7d_x-BuAbW2Q4CJdR_MSc5iU0hFlP3QENVbLuVJThruRT0695iU7uq5cZ2A33QuT8CE-f7hhy4j7a2zgXR0WR9DQbnQvC7hsx8dggnllij5dPx_Bo5CklXI-rWz3PuGktDgq-304GmnMr0o1Hmoac3CTvmQSYXJXGPRlQb384Df-9yvmYXaoQcle4jQLkDGdLEzX0tRvWZiM40JVbxGuGuahH_Vw1qyJFdrmkTwhBqlzS6KQtNtX769vOuoaTfrWKQyeYbqABPVB7GOf4xUh8oBxfwmrdmAn-Etw2Ti4qDWdYSoGR9kegDvMqwhWlWWuablqXFYSWmohpOau8CXmKrMyqsp9JsOw6gl7lZWhVhnwinC5bwsuw3gn6pgVIJq6oXI5M64yjAklFfW5MlqF1p1K2uRgK62RoJsQN4KErUwDtFYQWysH-bSygmGr6wXIOca98b6Xg53Y6r_cIWiftfbjo9W_XLwJU-16I2gdnh6vwQxF42B0XyUP49aIZt1KlL7ciD3xA1yO5TM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Femtosecond+laser+writing+of+PPV-doped+three-dimensional+polymeric+microstructures&rft.jtitle=Journal+of+polymer+science.+Part+B%2C+Polymer+physics&rft.au=Avila%2C+Oriana+Ines&rft.au=Tomazio%2C+Nath%C3%A1lia+Beretta&rft.au=Otuka%2C+Adriano+Jose+Galvani&rft.au=Stefanelo%2C+Josiani+Cristina&rft.date=2018-03-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0887-6266&rft.eissn=1099-0488&rft.volume=56&rft.issue=6&rft.spage=479&rft_id=info:doi/10.1002%2Fpolb.24568&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-6266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-6266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-6266&client=summon