Carbon balance in grapevines (Vitis vinifera L.): effect of environment, cultivar and phenology on carbon gain, losses and allocation

Background and Aims Measuring the carbon assimilation and respiration during vine phenology can provide an understanding of the dynamics of carbon fluxes from different organs and their relationship. Most field studies to date do not consider the respiratory losses of different plant organs and thei...

Full description

Saved in:
Bibliographic Details
Published inAustralian journal of grape and wine research Vol. 28; no. 4; pp. 534 - 544
Main Authors Hernández‐Montes, E., Escalona, J.M., Tomás, M., Martorell, S., Bota, J., Tortosa, I., Medrano, H.
Format Journal Article
LanguageEnglish
Published Melbourne John Wiley & Sons Australia, Ltd 01.10.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background and Aims Measuring the carbon assimilation and respiration during vine phenology can provide an understanding of the dynamics of carbon fluxes from different organs and their relationship. Most field studies to date do not consider the respiratory losses of different plant organs and their variability under environmental, genetic and phenological changes. The aim of this study was to investigate the effect of genotype and water regime on carbon assimilation, respiration and allocation during vine phenology. Methods and Results Field trials were carried out during 2013 and 2014 to study the effect of genotype and water status on carbon assimilation, respiratory losses from leaves, shoots, fruits and roots during the vine phenological cycle, and on biomass production. Carbon respiration varied during plant phenology and represented a significant proportion of the total vine carbon assimilation. The integrated carbon respiratory loss in leaves, fruits and roots was greater in irrigated vines than in non‐irrigated vines. Tempranillo recorded the highest carbon assimilation, leaf and stem respiration, as well as the highest above‐ground biomass. Garnacha showed a higher root respiration loss and allocated more biomass to the permanent organs. Accumulation of above‐ground biomass was influenced by plant carbon budgets during the growing season. Conclusions Vine phenology, cultivar and plant water status affected carbon assimilation, carbon loss and carbon allocation. Non‐irrigated vines had a higher respiratory carbon loss in respect to the total carbon assimilation by photosynthesis. Above‐ and below‐ground carbon fluxes were coupled during vine phenology. Significance of the Study The present work illustrates the importance of respiratory processes on the carbon balance and the relationship among different carbon balance components during vine phenology.
AbstractList Background and Aims Measuring the carbon assimilation and respiration during vine phenology can provide an understanding of the dynamics of carbon fluxes from different organs and their relationship. Most field studies to date do not consider the respiratory losses of different plant organs and their variability under environmental, genetic and phenological changes. The aim of this study was to investigate the effect of genotype and water regime on carbon assimilation, respiration and allocation during vine phenology. Methods and Results Field trials were carried out during 2013 and 2014 to study the effect of genotype and water status on carbon assimilation, respiratory losses from leaves, shoots, fruits and roots during the vine phenological cycle, and on biomass production. Carbon respiration varied during plant phenology and represented a significant proportion of the total vine carbon assimilation. The integrated carbon respiratory loss in leaves, fruits and roots was greater in irrigated vines than in non‐irrigated vines. Tempranillo recorded the highest carbon assimilation, leaf and stem respiration, as well as the highest above‐ground biomass. Garnacha showed a higher root respiration loss and allocated more biomass to the permanent organs. Accumulation of above‐ground biomass was influenced by plant carbon budgets during the growing season. Conclusions Vine phenology, cultivar and plant water status affected carbon assimilation, carbon loss and carbon allocation. Non‐irrigated vines had a higher respiratory carbon loss in respect to the total carbon assimilation by photosynthesis. Above‐ and below‐ground carbon fluxes were coupled during vine phenology. Significance of the Study The present work illustrates the importance of respiratory processes on the carbon balance and the relationship among different carbon balance components during vine phenology.
Background and AimsMeasuring the carbon assimilation and respiration during vine phenology can provide an understanding of the dynamics of carbon fluxes from different organs and their relationship. Most field studies to date do not consider the respiratory losses of different plant organs and their variability under environmental, genetic and phenological changes. The aim of this study was to investigate the effect of genotype and water regime on carbon assimilation, respiration and allocation during vine phenology.Methods and ResultsField trials were carried out during 2013 and 2014 to study the effect of genotype and water status on carbon assimilation, respiratory losses from leaves, shoots, fruits and roots during the vine phenological cycle, and on biomass production. Carbon respiration varied during plant phenology and represented a significant proportion of the total vine carbon assimilation. The integrated carbon respiratory loss in leaves, fruits and roots was greater in irrigated vines than in non‐irrigated vines. Tempranillo recorded the highest carbon assimilation, leaf and stem respiration, as well as the highest above‐ground biomass. Garnacha showed a higher root respiration loss and allocated more biomass to the permanent organs. Accumulation of above‐ground biomass was influenced by plant carbon budgets during the growing season.ConclusionsVine phenology, cultivar and plant water status affected carbon assimilation, carbon loss and carbon allocation. Non‐irrigated vines had a higher respiratory carbon loss in respect to the total carbon assimilation by photosynthesis. Above‐ and below‐ground carbon fluxes were coupled during vine phenology.Significance of the StudyThe present work illustrates the importance of respiratory processes on the carbon balance and the relationship among different carbon balance components during vine phenology.
Author Tomás, M.
Medrano, H.
Escalona, J.M.
Hernández‐Montes, E.
Tortosa, I.
Martorell, S.
Bota, J.
Author_xml – sequence: 1
  givenname: E.
  orcidid: 0000-0002-3294-0641
  surname: Hernández‐Montes
  fullname: Hernández‐Montes, E.
  email: e.hernandez@uib.es
  organization: University of Balearic Islands
– sequence: 2
  givenname: J.M.
  surname: Escalona
  fullname: Escalona, J.M.
  organization: Agro‐Environmental and Water Economics Institute‐University of Balearic Islands
– sequence: 3
  givenname: M.
  surname: Tomás
  fullname: Tomás, M.
  organization: University of Balearic Islands
– sequence: 4
  givenname: S.
  surname: Martorell
  fullname: Martorell, S.
  organization: University of Balearic Islands
– sequence: 5
  givenname: J.
  surname: Bota
  fullname: Bota, J.
  organization: Agro‐Environmental and Water Economics Institute‐University of Balearic Islands
– sequence: 6
  givenname: I.
  surname: Tortosa
  fullname: Tortosa, I.
  organization: University of Balearic Islands
– sequence: 7
  givenname: H.
  surname: Medrano
  fullname: Medrano, H.
  organization: Agro‐Environmental and Water Economics Institute‐University of Balearic Islands
BookMark eNp9kMtOwzAQRS0EElDY8AWW2ABqisdu7MCuqniqEhsey2iSTIqrYBcnLeoH8N-4hDWzmRnpzL2je8h2nXfE2AmIEcS6xMX8awQyTc0OOwCTpomQKtuNs5IyMaDEPjts24UQGsYgD9j3FEPhHS-wQVcSt47PAy5pbR21_OzVdrblcbE1BeSz0fk1p7qmsuO-5uTWNnj3Qa4b8nLVdHaNgaOr-PKdnG_8fMOjdtlbzNG6IW9820blLYRN40vsrHdHbK_GpqXjvz5gL7c3z9P7ZPZ09zCdzJJSCTBJVkClCxwLLcdSKQ1SF1KIK6S0NBKM0rpWWlVUVSYj1JXSBjLKijGixBTVgJ32usvgP1fUdvnCr4KLlrk0kCopAK4iddFTZYjPBqrzZbAfGDY5iHwbc76NOf-NOcLQw1-2oc0_ZD55vHvrb34AVb-BtQ
CitedBy_id crossref_primary_10_3390_plants11213008
crossref_primary_10_3389_fpls_2024_1405343
crossref_primary_10_3389_fpls_2023_1155888
crossref_primary_10_3390_agronomy12081874
Cites_doi 10.1016/j.agee.2016.02.012
10.1016/j.plantsci.2015.04.001
10.1071/FP10221
10.1016/j.agwat.2015.03.011
10.1071/FP02146
10.5424/sjar/20110901-354-10
10.21273/HORTSCI.31.6.944
10.5344/ajev.2005.56.2.129
10.1111/j.1755-0238.1995.tb00086.x
10.1111/j.1755-0238.2012.00193.x
10.1016/j.agrformet.2004.04.006
10.1071/FP02115
10.1016/j.envexpbot.2017.03.001
10.21273/JASHS.131.2.273
10.1016/j.scienta.2018.06.065
10.1071/FP02110
10.17660/ActaHortic.2002.584.4
10.1071/FP09037
10.17660/ActaHortic.2004.652.22
10.1016/0304-3800(91)90138-Q
10.1007/s40626-015-0050-6
10.1111/ajgw.12279
10.1016/j.jplph.2018.08.009
10.1038/35009084
10.1111/ppl.12769
10.1111/ppl.13093
10.1002/9781118735985.ch5
10.1016/0304-3800(91)90054-5
10.5344/ajev.2012.11071
10.1016/j.agee.2013.03.015
10.1006/anbo.2000.1175
10.1007/978-90-481-9283-0_1
10.17660/eJHS.2016/81.2.4
10.1111/j.1469-8137.2011.03860.x
10.1111/j.1399-3054.2006.00621.x
10.1016/j.agee.2008.07.009
10.1016/j.agwat.2015.07.016
10.3389/fpls.2018.01540
10.1111/ajgw.12285
10.1111/ajgw.12069
10.1016/j.foodchem.2020.128447
10.1111/j.1744-7348.2001.tb00120.x
10.17660/ActaHortic.2008.803.31
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Viticulture and Oenology Inc.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Viticulture and Oenology Inc.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7QO
7QR
7T7
8FD
C1K
FR3
P64
DOI 10.1111/ajgw.12557
DatabaseName Wiley-Blackwell Titles (Open access)
Wiley-Blackwell Backfiles (Open access)
CrossRef
Biotechnology Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Biotechnology Research Abstracts
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Titles (Open access)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1755-0238
EndPage 544
ExternalDocumentID 10_1111_ajgw_12557
AJGW12557
Genre article
GrantInformation_xml – fundername: Operational Program of the European Social Fund of the Balearic Islands 2014–2020
  funderid: PD/027/2019
– fundername: Vice‐Presidency of Innovation, Research and Tourism of the Government of the Balearic Islands
– fundername: Spanish Ministry of Science and Technology
  funderid: AGL‐2014‐54201‐C4‐1R
– fundername: Spanish Ministry of Science and Innovation
  funderid: AGL‐2017‐83738‐C3‐1R
– fundername: Spanish Ministry of Economy
  funderid: AGL‐2011‐30408‐C04‐01
GroupedDBID ..I
.3N
.GA
.Y3
05W
10A
1OB
1OC
23N
24P
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAJEY
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
EBD
EBS
EJD
ESTFP
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HF~
HVGLF
HZ~
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RHX
RIWAO
RJQFR
ROL
RX1
SUPJJ
TEORI
TUS
UB1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WIN
WOHZO
WQJ
WRC
WYISQ
XG1
Y6R
ZZTAW
~IA
~WT
AAYXX
CITATION
7QO
7QR
7T7
8FD
C1K
FR3
P64
ID FETCH-LOGICAL-c3017-8b1d6ba406242336126b2009ae5c7217366f363dedd78ea6d36718e8b4aa2a5a3
IEDL.DBID 24P
ISSN 1322-7130
IngestDate Thu Oct 10 19:07:22 EDT 2024
Fri Aug 23 00:40:10 EDT 2024
Sat Aug 24 00:54:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3017-8b1d6ba406242336126b2009ae5c7217366f363dedd78ea6d36718e8b4aa2a5a3
ORCID 0000-0002-3294-0641
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fajgw.12557
PQID 2715320119
PQPubID 956343
PageCount 11
ParticipantIDs proquest_journals_2715320119
crossref_primary_10_1111_ajgw_12557
wiley_primary_10_1111_ajgw_12557_AJGW12557
PublicationCentury 2000
PublicationDate October 2022
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace Melbourne
PublicationPlace_xml – name: Melbourne
– name: Adelaide
PublicationTitle Australian journal of grape and wine research
PublicationYear 2022
Publisher John Wiley & Sons Australia, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons Australia, Ltd
– name: Wiley Subscription Services, Inc
References 2018; 240
2004; 125
1991; 57
1991; 53
2000; 86
2016; 223
2011; 11
2006; 131
2012; 18
2011; 192
2020; 169
1996; 31
2019; 165
2014; 20
2004; 652
2000; 404
2002; 584
2016; 81
2006; 127
2009; 129
2003; 42
2012; 63
2001; 138
2010; 37
2021; 343
2010
2017; 23
2008; 803
1997
1996
2005
1995; 1
2011; 38
2003; 30
2016; 164
2017; 138
2011; 9
2009; 36
2018; 231
2000; 39
2006; 45
2015; 236
2018; 871
2015; 156
1988; 27
2016
2016; 28
2013; 171
2005; 56
e_1_2_7_5_1
e_1_2_7_9_1
Lakso A.N. (e_1_2_7_30_1) 1997
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
Poni S. (e_1_2_7_40_1) 2000; 39
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
Escalona J.M. (e_1_2_7_14_1) 2003; 42
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_49_1
Lakso A.N. (e_1_2_7_28_1) 2005
Düring H. (e_1_2_7_12_1) 1988; 27
Holzapfel B.P. (e_1_2_7_26_1) 2010; 37
e_1_2_7_50_1
Greer D.H. (e_1_2_7_20_1) 2011; 11
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_42_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
Williams L.E. (e_1_2_7_51_1) 1996
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Baeza P. (e_1_2_7_3_1) 2005; 56
Weyand K.M. (e_1_2_7_53_1) 2006; 45
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 30
  start-page: 607
  year: 2003
  end-page: 619
  article-title: A ten‐year study on the physiology of two Spanish grapevine cultivars under field conditions: effects of water availability from leaf photosynthesis to grape yield and quality
  publication-title: Functional Plant Biology
– volume: 165
  start-page: 746
  year: 2019
  end-page: 754
  article-title: Leaf growth rate and nitrogen content determine respiratory costs during leaf expansion in grapevines
  publication-title: Physiologia Plantarum
– volume: 803
  start-page: 243
  year: 2008
  end-page: 250
  article-title: Modeling Concord grapes with ‘Vitisim’, a simplified carbon balance model: understanding pruning effects
  publication-title: Acta Horticulturae
– volume: 36
  start-page: 645
  year: 2009
  end-page: 653
  article-title: The net carbon balance in relation to growth and biomass accumulation of grapevines ( cv. Semillon) grown in a controlled environment
  publication-title: Functional Plant Biology
– volume: 27
  start-page: 199
  year: 1988
  end-page: 208
  article-title: CO assimilation and photorespiration of grapevine leaves: responses to light and drought
  publication-title: Vitis
– volume: 37
  start-page: 143
  year: 2010
  end-page: 211
  article-title: Dynamics of carbohydrate reserves in cultivated grapevines
  publication-title: Horticultural Reviews
– volume: 223
  start-page: 10
  year: 2016
  end-page: 21
  article-title: Sustainable viticulture: the carbon‐sink function of the vineyard agro‐ecosystem
  publication-title: Agriculture, Ecosystems & Environment
– start-page: 109
  year: 2016
  end-page: 134
– volume: 240
  start-page: 561
  year: 2018
  end-page: 571
  article-title: Modeling grapevine performance with ‘VitiSim’ a weather‐based carbon balance model: water status and climate change scenarios
  publication-title: Scientia Horticulturae
– volume: 192
  start-page: 939
  year: 2011
  end-page: 951
  article-title: Seasonal fluctuations in root respiration in the field
  publication-title: New Phytologist
– volume: 30
  start-page: 653
  year: 2003
  end-page: 662
  article-title: Partial rootzone drying: regulation of stomatal aperture and carbon assimilation in field‐grown grapevines ( cv. Moscatel)
  publication-title: Functional Plant Biology
– volume: 164
  start-page: 91
  year: 2016
  end-page: 99
  article-title: Differences among grapevine cultivars in their stomatal behavior and water use efficiency under progressive water stress
  publication-title: Agricultural Water Management
– volume: 11
  start-page: 1
  year: 2011
  end-page: 13
  article-title: Reductions in biomass accumulation, photosynthesis in situ and net carbon balance are the costs of protecting ‘Semillon’ grapevines from heat stress with shade covering
  publication-title: AoB Plants
– volume: 56
  start-page: 129
  year: 2005
  end-page: 138
  article-title: Ecophysiological and agronomic response of Tempranillo grapevines to four training systems
  publication-title: American Journal of Enology and Viticulture
– volume: 20
  start-page: 272
  year: 2014
  end-page: 280
  article-title: Variability of mesophyll conductance in grapevine cultivars under water stress conditions in relation to leaf anatomy and water use efficiency
  publication-title: Australian Journal of Grape and Wine Research
– volume: 53
  start-page: 1
  year: 1991
  end-page: 26
  article-title: A demographic model of assimilation and allocation of carbon and nitrogen in grapevines
  publication-title: Ecological Modelling
– volume: 23
  start-page: 441
  year: 2017
  end-page: 451
  article-title: Allometric relationships for estimating vegetative and reproductive biomass in grapevine ( L.)
  publication-title: Australian Journal of Grape and Wine Research
– volume: 871
  start-page: 1540
  year: 2018
  article-title: Whole‐plant water use in field grown grapevine: seasonal and environmental effects on water and carbon balance
  publication-title: Frontiers in Plant Science
– volume: 127
  start-page: 343
  year: 2006
  end-page: 352
  article-title: Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress
  publication-title: Physiologia Plantarum
– volume: 18
  start-page: 308
  year: 2012
  end-page: 318
  article-title: Carbon balance in grapevines under different soil water supply: importance of whole plant respiration
  publication-title: Australian Journal of Grape and Wine Research
– volume: 652
  start-page: 183
  year: 2004
  end-page: 190
  article-title: Seasonal carbon balance of ‘sangiovese’ grapevines in two different central Italy environments
  publication-title: Acta Horticulturae
– volume: 404
  start-page: 861
  year: 2000
  end-page: 865
  article-title: Respiration as the main determinant of carbon balance in European forests
  publication-title: Nature
– volume: 9
  start-page: 202
  year: 2011
  end-page: 212
  article-title: Estimation of vineyard leaf area by linear regression
  publication-title: Spanish Journal of Agricultural Research
– volume: 57
  start-page: 43
  year: 1991
  end-page: 64
  article-title: A mathematical model of carbon acquisition and utilisation by kiwifruit vines
  publication-title: Ecological Modelling
– volume: 129
  start-page: 97
  year: 2009
  end-page: 106
  article-title: Performance and water‐use efficiency (single‐leaf vs. whole‐canopy) of well‐watered and half‐stressed split‐root Lambrusco grapevines grown in Po Valley (Italy)
  publication-title: Agriculture Ecosystems and Environment
– start-page: 851
  year: 1996
  end-page: 881
– start-page: 478
  year: 2005
  end-page: 484
– start-page: 11
  year: 1997
  end-page: 12
– volume: 31
  start-page: 944
  year: 1996
  end-page: 946
  article-title: A whole‐plant, open, gas‐exchange system for measuring net photosynthesis of potted woody plants
  publication-title: HortScience
– volume: 231
  start-page: 19
  year: 2018
  end-page: 30
  article-title: Combined drought and virus infection trigger aspects of respiratory metabolism related to grapevine physiological responses
  publication-title: Journal of Plant Physiology
– volume: 39
  start-page: 13
  year: 2000
  end-page: 18
  article-title: Seasonal growth and gas exchange of conventionally and minimally pruned Chardonnay canopies
  publication-title: Vitis
– volume: 156
  start-page: 1
  year: 2015
  end-page: 9
  article-title: Differences in water‐use‐efficiency between two cultivars (Grenache and Tempranillo) explained by the combined response of stomata to hydraulic and chemical signals during water stress
  publication-title: Agricultural Water Management
– volume: 169
  start-page: 544
  year: 2020
  end-page: 554
  article-title: Plant water status and genotype affect fruit respiration in grapevines
  publication-title: Physiologia Plantarum
– volume: 30
  start-page: 673
  year: 2003
  end-page: 687
  article-title: Extension of a Farquhar model for limitations of leaf photosynthesis induced by light environment, phenology and leaf age in grapevines ( L. cvv. White Riesling and Zinfandel)
  publication-title: Functional Plant Biology
– volume: 236
  start-page: 168
  year: 2015
  end-page: 176
  article-title: Climate change conditions (elevated CO and temperature) and UV‐B radiation affect grapevine ( cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates
  publication-title: Plant Science
– volume: 38
  start-page: 386
  year: 2011
  end-page: 400
  article-title: Net carbon exchange in grapevine canopies responds rapidly to timing and extent of regulated deficit irrigation
  publication-title: Functional Plant Biology
– volume: 86
  start-page: 1
  year: 2000
  end-page: 20
  article-title: The McCree‐de Wit‐Penning de Vries‐Thornley respiration paradigms: 30 years later
  publication-title: Annals of. Botany
– volume: 584
  start-page: 43
  year: 2002
  end-page: 56
  article-title: A source/sink model to simulate seasonal allocation of carbon in grapevine
  publication-title: Acta Horticulturae
– volume: 138
  start-page: 353
  year: 2001
  end-page: 361
  article-title: Genetic variability of photosynthesis and water use in Balearic grapevine cultivars
  publication-title: Annals of Applied Biology
– volume: 171
  start-page: 103
  year: 2013
  end-page: 111
  article-title: Carbon balance of citrus plantations in eastern Spain
  publication-title: Agriculture Ecosystems and Environment
– volume: 1
  start-page: 104
  year: 1995
  end-page: 110
  article-title: Growth stages of the grapevine. Adoption of a system for identifying grapevine growth stages
  publication-title: Australian Journal of Grape and Wine Research
– volume: 125
  start-page: 207
  year: 2004
  end-page: 223
  article-title: Seasonal variation and partitioning of ecosystem respiration in a southern boreal aspen forest
  publication-title: Agricultural and Forest Meteorology
– volume: 45
  start-page: 105
  year: 2006
  end-page: 114
  article-title: Light interception, gas exchange and carbon balance of different canopy zones of minimally and cane‐pruned field‐grown Riesling grapevines
  publication-title: Vitis—Journal of Grapevine Research
– volume: 81
  start-page: 106
  year: 2016
  end-page: 114
  article-title: A survey of carbon sequestration potential of orchards and vineyards in Italy
  publication-title: European Journal of Horticultural Science
– start-page: 1
  year: 2010
  end-page: 20
– volume: 23
  start-page: 273
  year: 2017
  end-page: 279
  article-title: Influence of water availability and grapevine phenological stage on the spatial variation in soil respiration
  publication-title: Australian Journal of Grape and Wine Research
– volume: 63
  start-page: 333
  year: 2012
  end-page: 342
  article-title: Developmental stage and climatic factors impact more on carbohydrate reserve dynamics of Shiraz than cultural practice
  publication-title: American Journal of Enology and Viticulture
– volume: 343
  year: 2021
  article-title: Impacts of leaf removal and shoot thinning on cumulative daily light intensity and thermal time and their cascading effects of grapevine ( L.) berry and wine chemistry in warm climates
  publication-title: Food Chemistry
– volume: 42
  start-page: 57
  year: 2003
  end-page: 64
  article-title: Distribution of leaf photosynthesis and transpiration within grapevine canopies under different drought conditions
  publication-title: Vitis
– volume: 131
  start-page: 273
  year: 2006
  end-page: 283
  article-title: Calibration and evaluation of a STELLA software‐based daily CO balance model in L
  publication-title: Journal of the American Society for Horticultural Science
– volume: 138
  start-page: 10
  year: 2017
  end-page: 20
  article-title: Responses of biomass accumulation, photosynthesis and the net carbon budget to high canopy temperatures of L. cv. Semillon vines grown in field conditions
  publication-title: Environmental and Experimental Botany
– volume: 28
  start-page: 1
  year: 2016
  end-page: 10
  article-title: Effects of grapevine leafroll associated virus 3 (GLRaV‐3) on plant carbon balance in L. cv. Giró Ros
  publication-title: Theoretical and Experimental Plant Physiology
– ident: e_1_2_7_6_1
  doi: 10.1016/j.agee.2016.02.012
– ident: e_1_2_7_31_1
  doi: 10.1016/j.plantsci.2015.04.001
– volume: 42
  start-page: 57
  year: 2003
  ident: e_1_2_7_14_1
  article-title: Distribution of leaf photosynthesis and transpiration within grapevine canopies under different drought conditions
  publication-title: Vitis
  contributor:
    fullname: Escalona J.M.
– ident: e_1_2_7_46_1
  doi: 10.1071/FP10221
– ident: e_1_2_7_32_1
  doi: 10.1016/j.agwat.2015.03.011
– ident: e_1_2_7_45_1
  doi: 10.1071/FP02146
– start-page: 478
  volume-title: Proceedings of the XIV international GESCO viticulture congress; 23–27 August 2005; Geisenheim, Germany
  year: 2005
  ident: e_1_2_7_28_1
  contributor:
    fullname: Lakso A.N.
– volume: 37
  start-page: 143
  year: 2010
  ident: e_1_2_7_26_1
  article-title: Dynamics of carbohydrate reserves in cultivated grapevines
  publication-title: Horticultural Reviews
  contributor:
    fullname: Holzapfel B.P.
– ident: e_1_2_7_43_1
  doi: 10.5424/sjar/20110901-354-10
– ident: e_1_2_7_35_1
  doi: 10.21273/HORTSCI.31.6.944
– volume: 56
  start-page: 129
  year: 2005
  ident: e_1_2_7_3_1
  article-title: Ecophysiological and agronomic response of Tempranillo grapevines to four training systems
  publication-title: American Journal of Enology and Viticulture
  doi: 10.5344/ajev.2005.56.2.129
  contributor:
    fullname: Baeza P.
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1755-0238.1995.tb00086.x
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1755-0238.2012.00193.x
– ident: e_1_2_7_21_1
  doi: 10.1016/j.agrformet.2004.04.006
– ident: e_1_2_7_10_1
  doi: 10.1071/FP02115
– ident: e_1_2_7_18_1
  doi: 10.1016/j.envexpbot.2017.03.001
– ident: e_1_2_7_41_1
  doi: 10.21273/JASHS.131.2.273
– ident: e_1_2_7_37_1
  doi: 10.1016/j.scienta.2018.06.065
– ident: e_1_2_7_33_1
  doi: 10.1071/FP02110
– ident: e_1_2_7_50_1
  doi: 10.17660/ActaHortic.2002.584.4
– ident: e_1_2_7_19_1
  doi: 10.1071/FP09037
– ident: e_1_2_7_39_1
  doi: 10.17660/ActaHortic.2004.652.22
– ident: e_1_2_7_52_1
  doi: 10.1016/0304-3800(91)90138-Q
– start-page: 851
  volume-title: Source–sink relationships
  year: 1996
  ident: e_1_2_7_51_1
  contributor:
    fullname: Williams L.E.
– volume: 45
  start-page: 105
  year: 2006
  ident: e_1_2_7_53_1
  article-title: Light interception, gas exchange and carbon balance of different canopy zones of minimally and cane‐pruned field‐grown Riesling grapevines
  publication-title: Vitis—Journal of Grapevine Research
  contributor:
    fullname: Weyand K.M.
– volume: 39
  start-page: 13
  year: 2000
  ident: e_1_2_7_40_1
  article-title: Seasonal growth and gas exchange of conventionally and minimally pruned Chardonnay canopies
  publication-title: Vitis
  contributor:
    fullname: Poni S.
– ident: e_1_2_7_38_1
  doi: 10.1007/s40626-015-0050-6
– ident: e_1_2_7_22_1
  doi: 10.1111/ajgw.12279
– ident: e_1_2_7_13_1
  doi: 10.1016/j.jplph.2018.08.009
– ident: e_1_2_7_49_1
  doi: 10.1038/35009084
– ident: e_1_2_7_24_1
  doi: 10.1111/ppl.12769
– ident: e_1_2_7_23_1
  doi: 10.1111/ppl.13093
– ident: e_1_2_7_34_1
  doi: 10.1002/9781118735985.ch5
– ident: e_1_2_7_7_1
  doi: 10.1016/0304-3800(91)90054-5
– volume: 27
  start-page: 199
  year: 1988
  ident: e_1_2_7_12_1
  article-title: CO2 assimilation and photorespiration of grapevine leaves: responses to light and drought
  publication-title: Vitis
  contributor:
    fullname: Düring H.
– ident: e_1_2_7_25_1
  doi: 10.5344/ajev.2012.11071
– ident: e_1_2_7_27_1
  doi: 10.1016/j.agee.2013.03.015
– ident: e_1_2_7_2_1
  doi: 10.1006/anbo.2000.1175
– ident: e_1_2_7_9_1
  doi: 10.1007/978-90-481-9283-0_1
– ident: e_1_2_7_44_1
  doi: 10.17660/eJHS.2016/81.2.4
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1469-8137.2011.03860.x
– start-page: 11
  volume-title: Proceedings for the 4th international symposium on cool climate viticulture and enology; 16–20 July 1996; Rochester, NY, USA
  year: 1997
  ident: e_1_2_7_30_1
  contributor:
    fullname: Lakso A.N.
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1399-3054.2006.00621.x
– ident: e_1_2_7_42_1
  doi: 10.1016/j.agee.2008.07.009
– ident: e_1_2_7_5_1
  doi: 10.1016/j.agwat.2015.07.016
– ident: e_1_2_7_11_1
  doi: 10.3389/fpls.2018.01540
– volume: 11
  start-page: 1
  year: 2011
  ident: e_1_2_7_20_1
  article-title: Reductions in biomass accumulation, photosynthesis in situ and net carbon balance are the costs of protecting Vitis vinifera ‘Semillon’ grapevines from heat stress with shade covering
  publication-title: AoB Plants
  contributor:
    fullname: Greer D.H.
– ident: e_1_2_7_36_1
  doi: 10.1111/ajgw.12285
– ident: e_1_2_7_47_1
  doi: 10.1111/ajgw.12069
– ident: e_1_2_7_48_1
  doi: 10.1016/j.foodchem.2020.128447
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1744-7348.2001.tb00120.x
– ident: e_1_2_7_29_1
  doi: 10.17660/ActaHortic.2008.803.31
SSID ssj0061412
Score 2.3974721
Snippet Background and Aims Measuring the carbon assimilation and respiration during vine phenology can provide an understanding of the dynamics of carbon fluxes from...
Background and AimsMeasuring the carbon assimilation and respiration during vine phenology can provide an understanding of the dynamics of carbon fluxes from...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 534
SubjectTerms Assimilation
Biomass
Carbon
carbon assimilation
CO2 balance
Cultivars
Environmental effects
Fluxes
Fruits
Genotypes
Grapevines
Growing season
irrigation
Leaves
Organs
Phenology
Photosynthesis
Plants (botany)
Respiration
Roots
Shoots
Vines
Vitis vinifera
Title Carbon balance in grapevines (Vitis vinifera L.): effect of environment, cultivar and phenology on carbon gain, losses and allocation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fajgw.12557
https://www.proquest.com/docview/2715320119
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9zvuiD-InTOQL6oLKO9SvtxJcxnGOoiDjdW7k06ZhIJ9vUv8D_27u0dfNF8KW0kCbl0svvLnf3C2MnjifQDkmUBYgFFvobYEn0hSxph7Hv-Al4PhUn396J3sDrD_1hiV0WtTAZP8TPhhtphlmvScFBzpaUHF5Gnw2EZz9YYatEGUPM-Y53X6zDiDtZrJPcLRy-mZOTUh7P4t3fcLSwMZctVQM13U22kduIvJ1N6hYr6XSbrbdH05wnQ--wrw5M5STlkjITY83HKSfqaUQ5XLr46RMxFXF8oMQV4DeNswueZW7wScKXitvqnLocf8CUQ6o4JXyZfXaOfcfZECMYp3X-OqHosGlEofpso2-XDbpXj52elZ-oYMWugSNpKyEBQZzMKBetGyEpPALaj9EVDFwhEle4SisVhBqEcgVilw6lB-CAD-4eK6eTVO8z3koQ23Si8NNdL_Bt0GFTaTtMREtrqZwKOy4EG71lxBlR4XCQ-CMj_gqrFjKPcuWZRU5g03EVtt2qsHMzD3_0ELX718_m7uA_jQ_ZmkOFDCYtr8rK8-m7PkLzYi5r5i-qGeecrg_ON4vKzWs
link.rule.ids 315,783,787,867,1378,11574,27936,27937,46064,46306,46488,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDsCBHVFWS3AARCoSJ07KrWIrUDggtls0jp2qgFLUBSTu_DczTgqFAxLcEimxE9vjNzN-fmZs0_Ml-iGpdgCxwMF4AxyFsZCj3CgJvCAFP6DNyReXsnbjn90H9wU3h_bC5PoQnwk3sgw7X5OBU0J6wMrhofFaRnwOwmE2ivYu6OSGw6tP9SgEnnyxk-ItrH-vUCclIs_Xu9_x6MvJHHRVLdYcT-UHqnasRCFRTB7Lva4qJ28_BBz__RvTbLLwQnk1HzYzbMhks2yi2mgXShxmjr0fQFu1Mq6I-5gY3sw4iVsjjuLkyLduSQuJ4w1RY4DXy9v7POeG8FbKB7bP7XIqsvkCbQ6Z5kQps5l8jmUneRUNaGa7_KlF68_2ISID5KnEeXZzfHR9UHOKMxucRFjAU66WCtBNIEdNoP8kFS3AgAkSDDZDIWUqpNBG6zAyILWQiI4mUj6ABwGIBTaStTKzyHglRfQ0qcZPF34YuGCiPW3cKJUVY5T2Smyj33Pxcy7NEfdDGmrU2DZqia30OzUuzLMTe6FLB2K4bqXEdmzv_FJCXD07ubNXS395eJ2N1a4v6nH99PJ8mY17tG3CkgBX2Ei33TOr6Mx01Zodsh9J0vAb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBfGJ9LuhBxRTz2qTipaj1LR583cJsdlMqkkqt-gv8385sEq0XwVsC-wizmf1mdma-Bdj0Akl2SKYdJCxwyN9AR5Ev5Cg3TkMvzDAIuTj56lqe3gXnj-HjCBxUtTAFP8T3gRtrht2vWcFfdDak5PjU-WgQPIfRKIzRjJKZ873gptqHCXeKWCe7WzT9XklOynk8P31_w9GPjTlsqVqoaU_DVGkjilaxqDMwYvJZmGx1-iVPhpmDz0Psq14uFGcmpkZ0c8HU04RytHWJrXtmKhL0wokrKC4b2_uiyNwQvUwMFbftCh6y-459gbkWnPBlz9kFjZ0WU3Swm--K5x5Hh20jDtUXB33zcNc-vj08dcobFZzUt3CkXC0VEoizGeWTdSMVh0fQhCm5gpEvZeZLXxuto9ig1L4k7DKxChA9DNFfgFrey80iiGZG2GYyTZ_uB1Hooon3tHHjTDaNUdqrw0Yl2OSlIM5IKoeDxZ9Y8ddhpZJ5UirPa-JFLl9X4brNOuzYdfhjhKR1fvJgn5b-03gdxm-O2snl2fXFMkx4XNNgM_RWoDbov5lVsjQGas3-UF_evs4h
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+balance+in+grapevines+%28Vitis+vinifera+L.%29%3A+effect+of+environment%2C+cultivar+and+phenology+on+carbon+gain%2C+losses+and+allocation&rft.jtitle=Australian+journal+of+grape+and+wine+research&rft.au=Hern%C3%A1ndez%E2%80%90Montes%2C+E.&rft.au=Escalona%2C+J.M.&rft.au=Tom%C3%A1s%2C+M.&rft.au=Martorell%2C+S.&rft.date=2022-10-01&rft.pub=John+Wiley+%26+Sons+Australia%2C+Ltd&rft.issn=1322-7130&rft.eissn=1755-0238&rft.volume=28&rft.issue=4&rft.spage=534&rft.epage=544&rft_id=info:doi/10.1111%2Fajgw.12557&rft.externalDBID=10.1111%252Fajgw.12557&rft.externalDocID=AJGW12557
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1322-7130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1322-7130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1322-7130&client=summon