A review on the design and optimization of antennas using machine learning algorithms and techniques

This paper presents a focused and comprehensive literature survey on the use of machine learning (ML) in antenna design and optimization. An overview of the conventional computational electromagnetics and numerical methods used to gain physical insight into the design of the antennas is first presen...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of RF and microwave computer-aided engineering Vol. 30; no. 10
Main Authors El Misilmani, Hilal M., Naous, Tarek, Al Khatib, Salwa K.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a focused and comprehensive literature survey on the use of machine learning (ML) in antenna design and optimization. An overview of the conventional computational electromagnetics and numerical methods used to gain physical insight into the design of the antennas is first presented. The major aspects of ML are then presented, with a study of its different learning categories and frameworks. An overview and mathematical briefing of regression models built with ML algorithms is then illustrated, with a focus on those applied in antenna synthesis and analysis. An in‐depth overview on the different research papers discussing the design and optimization of antennas using ML is then reported, covering the different techniques and algorithms applied to generate antenna parameters based on desired radiation characteristics and other antenna specifications. Various investigated antennas are sorted based on antenna type and configuration to assist the readers who wish to work with a specific type of antennas using ML.
AbstractList This paper presents a focused and comprehensive literature survey on the use of machine learning (ML) in antenna design and optimization. An overview of the conventional computational electromagnetics and numerical methods used to gain physical insight into the design of the antennas is first presented. The major aspects of ML are then presented, with a study of its different learning categories and frameworks. An overview and mathematical briefing of regression models built with ML algorithms is then illustrated, with a focus on those applied in antenna synthesis and analysis. An in‐depth overview on the different research papers discussing the design and optimization of antennas using ML is then reported, covering the different techniques and algorithms applied to generate antenna parameters based on desired radiation characteristics and other antenna specifications. Various investigated antennas are sorted based on antenna type and configuration to assist the readers who wish to work with a specific type of antennas using ML.
Author Naous, Tarek
El Misilmani, Hilal M.
Al Khatib, Salwa K.
Author_xml – sequence: 1
  givenname: Hilal M.
  orcidid: 0000-0003-1370-8799
  surname: El Misilmani
  fullname: El Misilmani, Hilal M.
  email: hilal.elmisilmani@ieee.org
  organization: Beirut Arab University
– sequence: 2
  givenname: Tarek
  orcidid: 0000-0003-0049-9318
  surname: Naous
  fullname: Naous, Tarek
  organization: Beirut Arab University
– sequence: 3
  givenname: Salwa K.
  orcidid: 0000-0002-9588-8473
  surname: Al Khatib
  fullname: Al Khatib, Salwa K.
  organization: Beirut Arab University
BookMark eNp9kE1LAzEQhoMo2FYv_oKAN2Frkt1Nu8dS6ge0eFHwFrKzSTdlN1uT1FJ_vfvhScTTDDPPOy_zjtG5baxC6IaSKSWE3dc1qCljccrP0IiSLItIMns_73seJSwjl2js_Y6QdsfiESoW2KlPo464sTiUChfKm63F0ha42QdTmy8ZTLtrdDsLylrp8cEbu8W1hNJYhSslne0Gsto2zoSy9r08KCit-Tgof4UutKy8uv6pE_T2sHpdPkXrl8fn5WIdQUwoj2jO86wgCcxoTkBqIFLzhM7zNJvHwApKGeFpIRVorWcU5gBMphpiAB5nUsYTdDvc3bum8w1i1xycbS0FS-KMUz6jrKXIQIFrvHdKCzChfzI4aSpBieiyFF2Wos-yldz9kuydqaU7_Q3TAT6aSp3-IcVms1wNmm-clokP
CitedBy_id crossref_primary_10_1007_s12046_022_01989_x
crossref_primary_10_1017_S1759078725000029
crossref_primary_10_1109_MAP_2023_3290385
crossref_primary_10_1002_dac_5738
crossref_primary_10_2298_FUEE2404687V
crossref_primary_10_32604_cmc_2022_027653
crossref_primary_10_1002_mop_34184
crossref_primary_10_1016_j_aeue_2022_154302
crossref_primary_10_32604_cmc_2021_019114
crossref_primary_10_1038_s41598_022_16678_2
crossref_primary_10_1109_TPS_2025_3534289
crossref_primary_10_1016_j_aeue_2021_153739
crossref_primary_10_1088_1742_6596_2272_1_012012
crossref_primary_10_1109_ACCESS_2024_3491828
crossref_primary_10_1109_ACCESS_2023_3263581
crossref_primary_10_1088_1742_6596_1964_6_062098
crossref_primary_10_1109_OJAP_2024_3385675
crossref_primary_10_1007_s13369_024_09684_1
crossref_primary_10_1364_JOSAB_458574
crossref_primary_10_1088_1361_6463_acf7cf
crossref_primary_10_1016_j_rineng_2024_103423
crossref_primary_10_1007_s42979_024_03273_7
crossref_primary_10_1038_s41598_022_12011_z
crossref_primary_10_1109_ACCESS_2022_3203431
crossref_primary_10_1007_s11277_020_07905_y
crossref_primary_10_1016_j_matchemphys_2023_128180
crossref_primary_10_1007_s42979_024_03186_5
crossref_primary_10_1007_s11277_024_11359_x
crossref_primary_10_1109_ACCESS_2023_3332731
crossref_primary_10_1109_OJAP_2024_3412609
crossref_primary_10_26636_jtit_2024_2_1530
crossref_primary_10_1017_S1759078724000837
crossref_primary_10_1016_j_aeue_2023_154642
crossref_primary_10_1051_itmconf_20246904003
crossref_primary_10_1109_ACCESS_2022_3158976
crossref_primary_10_1080_17455030_2022_2149892
crossref_primary_10_1002_dac_6098
crossref_primary_10_1007_s40031_023_00879_y
crossref_primary_10_1016_j_engappai_2024_109381
crossref_primary_10_1007_s12647_024_00802_w
crossref_primary_10_1016_j_heliyon_2023_e19548
crossref_primary_10_1109_ACCESS_2023_3317371
crossref_primary_10_1080_02726343_2023_2281480
crossref_primary_10_1109_ACCESS_2021_3123219
crossref_primary_10_32604_cmc_2022_028550
crossref_primary_10_1515_freq_2023_0386
crossref_primary_10_1016_j_aej_2024_05_111
crossref_primary_10_1016_j_aeue_2024_155120
crossref_primary_10_33769_aupse_992350
crossref_primary_10_1016_j_aeue_2023_154570
crossref_primary_10_46592_turkager_1549453
crossref_primary_10_1109_TAP_2024_3384758
crossref_primary_10_1109_ACCESS_2024_3355145
crossref_primary_10_1109_TDEI_2024_3395236
crossref_primary_10_1002_dac_6044
crossref_primary_10_1109_TMTT_2022_3189655
Cites_doi 10.1109/YAC.2017.7967510
10.1109/APUSNCURSINRSM.2017.8072216
10.1016/j.procs.2016.05.178
10.1109/TAP.2005.858617
10.23919/EuRAD.2018.8546527
10.1109/HPCS48598.2019.9188224
10.1109/AEMC.2013.7045047
10.1155/2012/541354
10.1109/8.743842
10.1109/LAWP.2014.2315435
10.1887/0750308958
10.1109/SPIN.2015.7095291
10.1109/COMST.2019.2904897
10.1002/mmce.21623
10.1109/CEM.2009.5228115
10.1109/CSCI.2017.344
10.1002/mmce.20414
10.1109/ISEMC.1979.7568787
10.1109/EuCAP.2012.6206281
10.4324/9780203763247
10.7716/aem.v6i1.407
10.1109/20.250786
10.2528/PIERB08013006
10.1109/LMWC.2014.2310481
10.1109/TAP.1966.1138693
10.1103/PhysRevLett.114.096405
10.2529/PIERS070317050916
10.1109/ICETETS.2016.7603037
10.1109/MAP.2015.2453912
10.1109/ISMSIT.2019.8932929
10.1109/LWC.2018.2805902
10.1109/8.43555
10.1109/IWAT.2019.8730801
10.1109/LAPC.2012.6402988
10.1109/8.558650
10.1109/TAP.2013.2287889
10.1109/22.643839
10.1109/72.329697
10.1002/9780470140529
10.1017/S1759078715000616
10.1049/iet-map.2013.0254
10.1109/SIU.2008.4632716
10.1109/MAP.2014.7011045
10.1109/20.582522
10.1109/TAP.2007.891306
10.23919/EuCAP.2017.7928501
10.1109/TAP.2014.2366203
10.1109/ISCON.2009.5156093
10.1109/TAP.2014.2300159
10.1109/TAP.2005.859905
10.1109/APS.2011.5997142
10.1109/ICDECOM.2011.5738516
10.1002/mop.27692
10.1049/iet-map.2013.0650
10.1007/s13042-012-0084-x
10.1109/ACCESS.2018.2882271
10.1109/TAP.2015.2466466
10.1109/8.964096
10.1109/TAP.2018.2835566
10.1109/MAP.2009.5162021
10.1017/CBO9781107298019
10.1109/ICECom.2013.6684759
10.1049/SBEW049E
10.1109/8.135478
10.2514/8.3664
10.1109/LAWP.2014.2362195
10.1109/72.363438
10.1109/TMTT.2003.809179
10.1109/TEMC.1982.304054
10.1007/978-1-4757-3799-8
10.1109/20.376426
10.1147/rd.21.0002
10.1109/LAWP.2018.2857807
10.1109/TAP.2007.891566
10.1109/LAPC.2015.7366125
10.1109/MAP.2011.6097296
10.1109/TAP.2015.2407411
10.1109/COMST.2014.2320099
10.1002/asmb.2209
10.1109/8.55618
10.1007/s11664-017-5487-8
10.1109/LAWP.2006.889559
10.1109/SURV.2012.100412.00017
10.1109/LAWP.2012.2213567
10.1007/s11263-008-0168-y
10.1023/B:STCO.0000035301.49549.88
10.1201/9781315214603
10.1109/22.554584
10.1201/b18401
10.1109/APS.2012.6348754
10.1109/TAP.2020.2966051
10.1109/ACCESS.2018.2836950
10.1016/j.cageo.2007.05.001
10.1049/iet-map.2011.0363
10.1109/TAP.2018.2823775
10.1109/9780470544631
10.1109/TAP.2013.2294860
10.1109/8.546249
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TAP.2014.2361896
10.1109/NCETACS.2011.5751381
10.1109/TAP.2012.2214195
10.1109/TAP.2007.891564
10.1109/TNN.2005.852973
10.1109/ICOA.2018.8370530
10.1109/22.575602
10.1109/MAP.2016.2520254
10.1016/j.sbspro.2015.06.434
10.1007/978-1-4302-5990-9_4
10.1109/LAWP.2013.2285381
10.1109/22.622937
10.1109/TAP.2004.842695
10.1145/2647868.2654889
10.1145/2934664
10.1109/9780470544655
10.1109/TAP.2013.2283605
10.1109/TAP.2015.2417977
10.1109/TAP.2007.891874
10.1109/TAP.2012.2220513
10.1109/74.632992
10.1109/TAP.2020.2970071
10.2528/PIERM09093002
10.1145/2939672.2945397
10.1109/LAWP.2014.2376981
10.1002/mmce.20491
10.1109/ICUWB.2012.6340448
10.1007/978-3-642-41136-6_11
10.1109/20.376427
10.1109/AEMC.2011.6256829
10.1109/TAP.2005.850706
10.1007/978-3-642-32639-4_77
10.1109/TAP.2013.2296327
10.1049/iet-map.2014.0653
10.1109/APS.2012.6348584
10.1109/IWAT.2010.5464782
10.1145/1656274.1656278
10.1109/TAP.2012.2196941
10.2528/PIER09083103
10.1109/TAP.2018.2790044
10.1109/TMAG.2007.892480
10.1078/1434-8411-54100128
10.2528/PIERC18102303
10.1145/1961189.1961199
10.1002/0471704091
10.1109/MAP.2005.1532541
10.1109/TAP.2019.2900359
10.1109/8.210111
10.1201/b17119
10.1109/ICCCNT.2010.5591751
10.1002/mmce.20509
10.1109/NMDC.2015.7439256
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC
Copyright_xml – notice: 2020 Wiley Periodicals LLC
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/mmce.22356
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-047X
EndPage n/a
ExternalDocumentID 10_1002_mmce_22356
MMCE22356
Genre reviewArticle
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJCF
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ATUGU
AUFTA
AZBYB
AZFZN
AZQEC
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
H13
HCIFZ
HF~
HHY
HHZ
HVGLF
HZ~
I-F
IX1
JPC
K7-
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7S
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
O66
O9-
OIG
P2W
P2X
P4D
PIMPY
PQQKQ
PTHSS
Q.N
Q11
QB0
QRW
R.K
RHX
ROL
RWI
RX1
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
ADMLS
AGQPQ
CITATION
PHGZM
PHGZT
1OB
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3016-1b6b9d04c71b0cafc0af6418b5983c2d112065daecfff71c8cc2a5fc3cc639aa3
IEDL.DBID DR2
ISSN 1096-4290
IngestDate Wed Aug 13 04:39:22 EDT 2025
Tue Jul 01 03:03:30 EDT 2025
Thu Apr 24 22:54:48 EDT 2025
Wed Jan 22 16:34:34 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3016-1b6b9d04c71b0cafc0af6418b5983c2d112065daecfff71c8cc2a5fc3cc639aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0049-9318
0000-0003-1370-8799
0000-0002-9588-8473
PQID 2439616712
PQPubID 1026345
PageCount 28
ParticipantIDs proquest_journals_2439616712
crossref_citationtrail_10_1002_mmce_22356
crossref_primary_10_1002_mmce_22356
wiley_primary_10_1002_mmce_22356_MMCE22356
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle International journal of RF and microwave computer-aided engineering
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 1995; 31
2019; 90
1993; 29
2013; 4
2009; 81
2013; 62
1997; 45
2011; 53
2014; 24
2001; 49
2012; 15
2003; 51
2012; 11
1979
1978
2018; 7
2018; 6
2010; 20
2009; 98
2013; 55
2019; 21
2014; 16
2014; 14
2014; 13
2007; 7
2019; 29
1989; 37
1992; 40
1988
2015; 57
2007; 17
2019; 1901
2011; 2
2019; 1904
1990; 38
2019; 1908
1993; 41
1997
1994
1993
1991
1995; 6
2007; 14
1999
2015; 195
1997; 33
2015; 114
2015; 63
1956; 23
1997; 39
2005; 528
1998; 6
2005; 16
2016; 8
2012; 61
2017; 6
2012; 60
2012; 2012
1966; 14
2002; 56
2017; 46
2008; 5
2011; 12
2014; 63
2014; 62
2007; 33
2012; 329
1998; 46
2009; 51
2001
2000
2013; 12
2017; 33
2019; 67
2016; 85
2011; 21
2003; 1
1958; 2
2014; 8
2014; 56
2012
2011
2010
2009
2008
2007
2006; 5
1996; 58
2018; 67
2015; 9
2018; 66
2007; 55
2012; 821
2016; 59
2016; 58
2005; 47
1982; EMC‐24
2020
2004; 14
2019
2018
2005; 53
2009; 9
2017
2016
2020; 68
2015
2014
2013
2012; 6
2007; 43
2009; 1
1994; 5
1996; 44
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
Montgomery DC (e_1_2_9_67_1) 2012
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_83_1
e_1_2_9_6_1
Tibshirani R (e_1_2_9_105_1) 1996; 58
e_1_2_9_119_1
Burden F (e_1_2_9_120_1) 2008
Baldi P (e_1_2_9_84_1) 2001
Kingma DP (e_1_2_9_117_1) 2014
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
e_1_2_9_72_1
e_1_2_9_34_1
e_1_2_9_95_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
Haykin S (e_1_2_9_108_1) 2008
e_1_2_9_61_1
e_1_2_9_46_1
Christodoulou C (e_1_2_9_55_1) 2000
Turker N (e_1_2_9_126_1) 2007; 14
e_1_2_9_23_1
e_1_2_9_5_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
Prado DR (e_1_2_9_174_1) 2018; 67
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
Gunduz D (e_1_2_9_86_1) 2019; 1904
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_197_1
Rawle W (e_1_2_9_12_1) 2006; 5
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_93_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_21_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
Goodfellow I (e_1_2_9_65_1) 2014
e_1_2_9_135_1
e_1_2_9_158_1
Haykin S (e_1_2_9_57_1) 1994
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_90_1
Harrington P (e_1_2_9_74_1) 2012
Sankaran K (e_1_2_9_28_1) 2007
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
Moré JJ (e_1_2_9_118_1) 1978
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_87_1
Goodfellow I (e_1_2_9_109_1) 2016
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
Burkov A. (e_1_2_9_103_1) 2019
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
Volakis JL (e_1_2_9_2_1) 2007
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_42_1
e_1_2_9_88_1
Qj Z (e_1_2_9_60_1) 2000
e_1_2_9_80_1
e_1_2_9_114_1
Drucker H (e_1_2_9_70_1) 1997
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_50_1
e_1_2_9_73_1
Mohri M (e_1_2_9_112_1) 2012
e_1_2_9_35_1
e_1_2_9_96_1
Rockway JW (e_1_2_9_27_1) 1988
Ruder S (e_1_2_9_116_1) 2016
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_189_1
e_1_2_9_58_1
e_1_2_9_143_1
Tayli D (e_1_2_9_4_1) 2018
Mnih V (e_1_2_9_64_1) 2013
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_85_1
Grohs P (e_1_2_9_107_1) 2019; 1901
e_1_2_9_155_1
Prado DR (e_1_2_9_175_1) 2019
e_1_2_9_178_1
e_1_2_9_47_1
Wu Q (e_1_2_9_100_1) 2020
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_51_1
e_1_2_9_13_1
e_1_2_9_97_1
Naser‐Moghaddas M (e_1_2_9_125_1) 2007; 7
Malathi P (e_1_2_9_137_1) 2009
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
Taylor OZR (e_1_2_9_24_1) 1991
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
Sutton RS (e_1_2_9_75_1) 2018
Sarkar TK (e_1_2_9_11_1) 2000
Seber GA (e_1_2_9_68_1) 2012
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
Pedregosa F (e_1_2_9_77_1) 2011; 12
e_1_2_9_192_1
Testolina P (e_1_2_9_16_1) 2019; 1908
References_xml – year: 2011
– volume: 1
  year: 2003
– volume: 6
  start-page: 182
  issue: 1
  year: 1995
  end-page: 195
  article-title: Gradient descent learning algorithm overview: a general dynamical systems perspective
  publication-title: IEEE Trans Neural Netw
– volume: 329
  year: 2012
– volume: 66
  start-page: 3718
  year: 2018
  end-page: 3723
  article-title: Multiparameter modeling with ANN for antenna design
  publication-title: IEEE Trans Antenna Propag
– volume: 21
  start-page: 228
  year: 2011
  end-page: 233
  article-title: Modeling and design of printed antennas using neural networks
  publication-title: Int J RF Microw Comput Aid Eng
– volume: 6
  start-page: 35365
  year: 2018
  end-page: 35381
  article-title: Machine learning and deep learning methods for cybersecurity
  publication-title: IEEE Access
– volume: 9
  start-page: 107
  year: 2009
  end-page: 122
  article-title: Bandwidth analysis by introducing slots in microstrip antenna design using ANN
  publication-title: Progr Electromagn Res
– volume: 11
  start-page: 977
  year: 2012
  end-page: 980
  article-title: Design of a contoured‐beam reflectarray for a EuTELSAT European coverage using a stacked‐patch element characterized by an artificial neural network
  publication-title: IEEE Antennas Wirel Propag Lett
– start-page: 239
  year: 2000
  end-page: 279
– volume: 53
  start-page: 1126
  year: 2005
  end-page: 1132
  article-title: Application of neural networks to analyses of nonlinearly loaded antenna arrays including mutual coupling effects
  publication-title: IEEE Trans Antenna Propag
– volume: 5
  start-page: 989
  year: 1994
  end-page: 993
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE Trans Neural Netw
– volume: 528
  year: 2005
– volume: 29
  year: 2019
  article-title: Prediction of slot‐position and slot‐size of a microstrip antenna using support vector regression
  publication-title: Int J RF Microw Comput Aid Eng
– volume: 56
  start-page: 396
  year: 2002
  end-page: 406
  article-title: Neural models for the resonant frequency of electrically thin and thick circular microstrip antennas and the characteristic parameters of asymmetric coplanar waveguides backed with a conductor
  publication-title: AEU‐Int J Electron Commun
– volume: 6
  year: 1998
– volume: 49
  start-page: 1597
  year: 2001
  end-page: 1602
  article-title: Profiled corrugated circular horns analysis and synthesis via an artificial neural network
  publication-title: IEEE Trans Antenna Propag
– volume: 8
  start-page: 1111
  issue: 7
  year: 2016
  end-page: 1119
  article-title: Bandwidth enhancement of patch antennas using neural network dependent modified optimizer
  publication-title: Int J Microw Wirel Technol
– start-page: 105
  year: 1978
  end-page: 116
  article-title: The Levenberg‐Marquardt algorithm: implementation and theory
  publication-title: Numer Anal
– volume: 51
  start-page: 86
  year: 2009
  end-page: 98
  article-title: Errors in projection of plane waves using various basis functions
  publication-title: IEEE Antennas Propag Mag
– year: 2014
– volume: 2
  issue: 3
  year: 2011
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol
– volume: 63
  start-page: 2180
  year: 2014
  end-page: 2190
  article-title: The contour deformation method for calculating the high frequency scattered fields by the Fock current on the surface of the 3‐D convex cylinder
  publication-title: IEEE Trans Antenna Propag
– year: 2008
– volume: 45
  start-page: 343
  issue: 3
  year: 1997
  end-page: 353
  article-title: Genetic algorithm optimization applied to electromagnetics: a review
  publication-title: IEEE Trans Antenna Propag
– volume: 4
  start-page: 189
  year: 2013
  end-page: 194
  article-title: Design of custom‐made stacked patch antennas: a machine learning approach
  publication-title: Int J Mach Learn Cybernet
– volume: 53
  start-page: 3453
  year: 2005
  end-page: 3458
  article-title: Neurocomputational analysis of a multiband reconfigurable planar antenna
  publication-title: IEEE Trans Antenna Propag
– volume: 7
  start-page: 278
  year: 2007
  end-page: 281
  article-title: A heuristic artificial neural network for analyzing and synthesizing rectangular mcrostrip antenna
  publication-title: Int J Comput Sci Netw Secur
– volume: 6
  start-page: 42
  year: 2017
  end-page: 55
  article-title: Review on computational electromagnetics
  publication-title: Adv Electromagn
– volume: 47
  start-page: 60
  year: 2005
  end-page: 65
  article-title: Design of a wideband microstrip antenna and the use of artificial neural networks in parameter calculation
  publication-title: IEEE Antennas Propag Mag
– volume: 59
  start-page: 56
  year: 2016
  end-page: 65
  article-title: Apache spark: a unified engine for big data processing
  publication-title: Commun ACM
– volume: 1904
  year: 2019
  article-title: Machine learning in the air
  publication-title: arxiv Preprint
– volume: 14
  start-page: 302
  year: 1966
  end-page: 307
  article-title: Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media
  publication-title: IEEE Trans Antenna Propag
– volume: 114
  issue: 9
  year: 2015
  article-title: Molecular dynamics with on‐the‐fly machine learning of quantum‐mechanical forces
  publication-title: Phys Rev Lett
– volume: 21
  start-page: 85
  year: 2011
  end-page: 90
  article-title: Application of support vector machines to the antenna design
  publication-title: Int J RF Microw Comput Aid Eng
– year: 2019
– year: 1993
– year: 2014
  article-title: Adam: a method for stochastic optimization
  publication-title: Arxiv Preprint
– volume: 33
  start-page: 1301
  issue: 10
  year: 2007
  end-page: 1315
  article-title: About regression‐kriging: from equations to case studies
  publication-title: Comput Geosci
– volume: 195
  start-page: 2520
  year: 2015
  end-page: 2526
  article-title: Dimension optimization of microstrip patch antenna in X/Ku band via artificial neural network
  publication-title: Procedia Soc Behav Sci
– volume: 60
  start-page: 3205
  year: 2012
  end-page: 3214
  article-title: ANN characterization of multi‐layer reflectarray elements for contoured‐beam space antennas in the Ku‐band
  publication-title: IEEE Trans Antenna Propag
– volume: 23
  start-page: 805
  year: 1956
  end-page: 823
  article-title: Stiffness and deflection analysis of complex structures
  publication-title: J Aeronaut Sci
– volume: 8
  start-page: 730
  year: 2014
  end-page: 735
  article-title: Non‐conforming finite element tearing and interconnecting method with one Lagrange multiplier for solving large‐scale electromagnetic problems
  publication-title: IET Microw Antennas Propag
– volume: 55
  start-page: 669
  year: 2007
  end-page: 674
  article-title: Application of artificial neural networks to broadband antenna design based on a parametric frequency model
  publication-title: IEEE Trans Antenna Propag
– start-page: 1
  year: 2020
  article-title: Machine learning techniques for optimizing design of double T‐shaped monopole antenna
  publication-title: IEEE Trans Antenna Propag
– year: 2007
– volume: 14
  start-page: 305
  year: 2014
  end-page: 308
  article-title: Charge recovery for the RWG‐based method of moments
  publication-title: IEEE Antennas Wirel Propag Lett
– volume: 58
  start-page: 94
  issue: 2
  year: 2016
  end-page: 119
  article-title: Building a better anechoic chamber: a geometric optics‐based systematic solution, simulated and verified [measurements corner]
  publication-title: IEEE Antennas Propag Mag
– year: 2016
– volume: 55
  start-page: 659
  year: 2007
  end-page: 668
  article-title: A hybrid method based on combining artificial neural network and fuzzy inference system for simultaneous computation of resonant frequencies of rectangular, circular, and triangular microstrip antennas
  publication-title: IEEE Trans Antenna Propag
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 10
  article-title: Neural network characterization of reflectarray antennas
  publication-title: Int J Antennas Propag
– year: 2010
– volume: 61
  start-page: 980
  year: 2012
  end-page: 984
  article-title: Computationally efficient multi‐fidelity Bayesian support vector regression modeling of planar antenna input characteristics
  publication-title: IEEE Trans Antenna Propag
– volume: 44
  start-page: 2495
  year: 1996
  end-page: 2503
  article-title: EM‐ANN models for microstrip vias and interconnects in dataset circuits
  publication-title: IEEE Trans Microw Theory Tech
– volume: 5
  start-page: 49
  year: 2008
  end-page: 61
  article-title: Support vector characterisation of the microstrip antennas based on measurements
  publication-title: Progr Electromagn Res
– volume: 5
  start-page: 559
  year: 2006
  end-page: 562
  article-title: Design of short‐circuited ring‐patch antennas working at TM01 mode based on neural networks
  publication-title: IEEE Antennas Wirel Propag Lett
– volume: 31
  start-page: 1968
  year: 1995
  end-page: 1971
  article-title: Electromagnetic field parallel computation with a Hopfield neural network
  publication-title: IEEE Trans Magn
– volume: 46
  start-page: 4963
  issue: 8
  year: 2017
  end-page: 4975
  article-title: Machine‐learning approach for design of nanomagnetic‐based antennas
  publication-title: J Electron Mater
– volume: 56
  start-page: 181
  year: 2014
  end-page: 192
  article-title: Uniform two‐step method for the FDTD analysis of aperture coupling
  publication-title: IEEE Antennas Propag Mag
– volume: 66
  start-page: 1258
  year: 2018
  end-page: 1270
  article-title: Fast and accurate modeling of dual‐polarized reflectarray unit cells using support vector machines
  publication-title: IEEE Trans Antenna Propag
– volume: 2
  start-page: 2
  issue: 1
  year: 1958
  end-page: 13
  article-title: A learning machine: part I
  publication-title: IBM J Res Dev
– volume: 14
  start-page: 445
  year: 2007
  end-page: 453
  article-title: Artificial neural design of microstrip antennas
  publication-title: Turk J Electr Eng Comp Sci
– volume: 85
  start-page: 393
  year: 2016
  end-page: 400
  article-title: Neurocomputational models for parameter estimation of circular microstrip patch antennas
  publication-title: Proc Comput Sci
– volume: 63
  start-page: 269
  year: 2014
  end-page: 279
  article-title: An efficient 3‐D FDTD model of electromagnetic wave propagation in magnetized plasma
  publication-title: IEEE Trans Antenna Propag
– volume: 55
  start-page: 990
  year: 2007
  end-page: 993
  article-title: Application of neural network and its extension of derivative to scattering from a nonlinearly loaded antenna
  publication-title: IEEE Trans Antennas Propag
– volume: 24
  start-page: 361
  year: 2014
  end-page: 363
  article-title: Trade‐offs for unconditional stability in the finite‐element time‐domain method
  publication-title: IEEE Microw Wirel Compon Lett
– volume: 41
  start-page: 25
  year: 1993
  end-page: 30
  article-title: Analysis of wire scatterers with nonlinear or time‐harmonic loads in the frequency domain
  publication-title: IEEE Trans Antenna Propag
– volume: 40
  start-page: 334
  year: 1992
  end-page: 340
  article-title: Finite‐difference time‐domain method for antenna radiation
  publication-title: IEEE Trans Antenna Propag
– volume: 7
  start-page: 634
  issue: 4
  year: 2018
  end-page: 637
  article-title: Transmit antenna selection in MIMO wiretap channels: a machine learning approach
  publication-title: IEEE Wirel Commun Lett
– volume: 33
  start-page: 3
  issue: 1
  year: 2017
  end-page: 12
  article-title: Deep learning for finance: deep portfolios
  publication-title: Appl Stoch Model Bus Ind
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc B Methodol
– volume: 98
  start-page: 233
  year: 2009
  end-page: 249
  article-title: Gaussian process modeling of CPW‐fed slot antennas
  publication-title: Progr Electromagn Res
– year: 2013
– volume: 62
  start-page: 6325
  year: 2014
  end-page: 6336
  article-title: An accurate and efficient finite element‐boundary integral method with GPU acceleration for 3‐D electromagnetic analysis
  publication-title: IEEE Trans Antenna Propag
– volume: 62
  start-page: 345
  year: 2013
  end-page: 353
  article-title: An algorithm for the FDTD modeling of flat electrodes in grounding systems
  publication-title: IEEE Trans Antenna Propag
– year: 2009
– year: 2001
– volume: 31
  start-page: 1964
  year: 1995
  end-page: 1967
  article-title: Direct solution method for finite element analysis using Hopfield neural network
  publication-title: IEEE Trans Magn
– volume: 55
  start-page: 523
  issue: 3
  year: 2007
  end-page: 537
  article-title: Evolutionary programming in electromagnetic optimization: a review
  publication-title: IEEE Trans Antenna Propag
– volume: 1908
  year: 2019
  article-title: Enabling simulation‐based optimization through machine learning: a case study on antenna design
  publication-title: arXiv Preprint
– volume: 1901
  year: 2019
  article-title: Deep neural network approximation theory
  publication-title: Arxiv Preprint
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  end-page: 222
  article-title: A tutorial on support vector regression
  publication-title: Stat Comput
– volume: 20
  start-page: 76
  year: 2010
  end-page: 86
  article-title: Microstrip antenna design using artificial neural networks
  publication-title: Int J RF Microw Comput Aid Eng
– volume: 51
  start-page: 1339
  year: 2003
  end-page: 1350
  article-title: Artificial neural networks for RF and microwave design‐from theory to practice
  publication-title: IEEE Trans Microw Theory Tech
– year: 1979
– volume: 21
  start-page: 2224
  year: 2019
  end-page: 2287
  article-title: Deep learning in mobile and wireless networking: a survey
  publication-title: IEEE Commun Surv Tutor
– year: 2018
– volume: 62
  start-page: 1523
  year: 2014
  end-page: 1528
  article-title: A hierarchical fast solver for EFIE‐MoM analysis of multiscale structures at very low frequencies
  publication-title: IEEE Trans Antenna Propag
– year: 1994
– volume: 9
  start-page: 640
  year: 2015
  end-page: 647
  article-title: Fast analysis of three‐dimensional electromagnetic problems using dual‐primal finite‐element tearing and interconnecting method combined with H‐matrix technique
  publication-title: IET Microw Antennas Propag
– volume: 55
  start-page: 1864
  issue: 8
  year: 2013
  end-page: 1868
  article-title: An adaptive evolutionary algorithm for UWB microstrip antennas optimization using a machine learning technique
  publication-title: Microw Opt Technol Lett
– year: 2020
  article-title: Multi‐stage collaborative machine learning and its application to antenna modeling and optimization
  publication-title: IEEE Trans Antenna Propag
– year: 2019
  article-title: Wideband shaped‐beam reflectarray design using support vector regression analysis
  publication-title: IEEE Antennas Wirel Propag Lett
– volume: 5
  start-page: 42
  year: 2006
  end-page: 47
  article-title: The method of moments: a numerical technique for wire antenna design
  publication-title: High Freq Electron
– volume: 821
  year: 2012
– volume: 37
  start-page: 1361
  year: 1989
  end-page: 1369
  article-title: Analysis of microstrip patch antennas using finite difference time domain method
  publication-title: IEEE Trans Antenna Propag
– volume: 63
  start-page: 2604
  year: 2015
  end-page: 2613
  article-title: 3‐D electromagnetic scattering computation in free‐space with the FETI‐FDP2 method
  publication-title: IEEE Trans Antenna Propag
– volume: 53
  start-page: 2231
  year: 2005
  end-page: 2236
  article-title: A novel neural network combined with FDTD for the synthesis of a printed dipole antenna
  publication-title: IEEE Trans Antenna Propag
– volume: EMC‐24
  start-page: 397
  year: 1982
  end-page: 405
  article-title: A novel method to analyze electromagnetic scattering of complex objects
  publication-title: IEEE Trans Electromagn Compat
– volume: 1
  issue: 1
  year: 2009
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explor
– volume: 6
  start-page: 72295
  year: 2018
  end-page: 72310
  article-title: General framework for the efficient optimization of reflectarray antennas for contoured beam space applications
  publication-title: IEEE Access
– year: 2016
  article-title: An overview of gradient descent optimization algorithms
  publication-title: Arxiv Preprint
– year: 1997
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: machine learning in python
  publication-title: J Mach Learn Res
– volume: 6
  start-page: 470
  year: 2012
  end-page: 474
  article-title: Design of an aperture‐coupled microstrip antenna using a hybrid neural network
  publication-title: IET Microw Antennas Propag
– start-page: 2672
  year: 2014
  end-page: 2680
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– volume: 44
  start-page: 1630
  year: 1996
  end-page: 1639
  article-title: An anisotropic perfectly matched layer‐absorbing medium for the truncation of FDTD lattices
  publication-title: IEEE Trans Antenna Propag
– volume: 16
  start-page: 1996
  issue: 4
  year: 2014
  end-page: 2018
  article-title: Machine learning in wireless sensor networks: algorithms, strategies, and applications
  publication-title: IEEE Commun Surv Tutor
– volume: 16
  start-page: 1590
  year: 2005
  end-page: 1600
  article-title: A novel neural network for the synthesis of antennas and microwave devices
  publication-title: IEEE Trans Neural Netw
– volume: 57
  start-page: 23
  year: 2015
  end-page: 31
  article-title: A hybrid method to design wire antennas: design and optimization of antennas using artificial intelligence
  publication-title: IEEE Antennas Propag Mag
– year: 2015
– volume: 38
  start-page: 1059
  year: 1990
  end-page: 1068
  article-title: Accurate computation of the radiation from simple antennas using the finite‐difference time‐domain method
  publication-title: IEEE Trans Antenna Propag
– volume: 13
  start-page: 714
  year: 2014
  end-page: 717
  article-title: One‐step leapfrog ADI‐FDTD method in 3‐D cylindrical grids with a CPML implementation
  publication-title: IEEE Antennas Wirel Propag Lett
– volume: 12
  start-page: 1367
  year: 2013
  end-page: 1371
  article-title: Prediction of slot‐size and inserted air‐gap for improving the performance of rectangular microstrip antennas using artificial neural networks
  publication-title: IEEE Antennas Wirel Propag Lett
– volume: 53
  start-page: 94
  year: 2011
  end-page: 101
  article-title: Design of custom‐made fractal multi‐band antennas using ANN‐PSO
  publication-title: IEEE Antennas Propag Mag
– volume: 33
  start-page: 1414
  year: 1997
  end-page: 1419
  article-title: Analysis of microstrip antennas using neural networks
  publication-title: IEEE Trans Magn
– volume: 66
  start-page: 3995
  year: 2018
  end-page: 4007
  article-title: Efficient prediction of the EM response of reflectarray antenna elements by an advanced statistical learning method
  publication-title: IEEE Trans Antenna Propag
– volume: 67
  year: 2018
  article-title: Support vector regression to accelerate design and crosspolar optimization of shaped‐beam reflectarray antennas for space applications
  publication-title: IEEE Trans Antenna Propag
– year: 2000
– year: 2013
  article-title: Playing atari with deep reinforcement learning
  publication-title: arXiv Preprint
– volume: 63
  start-page: 4468
  year: 2015
  end-page: 4476
  article-title: A domain decomposition finite difference time domain (FDTD) method for scattering problem from very large rough surfaces
  publication-title: IEEE Trans Antenna Propag
– volume: 46
  start-page: 1890
  year: 1998
  end-page: 1891
  article-title: Neural network‐based CAD model for the design of square‐patch antennas
  publication-title: IEEE Trans Antenna Propag
– volume: 67
  start-page: 3109
  year: 2019
  end-page: 3116
  article-title: Multigrade artificial neural network for the design of finite periodic arrays
  publication-title: IEEE Trans Antenna Propag
– volume: 17
  start-page: 2008
  issue: 11
  year: 2007
  end-page: 2012
  article-title: A 3‐D‐printed W‐band slotted waveguide array antenna optimized using machine learning
  publication-title: IEEE Antennas Wirel Propag Lett
– volume: 15
  start-page: 1136
  issue: 3
  year: 2012
  end-page: 1159
  article-title: A survey on machine‐learning techniques in cognitive radios
  publication-title: IEEE Commun Surv Tutor
– volume: 45
  start-page: 2333
  year: 1997
  end-page: 2343
  article-title: Knowledge‐based neural models for microwave design
  publication-title: IEEE Trans Microw Theory Tech
– volume: 53
  start-page: 4099
  year: 2005
  end-page: 4110
  article-title: Modeling and simulation of broad‐band antennas using the time‐domain finite element method
  publication-title: IEEE Trans Antenna Propag
– year: 2012
– volume: 43
  start-page: 1589
  year: 2007
  end-page: 1592
  article-title: Microwave devices and antennas modelling by support vector regression machines
  publication-title: IEEE Trans Magn
– volume: 39
  start-page: 7
  issue: 4
  year: 1997
  end-page: 21
  article-title: Genetic algorithms in engineering electromagnetics
  publication-title: IEEE Antennas Propag Mag
– volume: 29
  start-page: 1931
  year: 1993
  end-page: 1934
  article-title: Artificial neural networks in the solution of inverse electromagnetic field problems
  publication-title: IEEE Trans Magn
– volume: 60
  start-page: 5989
  year: 2012
  end-page: 5992
  article-title: An ANN‐based synthesis model for the single‐feed circularly‐polarized square microstrip antenna with truncated corners
  publication-title: IEEE Trans Antenna Propag
– volume: 8
  start-page: 951
  year: 2014
  end-page: 958
  article-title: Study and analysis of a novel Runge‐Kutta high‐order finite‐difference time‐domain method
  publication-title: IET Microw Antennas Propag
– volume: 62
  start-page: 1330
  year: 2013
  end-page: 1338
  article-title: Efficient parallel LOD‐FDTD method for Debye‐dispersive media
  publication-title: IEEE Trans Antenna Propag
– volume: 45
  start-page: 1645
  year: 1997
  end-page: 1649
  article-title: FDTD analysis of dielectric resonators with curved surfaces
  publication-title: IEEE Trans Microw Theory Tech
– volume: 62
  start-page: 7
  issue: 1
  year: 2014
  end-page: 18
  article-title: An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques
  publication-title: IEEE Trans Antenna Propag
– volume: 45
  start-page: 794
  year: 1997
  end-page: 802
  article-title: Artificial neural networks for fast and accurate EM‐CAD of microwave circuits
  publication-title: IEEE Trans Microw Theory Tech
– start-page: 155
  year: 1997
  end-page: 161
  article-title: Support vector regression machines
  publication-title: Adv Neural Inf Process Syst
– volume: 68
  start-page: 4417
  year: 2020
  end-page: 4427
  article-title: Multibranch artificial neural network modeling for inverse estimation of antenna array directivity
  publication-title: IEEE Trans Antenna Propag
– year: 1988
– volume: 90
  start-page: 109
  year: 2019
  end-page: 124
  article-title: Spherical mapping of the second‐order phoenix cell for unbounded direct reflectarray copolar optimization
  publication-title: Progr Electromagn Res
– volume: 81
  start-page: 227
  issue: 3
  year: 2009
  end-page: 239
  article-title: Adaptive stochastic gradient descent optimisation for image registration
  publication-title: Int J Comput Vis
– volume: 14
  start-page: 690
  year: 2014
  end-page: 693
  article-title: Time‐synchronized convolutional perfectly matched layer for improved absorbing performance in FDTD
  publication-title: IEEE Antennas Wirel Propag Lett
– year: 2017
– year: 1991
– year: 2009
  article-title: On the design of multilayer circular microstrip antenna using artificial neural networks
  publication-title: Int J Recent Trends Eng
– volume: 62
  start-page: 2263
  year: 2014
  end-page: 2268
  article-title: An effective domain‐decomposition‐based preconditioner for the FE‐BI‐MLFMA method for 3D scattering problems
  publication-title: IEEE Trans Antenna Propag
– year: 1999
– ident: e_1_2_9_193_1
  doi: 10.1109/YAC.2017.7967510
– ident: e_1_2_9_146_1
  doi: 10.1109/APUSNCURSINRSM.2017.8072216
– ident: e_1_2_9_139_1
  doi: 10.1016/j.procs.2016.05.178
– ident: e_1_2_9_152_1
  doi: 10.1109/TAP.2005.858617
– start-page: 1312.5602
  year: 2013
  ident: e_1_2_9_64_1
  article-title: Playing atari with deep reinforcement learning
  publication-title: arXiv Preprint
– ident: e_1_2_9_173_1
  doi: 10.23919/EuRAD.2018.8546527
– ident: e_1_2_9_18_1
  doi: 10.1109/HPCS48598.2019.9188224
– ident: e_1_2_9_181_1
  doi: 10.1109/AEMC.2013.7045047
– volume-title: The MININEC System
  year: 1988
  ident: e_1_2_9_27_1
– ident: e_1_2_9_168_1
  doi: 10.1155/2012/541354
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_9_77_1
  article-title: Scikit‐learn: machine learning in python
  publication-title: J Mach Learn Res
– ident: e_1_2_9_95_1
  doi: 10.1109/8.743842
– volume: 5
  start-page: 42
  year: 2006
  ident: e_1_2_9_12_1
  article-title: The method of moments: a numerical technique for wire antenna design
  publication-title: High Freq Electron
– ident: e_1_2_9_35_1
  doi: 10.1109/LAWP.2014.2315435
– ident: e_1_2_9_121_1
  doi: 10.1887/0750308958
– ident: e_1_2_9_132_1
  doi: 10.1109/SPIN.2015.7095291
– ident: e_1_2_9_88_1
  doi: 10.1109/COMST.2019.2904897
– ident: e_1_2_9_130_1
  doi: 10.1002/mmce.21623
– ident: e_1_2_9_50_1
  doi: 10.1109/CEM.2009.5228115
– volume: 67
  year: 2018
  ident: e_1_2_9_174_1
  article-title: Support vector regression to accelerate design and crosspolar optimization of shaped‐beam reflectarray antennas for space applications
  publication-title: IEEE Trans Antenna Propag
– ident: e_1_2_9_159_1
  doi: 10.1109/CSCI.2017.344
– ident: e_1_2_9_93_1
  doi: 10.1002/mmce.20414
– ident: e_1_2_9_26_1
  doi: 10.1109/ISEMC.1979.7568787
– ident: e_1_2_9_136_1
  doi: 10.1109/EuCAP.2012.6206281
– year: 2019
  ident: e_1_2_9_175_1
  article-title: Wideband shaped‐beam reflectarray design using support vector regression analysis
  publication-title: IEEE Antennas Wirel Propag Lett
– ident: e_1_2_9_110_1
  doi: 10.4324/9780203763247
– ident: e_1_2_9_3_1
  doi: 10.7716/aem.v6i1.407
– volume-title: Neural Networks for RF and Microwave Design
  year: 2000
  ident: e_1_2_9_60_1
– ident: e_1_2_9_51_1
  doi: 10.1109/20.250786
– start-page: 1412.6980
  year: 2014
  ident: e_1_2_9_117_1
  article-title: Adam: a method for stochastic optimization
  publication-title: Arxiv Preprint
– ident: e_1_2_9_98_1
  doi: 10.2528/PIERB08013006
– start-page: 105
  year: 1978
  ident: e_1_2_9_118_1
  article-title: The Levenberg‐Marquardt algorithm: implementation and theory
  publication-title: Numer Anal
– ident: e_1_2_9_42_1
  doi: 10.1109/LMWC.2014.2310481
– ident: e_1_2_9_20_1
  doi: 10.1109/TAP.1966.1138693
– start-page: 155
  year: 1997
  ident: e_1_2_9_70_1
  article-title: Support vector regression machines
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_9_40_1
– ident: e_1_2_9_83_1
  doi: 10.1103/PhysRevLett.114.096405
– ident: e_1_2_9_153_1
  doi: 10.2529/PIERS070317050916
– volume-title: Machine Learning in Action
  year: 2012
  ident: e_1_2_9_74_1
– ident: e_1_2_9_141_1
  doi: 10.1109/ICETETS.2016.7603037
– ident: e_1_2_9_17_1
  doi: 10.1109/MAP.2015.2453912
– year: 2020
  ident: e_1_2_9_100_1
  article-title: Multi‐stage collaborative machine learning and its application to antenna modeling and optimization
  publication-title: IEEE Trans Antenna Propag
– ident: e_1_2_9_129_1
  doi: 10.1109/ISMSIT.2019.8932929
– ident: e_1_2_9_87_1
  doi: 10.1109/LWC.2018.2805902
– volume-title: Antenna Engineering Handbook
  year: 2007
  ident: e_1_2_9_2_1
– ident: e_1_2_9_6_1
  doi: 10.1109/8.43555
– ident: e_1_2_9_151_1
  doi: 10.1109/IWAT.2019.8730801
– ident: e_1_2_9_195_1
  doi: 10.1109/LAPC.2012.6402988
– ident: e_1_2_9_122_1
  doi: 10.1109/8.558650
– ident: e_1_2_9_33_1
  doi: 10.1109/TAP.2013.2287889
– ident: e_1_2_9_62_1
  doi: 10.1109/22.643839
– ident: e_1_2_9_119_1
  doi: 10.1109/72.329697
– ident: e_1_2_9_111_1
  doi: 10.1002/9780470140529
– ident: e_1_2_9_189_1
  doi: 10.1017/S1759078715000616
– volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: e_1_2_9_75_1
– ident: e_1_2_9_45_1
  doi: 10.1049/iet-map.2013.0254
– ident: e_1_2_9_127_1
  doi: 10.1109/SIU.2008.4632716
– ident: e_1_2_9_34_1
  doi: 10.1109/MAP.2014.7011045
– ident: e_1_2_9_54_1
  doi: 10.1109/20.582522
– volume-title: Introduction to Linear Regression Analysis
  year: 2012
  ident: e_1_2_9_67_1
– volume-title: Deep Learning
  year: 2016
  ident: e_1_2_9_109_1
– ident: e_1_2_9_124_1
  doi: 10.1109/TAP.2007.891306
– ident: e_1_2_9_164_1
– ident: e_1_2_9_170_1
  doi: 10.23919/EuCAP.2017.7928501
– ident: e_1_2_9_31_1
  doi: 10.1109/TAP.2014.2366203
– ident: e_1_2_9_39_1
  doi: 10.1109/ISCON.2009.5156093
– ident: e_1_2_9_46_1
  doi: 10.1109/TAP.2014.2300159
– ident: e_1_2_9_10_1
  doi: 10.1109/TAP.2005.859905
– start-page: 2672
  year: 2014
  ident: e_1_2_9_65_1
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– volume: 1904
  start-page: 12385
  year: 2019
  ident: e_1_2_9_86_1
  article-title: Machine learning in the air
  publication-title: arxiv Preprint
– volume-title: The Finite Element Method
  year: 1991
  ident: e_1_2_9_24_1
– volume: 1908
  start-page: 11225
  year: 2019
  ident: e_1_2_9_16_1
  article-title: Enabling simulation‐based optimization through machine learning: a case study on antenna design
  publication-title: arXiv Preprint
– ident: e_1_2_9_191_1
  doi: 10.1109/APS.2011.5997142
– ident: e_1_2_9_140_1
  doi: 10.1109/ICDECOM.2011.5738516
– volume-title: Accurate Domain Truncation Techniques for Time‐Domain Conformal Methods
  year: 2007
  ident: e_1_2_9_28_1
– ident: e_1_2_9_187_1
  doi: 10.1002/mop.27692
– ident: e_1_2_9_38_1
  doi: 10.1049/iet-map.2013.0650
– ident: e_1_2_9_145_1
– ident: e_1_2_9_190_1
  doi: 10.1007/s13042-012-0084-x
– ident: e_1_2_9_172_1
  doi: 10.1109/ACCESS.2018.2882271
– ident: e_1_2_9_37_1
  doi: 10.1109/TAP.2015.2466466
– volume: 7
  start-page: 278
  year: 2007
  ident: e_1_2_9_125_1
  article-title: A heuristic artificial neural network for analyzing and synthesizing rectangular mcrostrip antenna
  publication-title: Int J Comput Sci Netw Secur
– ident: e_1_2_9_182_1
  doi: 10.1109/8.964096
– ident: e_1_2_9_76_1
– ident: e_1_2_9_171_1
  doi: 10.1109/TAP.2018.2835566
– volume-title: Neural Networks: A Comprehensive Foundation
  year: 1994
  ident: e_1_2_9_57_1
– ident: e_1_2_9_47_1
  doi: 10.1109/MAP.2009.5162021
– ident: e_1_2_9_106_1
  doi: 10.1017/CBO9781107298019
– ident: e_1_2_9_133_1
  doi: 10.1109/ICECom.2013.6684759
– ident: e_1_2_9_22_1
  doi: 10.1049/SBEW049E
– ident: e_1_2_9_7_1
  doi: 10.1109/8.135478
– ident: e_1_2_9_23_1
  doi: 10.2514/8.3664
– ident: e_1_2_9_49_1
  doi: 10.1109/LAWP.2014.2362195
– ident: e_1_2_9_104_1
  doi: 10.1109/72.363438
– ident: e_1_2_9_19_1
  doi: 10.1109/TMTT.2003.809179
– ident: e_1_2_9_21_1
  doi: 10.1109/TEMC.1982.304054
– ident: e_1_2_9_113_1
  doi: 10.1007/978-1-4757-3799-8
– ident: e_1_2_9_52_1
  doi: 10.1109/20.376426
– ident: e_1_2_9_63_1
  doi: 10.1147/rd.21.0002
– ident: e_1_2_9_184_1
  doi: 10.1109/LAWP.2018.2857807
– volume: 14
  start-page: 445
  year: 2007
  ident: e_1_2_9_126_1
  article-title: Artificial neural design of microstrip antennas
  publication-title: Turk J Electr Eng Comp Sci
– ident: e_1_2_9_162_1
  doi: 10.1109/TAP.2007.891566
– ident: e_1_2_9_102_1
  doi: 10.1109/LAPC.2015.7366125
– ident: e_1_2_9_192_1
  doi: 10.1109/MAP.2011.6097296
– volume-title: Computational Tools for Antenna Analysis and Design
  year: 2018
  ident: e_1_2_9_4_1
– ident: e_1_2_9_13_1
  doi: 10.1109/TAP.2015.2407411
– ident: e_1_2_9_90_1
  doi: 10.1109/COMST.2014.2320099
– volume-title: Foundations of Machine Learning
  year: 2012
  ident: e_1_2_9_112_1
– year: 2009
  ident: e_1_2_9_137_1
  article-title: On the design of multilayer circular microstrip antenna using artificial neural networks
  publication-title: Int J Recent Trends Eng
– ident: e_1_2_9_85_1
  doi: 10.1002/asmb.2209
– ident: e_1_2_9_8_1
  doi: 10.1109/8.55618
– ident: e_1_2_9_149_1
  doi: 10.1007/s11664-017-5487-8
– ident: e_1_2_9_161_1
  doi: 10.1109/LAWP.2006.889559
– ident: e_1_2_9_89_1
  doi: 10.1109/SURV.2012.100412.00017
– ident: e_1_2_9_165_1
  doi: 10.1109/LAWP.2012.2213567
– start-page: 1609.04747
  year: 2016
  ident: e_1_2_9_116_1
  article-title: An overview of gradient descent optimization algorithms
  publication-title: Arxiv Preprint
– ident: e_1_2_9_115_1
  doi: 10.1007/s11263-008-0168-y
– ident: e_1_2_9_71_1
  doi: 10.1023/B:STCO.0000035301.49549.88
– ident: e_1_2_9_15_1
  doi: 10.1201/9781315214603
– ident: e_1_2_9_183_1
  doi: 10.1109/22.554584
– start-page: 239
  volume-title: Handbook of Antennas in Wireless Communications
  year: 2000
  ident: e_1_2_9_11_1
– ident: e_1_2_9_73_1
  doi: 10.1201/b18401
– ident: e_1_2_9_101_1
  doi: 10.1109/APS.2012.6348754
– ident: e_1_2_9_147_1
  doi: 10.1109/TAP.2020.2966051
– ident: e_1_2_9_91_1
  doi: 10.1109/ACCESS.2018.2836950
– ident: e_1_2_9_114_1
  doi: 10.1016/j.cageo.2007.05.001
– ident: e_1_2_9_156_1
  doi: 10.1049/iet-map.2011.0363
– ident: e_1_2_9_94_1
  doi: 10.1109/TAP.2018.2823775
– ident: e_1_2_9_25_1
  doi: 10.1109/9780470544631
– volume-title: Introduction to Artificial Neural Systems
  year: 2008
  ident: e_1_2_9_120_1
– ident: e_1_2_9_36_1
  doi: 10.1109/TAP.2013.2294860
– ident: e_1_2_9_29_1
  doi: 10.1109/8.546249
– volume-title: Bioinformatics: the Machine Learning Approach
  year: 2001
  ident: e_1_2_9_84_1
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: e_1_2_9_105_1
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc B Methodol
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_2_9_44_1
  doi: 10.1109/TAP.2014.2361896
– ident: e_1_2_9_178_1
  doi: 10.1109/NCETACS.2011.5751381
– ident: e_1_2_9_157_1
  doi: 10.1109/TAP.2012.2214195
– ident: e_1_2_9_177_1
  doi: 10.1109/TAP.2007.891564
– ident: e_1_2_9_96_1
  doi: 10.1109/TNN.2005.852973
– volume: 1901
  start-page: 02220
  year: 2019
  ident: e_1_2_9_107_1
  article-title: Deep neural network approximation theory
  publication-title: Arxiv Preprint
– ident: e_1_2_9_144_1
– ident: e_1_2_9_150_1
  doi: 10.1109/ICOA.2018.8370530
– ident: e_1_2_9_61_1
  doi: 10.1109/22.575602
– ident: e_1_2_9_14_1
  doi: 10.1109/MAP.2016.2520254
– ident: e_1_2_9_158_1
  doi: 10.1016/j.sbspro.2015.06.434
– volume-title: Applications of Neural Networks in Electromagnetics
  year: 2000
  ident: e_1_2_9_55_1
– ident: e_1_2_9_72_1
  doi: 10.1007/978-1-4302-5990-9_4
– ident: e_1_2_9_131_1
  doi: 10.1109/LAWP.2013.2285381
– ident: e_1_2_9_30_1
  doi: 10.1109/22.622937
– ident: e_1_2_9_59_1
  doi: 10.1109/TAP.2004.842695
– ident: e_1_2_9_79_1
  doi: 10.1145/2647868.2654889
– ident: e_1_2_9_78_1
  doi: 10.1145/2934664
– ident: e_1_2_9_9_1
  doi: 10.1109/9780470544655
– ident: e_1_2_9_194_1
  doi: 10.1109/TAP.2013.2283605
– ident: e_1_2_9_43_1
  doi: 10.1109/TAP.2015.2417977
– ident: e_1_2_9_56_1
– ident: e_1_2_9_58_1
  doi: 10.1109/TAP.2007.891874
– ident: e_1_2_9_163_1
– ident: e_1_2_9_196_1
  doi: 10.1109/TAP.2012.2220513
– ident: e_1_2_9_123_1
  doi: 10.1109/74.632992
– ident: e_1_2_9_185_1
  doi: 10.1109/TAP.2020.2970071
– ident: e_1_2_9_154_1
  doi: 10.2528/PIERM09093002
– ident: e_1_2_9_80_1
  doi: 10.1145/2939672.2945397
– ident: e_1_2_9_32_1
  doi: 10.1109/LAWP.2014.2376981
– ident: e_1_2_9_128_1
  doi: 10.1002/mmce.20491
– ident: e_1_2_9_166_1
  doi: 10.1109/ICUWB.2012.6340448
– ident: e_1_2_9_69_1
  doi: 10.1007/978-3-642-41136-6_11
– ident: e_1_2_9_53_1
  doi: 10.1109/20.376427
– ident: e_1_2_9_138_1
  doi: 10.1109/AEMC.2011.6256829
– ident: e_1_2_9_186_1
  doi: 10.1109/TAP.2005.850706
– ident: e_1_2_9_188_1
  doi: 10.1007/978-3-642-32639-4_77
– ident: e_1_2_9_48_1
  doi: 10.1109/TAP.2013.2296327
– ident: e_1_2_9_41_1
  doi: 10.1049/iet-map.2014.0653
– ident: e_1_2_9_197_1
  doi: 10.1109/APS.2012.6348584
– ident: e_1_2_9_142_1
  doi: 10.1109/IWAT.2010.5464782
– ident: e_1_2_9_92_1
– ident: e_1_2_9_143_1
– ident: e_1_2_9_82_1
  doi: 10.1145/1656274.1656278
– ident: e_1_2_9_169_1
  doi: 10.1109/TAP.2012.2196941
– ident: e_1_2_9_99_1
  doi: 10.2528/PIER09083103
– ident: e_1_2_9_176_1
  doi: 10.1109/TAP.2018.2790044
– ident: e_1_2_9_97_1
  doi: 10.1109/TMAG.2007.892480
– ident: e_1_2_9_135_1
  doi: 10.1078/1434-8411-54100128
– ident: e_1_2_9_167_1
  doi: 10.2528/PIERC18102303
– volume-title: Neural Networks and Learning Machines
  year: 2008
  ident: e_1_2_9_108_1
– volume-title: Linear Regression Analysis
  year: 2012
  ident: e_1_2_9_68_1
– ident: e_1_2_9_81_1
  doi: 10.1145/1961189.1961199
– ident: e_1_2_9_66_1
  doi: 10.1002/0471704091
– ident: e_1_2_9_134_1
  doi: 10.1109/MAP.2005.1532541
– volume-title: The Hundred‐Page Machine Learning Book
  year: 2019
  ident: e_1_2_9_103_1
– ident: e_1_2_9_180_1
  doi: 10.1109/TAP.2019.2900359
– ident: e_1_2_9_179_1
  doi: 10.1109/8.210111
– ident: e_1_2_9_5_1
  doi: 10.1201/b17119
– ident: e_1_2_9_155_1
  doi: 10.1109/ICCCNT.2010.5591751
– ident: e_1_2_9_160_1
  doi: 10.1002/mmce.20509
– ident: e_1_2_9_148_1
  doi: 10.1109/NMDC.2015.7439256
SSID ssj0009923
Score 2.5613813
SecondaryResourceType review_article
Snippet This paper presents a focused and comprehensive literature survey on the use of machine learning (ML) in antenna design and optimization. An overview of the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Antenna design
Antennas
Computational electromagnetics
Design optimization
Literature reviews
Machine learning
neural networks
Numerical methods
Optimization
Regression analysis
Regression models
Scientific papers
Title A review on the design and optimization of antennas using machine learning algorithms and techniques
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmmce.22356
https://www.proquest.com/docview/2439616712
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5jJz34LU6nBPSi0K1Nv8HLGBsizIM42EVK8jaZ4trK2l389Sbpx6aIoLdSktDm_ciT8LxPELoCGwQBHhieSZjcoMSxwQIwDSGIZVsuOCZX55CTB-9u6tzP3FkL3da1MKU-RHPgpiJD52sV4JTl_bVoaJIA78nFzVV624qspRDR41o7KgxJya4PPUMmXbPRJiX9ddevq9EaYm4CVb3SjHfRc_2NJcHkrbcqWA8-vsk3_vcn9tBOBUHxoPSZfdTi6QHa3hAmPETxAJc1LThLsYSIONZED0zTGGcyySRV9SbOBFamSVOaY0Whn-NEszM5rq6jmGO6mGfL1-IlyXX3RjQ2P0LT8ehpeGdU9zEYINOAZ1jMY2FsOuBbzAQqwKTCc6yAuWFgA4kldJOAJqYchBC-BQEAoa6Q7gASB1FqH6N2mqX8BGE_cAImwUfIXN8ByqhNQh-YfMtd03aCDrqu7RJBJVau7sxYRKXMMonUzEV65jrosmn7Xkp0_NiqW5s3qsI0j4iEY57l-RbpoBttp19GiCaT4Ug_nf6l8RnaImqPrgmAXdQulit-LoFMwS60w34CFRnwjg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5ROLQcKPShLqWtJdpDK2VJnMRJDj0gHloey6ECiVtqT-xtBUkQWYTa_9S_0t_UsZPdhQpV6oEDtyhyrNiex-fRzDcA7zFEw1GnnvC5ogtKUXgqRd8zhgdhEGPkaxuHHB6JwUm0fxqfzsGvSS1Myw8xDbhZzXD22iq4DUhvzFhDyxJ1n7xbLLqcygP945pubM3nvW063g-c7-4cbw28rqmAhyTLwguUUFnhR5gEykdp0JdGREGq4iwNkReEP8grF1KjMSYJMEXkMja0JiRnLmVI8z6CBdtC3FL1b3-ZsVVlGW_z-TPhkZn3p2yofGP2r7f93wzU3oTGzrftPoXfk11pU1rO-ldj1ceffxFGPphtW4alDmWzzVYtVmBOV89g8Qb34nMoNllbtsPqihEKZoXLZWGyKlhNdrTsClRZbZiVvqqSDbNVAiNWugRUzbqOGyMmz0f15ffxt7Jxn095cZsXcHIvy3wJ81Vd6VfAkjRKFeGrTMVJhFLJkGcJKnqrYz-M0h58nAhCjh0fu20Lcp63TNI8tyeVu5Pqwfp07EXLQnLnqLWJPOWdJWpyTohTBCIJeA8-OcH4xwz5cLi1455W_2fwO3g8OB4e5od7Rwev4Qm3IQmX77gG8-PLK_2GcNtYvXXawuDrfcvZH6AMUWQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVkJwoDzFQguWWg4gZes4iZMceqi6XfW1FUJU6i3YY3tBNEnVbIXgN_Wv9D_VdrK7pUJIHHrgFkWOFdvz-Dya-QZgHSM0DHUWcMqkvaAoFcgMaWAMC6MwwZhqF4ccHfHd43j_JDlZgMtpLUzLDzELuDnN8PbaKfiZMhtz0tCyRN23zi3hXUrlgf75w17Yms29gT3dd4wNdz5v7wZdT4EArSjzIJRc5orGmIaSojBIheFxmMkkzyJkysIP65SV0GiMSUPMEJlIjF0SWl8uRGTnvQdLMae5axQx-DQnq8pz1qbz5zywVp7OyFDZxvxff3d_c0x7Exl71zZchqvpprQZLd_7FxPZx1-3-CL_l117DI86jE22WqV4Agu6egoPbzAvPgO1RdqiHVJXxGJgonwmCxGVIrW1omVXnkpqQ5zsVZVoiKsRGJPSp59q0vXbGBNxOq7Pv02-lo3_fMaK2zyH4ztZ5gtYrOpKvwSSZnEmLbrKZZLGKKSIWJ6itG91QqM468H7qRwU2LGxu6Ygp0XLI80Kd1KFP6kerM3GnrUcJH8ctTIVp6KzQ03BLN7kIU9D1oMPXi7-MkMxGm3v-KdX_zL4Ldz_OBgWh3tHB6_hAXPxCJ_suAKLk_MLvWpB20S-8bpC4Mtdi9k1TrJQEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+the+design+and+optimization+of+antennas+using+machine+learning+algorithms+and+techniques&rft.jtitle=International+journal+of+RF+and+microwave+computer-aided+engineering&rft.au=El+Misilmani%2C+Hilal+M&rft.au=Naous%2C+Tarek&rft.au=Al+Khatib%2C+Salwa+K&rft.date=2020-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1096-4290&rft.eissn=1099-047X&rft.volume=30&rft.issue=10&rft_id=info:doi/10.1002%2Fmmce.22356&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-4290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-4290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-4290&client=summon