A review on the design and optimization of antennas using machine learning algorithms and techniques
This paper presents a focused and comprehensive literature survey on the use of machine learning (ML) in antenna design and optimization. An overview of the conventional computational electromagnetics and numerical methods used to gain physical insight into the design of the antennas is first presen...
Saved in:
Published in | International journal of RF and microwave computer-aided engineering Vol. 30; no. 10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a focused and comprehensive literature survey on the use of machine learning (ML) in antenna design and optimization. An overview of the conventional computational electromagnetics and numerical methods used to gain physical insight into the design of the antennas is first presented. The major aspects of ML are then presented, with a study of its different learning categories and frameworks. An overview and mathematical briefing of regression models built with ML algorithms is then illustrated, with a focus on those applied in antenna synthesis and analysis. An in‐depth overview on the different research papers discussing the design and optimization of antennas using ML is then reported, covering the different techniques and algorithms applied to generate antenna parameters based on desired radiation characteristics and other antenna specifications. Various investigated antennas are sorted based on antenna type and configuration to assist the readers who wish to work with a specific type of antennas using ML. |
---|---|
AbstractList | This paper presents a focused and comprehensive literature survey on the use of machine learning (ML) in antenna design and optimization. An overview of the conventional computational electromagnetics and numerical methods used to gain physical insight into the design of the antennas is first presented. The major aspects of ML are then presented, with a study of its different learning categories and frameworks. An overview and mathematical briefing of regression models built with ML algorithms is then illustrated, with a focus on those applied in antenna synthesis and analysis. An in‐depth overview on the different research papers discussing the design and optimization of antennas using ML is then reported, covering the different techniques and algorithms applied to generate antenna parameters based on desired radiation characteristics and other antenna specifications. Various investigated antennas are sorted based on antenna type and configuration to assist the readers who wish to work with a specific type of antennas using ML. |
Author | Naous, Tarek El Misilmani, Hilal M. Al Khatib, Salwa K. |
Author_xml | – sequence: 1 givenname: Hilal M. orcidid: 0000-0003-1370-8799 surname: El Misilmani fullname: El Misilmani, Hilal M. email: hilal.elmisilmani@ieee.org organization: Beirut Arab University – sequence: 2 givenname: Tarek orcidid: 0000-0003-0049-9318 surname: Naous fullname: Naous, Tarek organization: Beirut Arab University – sequence: 3 givenname: Salwa K. orcidid: 0000-0002-9588-8473 surname: Al Khatib fullname: Al Khatib, Salwa K. organization: Beirut Arab University |
BookMark | eNp9kE1LAzEQhoMo2FYv_oKAN2Frkt1Nu8dS6ge0eFHwFrKzSTdlN1uT1FJ_vfvhScTTDDPPOy_zjtG5baxC6IaSKSWE3dc1qCljccrP0IiSLItIMns_73seJSwjl2js_Y6QdsfiESoW2KlPo464sTiUChfKm63F0ha42QdTmy8ZTLtrdDsLylrp8cEbu8W1hNJYhSslne0Gsto2zoSy9r08KCit-Tgof4UutKy8uv6pE_T2sHpdPkXrl8fn5WIdQUwoj2jO86wgCcxoTkBqIFLzhM7zNJvHwApKGeFpIRVorWcU5gBMphpiAB5nUsYTdDvc3bum8w1i1xycbS0FS-KMUz6jrKXIQIFrvHdKCzChfzI4aSpBieiyFF2Wos-yldz9kuydqaU7_Q3TAT6aSp3-IcVms1wNmm-clokP |
CitedBy_id | crossref_primary_10_1007_s12046_022_01989_x crossref_primary_10_1017_S1759078725000029 crossref_primary_10_1109_MAP_2023_3290385 crossref_primary_10_1002_dac_5738 crossref_primary_10_2298_FUEE2404687V crossref_primary_10_32604_cmc_2022_027653 crossref_primary_10_1002_mop_34184 crossref_primary_10_1016_j_aeue_2022_154302 crossref_primary_10_32604_cmc_2021_019114 crossref_primary_10_1038_s41598_022_16678_2 crossref_primary_10_1109_TPS_2025_3534289 crossref_primary_10_1016_j_aeue_2021_153739 crossref_primary_10_1088_1742_6596_2272_1_012012 crossref_primary_10_1109_ACCESS_2024_3491828 crossref_primary_10_1109_ACCESS_2023_3263581 crossref_primary_10_1088_1742_6596_1964_6_062098 crossref_primary_10_1109_OJAP_2024_3385675 crossref_primary_10_1007_s13369_024_09684_1 crossref_primary_10_1364_JOSAB_458574 crossref_primary_10_1088_1361_6463_acf7cf crossref_primary_10_1016_j_rineng_2024_103423 crossref_primary_10_1007_s42979_024_03273_7 crossref_primary_10_1038_s41598_022_12011_z crossref_primary_10_1109_ACCESS_2022_3203431 crossref_primary_10_1007_s11277_020_07905_y crossref_primary_10_1016_j_matchemphys_2023_128180 crossref_primary_10_1007_s42979_024_03186_5 crossref_primary_10_1007_s11277_024_11359_x crossref_primary_10_1109_ACCESS_2023_3332731 crossref_primary_10_1109_OJAP_2024_3412609 crossref_primary_10_26636_jtit_2024_2_1530 crossref_primary_10_1017_S1759078724000837 crossref_primary_10_1016_j_aeue_2023_154642 crossref_primary_10_1051_itmconf_20246904003 crossref_primary_10_1109_ACCESS_2022_3158976 crossref_primary_10_1080_17455030_2022_2149892 crossref_primary_10_1002_dac_6098 crossref_primary_10_1007_s40031_023_00879_y crossref_primary_10_1016_j_engappai_2024_109381 crossref_primary_10_1007_s12647_024_00802_w crossref_primary_10_1016_j_heliyon_2023_e19548 crossref_primary_10_1109_ACCESS_2023_3317371 crossref_primary_10_1080_02726343_2023_2281480 crossref_primary_10_1109_ACCESS_2021_3123219 crossref_primary_10_32604_cmc_2022_028550 crossref_primary_10_1515_freq_2023_0386 crossref_primary_10_1016_j_aej_2024_05_111 crossref_primary_10_1016_j_aeue_2024_155120 crossref_primary_10_33769_aupse_992350 crossref_primary_10_1016_j_aeue_2023_154570 crossref_primary_10_46592_turkager_1549453 crossref_primary_10_1109_TAP_2024_3384758 crossref_primary_10_1109_ACCESS_2024_3355145 crossref_primary_10_1109_TDEI_2024_3395236 crossref_primary_10_1002_dac_6044 crossref_primary_10_1109_TMTT_2022_3189655 |
Cites_doi | 10.1109/YAC.2017.7967510 10.1109/APUSNCURSINRSM.2017.8072216 10.1016/j.procs.2016.05.178 10.1109/TAP.2005.858617 10.23919/EuRAD.2018.8546527 10.1109/HPCS48598.2019.9188224 10.1109/AEMC.2013.7045047 10.1155/2012/541354 10.1109/8.743842 10.1109/LAWP.2014.2315435 10.1887/0750308958 10.1109/SPIN.2015.7095291 10.1109/COMST.2019.2904897 10.1002/mmce.21623 10.1109/CEM.2009.5228115 10.1109/CSCI.2017.344 10.1002/mmce.20414 10.1109/ISEMC.1979.7568787 10.1109/EuCAP.2012.6206281 10.4324/9780203763247 10.7716/aem.v6i1.407 10.1109/20.250786 10.2528/PIERB08013006 10.1109/LMWC.2014.2310481 10.1109/TAP.1966.1138693 10.1103/PhysRevLett.114.096405 10.2529/PIERS070317050916 10.1109/ICETETS.2016.7603037 10.1109/MAP.2015.2453912 10.1109/ISMSIT.2019.8932929 10.1109/LWC.2018.2805902 10.1109/8.43555 10.1109/IWAT.2019.8730801 10.1109/LAPC.2012.6402988 10.1109/8.558650 10.1109/TAP.2013.2287889 10.1109/22.643839 10.1109/72.329697 10.1002/9780470140529 10.1017/S1759078715000616 10.1049/iet-map.2013.0254 10.1109/SIU.2008.4632716 10.1109/MAP.2014.7011045 10.1109/20.582522 10.1109/TAP.2007.891306 10.23919/EuCAP.2017.7928501 10.1109/TAP.2014.2366203 10.1109/ISCON.2009.5156093 10.1109/TAP.2014.2300159 10.1109/TAP.2005.859905 10.1109/APS.2011.5997142 10.1109/ICDECOM.2011.5738516 10.1002/mop.27692 10.1049/iet-map.2013.0650 10.1007/s13042-012-0084-x 10.1109/ACCESS.2018.2882271 10.1109/TAP.2015.2466466 10.1109/8.964096 10.1109/TAP.2018.2835566 10.1109/MAP.2009.5162021 10.1017/CBO9781107298019 10.1109/ICECom.2013.6684759 10.1049/SBEW049E 10.1109/8.135478 10.2514/8.3664 10.1109/LAWP.2014.2362195 10.1109/72.363438 10.1109/TMTT.2003.809179 10.1109/TEMC.1982.304054 10.1007/978-1-4757-3799-8 10.1109/20.376426 10.1147/rd.21.0002 10.1109/LAWP.2018.2857807 10.1109/TAP.2007.891566 10.1109/LAPC.2015.7366125 10.1109/MAP.2011.6097296 10.1109/TAP.2015.2407411 10.1109/COMST.2014.2320099 10.1002/asmb.2209 10.1109/8.55618 10.1007/s11664-017-5487-8 10.1109/LAWP.2006.889559 10.1109/SURV.2012.100412.00017 10.1109/LAWP.2012.2213567 10.1007/s11263-008-0168-y 10.1023/B:STCO.0000035301.49549.88 10.1201/9781315214603 10.1109/22.554584 10.1201/b18401 10.1109/APS.2012.6348754 10.1109/TAP.2020.2966051 10.1109/ACCESS.2018.2836950 10.1016/j.cageo.2007.05.001 10.1049/iet-map.2011.0363 10.1109/TAP.2018.2823775 10.1109/9780470544631 10.1109/TAP.2013.2294860 10.1109/8.546249 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TAP.2014.2361896 10.1109/NCETACS.2011.5751381 10.1109/TAP.2012.2214195 10.1109/TAP.2007.891564 10.1109/TNN.2005.852973 10.1109/ICOA.2018.8370530 10.1109/22.575602 10.1109/MAP.2016.2520254 10.1016/j.sbspro.2015.06.434 10.1007/978-1-4302-5990-9_4 10.1109/LAWP.2013.2285381 10.1109/22.622937 10.1109/TAP.2004.842695 10.1145/2647868.2654889 10.1145/2934664 10.1109/9780470544655 10.1109/TAP.2013.2283605 10.1109/TAP.2015.2417977 10.1109/TAP.2007.891874 10.1109/TAP.2012.2220513 10.1109/74.632992 10.1109/TAP.2020.2970071 10.2528/PIERM09093002 10.1145/2939672.2945397 10.1109/LAWP.2014.2376981 10.1002/mmce.20491 10.1109/ICUWB.2012.6340448 10.1007/978-3-642-41136-6_11 10.1109/20.376427 10.1109/AEMC.2011.6256829 10.1109/TAP.2005.850706 10.1007/978-3-642-32639-4_77 10.1109/TAP.2013.2296327 10.1049/iet-map.2014.0653 10.1109/APS.2012.6348584 10.1109/IWAT.2010.5464782 10.1145/1656274.1656278 10.1109/TAP.2012.2196941 10.2528/PIER09083103 10.1109/TAP.2018.2790044 10.1109/TMAG.2007.892480 10.1078/1434-8411-54100128 10.2528/PIERC18102303 10.1145/1961189.1961199 10.1002/0471704091 10.1109/MAP.2005.1532541 10.1109/TAP.2019.2900359 10.1109/8.210111 10.1201/b17119 10.1109/ICCCNT.2010.5591751 10.1002/mmce.20509 10.1109/NMDC.2015.7439256 |
ContentType | Journal Article |
Copyright | 2020 Wiley Periodicals LLC |
Copyright_xml | – notice: 2020 Wiley Periodicals LLC |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/mmce.22356 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-047X |
EndPage | n/a |
ExternalDocumentID | 10_1002_mmce_22356 MMCE22356 |
Genre | reviewArticle |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJCF ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ATUGU AUFTA AZBYB AZFZN AZQEC BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS EJD ESX F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA H13 HCIFZ HF~ HHY HHZ HVGLF HZ~ I-F IX1 JPC K7- KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M7S MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 O66 O9- OIG P2W P2X P4D PIMPY PQQKQ PTHSS Q.N Q11 QB0 QRW R.K RHX ROL RWI RX1 SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WJL WLBEL WOHZO WQJ WRC WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX ADMLS AGQPQ CITATION PHGZM PHGZT 1OB 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3016-1b6b9d04c71b0cafc0af6418b5983c2d112065daecfff71c8cc2a5fc3cc639aa3 |
IEDL.DBID | DR2 |
ISSN | 1096-4290 |
IngestDate | Wed Aug 13 04:39:22 EDT 2025 Tue Jul 01 03:03:30 EDT 2025 Thu Apr 24 22:54:48 EDT 2025 Wed Jan 22 16:34:34 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3016-1b6b9d04c71b0cafc0af6418b5983c2d112065daecfff71c8cc2a5fc3cc639aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0049-9318 0000-0003-1370-8799 0000-0002-9588-8473 |
PQID | 2439616712 |
PQPubID | 1026345 |
PageCount | 28 |
ParticipantIDs | proquest_journals_2439616712 crossref_citationtrail_10_1002_mmce_22356 crossref_primary_10_1002_mmce_22356 wiley_primary_10_1002_mmce_22356_MMCE22356 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | International journal of RF and microwave computer-aided engineering |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 1995; 31 2019; 90 1993; 29 2013; 4 2009; 81 2013; 62 1997; 45 2011; 53 2014; 24 2001; 49 2012; 15 2003; 51 2012; 11 1979 1978 2018; 7 2018; 6 2010; 20 2009; 98 2013; 55 2019; 21 2014; 16 2014; 14 2014; 13 2007; 7 2019; 29 1989; 37 1992; 40 1988 2015; 57 2007; 17 2019; 1901 2011; 2 2019; 1904 1990; 38 2019; 1908 1993; 41 1997 1994 1993 1991 1995; 6 2007; 14 1999 2015; 195 1997; 33 2015; 114 2015; 63 1956; 23 1997; 39 2005; 528 1998; 6 2005; 16 2016; 8 2012; 61 2017; 6 2012; 60 2012; 2012 1966; 14 2002; 56 2017; 46 2008; 5 2011; 12 2014; 63 2014; 62 2007; 33 2012; 329 1998; 46 2009; 51 2001 2000 2013; 12 2017; 33 2019; 67 2016; 85 2011; 21 2003; 1 1958; 2 2014; 8 2014; 56 2012 2011 2010 2009 2008 2007 2006; 5 1996; 58 2018; 67 2015; 9 2018; 66 2007; 55 2012; 821 2016; 59 2016; 58 2005; 47 1982; EMC‐24 2020 2004; 14 2019 2018 2005; 53 2009; 9 2017 2016 2020; 68 2015 2014 2013 2012; 6 2007; 43 2009; 1 1994; 5 1996; 44 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 Montgomery DC (e_1_2_9_67_1) 2012 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_83_1 e_1_2_9_6_1 Tibshirani R (e_1_2_9_105_1) 1996; 58 e_1_2_9_119_1 Burden F (e_1_2_9_120_1) 2008 Baldi P (e_1_2_9_84_1) 2001 Kingma DP (e_1_2_9_117_1) 2014 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 e_1_2_9_72_1 e_1_2_9_34_1 e_1_2_9_95_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 Haykin S (e_1_2_9_108_1) 2008 e_1_2_9_61_1 e_1_2_9_46_1 Christodoulou C (e_1_2_9_55_1) 2000 Turker N (e_1_2_9_126_1) 2007; 14 e_1_2_9_23_1 e_1_2_9_5_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 Prado DR (e_1_2_9_174_1) 2018; 67 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 Gunduz D (e_1_2_9_86_1) 2019; 1904 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_197_1 Rawle W (e_1_2_9_12_1) 2006; 5 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_93_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_21_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_82_1 Goodfellow I (e_1_2_9_65_1) 2014 e_1_2_9_135_1 e_1_2_9_158_1 Haykin S (e_1_2_9_57_1) 1994 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_90_1 Harrington P (e_1_2_9_74_1) 2012 Sankaran K (e_1_2_9_28_1) 2007 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 Moré JJ (e_1_2_9_118_1) 1978 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_87_1 Goodfellow I (e_1_2_9_109_1) 2016 e_1_2_9_138_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 Burkov A. (e_1_2_9_103_1) 2019 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 Volakis JL (e_1_2_9_2_1) 2007 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_42_1 e_1_2_9_88_1 Qj Z (e_1_2_9_60_1) 2000 e_1_2_9_80_1 e_1_2_9_114_1 Drucker H (e_1_2_9_70_1) 1997 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_50_1 e_1_2_9_73_1 Mohri M (e_1_2_9_112_1) 2012 e_1_2_9_35_1 e_1_2_9_96_1 Rockway JW (e_1_2_9_27_1) 1988 Ruder S (e_1_2_9_116_1) 2016 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_189_1 e_1_2_9_58_1 e_1_2_9_143_1 Tayli D (e_1_2_9_4_1) 2018 Mnih V (e_1_2_9_64_1) 2013 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_85_1 Grohs P (e_1_2_9_107_1) 2019; 1901 e_1_2_9_155_1 Prado DR (e_1_2_9_175_1) 2019 e_1_2_9_178_1 e_1_2_9_47_1 Wu Q (e_1_2_9_100_1) 2020 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_170_1 e_1_2_9_51_1 e_1_2_9_13_1 e_1_2_9_97_1 Naser‐Moghaddas M (e_1_2_9_125_1) 2007; 7 Malathi P (e_1_2_9_137_1) 2009 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 Taylor OZR (e_1_2_9_24_1) 1991 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 Sutton RS (e_1_2_9_75_1) 2018 Sarkar TK (e_1_2_9_11_1) 2000 Seber GA (e_1_2_9_68_1) 2012 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 Pedregosa F (e_1_2_9_77_1) 2011; 12 e_1_2_9_192_1 Testolina P (e_1_2_9_16_1) 2019; 1908 |
References_xml | – year: 2011 – volume: 1 year: 2003 – volume: 6 start-page: 182 issue: 1 year: 1995 end-page: 195 article-title: Gradient descent learning algorithm overview: a general dynamical systems perspective publication-title: IEEE Trans Neural Netw – volume: 329 year: 2012 – volume: 66 start-page: 3718 year: 2018 end-page: 3723 article-title: Multiparameter modeling with ANN for antenna design publication-title: IEEE Trans Antenna Propag – volume: 21 start-page: 228 year: 2011 end-page: 233 article-title: Modeling and design of printed antennas using neural networks publication-title: Int J RF Microw Comput Aid Eng – volume: 6 start-page: 35365 year: 2018 end-page: 35381 article-title: Machine learning and deep learning methods for cybersecurity publication-title: IEEE Access – volume: 9 start-page: 107 year: 2009 end-page: 122 article-title: Bandwidth analysis by introducing slots in microstrip antenna design using ANN publication-title: Progr Electromagn Res – volume: 11 start-page: 977 year: 2012 end-page: 980 article-title: Design of a contoured‐beam reflectarray for a EuTELSAT European coverage using a stacked‐patch element characterized by an artificial neural network publication-title: IEEE Antennas Wirel Propag Lett – start-page: 239 year: 2000 end-page: 279 – volume: 53 start-page: 1126 year: 2005 end-page: 1132 article-title: Application of neural networks to analyses of nonlinearly loaded antenna arrays including mutual coupling effects publication-title: IEEE Trans Antenna Propag – volume: 5 start-page: 989 year: 1994 end-page: 993 article-title: Training feedforward networks with the Marquardt algorithm publication-title: IEEE Trans Neural Netw – volume: 528 year: 2005 – volume: 29 year: 2019 article-title: Prediction of slot‐position and slot‐size of a microstrip antenna using support vector regression publication-title: Int J RF Microw Comput Aid Eng – volume: 56 start-page: 396 year: 2002 end-page: 406 article-title: Neural models for the resonant frequency of electrically thin and thick circular microstrip antennas and the characteristic parameters of asymmetric coplanar waveguides backed with a conductor publication-title: AEU‐Int J Electron Commun – volume: 6 year: 1998 – volume: 49 start-page: 1597 year: 2001 end-page: 1602 article-title: Profiled corrugated circular horns analysis and synthesis via an artificial neural network publication-title: IEEE Trans Antenna Propag – volume: 8 start-page: 1111 issue: 7 year: 2016 end-page: 1119 article-title: Bandwidth enhancement of patch antennas using neural network dependent modified optimizer publication-title: Int J Microw Wirel Technol – start-page: 105 year: 1978 end-page: 116 article-title: The Levenberg‐Marquardt algorithm: implementation and theory publication-title: Numer Anal – volume: 51 start-page: 86 year: 2009 end-page: 98 article-title: Errors in projection of plane waves using various basis functions publication-title: IEEE Antennas Propag Mag – year: 2014 – volume: 2 issue: 3 year: 2011 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans Intell Syst Technol – volume: 63 start-page: 2180 year: 2014 end-page: 2190 article-title: The contour deformation method for calculating the high frequency scattered fields by the Fock current on the surface of the 3‐D convex cylinder publication-title: IEEE Trans Antenna Propag – year: 2008 – volume: 45 start-page: 343 issue: 3 year: 1997 end-page: 353 article-title: Genetic algorithm optimization applied to electromagnetics: a review publication-title: IEEE Trans Antenna Propag – volume: 4 start-page: 189 year: 2013 end-page: 194 article-title: Design of custom‐made stacked patch antennas: a machine learning approach publication-title: Int J Mach Learn Cybernet – volume: 53 start-page: 3453 year: 2005 end-page: 3458 article-title: Neurocomputational analysis of a multiband reconfigurable planar antenna publication-title: IEEE Trans Antenna Propag – volume: 7 start-page: 278 year: 2007 end-page: 281 article-title: A heuristic artificial neural network for analyzing and synthesizing rectangular mcrostrip antenna publication-title: Int J Comput Sci Netw Secur – volume: 6 start-page: 42 year: 2017 end-page: 55 article-title: Review on computational electromagnetics publication-title: Adv Electromagn – volume: 47 start-page: 60 year: 2005 end-page: 65 article-title: Design of a wideband microstrip antenna and the use of artificial neural networks in parameter calculation publication-title: IEEE Antennas Propag Mag – volume: 59 start-page: 56 year: 2016 end-page: 65 article-title: Apache spark: a unified engine for big data processing publication-title: Commun ACM – volume: 1904 year: 2019 article-title: Machine learning in the air publication-title: arxiv Preprint – volume: 14 start-page: 302 year: 1966 end-page: 307 article-title: Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media publication-title: IEEE Trans Antenna Propag – volume: 114 issue: 9 year: 2015 article-title: Molecular dynamics with on‐the‐fly machine learning of quantum‐mechanical forces publication-title: Phys Rev Lett – volume: 21 start-page: 85 year: 2011 end-page: 90 article-title: Application of support vector machines to the antenna design publication-title: Int J RF Microw Comput Aid Eng – year: 2019 – year: 1993 – year: 2014 article-title: Adam: a method for stochastic optimization publication-title: Arxiv Preprint – volume: 33 start-page: 1301 issue: 10 year: 2007 end-page: 1315 article-title: About regression‐kriging: from equations to case studies publication-title: Comput Geosci – volume: 195 start-page: 2520 year: 2015 end-page: 2526 article-title: Dimension optimization of microstrip patch antenna in X/Ku band via artificial neural network publication-title: Procedia Soc Behav Sci – volume: 60 start-page: 3205 year: 2012 end-page: 3214 article-title: ANN characterization of multi‐layer reflectarray elements for contoured‐beam space antennas in the Ku‐band publication-title: IEEE Trans Antenna Propag – volume: 23 start-page: 805 year: 1956 end-page: 823 article-title: Stiffness and deflection analysis of complex structures publication-title: J Aeronaut Sci – volume: 8 start-page: 730 year: 2014 end-page: 735 article-title: Non‐conforming finite element tearing and interconnecting method with one Lagrange multiplier for solving large‐scale electromagnetic problems publication-title: IET Microw Antennas Propag – volume: 55 start-page: 669 year: 2007 end-page: 674 article-title: Application of artificial neural networks to broadband antenna design based on a parametric frequency model publication-title: IEEE Trans Antenna Propag – start-page: 1 year: 2020 article-title: Machine learning techniques for optimizing design of double T‐shaped monopole antenna publication-title: IEEE Trans Antenna Propag – year: 2007 – volume: 14 start-page: 305 year: 2014 end-page: 308 article-title: Charge recovery for the RWG‐based method of moments publication-title: IEEE Antennas Wirel Propag Lett – volume: 58 start-page: 94 issue: 2 year: 2016 end-page: 119 article-title: Building a better anechoic chamber: a geometric optics‐based systematic solution, simulated and verified [measurements corner] publication-title: IEEE Antennas Propag Mag – year: 2016 – volume: 55 start-page: 659 year: 2007 end-page: 668 article-title: A hybrid method based on combining artificial neural network and fuzzy inference system for simultaneous computation of resonant frequencies of rectangular, circular, and triangular microstrip antennas publication-title: IEEE Trans Antenna Propag – volume: 2012 start-page: 1 year: 2012 end-page: 10 article-title: Neural network characterization of reflectarray antennas publication-title: Int J Antennas Propag – year: 2010 – volume: 61 start-page: 980 year: 2012 end-page: 984 article-title: Computationally efficient multi‐fidelity Bayesian support vector regression modeling of planar antenna input characteristics publication-title: IEEE Trans Antenna Propag – volume: 44 start-page: 2495 year: 1996 end-page: 2503 article-title: EM‐ANN models for microstrip vias and interconnects in dataset circuits publication-title: IEEE Trans Microw Theory Tech – volume: 5 start-page: 49 year: 2008 end-page: 61 article-title: Support vector characterisation of the microstrip antennas based on measurements publication-title: Progr Electromagn Res – volume: 5 start-page: 559 year: 2006 end-page: 562 article-title: Design of short‐circuited ring‐patch antennas working at TM01 mode based on neural networks publication-title: IEEE Antennas Wirel Propag Lett – volume: 31 start-page: 1968 year: 1995 end-page: 1971 article-title: Electromagnetic field parallel computation with a Hopfield neural network publication-title: IEEE Trans Magn – volume: 46 start-page: 4963 issue: 8 year: 2017 end-page: 4975 article-title: Machine‐learning approach for design of nanomagnetic‐based antennas publication-title: J Electron Mater – volume: 56 start-page: 181 year: 2014 end-page: 192 article-title: Uniform two‐step method for the FDTD analysis of aperture coupling publication-title: IEEE Antennas Propag Mag – volume: 66 start-page: 1258 year: 2018 end-page: 1270 article-title: Fast and accurate modeling of dual‐polarized reflectarray unit cells using support vector machines publication-title: IEEE Trans Antenna Propag – volume: 2 start-page: 2 issue: 1 year: 1958 end-page: 13 article-title: A learning machine: part I publication-title: IBM J Res Dev – volume: 14 start-page: 445 year: 2007 end-page: 453 article-title: Artificial neural design of microstrip antennas publication-title: Turk J Electr Eng Comp Sci – volume: 85 start-page: 393 year: 2016 end-page: 400 article-title: Neurocomputational models for parameter estimation of circular microstrip patch antennas publication-title: Proc Comput Sci – volume: 63 start-page: 269 year: 2014 end-page: 279 article-title: An efficient 3‐D FDTD model of electromagnetic wave propagation in magnetized plasma publication-title: IEEE Trans Antenna Propag – volume: 55 start-page: 990 year: 2007 end-page: 993 article-title: Application of neural network and its extension of derivative to scattering from a nonlinearly loaded antenna publication-title: IEEE Trans Antennas Propag – volume: 24 start-page: 361 year: 2014 end-page: 363 article-title: Trade‐offs for unconditional stability in the finite‐element time‐domain method publication-title: IEEE Microw Wirel Compon Lett – volume: 41 start-page: 25 year: 1993 end-page: 30 article-title: Analysis of wire scatterers with nonlinear or time‐harmonic loads in the frequency domain publication-title: IEEE Trans Antenna Propag – volume: 40 start-page: 334 year: 1992 end-page: 340 article-title: Finite‐difference time‐domain method for antenna radiation publication-title: IEEE Trans Antenna Propag – volume: 7 start-page: 634 issue: 4 year: 2018 end-page: 637 article-title: Transmit antenna selection in MIMO wiretap channels: a machine learning approach publication-title: IEEE Wirel Commun Lett – volume: 33 start-page: 3 issue: 1 year: 2017 end-page: 12 article-title: Deep learning for finance: deep portfolios publication-title: Appl Stoch Model Bus Ind – volume: 58 start-page: 267 issue: 1 year: 1996 end-page: 288 article-title: Regression shrinkage and selection via the lasso publication-title: J R Stat Soc B Methodol – volume: 98 start-page: 233 year: 2009 end-page: 249 article-title: Gaussian process modeling of CPW‐fed slot antennas publication-title: Progr Electromagn Res – year: 2013 – volume: 62 start-page: 6325 year: 2014 end-page: 6336 article-title: An accurate and efficient finite element‐boundary integral method with GPU acceleration for 3‐D electromagnetic analysis publication-title: IEEE Trans Antenna Propag – volume: 62 start-page: 345 year: 2013 end-page: 353 article-title: An algorithm for the FDTD modeling of flat electrodes in grounding systems publication-title: IEEE Trans Antenna Propag – year: 2009 – year: 2001 – volume: 31 start-page: 1964 year: 1995 end-page: 1967 article-title: Direct solution method for finite element analysis using Hopfield neural network publication-title: IEEE Trans Magn – volume: 55 start-page: 523 issue: 3 year: 2007 end-page: 537 article-title: Evolutionary programming in electromagnetic optimization: a review publication-title: IEEE Trans Antenna Propag – volume: 1908 year: 2019 article-title: Enabling simulation‐based optimization through machine learning: a case study on antenna design publication-title: arXiv Preprint – volume: 1901 year: 2019 article-title: Deep neural network approximation theory publication-title: Arxiv Preprint – volume: 14 start-page: 199 issue: 3 year: 2004 end-page: 222 article-title: A tutorial on support vector regression publication-title: Stat Comput – volume: 20 start-page: 76 year: 2010 end-page: 86 article-title: Microstrip antenna design using artificial neural networks publication-title: Int J RF Microw Comput Aid Eng – volume: 51 start-page: 1339 year: 2003 end-page: 1350 article-title: Artificial neural networks for RF and microwave design‐from theory to practice publication-title: IEEE Trans Microw Theory Tech – year: 1979 – volume: 21 start-page: 2224 year: 2019 end-page: 2287 article-title: Deep learning in mobile and wireless networking: a survey publication-title: IEEE Commun Surv Tutor – year: 2018 – volume: 62 start-page: 1523 year: 2014 end-page: 1528 article-title: A hierarchical fast solver for EFIE‐MoM analysis of multiscale structures at very low frequencies publication-title: IEEE Trans Antenna Propag – year: 1994 – volume: 9 start-page: 640 year: 2015 end-page: 647 article-title: Fast analysis of three‐dimensional electromagnetic problems using dual‐primal finite‐element tearing and interconnecting method combined with H‐matrix technique publication-title: IET Microw Antennas Propag – volume: 55 start-page: 1864 issue: 8 year: 2013 end-page: 1868 article-title: An adaptive evolutionary algorithm for UWB microstrip antennas optimization using a machine learning technique publication-title: Microw Opt Technol Lett – year: 2020 article-title: Multi‐stage collaborative machine learning and its application to antenna modeling and optimization publication-title: IEEE Trans Antenna Propag – year: 2019 article-title: Wideband shaped‐beam reflectarray design using support vector regression analysis publication-title: IEEE Antennas Wirel Propag Lett – volume: 5 start-page: 42 year: 2006 end-page: 47 article-title: The method of moments: a numerical technique for wire antenna design publication-title: High Freq Electron – volume: 821 year: 2012 – volume: 37 start-page: 1361 year: 1989 end-page: 1369 article-title: Analysis of microstrip patch antennas using finite difference time domain method publication-title: IEEE Trans Antenna Propag – volume: 63 start-page: 2604 year: 2015 end-page: 2613 article-title: 3‐D electromagnetic scattering computation in free‐space with the FETI‐FDP2 method publication-title: IEEE Trans Antenna Propag – volume: 53 start-page: 2231 year: 2005 end-page: 2236 article-title: A novel neural network combined with FDTD for the synthesis of a printed dipole antenna publication-title: IEEE Trans Antenna Propag – volume: EMC‐24 start-page: 397 year: 1982 end-page: 405 article-title: A novel method to analyze electromagnetic scattering of complex objects publication-title: IEEE Trans Electromagn Compat – volume: 1 issue: 1 year: 2009 article-title: The WEKA data mining software: an update publication-title: ACM SIGKDD Explor – volume: 6 start-page: 72295 year: 2018 end-page: 72310 article-title: General framework for the efficient optimization of reflectarray antennas for contoured beam space applications publication-title: IEEE Access – year: 2016 article-title: An overview of gradient descent optimization algorithms publication-title: Arxiv Preprint – year: 1997 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Scikit‐learn: machine learning in python publication-title: J Mach Learn Res – volume: 6 start-page: 470 year: 2012 end-page: 474 article-title: Design of an aperture‐coupled microstrip antenna using a hybrid neural network publication-title: IET Microw Antennas Propag – start-page: 2672 year: 2014 end-page: 2680 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – volume: 44 start-page: 1630 year: 1996 end-page: 1639 article-title: An anisotropic perfectly matched layer‐absorbing medium for the truncation of FDTD lattices publication-title: IEEE Trans Antenna Propag – volume: 16 start-page: 1996 issue: 4 year: 2014 end-page: 2018 article-title: Machine learning in wireless sensor networks: algorithms, strategies, and applications publication-title: IEEE Commun Surv Tutor – volume: 16 start-page: 1590 year: 2005 end-page: 1600 article-title: A novel neural network for the synthesis of antennas and microwave devices publication-title: IEEE Trans Neural Netw – volume: 57 start-page: 23 year: 2015 end-page: 31 article-title: A hybrid method to design wire antennas: design and optimization of antennas using artificial intelligence publication-title: IEEE Antennas Propag Mag – year: 2015 – volume: 38 start-page: 1059 year: 1990 end-page: 1068 article-title: Accurate computation of the radiation from simple antennas using the finite‐difference time‐domain method publication-title: IEEE Trans Antenna Propag – volume: 13 start-page: 714 year: 2014 end-page: 717 article-title: One‐step leapfrog ADI‐FDTD method in 3‐D cylindrical grids with a CPML implementation publication-title: IEEE Antennas Wirel Propag Lett – volume: 12 start-page: 1367 year: 2013 end-page: 1371 article-title: Prediction of slot‐size and inserted air‐gap for improving the performance of rectangular microstrip antennas using artificial neural networks publication-title: IEEE Antennas Wirel Propag Lett – volume: 53 start-page: 94 year: 2011 end-page: 101 article-title: Design of custom‐made fractal multi‐band antennas using ANN‐PSO publication-title: IEEE Antennas Propag Mag – volume: 33 start-page: 1414 year: 1997 end-page: 1419 article-title: Analysis of microstrip antennas using neural networks publication-title: IEEE Trans Magn – volume: 66 start-page: 3995 year: 2018 end-page: 4007 article-title: Efficient prediction of the EM response of reflectarray antenna elements by an advanced statistical learning method publication-title: IEEE Trans Antenna Propag – volume: 67 year: 2018 article-title: Support vector regression to accelerate design and crosspolar optimization of shaped‐beam reflectarray antennas for space applications publication-title: IEEE Trans Antenna Propag – year: 2000 – year: 2013 article-title: Playing atari with deep reinforcement learning publication-title: arXiv Preprint – volume: 63 start-page: 4468 year: 2015 end-page: 4476 article-title: A domain decomposition finite difference time domain (FDTD) method for scattering problem from very large rough surfaces publication-title: IEEE Trans Antenna Propag – volume: 46 start-page: 1890 year: 1998 end-page: 1891 article-title: Neural network‐based CAD model for the design of square‐patch antennas publication-title: IEEE Trans Antenna Propag – volume: 67 start-page: 3109 year: 2019 end-page: 3116 article-title: Multigrade artificial neural network for the design of finite periodic arrays publication-title: IEEE Trans Antenna Propag – volume: 17 start-page: 2008 issue: 11 year: 2007 end-page: 2012 article-title: A 3‐D‐printed W‐band slotted waveguide array antenna optimized using machine learning publication-title: IEEE Antennas Wirel Propag Lett – volume: 15 start-page: 1136 issue: 3 year: 2012 end-page: 1159 article-title: A survey on machine‐learning techniques in cognitive radios publication-title: IEEE Commun Surv Tutor – volume: 45 start-page: 2333 year: 1997 end-page: 2343 article-title: Knowledge‐based neural models for microwave design publication-title: IEEE Trans Microw Theory Tech – volume: 53 start-page: 4099 year: 2005 end-page: 4110 article-title: Modeling and simulation of broad‐band antennas using the time‐domain finite element method publication-title: IEEE Trans Antenna Propag – year: 2012 – volume: 43 start-page: 1589 year: 2007 end-page: 1592 article-title: Microwave devices and antennas modelling by support vector regression machines publication-title: IEEE Trans Magn – volume: 39 start-page: 7 issue: 4 year: 1997 end-page: 21 article-title: Genetic algorithms in engineering electromagnetics publication-title: IEEE Antennas Propag Mag – volume: 29 start-page: 1931 year: 1993 end-page: 1934 article-title: Artificial neural networks in the solution of inverse electromagnetic field problems publication-title: IEEE Trans Magn – volume: 60 start-page: 5989 year: 2012 end-page: 5992 article-title: An ANN‐based synthesis model for the single‐feed circularly‐polarized square microstrip antenna with truncated corners publication-title: IEEE Trans Antenna Propag – volume: 8 start-page: 951 year: 2014 end-page: 958 article-title: Study and analysis of a novel Runge‐Kutta high‐order finite‐difference time‐domain method publication-title: IET Microw Antennas Propag – volume: 62 start-page: 1330 year: 2013 end-page: 1338 article-title: Efficient parallel LOD‐FDTD method for Debye‐dispersive media publication-title: IEEE Trans Antenna Propag – volume: 45 start-page: 1645 year: 1997 end-page: 1649 article-title: FDTD analysis of dielectric resonators with curved surfaces publication-title: IEEE Trans Microw Theory Tech – volume: 62 start-page: 7 issue: 1 year: 2014 end-page: 18 article-title: An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques publication-title: IEEE Trans Antenna Propag – volume: 45 start-page: 794 year: 1997 end-page: 802 article-title: Artificial neural networks for fast and accurate EM‐CAD of microwave circuits publication-title: IEEE Trans Microw Theory Tech – start-page: 155 year: 1997 end-page: 161 article-title: Support vector regression machines publication-title: Adv Neural Inf Process Syst – volume: 68 start-page: 4417 year: 2020 end-page: 4427 article-title: Multibranch artificial neural network modeling for inverse estimation of antenna array directivity publication-title: IEEE Trans Antenna Propag – year: 1988 – volume: 90 start-page: 109 year: 2019 end-page: 124 article-title: Spherical mapping of the second‐order phoenix cell for unbounded direct reflectarray copolar optimization publication-title: Progr Electromagn Res – volume: 81 start-page: 227 issue: 3 year: 2009 end-page: 239 article-title: Adaptive stochastic gradient descent optimisation for image registration publication-title: Int J Comput Vis – volume: 14 start-page: 690 year: 2014 end-page: 693 article-title: Time‐synchronized convolutional perfectly matched layer for improved absorbing performance in FDTD publication-title: IEEE Antennas Wirel Propag Lett – year: 2017 – year: 1991 – year: 2009 article-title: On the design of multilayer circular microstrip antenna using artificial neural networks publication-title: Int J Recent Trends Eng – volume: 62 start-page: 2263 year: 2014 end-page: 2268 article-title: An effective domain‐decomposition‐based preconditioner for the FE‐BI‐MLFMA method for 3D scattering problems publication-title: IEEE Trans Antenna Propag – year: 1999 – ident: e_1_2_9_193_1 doi: 10.1109/YAC.2017.7967510 – ident: e_1_2_9_146_1 doi: 10.1109/APUSNCURSINRSM.2017.8072216 – ident: e_1_2_9_139_1 doi: 10.1016/j.procs.2016.05.178 – ident: e_1_2_9_152_1 doi: 10.1109/TAP.2005.858617 – start-page: 1312.5602 year: 2013 ident: e_1_2_9_64_1 article-title: Playing atari with deep reinforcement learning publication-title: arXiv Preprint – ident: e_1_2_9_173_1 doi: 10.23919/EuRAD.2018.8546527 – ident: e_1_2_9_18_1 doi: 10.1109/HPCS48598.2019.9188224 – ident: e_1_2_9_181_1 doi: 10.1109/AEMC.2013.7045047 – volume-title: The MININEC System year: 1988 ident: e_1_2_9_27_1 – ident: e_1_2_9_168_1 doi: 10.1155/2012/541354 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_9_77_1 article-title: Scikit‐learn: machine learning in python publication-title: J Mach Learn Res – ident: e_1_2_9_95_1 doi: 10.1109/8.743842 – volume: 5 start-page: 42 year: 2006 ident: e_1_2_9_12_1 article-title: The method of moments: a numerical technique for wire antenna design publication-title: High Freq Electron – ident: e_1_2_9_35_1 doi: 10.1109/LAWP.2014.2315435 – ident: e_1_2_9_121_1 doi: 10.1887/0750308958 – ident: e_1_2_9_132_1 doi: 10.1109/SPIN.2015.7095291 – ident: e_1_2_9_88_1 doi: 10.1109/COMST.2019.2904897 – ident: e_1_2_9_130_1 doi: 10.1002/mmce.21623 – ident: e_1_2_9_50_1 doi: 10.1109/CEM.2009.5228115 – volume: 67 year: 2018 ident: e_1_2_9_174_1 article-title: Support vector regression to accelerate design and crosspolar optimization of shaped‐beam reflectarray antennas for space applications publication-title: IEEE Trans Antenna Propag – ident: e_1_2_9_159_1 doi: 10.1109/CSCI.2017.344 – ident: e_1_2_9_93_1 doi: 10.1002/mmce.20414 – ident: e_1_2_9_26_1 doi: 10.1109/ISEMC.1979.7568787 – ident: e_1_2_9_136_1 doi: 10.1109/EuCAP.2012.6206281 – year: 2019 ident: e_1_2_9_175_1 article-title: Wideband shaped‐beam reflectarray design using support vector regression analysis publication-title: IEEE Antennas Wirel Propag Lett – ident: e_1_2_9_110_1 doi: 10.4324/9780203763247 – ident: e_1_2_9_3_1 doi: 10.7716/aem.v6i1.407 – volume-title: Neural Networks for RF and Microwave Design year: 2000 ident: e_1_2_9_60_1 – ident: e_1_2_9_51_1 doi: 10.1109/20.250786 – start-page: 1412.6980 year: 2014 ident: e_1_2_9_117_1 article-title: Adam: a method for stochastic optimization publication-title: Arxiv Preprint – ident: e_1_2_9_98_1 doi: 10.2528/PIERB08013006 – start-page: 105 year: 1978 ident: e_1_2_9_118_1 article-title: The Levenberg‐Marquardt algorithm: implementation and theory publication-title: Numer Anal – ident: e_1_2_9_42_1 doi: 10.1109/LMWC.2014.2310481 – ident: e_1_2_9_20_1 doi: 10.1109/TAP.1966.1138693 – start-page: 155 year: 1997 ident: e_1_2_9_70_1 article-title: Support vector regression machines publication-title: Adv Neural Inf Process Syst – ident: e_1_2_9_40_1 – ident: e_1_2_9_83_1 doi: 10.1103/PhysRevLett.114.096405 – ident: e_1_2_9_153_1 doi: 10.2529/PIERS070317050916 – volume-title: Machine Learning in Action year: 2012 ident: e_1_2_9_74_1 – ident: e_1_2_9_141_1 doi: 10.1109/ICETETS.2016.7603037 – ident: e_1_2_9_17_1 doi: 10.1109/MAP.2015.2453912 – year: 2020 ident: e_1_2_9_100_1 article-title: Multi‐stage collaborative machine learning and its application to antenna modeling and optimization publication-title: IEEE Trans Antenna Propag – ident: e_1_2_9_129_1 doi: 10.1109/ISMSIT.2019.8932929 – ident: e_1_2_9_87_1 doi: 10.1109/LWC.2018.2805902 – volume-title: Antenna Engineering Handbook year: 2007 ident: e_1_2_9_2_1 – ident: e_1_2_9_6_1 doi: 10.1109/8.43555 – ident: e_1_2_9_151_1 doi: 10.1109/IWAT.2019.8730801 – ident: e_1_2_9_195_1 doi: 10.1109/LAPC.2012.6402988 – ident: e_1_2_9_122_1 doi: 10.1109/8.558650 – ident: e_1_2_9_33_1 doi: 10.1109/TAP.2013.2287889 – ident: e_1_2_9_62_1 doi: 10.1109/22.643839 – ident: e_1_2_9_119_1 doi: 10.1109/72.329697 – ident: e_1_2_9_111_1 doi: 10.1002/9780470140529 – ident: e_1_2_9_189_1 doi: 10.1017/S1759078715000616 – volume-title: Reinforcement Learning: An Introduction year: 2018 ident: e_1_2_9_75_1 – ident: e_1_2_9_45_1 doi: 10.1049/iet-map.2013.0254 – ident: e_1_2_9_127_1 doi: 10.1109/SIU.2008.4632716 – ident: e_1_2_9_34_1 doi: 10.1109/MAP.2014.7011045 – ident: e_1_2_9_54_1 doi: 10.1109/20.582522 – volume-title: Introduction to Linear Regression Analysis year: 2012 ident: e_1_2_9_67_1 – volume-title: Deep Learning year: 2016 ident: e_1_2_9_109_1 – ident: e_1_2_9_124_1 doi: 10.1109/TAP.2007.891306 – ident: e_1_2_9_164_1 – ident: e_1_2_9_170_1 doi: 10.23919/EuCAP.2017.7928501 – ident: e_1_2_9_31_1 doi: 10.1109/TAP.2014.2366203 – ident: e_1_2_9_39_1 doi: 10.1109/ISCON.2009.5156093 – ident: e_1_2_9_46_1 doi: 10.1109/TAP.2014.2300159 – ident: e_1_2_9_10_1 doi: 10.1109/TAP.2005.859905 – start-page: 2672 year: 2014 ident: e_1_2_9_65_1 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – volume: 1904 start-page: 12385 year: 2019 ident: e_1_2_9_86_1 article-title: Machine learning in the air publication-title: arxiv Preprint – volume-title: The Finite Element Method year: 1991 ident: e_1_2_9_24_1 – volume: 1908 start-page: 11225 year: 2019 ident: e_1_2_9_16_1 article-title: Enabling simulation‐based optimization through machine learning: a case study on antenna design publication-title: arXiv Preprint – ident: e_1_2_9_191_1 doi: 10.1109/APS.2011.5997142 – ident: e_1_2_9_140_1 doi: 10.1109/ICDECOM.2011.5738516 – volume-title: Accurate Domain Truncation Techniques for Time‐Domain Conformal Methods year: 2007 ident: e_1_2_9_28_1 – ident: e_1_2_9_187_1 doi: 10.1002/mop.27692 – ident: e_1_2_9_38_1 doi: 10.1049/iet-map.2013.0650 – ident: e_1_2_9_145_1 – ident: e_1_2_9_190_1 doi: 10.1007/s13042-012-0084-x – ident: e_1_2_9_172_1 doi: 10.1109/ACCESS.2018.2882271 – ident: e_1_2_9_37_1 doi: 10.1109/TAP.2015.2466466 – volume: 7 start-page: 278 year: 2007 ident: e_1_2_9_125_1 article-title: A heuristic artificial neural network for analyzing and synthesizing rectangular mcrostrip antenna publication-title: Int J Comput Sci Netw Secur – ident: e_1_2_9_182_1 doi: 10.1109/8.964096 – ident: e_1_2_9_76_1 – ident: e_1_2_9_171_1 doi: 10.1109/TAP.2018.2835566 – volume-title: Neural Networks: A Comprehensive Foundation year: 1994 ident: e_1_2_9_57_1 – ident: e_1_2_9_47_1 doi: 10.1109/MAP.2009.5162021 – ident: e_1_2_9_106_1 doi: 10.1017/CBO9781107298019 – ident: e_1_2_9_133_1 doi: 10.1109/ICECom.2013.6684759 – ident: e_1_2_9_22_1 doi: 10.1049/SBEW049E – ident: e_1_2_9_7_1 doi: 10.1109/8.135478 – ident: e_1_2_9_23_1 doi: 10.2514/8.3664 – ident: e_1_2_9_49_1 doi: 10.1109/LAWP.2014.2362195 – ident: e_1_2_9_104_1 doi: 10.1109/72.363438 – ident: e_1_2_9_19_1 doi: 10.1109/TMTT.2003.809179 – ident: e_1_2_9_21_1 doi: 10.1109/TEMC.1982.304054 – ident: e_1_2_9_113_1 doi: 10.1007/978-1-4757-3799-8 – ident: e_1_2_9_52_1 doi: 10.1109/20.376426 – ident: e_1_2_9_63_1 doi: 10.1147/rd.21.0002 – ident: e_1_2_9_184_1 doi: 10.1109/LAWP.2018.2857807 – volume: 14 start-page: 445 year: 2007 ident: e_1_2_9_126_1 article-title: Artificial neural design of microstrip antennas publication-title: Turk J Electr Eng Comp Sci – ident: e_1_2_9_162_1 doi: 10.1109/TAP.2007.891566 – ident: e_1_2_9_102_1 doi: 10.1109/LAPC.2015.7366125 – ident: e_1_2_9_192_1 doi: 10.1109/MAP.2011.6097296 – volume-title: Computational Tools for Antenna Analysis and Design year: 2018 ident: e_1_2_9_4_1 – ident: e_1_2_9_13_1 doi: 10.1109/TAP.2015.2407411 – ident: e_1_2_9_90_1 doi: 10.1109/COMST.2014.2320099 – volume-title: Foundations of Machine Learning year: 2012 ident: e_1_2_9_112_1 – year: 2009 ident: e_1_2_9_137_1 article-title: On the design of multilayer circular microstrip antenna using artificial neural networks publication-title: Int J Recent Trends Eng – ident: e_1_2_9_85_1 doi: 10.1002/asmb.2209 – ident: e_1_2_9_8_1 doi: 10.1109/8.55618 – ident: e_1_2_9_149_1 doi: 10.1007/s11664-017-5487-8 – ident: e_1_2_9_161_1 doi: 10.1109/LAWP.2006.889559 – ident: e_1_2_9_89_1 doi: 10.1109/SURV.2012.100412.00017 – ident: e_1_2_9_165_1 doi: 10.1109/LAWP.2012.2213567 – start-page: 1609.04747 year: 2016 ident: e_1_2_9_116_1 article-title: An overview of gradient descent optimization algorithms publication-title: Arxiv Preprint – ident: e_1_2_9_115_1 doi: 10.1007/s11263-008-0168-y – ident: e_1_2_9_71_1 doi: 10.1023/B:STCO.0000035301.49549.88 – ident: e_1_2_9_15_1 doi: 10.1201/9781315214603 – ident: e_1_2_9_183_1 doi: 10.1109/22.554584 – start-page: 239 volume-title: Handbook of Antennas in Wireless Communications year: 2000 ident: e_1_2_9_11_1 – ident: e_1_2_9_73_1 doi: 10.1201/b18401 – ident: e_1_2_9_101_1 doi: 10.1109/APS.2012.6348754 – ident: e_1_2_9_147_1 doi: 10.1109/TAP.2020.2966051 – ident: e_1_2_9_91_1 doi: 10.1109/ACCESS.2018.2836950 – ident: e_1_2_9_114_1 doi: 10.1016/j.cageo.2007.05.001 – ident: e_1_2_9_156_1 doi: 10.1049/iet-map.2011.0363 – ident: e_1_2_9_94_1 doi: 10.1109/TAP.2018.2823775 – ident: e_1_2_9_25_1 doi: 10.1109/9780470544631 – volume-title: Introduction to Artificial Neural Systems year: 2008 ident: e_1_2_9_120_1 – ident: e_1_2_9_36_1 doi: 10.1109/TAP.2013.2294860 – ident: e_1_2_9_29_1 doi: 10.1109/8.546249 – volume-title: Bioinformatics: the Machine Learning Approach year: 2001 ident: e_1_2_9_84_1 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: e_1_2_9_105_1 article-title: Regression shrinkage and selection via the lasso publication-title: J R Stat Soc B Methodol doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: e_1_2_9_44_1 doi: 10.1109/TAP.2014.2361896 – ident: e_1_2_9_178_1 doi: 10.1109/NCETACS.2011.5751381 – ident: e_1_2_9_157_1 doi: 10.1109/TAP.2012.2214195 – ident: e_1_2_9_177_1 doi: 10.1109/TAP.2007.891564 – ident: e_1_2_9_96_1 doi: 10.1109/TNN.2005.852973 – volume: 1901 start-page: 02220 year: 2019 ident: e_1_2_9_107_1 article-title: Deep neural network approximation theory publication-title: Arxiv Preprint – ident: e_1_2_9_144_1 – ident: e_1_2_9_150_1 doi: 10.1109/ICOA.2018.8370530 – ident: e_1_2_9_61_1 doi: 10.1109/22.575602 – ident: e_1_2_9_14_1 doi: 10.1109/MAP.2016.2520254 – ident: e_1_2_9_158_1 doi: 10.1016/j.sbspro.2015.06.434 – volume-title: Applications of Neural Networks in Electromagnetics year: 2000 ident: e_1_2_9_55_1 – ident: e_1_2_9_72_1 doi: 10.1007/978-1-4302-5990-9_4 – ident: e_1_2_9_131_1 doi: 10.1109/LAWP.2013.2285381 – ident: e_1_2_9_30_1 doi: 10.1109/22.622937 – ident: e_1_2_9_59_1 doi: 10.1109/TAP.2004.842695 – ident: e_1_2_9_79_1 doi: 10.1145/2647868.2654889 – ident: e_1_2_9_78_1 doi: 10.1145/2934664 – ident: e_1_2_9_9_1 doi: 10.1109/9780470544655 – ident: e_1_2_9_194_1 doi: 10.1109/TAP.2013.2283605 – ident: e_1_2_9_43_1 doi: 10.1109/TAP.2015.2417977 – ident: e_1_2_9_56_1 – ident: e_1_2_9_58_1 doi: 10.1109/TAP.2007.891874 – ident: e_1_2_9_163_1 – ident: e_1_2_9_196_1 doi: 10.1109/TAP.2012.2220513 – ident: e_1_2_9_123_1 doi: 10.1109/74.632992 – ident: e_1_2_9_185_1 doi: 10.1109/TAP.2020.2970071 – ident: e_1_2_9_154_1 doi: 10.2528/PIERM09093002 – ident: e_1_2_9_80_1 doi: 10.1145/2939672.2945397 – ident: e_1_2_9_32_1 doi: 10.1109/LAWP.2014.2376981 – ident: e_1_2_9_128_1 doi: 10.1002/mmce.20491 – ident: e_1_2_9_166_1 doi: 10.1109/ICUWB.2012.6340448 – ident: e_1_2_9_69_1 doi: 10.1007/978-3-642-41136-6_11 – ident: e_1_2_9_53_1 doi: 10.1109/20.376427 – ident: e_1_2_9_138_1 doi: 10.1109/AEMC.2011.6256829 – ident: e_1_2_9_186_1 doi: 10.1109/TAP.2005.850706 – ident: e_1_2_9_188_1 doi: 10.1007/978-3-642-32639-4_77 – ident: e_1_2_9_48_1 doi: 10.1109/TAP.2013.2296327 – ident: e_1_2_9_41_1 doi: 10.1049/iet-map.2014.0653 – ident: e_1_2_9_197_1 doi: 10.1109/APS.2012.6348584 – ident: e_1_2_9_142_1 doi: 10.1109/IWAT.2010.5464782 – ident: e_1_2_9_92_1 – ident: e_1_2_9_143_1 – ident: e_1_2_9_82_1 doi: 10.1145/1656274.1656278 – ident: e_1_2_9_169_1 doi: 10.1109/TAP.2012.2196941 – ident: e_1_2_9_99_1 doi: 10.2528/PIER09083103 – ident: e_1_2_9_176_1 doi: 10.1109/TAP.2018.2790044 – ident: e_1_2_9_97_1 doi: 10.1109/TMAG.2007.892480 – ident: e_1_2_9_135_1 doi: 10.1078/1434-8411-54100128 – ident: e_1_2_9_167_1 doi: 10.2528/PIERC18102303 – volume-title: Neural Networks and Learning Machines year: 2008 ident: e_1_2_9_108_1 – volume-title: Linear Regression Analysis year: 2012 ident: e_1_2_9_68_1 – ident: e_1_2_9_81_1 doi: 10.1145/1961189.1961199 – ident: e_1_2_9_66_1 doi: 10.1002/0471704091 – ident: e_1_2_9_134_1 doi: 10.1109/MAP.2005.1532541 – volume-title: The Hundred‐Page Machine Learning Book year: 2019 ident: e_1_2_9_103_1 – ident: e_1_2_9_180_1 doi: 10.1109/TAP.2019.2900359 – ident: e_1_2_9_179_1 doi: 10.1109/8.210111 – ident: e_1_2_9_5_1 doi: 10.1201/b17119 – ident: e_1_2_9_155_1 doi: 10.1109/ICCCNT.2010.5591751 – ident: e_1_2_9_160_1 doi: 10.1002/mmce.20509 – ident: e_1_2_9_148_1 doi: 10.1109/NMDC.2015.7439256 |
SSID | ssj0009923 |
Score | 2.5613813 |
SecondaryResourceType | review_article |
Snippet | This paper presents a focused and comprehensive literature survey on the use of machine learning (ML) in antenna design and optimization. An overview of the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Antenna design Antennas Computational electromagnetics Design optimization Literature reviews Machine learning neural networks Numerical methods Optimization Regression analysis Regression models Scientific papers |
Title | A review on the design and optimization of antennas using machine learning algorithms and techniques |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmmce.22356 https://www.proquest.com/docview/2439616712 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5jJz34LU6nBPSi0K1Nv8HLGBsizIM42EVK8jaZ4trK2l389Sbpx6aIoLdSktDm_ciT8LxPELoCGwQBHhieSZjcoMSxwQIwDSGIZVsuOCZX55CTB-9u6tzP3FkL3da1MKU-RHPgpiJD52sV4JTl_bVoaJIA78nFzVV624qspRDR41o7KgxJya4PPUMmXbPRJiX9ddevq9EaYm4CVb3SjHfRc_2NJcHkrbcqWA8-vsk3_vcn9tBOBUHxoPSZfdTi6QHa3hAmPETxAJc1LThLsYSIONZED0zTGGcyySRV9SbOBFamSVOaY0Whn-NEszM5rq6jmGO6mGfL1-IlyXX3RjQ2P0LT8ehpeGdU9zEYINOAZ1jMY2FsOuBbzAQqwKTCc6yAuWFgA4kldJOAJqYchBC-BQEAoa6Q7gASB1FqH6N2mqX8BGE_cAImwUfIXN8ByqhNQh-YfMtd03aCDrqu7RJBJVau7sxYRKXMMonUzEV65jrosmn7Xkp0_NiqW5s3qsI0j4iEY57l-RbpoBttp19GiCaT4Ug_nf6l8RnaImqPrgmAXdQulit-LoFMwS60w34CFRnwjg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5ROLQcKPShLqWtJdpDK2VJnMRJDj0gHloey6ECiVtqT-xtBUkQWYTa_9S_0t_UsZPdhQpV6oEDtyhyrNiex-fRzDcA7zFEw1GnnvC5ogtKUXgqRd8zhgdhEGPkaxuHHB6JwUm0fxqfzsGvSS1Myw8xDbhZzXD22iq4DUhvzFhDyxJ1n7xbLLqcygP945pubM3nvW063g-c7-4cbw28rqmAhyTLwguUUFnhR5gEykdp0JdGREGq4iwNkReEP8grF1KjMSYJMEXkMja0JiRnLmVI8z6CBdtC3FL1b3-ZsVVlGW_z-TPhkZn3p2yofGP2r7f93wzU3oTGzrftPoXfk11pU1rO-ldj1ceffxFGPphtW4alDmWzzVYtVmBOV89g8Qb34nMoNllbtsPqihEKZoXLZWGyKlhNdrTsClRZbZiVvqqSDbNVAiNWugRUzbqOGyMmz0f15ffxt7Jxn095cZsXcHIvy3wJ81Vd6VfAkjRKFeGrTMVJhFLJkGcJKnqrYz-M0h58nAhCjh0fu20Lcp63TNI8tyeVu5Pqwfp07EXLQnLnqLWJPOWdJWpyTohTBCIJeA8-OcH4xwz5cLi1455W_2fwO3g8OB4e5od7Rwev4Qm3IQmX77gG8-PLK_2GcNtYvXXawuDrfcvZH6AMUWQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVkJwoDzFQguWWg4gZes4iZMceqi6XfW1FUJU6i3YY3tBNEnVbIXgN_Wv9D_VdrK7pUJIHHrgFkWOFdvz-Dya-QZgHSM0DHUWcMqkvaAoFcgMaWAMC6MwwZhqF4ccHfHd43j_JDlZgMtpLUzLDzELuDnN8PbaKfiZMhtz0tCyRN23zi3hXUrlgf75w17Yms29gT3dd4wNdz5v7wZdT4EArSjzIJRc5orGmIaSojBIheFxmMkkzyJkysIP65SV0GiMSUPMEJlIjF0SWl8uRGTnvQdLMae5axQx-DQnq8pz1qbz5zywVp7OyFDZxvxff3d_c0x7Exl71zZchqvpprQZLd_7FxPZx1-3-CL_l117DI86jE22WqV4Agu6egoPbzAvPgO1RdqiHVJXxGJgonwmCxGVIrW1omVXnkpqQ5zsVZVoiKsRGJPSp59q0vXbGBNxOq7Pv02-lo3_fMaK2zyH4ztZ5gtYrOpKvwSSZnEmLbrKZZLGKKSIWJ6itG91QqM468H7qRwU2LGxu6Ygp0XLI80Kd1KFP6kerM3GnrUcJH8ctTIVp6KzQ03BLN7kIU9D1oMPXi7-MkMxGm3v-KdX_zL4Ldz_OBgWh3tHB6_hAXPxCJ_suAKLk_MLvWpB20S-8bpC4Mtdi9k1TrJQEw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+the+design+and+optimization+of+antennas+using+machine+learning+algorithms+and+techniques&rft.jtitle=International+journal+of+RF+and+microwave+computer-aided+engineering&rft.au=El+Misilmani%2C+Hilal+M&rft.au=Naous%2C+Tarek&rft.au=Al+Khatib%2C+Salwa+K&rft.date=2020-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1096-4290&rft.eissn=1099-047X&rft.volume=30&rft.issue=10&rft_id=info:doi/10.1002%2Fmmce.22356&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-4290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-4290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-4290&client=summon |