A data‐free, support vector machine‐based physics‐driven estimator for dynamic response computation

Direct integration methods are widely used for dynamic response computation. However, the performance of their computational accuracy significantly degrades with increasing the time step. Although machine learning methods can address this shortcoming, they require training data for dynamic response...

Full description

Saved in:
Bibliographic Details
Published inComputer-aided civil and infrastructure engineering Vol. 38; no. 1; pp. 26 - 48
Main Authors Luo, Huan, Paal, Stephanie German
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Direct integration methods are widely used for dynamic response computation. However, the performance of their computational accuracy significantly degrades with increasing the time step. Although machine learning methods can address this shortcoming, they require training data for dynamic response computation. This paper proposes a novel computational method to overcome these shortcomings. The proposed approach is a data‐free physics‐driven estimator, which minimizes the objective function of multi‐output least squares support vector machines for regression to model parameters subject to physical constraints introduced by the multi‐degree of freedom system's dynamic equilibrium equations and initial conditions in the feature space, bypassing the need for training data (due to the coupled physics) and for satisfying the requirement of the time step due to the built‐in optimization procedure. A new efficient step‐by‐step solver is developed to solve the optimization problem, and the solution is equivalent to a hyperplane satisfying the physical constraints in the feature space. The extension of the proposed approach for nonlinear dynamic response computation is also analyzed theoretically. The numerical results demonstrate that the proposed approach provides the solution with higher accuracy and efficiency and achieves the best performance for large time steps over classical integration methods.
AbstractList Direct integration methods are widely used for dynamic response computation. However, the performance of their computational accuracy significantly degrades with increasing the time step. Although machine learning methods can address this shortcoming, they require training data for dynamic response computation. This paper proposes a novel computational method to overcome these shortcomings. The proposed approach is a data‐free physics‐driven estimator, which minimizes the objective function of multi‐output least squares support vector machines for regression to model parameters subject to physical constraints introduced by the multi‐degree of freedom system's dynamic equilibrium equations and initial conditions in the feature space, bypassing the need for training data (due to the coupled physics) and for satisfying the requirement of the time step due to the built‐in optimization procedure. A new efficient step‐by‐step solver is developed to solve the optimization problem, and the solution is equivalent to a hyperplane satisfying the physical constraints in the feature space. The extension of the proposed approach for nonlinear dynamic response computation is also analyzed theoretically. The numerical results demonstrate that the proposed approach provides the solution with higher accuracy and efficiency and achieves the best performance for large time steps over classical integration methods.
Author Paal, Stephanie German
Luo, Huan
Author_xml – sequence: 1
  givenname: Huan
  surname: Luo
  fullname: Luo, Huan
  email: hluo@ctgu.edu.cn
  organization: China Three Gorges University
– sequence: 2
  givenname: Stephanie German
  surname: Paal
  fullname: Paal, Stephanie German
  organization: Texas A&M University
BookMark eNp9kM9KAzEQxoNUsK1efIKAN3Fr_m12eyylaqHipfclzU5oSnezJtvK3nwEn9EnMXU9iTgwJEN-32TmG6FB7WpA6JqSCY1xX1kNE8pyxs_QkAqZJbmU2SDeyZQnU5lnF2gUwo7EEIIPkZ3hUrXq8_3DeIA7HA5N43yLj6Bb53Gl9NbWEJ83KkCJm20XrA6xLr09Qo0htLZSJ9TELLtaxRGwh9C4OgDWrmoOrWqtqy_RuVH7AFc_5xitHxbr-VOyenlczmerRHNCeQKMcSIIZxvKRK7FVEhJgMicb1KVSiK1Nikt0xIIyFSRUpoo4xqEyZXRfIxu-raNd6-HOF6xcwdfxx8LlmU8o4QJFqnbntLeheDBFI2Pe_iuoKQ4OVmcnCy-nYww-QVr2-_UemX3f0toL3mze-j-aV48L-eLXvMFOeSMRA
CitedBy_id crossref_primary_10_1111_mice_13079
crossref_primary_10_1111_mice_13112
crossref_primary_10_1111_mice_13320
crossref_primary_10_1016_j_cma_2024_117700
crossref_primary_10_1111_mice_13175
crossref_primary_10_1016_j_bspc_2023_105659
crossref_primary_10_1111_mice_13326
crossref_primary_10_1111_mice_13436
crossref_primary_10_3233_ICA_230719
crossref_primary_10_1109_TSMC_2024_3408872
Cites_doi 10.1111/0885-9507.00219
10.1111/mice.12263
10.1186/s13408-018-0066-8
10.1007/978-1-4614-7138-7
10.1016/0045-7949(77)90067-0
10.1111/mice.12558
10.1007/978-1-4757-2440-0
10.1016/j.asoc.2014.02.007
10.1111/mice.12517
10.1002/eqe.2437
10.1016/j.engappai.2013.11.001
10.1016/j.engstruct.2018.10.065
10.1016/j.aei.2020.101202
10.1016/j.istruc.2021.04.048
10.1016/j.ymssp.2020.106977
10.1016/j.automatica.2012.06.095
10.1111/0885-9507.00065
10.1111/mice.12617
10.1007/978-1-4614-6849-3
10.1016/j.advengsoft.2011.05.033
10.1016/j.compstruc.2011.03.005
10.1017/CBO9781139171502
10.1109/TNNLS.2012.2202126
10.1061/(ASCE)EM.1943-7889.0001073
10.1061/(ASCE)ST.1943-541X.0002831
10.1016/j.soildyn.2017.05.013
10.1016/j.engstruct.2020.110704
10.1193/1.2894831
10.1111/mice.12334
10.1016/j.advengsoft.2015.05.007
10.1061/(ASCE)EM.1943-7889.0001556
10.1061/(ASCE)CP.1943-5487.0000466
10.1002/eqe.4290020105
10.1061/JMCEA3.0000098
10.1016/j.compstruc.2019.05.006
10.1007/s00521-011-0689-0
10.1016/j.cma.2020.113226
10.1002/eqe.4290010308
10.1016/j.strusafe.2017.12.001
10.1016/j.engappai.2020.103947
10.1061/(ASCE)CP.1943-5487.0000787
10.1177/87552930211053345
10.1111/mice.12538
10.1111/mice.12628
10.1061/(ASCE)CP.1943-5487.0000450
10.1111/mice.12565
10.1142/5089
10.1108/02644401111131902
10.1016/j.ymssp.2020.106738
10.1080/15732479.2015.1086386
10.14359/51689560
ContentType Journal Article
Copyright 2022  .
2023 Computer‐Aided Civil and Infrastructure Engineering.
Copyright_xml – notice: 2022  .
– notice: 2023 Computer‐Aided Civil and Infrastructure Engineering.
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1111/mice.12823
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
Physics
EISSN 1467-8667
EndPage 48
ExternalDocumentID 10_1111_mice_12823
MICE12823
Genre article
GroupedDBID ..I
.3N
.4S
.DC
.GA
05W
0R~
10A
1OB
1OC
29F
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABFSI
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBS
EDO
EMK
EST
ESX
F00
F01
F04
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RX1
SUPJJ
TN5
TUS
UB1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
31~
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
AHEFC
AI.
ASPBG
AVWKF
AZFZN
BDRZF
CAG
CITATION
COF
CWDTD
E.L
EJD
FEDTE
HF~
HVGLF
LW6
PALCI
RJQFR
SAMSI
VH1
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3013-e22304032b1248c494660e0683b5a5606ccf51d5de0e65a0d6f0133ce4f8afc3
IEDL.DBID DR2
ISSN 1093-9687
IngestDate Fri Jul 25 05:14:14 EDT 2025
Thu Apr 24 23:11:00 EDT 2025
Tue Jul 01 03:36:33 EDT 2025
Wed Jan 22 16:25:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3013-e22304032b1248c494660e0683b5a5606ccf51d5de0e65a0d6f0133ce4f8afc3
Notes Funding information
National Science Foundation, Grant/Award Number: 1944301
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2773710242
PQPubID 2045171
PageCount 23
ParticipantIDs proquest_journals_2773710242
crossref_primary_10_1111_mice_12823
crossref_citationtrail_10_1111_mice_12823
wiley_primary_10_1111_mice_12823_MICE12823
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 January 2023
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 1 January 2023
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020a; 215
2015; 30
2016; 30
2014; 28
2012; 13
2017; 114
2016; 142
2018; 8
2021b; 47
2020; 96
2021d; 33
2017; 32
2015; 88
1997; 12
2011; 20
2013; 112
2008; 24
2001; 16
2014; 19
1981
2018; 72
2011; 28
2018; 33
2018; 32
2012; 23
1959; 85
2020; 141
2019; 34
2018; 145
2021c
2007
2006
1995
2020; 35
2020; 144
1994
2020; 146
2002
2014; 43
2016; 12
2019; 220
2021
2020
2021a; 36
2011; 89
2013
2012; 48
2020b; 369
2017; 100
2012; 44
1973; 1
1977; 7
1973; 2
2019; 178
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
Sun H. (e_1_2_8_45_1) 2020
e_1_2_8_22_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
Luo H. (e_1_2_8_27_1) 2019; 34
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Chopra A. K. (e_1_2_8_12_1) 2007
Bergstra J. (e_1_2_8_7_1) 2012; 13
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Werbos P. J. (e_1_2_8_50_1) 1994
e_1_2_8_58_1
Toselli A. (e_1_2_8_47_1) 2006
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
References_xml – volume: 96
  year: 2020
  article-title: Structural dynamics simulation using a novel physics‐guided machine learning method
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 144
  year: 2020
  article-title: Hybrid output‐only structural system identification using random decrement and Kalman filter
  publication-title: Mechanical Systems and Signal Processing
– year: 1981
– volume: 72
  start-page: 1
  year: 2018
  end-page: 16
  article-title: A machine learning framework for assessing post‐earthquake structural safety
  publication-title: Structural Safety
– volume: 7
  start-page: 125
  issue: 1
  year: 1977
  end-page: 136
  article-title: Formulations and solution procedures for nonlinear structural analysis
  publication-title: Computers & Structures
– volume: 33
  start-page: 731
  issue: 9
  year: 2018
  end-page: 747
  article-title: Autonomous structural visual inspection using region‐based deep learning for detecting multiple damage types
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 19
  start-page: 112
  year: 2014
  end-page: 120
  article-title: Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups
  publication-title: Applied Soft Computing
– volume: 34
  issue: 4
  year: 2019
  article-title: A locally weighted machine learning model for generalized prediction of drift capacity in seismic vulnerability assessments
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 142
  issue: 5
  year: 2016
  article-title: Lyapunov stability and accuracy of direct integration algorithms applied to nonlinear dynamic problems
  publication-title: Journal of Engineering Mechanics
– volume: 145
  issue: 1
  year: 2018
  article-title: Deep convolutional neural network for structural dynamic response estimation and system identification
  publication-title: Journal of Engineering Mechanics
– volume: 28
  start-page: 86
  year: 2014
  end-page: 96
  article-title: Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced‐concrete deep beams
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 178
  start-page: 603
  year: 2019
  end-page: 615
  article-title: Recurrent neural network model with Bayesian training and mutual information for response prediction of large buildings
  publication-title: Engineering Structures
– volume: 12
  start-page: 1153
  issue: 9
  year: 2016
  end-page: 1161
  article-title: Punching shear capacity estimation of FRP‐reinforced concrete slabs using a hybrid machine learning approach
  publication-title: Structure and Infrastructure Engineering
– volume: 35
  start-page: 1349
  issue: 12
  year: 2020
  end-page: 1364
  article-title: Structural sensing with deep learning: Strain estimation from acceleration data for fatigue assessment
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 215
  year: 2020a
  article-title: Physics‐guided convolutional neural network (PhyCNN) for data‐driven seismic response modeling
  publication-title: Engineering Structures
– volume: 112
  year: 2013
– year: 2021c
  article-title: Data‐driven seismic response prediction of structural components
  publication-title: Earthquake Spectra
– year: 1994
– volume: 141
  year: 2020
  article-title: Model‐free data reconstruction of structural response and excitation via sequential broad learning
  publication-title: Mechanical Systems and Signal Processing
– volume: 1
  start-page: 283
  issue: 3
  year: 1973
  end-page: 291
  article-title: Stability and accuracy analysis of direct integration methods
  publication-title: Earthquake Engineering & Structural Dynamics
– volume: 35
  start-page: 1230
  issue: 11
  year: 2020
  end-page: 1245
  article-title: Deep reinforcement learning for long‐term pavement maintenance planning
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 220
  start-page: 55
  year: 2019
  end-page: 68
  article-title: Deep long short‐term memory networks for nonlinear structural seismic response prediction
  publication-title: Computers & Structures
– volume: 33
  start-page: 748
  year: 2021d
  end-page: 758
  article-title: Metaheuristic least squares support vector machine‐based lateral strength modelling of reinforced concrete columns subjected to earthquake loads
  publication-title: Structures
– volume: 114
  issue: 2
  year: 2017
  article-title: Supervised deep restricted Boltzmann machine for estimation of concrete
  publication-title: ACI Materials Journal
– year: 2020
  article-title: Machine learning applications for building structural design and performance assessment: state‐of‐the‐art review
  publication-title: Journal of Building Engineering
– volume: 48
  start-page: 2502
  issue: 10
  year: 2012
  end-page: 2511
  article-title: LS‐SVM approximate solution to linear time varying descriptor systems
  publication-title: Automatica
– volume: 32
  issue: 5
  year: 2018
  article-title: Machine learning–based backbone curve model of reinforced concrete columns subjected to cyclic loading reversals
  publication-title: Journal of Computing in Civil Engineering
– volume: 100
  start-page: 417
  year: 2017
  end-page: 427
  article-title: NEEWS: A novel earthquake early warning model using neural dynamic classification and neural dynamic optimization
  publication-title: Soil Dynamics and Earthquake Engineering
– volume: 16
  start-page: 126
  issue: 2
  year: 2001
  end-page: 142
  article-title: Neural networks in civil engineering: 1989–2000
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 369
  year: 2020b
  article-title: Physics‐informed multi‐LSTM networks for metamodeling of nonlinear structures
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 13
  start-page: 281
  issue: 2
  year: 2012
  end-page: 305
  article-title: Random search for hyper‐parameter optimization
  publication-title: Journal of Machine Learning Research
– volume: 35
  start-page: 965
  issue: 9
  year: 2020
  end-page: 978
  article-title: Combining deep features and activity context to improve recognition of activities of workers in groups
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 30
  issue: 1
  year: 2016
  article-title: Evolutionary polynomial regression–based statistical determination of the shear capacity equation for reinforced concrete beams without stirrups
  publication-title: Journal of Computing in Civil Engineering
– volume: 47
  year: 2021b
  article-title: Advancing post‐earthquake structural evaluations via sequential regression‐based predictive mean matching for enhanced forecasting in the context of missing data
  publication-title: Advanced Engineering Informatics
– volume: 146
  issue: 12
  year: 2020
  article-title: Regional seismic risk assessment of infrastructure systems through machine learning: Active learning approach
  publication-title: Journal of Structural Engineering
– volume: 44
  start-page: 92
  issue: 1
  year: 2012
  end-page: 115
  article-title: Neural network based prediction schemes of the non‐linear seismic response of 3D buildings
  publication-title: Advances in Engineering Software
– volume: 89
  start-page: 1430
  issue: 13‐14
  year: 2011
  end-page: 1439
  article-title: Support vector regression based shear strength modelling of deep beams
  publication-title: Computers & Structures
– year: 2007
– volume: 2
  start-page: 47
  issue: 1
  year: 1973
  end-page: 57
  article-title: Damped vibration mode superposition method for dynamic response analysis
  publication-title: Earthquake Engineering & Structural Dynamics
– year: 2021
  article-title: Real‐time regional seismic damage assessment framework based on long short‐term memory neural network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 88
  start-page: 63
  year: 2015
  end-page: 72
  article-title: Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Advances in Engineering Software
– volume: 24
  start-page: 23
  issue: 1
  year: 2008
  end-page: 44
  article-title: NGA project strong‐motion database
  publication-title: Earthquake Spectra
– volume: 20
  issue: 8
  year: 2011
  article-title: A robust predictive model for base shear of steel frame structures using a hybrid genetic programming and simulated annealing method
  publication-title: Neural Computing and Applications
– volume: 30
  issue: 1
  year: 2015
  article-title: Shear strength prediction in reinforced concrete deep beams using nature‐inspired metaheuristic support vector regression
  publication-title: Journal of Computing in Civil Engineering
– volume: 36
  start-page: 248
  issue: 3
  year: 2021a
  end-page: 263
  article-title: Reducing the effect of sample bias for small data sets with double‐weighted support vector transfer regression
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 32
  start-page: 361
  issue: 5
  year: 2017
  end-page: 378
  article-title: Deep learning‐based crack damage detection using convolutional neural networks
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2002
– year: 2006
– volume: 12
  start-page: 295
  issue: 4
  year: 1997
  end-page: 310
  article-title: Machine learning techniques for civil engineering problems
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 38
  article-title: Data assimilation methods for neuronal state and parameter estimation
  publication-title: The Journal of Mathematical Neuroscience
– volume: 28
  start-page: 492
  issue: 4
  year: 2011
  end-page: 507
  article-title: Modelling mechanical behaviour of rubber concrete using evolutionary polynomial regression
  publication-title: Engineering Computations
– year: 1995
– volume: 43
  start-page: 2075
  issue: 14
  year: 2014
  end-page: 2095
  article-title: Statistical models for shear strength of RC beam‐column joints using machine‐learning techniques
  publication-title: Earthquake Engineering & Structural Dynamics
– volume: 23
  start-page: 1356
  issue: 9
  year: 2012
  end-page: 1367
  article-title: Approximate solutions to ordinary differential equations using least squares support vector machines
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 35
  start-page: 597
  issue: 6
  year: 2020
  end-page: 614
  article-title: Structural health monitoring using extremely compressed data through deep learning
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 85
  start-page: 67
  issue: 3
  year: 1959
  end-page: 94
  article-title: A method of computation for structural dynamics
  publication-title: Journal of the Engineering Mechanics Division
– year: 2013
– ident: e_1_2_8_2_1
  doi: 10.1111/0885-9507.00219
– ident: e_1_2_8_8_1
  doi: 10.1111/mice.12263
– ident: e_1_2_8_36_1
  doi: 10.1186/s13408-018-0066-8
– ident: e_1_2_8_20_1
  doi: 10.1007/978-1-4614-7138-7
– ident: e_1_2_8_44_1
  doi: 10.1016/0045-7949(77)90067-0
– ident: e_1_2_8_53_1
  doi: 10.1111/mice.12558
– volume-title: Dynamics of structures: Theory and applications to earthquake engineering
  year: 2007
  ident: e_1_2_8_12_1
– ident: e_1_2_8_48_1
  doi: 10.1007/978-1-4757-2440-0
– ident: e_1_2_8_15_1
  doi: 10.1016/j.asoc.2014.02.007
– ident: e_1_2_8_5_1
  doi: 10.1111/mice.12517
– ident: e_1_2_8_21_1
  doi: 10.1002/eqe.2437
– ident: e_1_2_8_10_1
  doi: 10.1016/j.engappai.2013.11.001
– ident: e_1_2_8_39_1
  doi: 10.1016/j.engstruct.2018.10.065
– ident: e_1_2_8_29_1
  doi: 10.1016/j.aei.2020.101202
– ident: e_1_2_8_31_1
  doi: 10.1016/j.istruc.2021.04.048
– ident: e_1_2_8_17_1
  doi: 10.1016/j.ymssp.2020.106977
– ident: e_1_2_8_35_1
  doi: 10.1016/j.automatica.2012.06.095
– ident: e_1_2_8_43_1
  doi: 10.1111/0885-9507.00065
– ident: e_1_2_8_28_1
  doi: 10.1111/mice.12617
– start-page: 101816
  year: 2020
  ident: e_1_2_8_45_1
  article-title: Machine learning applications for building structural design and performance assessment: state‐of‐the‐art review
  publication-title: Journal of Building Engineering
– ident: e_1_2_8_22_1
  doi: 10.1007/978-1-4614-6849-3
– ident: e_1_2_8_24_1
  doi: 10.1016/j.advengsoft.2011.05.033
– ident: e_1_2_8_38_1
  doi: 10.1016/j.compstruc.2011.03.005
– volume-title: Domain decomposition methods‐algorithms and theory
  year: 2006
  ident: e_1_2_8_47_1
– ident: e_1_2_8_40_1
  doi: 10.1017/CBO9781139171502
– ident: e_1_2_8_34_1
  doi: 10.1109/TNNLS.2012.2202126
– ident: e_1_2_8_25_1
  doi: 10.1061/(ASCE)EM.1943-7889.0001073
– ident: e_1_2_8_33_1
  doi: 10.1061/(ASCE)ST.1943-541X.0002831
– ident: e_1_2_8_41_1
  doi: 10.1016/j.soildyn.2017.05.013
– ident: e_1_2_8_56_1
  doi: 10.1016/j.engstruct.2020.110704
– ident: e_1_2_8_11_1
  doi: 10.1193/1.2894831
– ident: e_1_2_8_9_1
  doi: 10.1111/mice.12334
– ident: e_1_2_8_16_1
  doi: 10.1016/j.advengsoft.2015.05.007
– ident: e_1_2_8_51_1
  doi: 10.1061/(ASCE)EM.1943-7889.0001556
– ident: e_1_2_8_13_1
  doi: 10.1061/(ASCE)CP.1943-5487.0000466
– ident: e_1_2_8_19_1
  doi: 10.1002/eqe.4290020105
– volume: 13
  start-page: 281
  issue: 2
  year: 2012
  ident: e_1_2_8_7_1
  article-title: Random search for hyper‐parameter optimization
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_37_1
  doi: 10.1061/JMCEA3.0000098
– ident: e_1_2_8_55_1
  doi: 10.1016/j.compstruc.2019.05.006
– ident: e_1_2_8_4_1
  doi: 10.1007/s00521-011-0689-0
– ident: e_1_2_8_57_1
  doi: 10.1016/j.cma.2020.113226
– volume-title: The roots of backpropagation: From ordered derivatives to neural networks and political forecasting
  year: 1994
  ident: e_1_2_8_50_1
– ident: e_1_2_8_6_1
  doi: 10.1002/eqe.4290010308
– ident: e_1_2_8_58_1
  doi: 10.1016/j.strusafe.2017.12.001
– ident: e_1_2_8_54_1
  doi: 10.1016/j.engappai.2020.103947
– ident: e_1_2_8_26_1
  doi: 10.1061/(ASCE)CP.1943-5487.0000787
– volume: 34
  start-page: 12456
  issue: 4
  year: 2019
  ident: e_1_2_8_27_1
  article-title: A locally weighted machine learning model for generalized prediction of drift capacity in seismic vulnerability assessments
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– ident: e_1_2_8_30_1
  doi: 10.1177/87552930211053345
– ident: e_1_2_8_32_1
  doi: 10.1111/mice.12538
– ident: e_1_2_8_52_1
  doi: 10.1111/mice.12628
– ident: e_1_2_8_14_1
  doi: 10.1061/(ASCE)CP.1943-5487.0000450
– ident: e_1_2_8_18_1
  doi: 10.1111/mice.12565
– ident: e_1_2_8_46_1
  doi: 10.1142/5089
– ident: e_1_2_8_3_1
  doi: 10.1108/02644401111131902
– ident: e_1_2_8_23_1
  doi: 10.1016/j.ymssp.2020.106738
– ident: e_1_2_8_49_1
  doi: 10.1080/15732479.2015.1086386
– ident: e_1_2_8_42_1
  doi: 10.14359/51689560
SSID ssj0000443
Score 2.4274476
Snippet Direct integration methods are widely used for dynamic response computation. However, the performance of their computational accuracy significantly degrades...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26
SubjectTerms Accuracy
Computation
Constraint modelling
Dynamic response
Dynamical systems
Equilibrium equations
Hyperplanes
Initial conditions
Machine learning
Nonlinear dynamics
Nonlinear response
Optimization
Physics
Regression models
Support vector machines
Training
Title A data‐free, support vector machine‐based physics‐driven estimator for dynamic response computation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12823
https://www.proquest.com/docview/2773710242
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PS8MwFH_ITnpwOhXnPwJ6UezomqTtwIuIYwh6kAm7SGn-FESdsm6CnvwIfkY_ie-lrZsigt7aNEnTJC_vl9eX3wPYUzoWysSpJ3UUeUJLFCkVIZBTUYba08aG0-Hk84uwdyXOBnIwB0fVWZiCH-LT4EaS4dZrEvBU5TNCTtHaW7i6BkT1Sc5ahIguZ7ijROld3-FeJ4yjkpuU3HimRb9qoynEnAWqTtN063BdtbFwMLltTcaqpV--0Tf-9yOWYLGEoOy4mDPLMGeHDaiXcJSVwp5jUhXxoUprwMIMfeEK3BwzcjB9f33LRtYesnzySGiePbk_Aeze-WlafEyq0rDCiJLjvRnRGsuI4OOeNv0MkTMzz8MUG8pGhdeuZdq93s2cVeh3T_snPa8M3eBpTvEibEDGZp8HCvFDrAWx2PvWD2OuZIogK9Q6k20jjfVtKFPfhBkW49qKLE4zzdegNnwY2nVgwk85Nx3elhprMghoIoRIbYNAVwltZRP2qxFMdElrTtE17pJqe0N9nLg-bsLuZ97Hgszjx1xb1URISoHOkyCKOIExETThwI3oLzUkKEGn7mrjL5k3YZ6C2RcGni2ojUcTu42QZ6x23NT-ABS0AA0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xOMAegOWhLU9LcAGRKo3tJD0iBCoscEBdiVsUPyIhaBc17Upw4ifwG_klzDgOdBFCglsetpPYM57Pk_E3ADtKp0KZNA-kTpJAaIkqpRIEciop0Hra1HDanHx-EXf-iNMreeVjc2gvTMUP8epwI81w8zUpODmkx7Sc0rU3cXqN-CRMU0pvt6K6HGOPEj6-vs2Ddpwmnp2UAnne6v5vj95A5jhUdbbmeL5KqFo6ikIKMblpjoaqqR_eETh--zMWYM6jUHZQic1PmLD9RZj3iJR5fS_xUp30ob62CD_GGAyX4PqAUYzp8-NTMbB2n5WjOwL07J_7GcB6LlTT4m2yloZVfpQSz82ApllGHB89WvczBM_M3PdzfFE2qAJ3LdPu8U54lqF7fNQ97AQ-e0OgOaWMsBH5m0MeKYQQqRZEZB_aME65kjnirFjrQraMNDa0scxDExdYjWsrijQvNF-Bqf7fvv0FTIQ556bNW1JjSwYxTYIoqWUQ6yqhrWzAbj2EmfbM5pRg4zarVzjUx5nr4wZsv5a9q_g8Piy1XktC5nW6zKIk4YTHRNSAPTekn7SQoRIduaPVrxTegplO9_wsOzu5-L0Gs5TbvvL3rMPUcDCyG4iAhmrTyfkLAGAEKA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD4qnYTgYd24iLJuWIIXEKnS2E5SaS_VoAIGCCGQeEFRfImEoKXqZRI87SfsN-6X7BwnoWVCSPCWOLbj2Of4fHaOvwOwpXQslIlTT-oo8oSWqFIqQiCnogytp40Np8PJJ6fhwaU4upJXFfhenoXJ-SGeNtxIM9x8TQo-MNmMklO09ibOrgGfgw8i9GOS6b3zGfIoUbjXt7nXDuOoICclP55p2efmaIoxZ5GqMzXdGlyXjcw9TG6bk7Fq6sf_-Bvf-xWf4GOBQVknF5rPULH9JagVeJQV2j7CpDLkQ5m2BIsz_IXLcNNh5GH69_efbGjtLhtNBgTn2S_3K4D1nKOmxcdkKw3Ld1FGeG-GNMkyYvjo0aqfIXRm5qGfYkPZMHfbtUy71zvRWYGL7v7FjwOviN3gaU4BI2xAu80-DxQCiFgLorH3rR_GXMkUUVaodSZbRhrr21CmvgkzLMa1FVmcZpqvQrV_37drwISfcm7avCU11mQQ0USIkVoGka4S2so6bJcjmOiC15zCa9wl5fqG-jhxfVyHzae8g5zN48VcjVIQkkKjR0kQRZzQmAjqsONG9JUaElShfXe1_pbMGzB_ttdNjg9Pf36BBQpsn2_2NKA6Hk7sV4Q_Y_XNSfk_GIIC4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data%E2%80%90free%2C+support+vector+machine%E2%80%90based+physics%E2%80%90driven+estimator+for+dynamic+response+computation&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Luo%2C+Huan&rft.au=Paal%2C+Stephanie+German&rft.date=2023-01-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=38&rft.issue=1&rft.spage=26&rft.epage=48&rft_id=info:doi/10.1111%2Fmice.12823&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mice_12823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon