A data‐free, support vector machine‐based physics‐driven estimator for dynamic response computation
Direct integration methods are widely used for dynamic response computation. However, the performance of their computational accuracy significantly degrades with increasing the time step. Although machine learning methods can address this shortcoming, they require training data for dynamic response...
Saved in:
Published in | Computer-aided civil and infrastructure engineering Vol. 38; no. 1; pp. 26 - 48 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Direct integration methods are widely used for dynamic response computation. However, the performance of their computational accuracy significantly degrades with increasing the time step. Although machine learning methods can address this shortcoming, they require training data for dynamic response computation. This paper proposes a novel computational method to overcome these shortcomings. The proposed approach is a data‐free physics‐driven estimator, which minimizes the objective function of multi‐output least squares support vector machines for regression to model parameters subject to physical constraints introduced by the multi‐degree of freedom system's dynamic equilibrium equations and initial conditions in the feature space, bypassing the need for training data (due to the coupled physics) and for satisfying the requirement of the time step due to the built‐in optimization procedure. A new efficient step‐by‐step solver is developed to solve the optimization problem, and the solution is equivalent to a hyperplane satisfying the physical constraints in the feature space. The extension of the proposed approach for nonlinear dynamic response computation is also analyzed theoretically. The numerical results demonstrate that the proposed approach provides the solution with higher accuracy and efficiency and achieves the best performance for large time steps over classical integration methods. |
---|---|
AbstractList | Direct integration methods are widely used for dynamic response computation. However, the performance of their computational accuracy significantly degrades with increasing the time step. Although machine learning methods can address this shortcoming, they require training data for dynamic response computation. This paper proposes a novel computational method to overcome these shortcomings. The proposed approach is a data‐free physics‐driven estimator, which minimizes the objective function of multi‐output least squares support vector machines for regression to model parameters subject to physical constraints introduced by the multi‐degree of freedom system's dynamic equilibrium equations and initial conditions in the feature space, bypassing the need for training data (due to the coupled physics) and for satisfying the requirement of the time step due to the built‐in optimization procedure. A new efficient step‐by‐step solver is developed to solve the optimization problem, and the solution is equivalent to a hyperplane satisfying the physical constraints in the feature space. The extension of the proposed approach for nonlinear dynamic response computation is also analyzed theoretically. The numerical results demonstrate that the proposed approach provides the solution with higher accuracy and efficiency and achieves the best performance for large time steps over classical integration methods. |
Author | Paal, Stephanie German Luo, Huan |
Author_xml | – sequence: 1 givenname: Huan surname: Luo fullname: Luo, Huan email: hluo@ctgu.edu.cn organization: China Three Gorges University – sequence: 2 givenname: Stephanie German surname: Paal fullname: Paal, Stephanie German organization: Texas A&M University |
BookMark | eNp9kM9KAzEQxoNUsK1efIKAN3Fr_m12eyylaqHipfclzU5oSnezJtvK3nwEn9EnMXU9iTgwJEN-32TmG6FB7WpA6JqSCY1xX1kNE8pyxs_QkAqZJbmU2SDeyZQnU5lnF2gUwo7EEIIPkZ3hUrXq8_3DeIA7HA5N43yLj6Bb53Gl9NbWEJ83KkCJm20XrA6xLr09Qo0htLZSJ9TELLtaxRGwh9C4OgDWrmoOrWqtqy_RuVH7AFc_5xitHxbr-VOyenlczmerRHNCeQKMcSIIZxvKRK7FVEhJgMicb1KVSiK1Nikt0xIIyFSRUpoo4xqEyZXRfIxu-raNd6-HOF6xcwdfxx8LlmU8o4QJFqnbntLeheDBFI2Pe_iuoKQ4OVmcnCy-nYww-QVr2-_UemX3f0toL3mze-j-aV48L-eLXvMFOeSMRA |
CitedBy_id | crossref_primary_10_1111_mice_13079 crossref_primary_10_1111_mice_13112 crossref_primary_10_1111_mice_13320 crossref_primary_10_1016_j_cma_2024_117700 crossref_primary_10_1111_mice_13175 crossref_primary_10_1016_j_bspc_2023_105659 crossref_primary_10_1111_mice_13326 crossref_primary_10_1111_mice_13436 crossref_primary_10_3233_ICA_230719 crossref_primary_10_1109_TSMC_2024_3408872 |
Cites_doi | 10.1111/0885-9507.00219 10.1111/mice.12263 10.1186/s13408-018-0066-8 10.1007/978-1-4614-7138-7 10.1016/0045-7949(77)90067-0 10.1111/mice.12558 10.1007/978-1-4757-2440-0 10.1016/j.asoc.2014.02.007 10.1111/mice.12517 10.1002/eqe.2437 10.1016/j.engappai.2013.11.001 10.1016/j.engstruct.2018.10.065 10.1016/j.aei.2020.101202 10.1016/j.istruc.2021.04.048 10.1016/j.ymssp.2020.106977 10.1016/j.automatica.2012.06.095 10.1111/0885-9507.00065 10.1111/mice.12617 10.1007/978-1-4614-6849-3 10.1016/j.advengsoft.2011.05.033 10.1016/j.compstruc.2011.03.005 10.1017/CBO9781139171502 10.1109/TNNLS.2012.2202126 10.1061/(ASCE)EM.1943-7889.0001073 10.1061/(ASCE)ST.1943-541X.0002831 10.1016/j.soildyn.2017.05.013 10.1016/j.engstruct.2020.110704 10.1193/1.2894831 10.1111/mice.12334 10.1016/j.advengsoft.2015.05.007 10.1061/(ASCE)EM.1943-7889.0001556 10.1061/(ASCE)CP.1943-5487.0000466 10.1002/eqe.4290020105 10.1061/JMCEA3.0000098 10.1016/j.compstruc.2019.05.006 10.1007/s00521-011-0689-0 10.1016/j.cma.2020.113226 10.1002/eqe.4290010308 10.1016/j.strusafe.2017.12.001 10.1016/j.engappai.2020.103947 10.1061/(ASCE)CP.1943-5487.0000787 10.1177/87552930211053345 10.1111/mice.12538 10.1111/mice.12628 10.1061/(ASCE)CP.1943-5487.0000450 10.1111/mice.12565 10.1142/5089 10.1108/02644401111131902 10.1016/j.ymssp.2020.106738 10.1080/15732479.2015.1086386 10.14359/51689560 |
ContentType | Journal Article |
Copyright | 2022 . 2023 Computer‐Aided Civil and Infrastructure Engineering. |
Copyright_xml | – notice: 2022 . – notice: 2023 Computer‐Aided Civil and Infrastructure Engineering. |
DBID | AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1111/mice.12823 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science Physics |
EISSN | 1467-8667 |
EndPage | 48 |
ExternalDocumentID | 10_1111_mice_12823 MICE12823 |
Genre | article |
GroupedDBID | ..I .3N .4S .DC .GA 05W 0R~ 10A 1OB 1OC 29F 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABFSI ABJNI ACAHQ ACCFJ ACCZN ACGFS ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBS EDO EMK EST ESX F00 F01 F04 G-S G.N GODZA H.T H.X HGLYW HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K RX1 SUPJJ TN5 TUS UB1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~WT 31~ AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG AHEFC AI. ASPBG AVWKF AZFZN BDRZF CAG CITATION COF CWDTD E.L EJD FEDTE HF~ HVGLF LW6 PALCI RJQFR SAMSI VH1 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c3013-e22304032b1248c494660e0683b5a5606ccf51d5de0e65a0d6f0133ce4f8afc3 |
IEDL.DBID | DR2 |
ISSN | 1093-9687 |
IngestDate | Fri Jul 25 05:14:14 EDT 2025 Thu Apr 24 23:11:00 EDT 2025 Tue Jul 01 03:36:33 EDT 2025 Wed Jan 22 16:25:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3013-e22304032b1248c494660e0683b5a5606ccf51d5de0e65a0d6f0133ce4f8afc3 |
Notes | Funding information National Science Foundation, Grant/Award Number: 1944301 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2773710242 |
PQPubID | 2045171 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2773710242 crossref_primary_10_1111_mice_12823 crossref_citationtrail_10_1111_mice_12823 wiley_primary_10_1111_mice_12823_MICE12823 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 January 2023 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 1 January 2023 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Computer-aided civil and infrastructure engineering |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020a; 215 2015; 30 2016; 30 2014; 28 2012; 13 2017; 114 2016; 142 2018; 8 2021b; 47 2020; 96 2021d; 33 2017; 32 2015; 88 1997; 12 2011; 20 2013; 112 2008; 24 2001; 16 2014; 19 1981 2018; 72 2011; 28 2018; 33 2018; 32 2012; 23 1959; 85 2020; 141 2019; 34 2018; 145 2021c 2007 2006 1995 2020; 35 2020; 144 1994 2020; 146 2002 2014; 43 2016; 12 2019; 220 2021 2020 2021a; 36 2011; 89 2013 2012; 48 2020b; 369 2017; 100 2012; 44 1973; 1 1977; 7 1973; 2 2019; 178 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 Sun H. (e_1_2_8_45_1) 2020 e_1_2_8_22_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 Luo H. (e_1_2_8_27_1) 2019; 34 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Chopra A. K. (e_1_2_8_12_1) 2007 Bergstra J. (e_1_2_8_7_1) 2012; 13 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Werbos P. J. (e_1_2_8_50_1) 1994 e_1_2_8_58_1 Toselli A. (e_1_2_8_47_1) 2006 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 |
References_xml | – volume: 96 year: 2020 article-title: Structural dynamics simulation using a novel physics‐guided machine learning method publication-title: Engineering Applications of Artificial Intelligence – volume: 144 year: 2020 article-title: Hybrid output‐only structural system identification using random decrement and Kalman filter publication-title: Mechanical Systems and Signal Processing – year: 1981 – volume: 72 start-page: 1 year: 2018 end-page: 16 article-title: A machine learning framework for assessing post‐earthquake structural safety publication-title: Structural Safety – volume: 7 start-page: 125 issue: 1 year: 1977 end-page: 136 article-title: Formulations and solution procedures for nonlinear structural analysis publication-title: Computers & Structures – volume: 33 start-page: 731 issue: 9 year: 2018 end-page: 747 article-title: Autonomous structural visual inspection using region‐based deep learning for detecting multiple damage types publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 19 start-page: 112 year: 2014 end-page: 120 article-title: Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups publication-title: Applied Soft Computing – volume: 34 issue: 4 year: 2019 article-title: A locally weighted machine learning model for generalized prediction of drift capacity in seismic vulnerability assessments publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 142 issue: 5 year: 2016 article-title: Lyapunov stability and accuracy of direct integration algorithms applied to nonlinear dynamic problems publication-title: Journal of Engineering Mechanics – volume: 145 issue: 1 year: 2018 article-title: Deep convolutional neural network for structural dynamic response estimation and system identification publication-title: Journal of Engineering Mechanics – volume: 28 start-page: 86 year: 2014 end-page: 96 article-title: Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced‐concrete deep beams publication-title: Engineering Applications of Artificial Intelligence – volume: 178 start-page: 603 year: 2019 end-page: 615 article-title: Recurrent neural network model with Bayesian training and mutual information for response prediction of large buildings publication-title: Engineering Structures – volume: 12 start-page: 1153 issue: 9 year: 2016 end-page: 1161 article-title: Punching shear capacity estimation of FRP‐reinforced concrete slabs using a hybrid machine learning approach publication-title: Structure and Infrastructure Engineering – volume: 35 start-page: 1349 issue: 12 year: 2020 end-page: 1364 article-title: Structural sensing with deep learning: Strain estimation from acceleration data for fatigue assessment publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 215 year: 2020a article-title: Physics‐guided convolutional neural network (PhyCNN) for data‐driven seismic response modeling publication-title: Engineering Structures – volume: 112 year: 2013 – year: 2021c article-title: Data‐driven seismic response prediction of structural components publication-title: Earthquake Spectra – year: 1994 – volume: 141 year: 2020 article-title: Model‐free data reconstruction of structural response and excitation via sequential broad learning publication-title: Mechanical Systems and Signal Processing – volume: 1 start-page: 283 issue: 3 year: 1973 end-page: 291 article-title: Stability and accuracy analysis of direct integration methods publication-title: Earthquake Engineering & Structural Dynamics – volume: 35 start-page: 1230 issue: 11 year: 2020 end-page: 1245 article-title: Deep reinforcement learning for long‐term pavement maintenance planning publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 220 start-page: 55 year: 2019 end-page: 68 article-title: Deep long short‐term memory networks for nonlinear structural seismic response prediction publication-title: Computers & Structures – volume: 33 start-page: 748 year: 2021d end-page: 758 article-title: Metaheuristic least squares support vector machine‐based lateral strength modelling of reinforced concrete columns subjected to earthquake loads publication-title: Structures – volume: 114 issue: 2 year: 2017 article-title: Supervised deep restricted Boltzmann machine for estimation of concrete publication-title: ACI Materials Journal – year: 2020 article-title: Machine learning applications for building structural design and performance assessment: state‐of‐the‐art review publication-title: Journal of Building Engineering – volume: 48 start-page: 2502 issue: 10 year: 2012 end-page: 2511 article-title: LS‐SVM approximate solution to linear time varying descriptor systems publication-title: Automatica – volume: 32 issue: 5 year: 2018 article-title: Machine learning–based backbone curve model of reinforced concrete columns subjected to cyclic loading reversals publication-title: Journal of Computing in Civil Engineering – volume: 100 start-page: 417 year: 2017 end-page: 427 article-title: NEEWS: A novel earthquake early warning model using neural dynamic classification and neural dynamic optimization publication-title: Soil Dynamics and Earthquake Engineering – volume: 16 start-page: 126 issue: 2 year: 2001 end-page: 142 article-title: Neural networks in civil engineering: 1989–2000 publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 369 year: 2020b article-title: Physics‐informed multi‐LSTM networks for metamodeling of nonlinear structures publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 13 start-page: 281 issue: 2 year: 2012 end-page: 305 article-title: Random search for hyper‐parameter optimization publication-title: Journal of Machine Learning Research – volume: 35 start-page: 965 issue: 9 year: 2020 end-page: 978 article-title: Combining deep features and activity context to improve recognition of activities of workers in groups publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 30 issue: 1 year: 2016 article-title: Evolutionary polynomial regression–based statistical determination of the shear capacity equation for reinforced concrete beams without stirrups publication-title: Journal of Computing in Civil Engineering – volume: 47 year: 2021b article-title: Advancing post‐earthquake structural evaluations via sequential regression‐based predictive mean matching for enhanced forecasting in the context of missing data publication-title: Advanced Engineering Informatics – volume: 146 issue: 12 year: 2020 article-title: Regional seismic risk assessment of infrastructure systems through machine learning: Active learning approach publication-title: Journal of Structural Engineering – volume: 44 start-page: 92 issue: 1 year: 2012 end-page: 115 article-title: Neural network based prediction schemes of the non‐linear seismic response of 3D buildings publication-title: Advances in Engineering Software – volume: 89 start-page: 1430 issue: 13‐14 year: 2011 end-page: 1439 article-title: Support vector regression based shear strength modelling of deep beams publication-title: Computers & Structures – year: 2007 – volume: 2 start-page: 47 issue: 1 year: 1973 end-page: 57 article-title: Damped vibration mode superposition method for dynamic response analysis publication-title: Earthquake Engineering & Structural Dynamics – year: 2021 article-title: Real‐time regional seismic damage assessment framework based on long short‐term memory neural network publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 88 start-page: 63 year: 2015 end-page: 72 article-title: Assessment of artificial neural network and genetic programming as predictive tools publication-title: Advances in Engineering Software – volume: 24 start-page: 23 issue: 1 year: 2008 end-page: 44 article-title: NGA project strong‐motion database publication-title: Earthquake Spectra – volume: 20 issue: 8 year: 2011 article-title: A robust predictive model for base shear of steel frame structures using a hybrid genetic programming and simulated annealing method publication-title: Neural Computing and Applications – volume: 30 issue: 1 year: 2015 article-title: Shear strength prediction in reinforced concrete deep beams using nature‐inspired metaheuristic support vector regression publication-title: Journal of Computing in Civil Engineering – volume: 36 start-page: 248 issue: 3 year: 2021a end-page: 263 article-title: Reducing the effect of sample bias for small data sets with double‐weighted support vector transfer regression publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 32 start-page: 361 issue: 5 year: 2017 end-page: 378 article-title: Deep learning‐based crack damage detection using convolutional neural networks publication-title: Computer‐Aided Civil and Infrastructure Engineering – year: 2002 – year: 2006 – volume: 12 start-page: 295 issue: 4 year: 1997 end-page: 310 article-title: Machine learning techniques for civil engineering problems publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 8 start-page: 1 issue: 1 year: 2018 end-page: 38 article-title: Data assimilation methods for neuronal state and parameter estimation publication-title: The Journal of Mathematical Neuroscience – volume: 28 start-page: 492 issue: 4 year: 2011 end-page: 507 article-title: Modelling mechanical behaviour of rubber concrete using evolutionary polynomial regression publication-title: Engineering Computations – year: 1995 – volume: 43 start-page: 2075 issue: 14 year: 2014 end-page: 2095 article-title: Statistical models for shear strength of RC beam‐column joints using machine‐learning techniques publication-title: Earthquake Engineering & Structural Dynamics – volume: 23 start-page: 1356 issue: 9 year: 2012 end-page: 1367 article-title: Approximate solutions to ordinary differential equations using least squares support vector machines publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 35 start-page: 597 issue: 6 year: 2020 end-page: 614 article-title: Structural health monitoring using extremely compressed data through deep learning publication-title: Computer‐Aided Civil and Infrastructure Engineering – volume: 85 start-page: 67 issue: 3 year: 1959 end-page: 94 article-title: A method of computation for structural dynamics publication-title: Journal of the Engineering Mechanics Division – year: 2013 – ident: e_1_2_8_2_1 doi: 10.1111/0885-9507.00219 – ident: e_1_2_8_8_1 doi: 10.1111/mice.12263 – ident: e_1_2_8_36_1 doi: 10.1186/s13408-018-0066-8 – ident: e_1_2_8_20_1 doi: 10.1007/978-1-4614-7138-7 – ident: e_1_2_8_44_1 doi: 10.1016/0045-7949(77)90067-0 – ident: e_1_2_8_53_1 doi: 10.1111/mice.12558 – volume-title: Dynamics of structures: Theory and applications to earthquake engineering year: 2007 ident: e_1_2_8_12_1 – ident: e_1_2_8_48_1 doi: 10.1007/978-1-4757-2440-0 – ident: e_1_2_8_15_1 doi: 10.1016/j.asoc.2014.02.007 – ident: e_1_2_8_5_1 doi: 10.1111/mice.12517 – ident: e_1_2_8_21_1 doi: 10.1002/eqe.2437 – ident: e_1_2_8_10_1 doi: 10.1016/j.engappai.2013.11.001 – ident: e_1_2_8_39_1 doi: 10.1016/j.engstruct.2018.10.065 – ident: e_1_2_8_29_1 doi: 10.1016/j.aei.2020.101202 – ident: e_1_2_8_31_1 doi: 10.1016/j.istruc.2021.04.048 – ident: e_1_2_8_17_1 doi: 10.1016/j.ymssp.2020.106977 – ident: e_1_2_8_35_1 doi: 10.1016/j.automatica.2012.06.095 – ident: e_1_2_8_43_1 doi: 10.1111/0885-9507.00065 – ident: e_1_2_8_28_1 doi: 10.1111/mice.12617 – start-page: 101816 year: 2020 ident: e_1_2_8_45_1 article-title: Machine learning applications for building structural design and performance assessment: state‐of‐the‐art review publication-title: Journal of Building Engineering – ident: e_1_2_8_22_1 doi: 10.1007/978-1-4614-6849-3 – ident: e_1_2_8_24_1 doi: 10.1016/j.advengsoft.2011.05.033 – ident: e_1_2_8_38_1 doi: 10.1016/j.compstruc.2011.03.005 – volume-title: Domain decomposition methods‐algorithms and theory year: 2006 ident: e_1_2_8_47_1 – ident: e_1_2_8_40_1 doi: 10.1017/CBO9781139171502 – ident: e_1_2_8_34_1 doi: 10.1109/TNNLS.2012.2202126 – ident: e_1_2_8_25_1 doi: 10.1061/(ASCE)EM.1943-7889.0001073 – ident: e_1_2_8_33_1 doi: 10.1061/(ASCE)ST.1943-541X.0002831 – ident: e_1_2_8_41_1 doi: 10.1016/j.soildyn.2017.05.013 – ident: e_1_2_8_56_1 doi: 10.1016/j.engstruct.2020.110704 – ident: e_1_2_8_11_1 doi: 10.1193/1.2894831 – ident: e_1_2_8_9_1 doi: 10.1111/mice.12334 – ident: e_1_2_8_16_1 doi: 10.1016/j.advengsoft.2015.05.007 – ident: e_1_2_8_51_1 doi: 10.1061/(ASCE)EM.1943-7889.0001556 – ident: e_1_2_8_13_1 doi: 10.1061/(ASCE)CP.1943-5487.0000466 – ident: e_1_2_8_19_1 doi: 10.1002/eqe.4290020105 – volume: 13 start-page: 281 issue: 2 year: 2012 ident: e_1_2_8_7_1 article-title: Random search for hyper‐parameter optimization publication-title: Journal of Machine Learning Research – ident: e_1_2_8_37_1 doi: 10.1061/JMCEA3.0000098 – ident: e_1_2_8_55_1 doi: 10.1016/j.compstruc.2019.05.006 – ident: e_1_2_8_4_1 doi: 10.1007/s00521-011-0689-0 – ident: e_1_2_8_57_1 doi: 10.1016/j.cma.2020.113226 – volume-title: The roots of backpropagation: From ordered derivatives to neural networks and political forecasting year: 1994 ident: e_1_2_8_50_1 – ident: e_1_2_8_6_1 doi: 10.1002/eqe.4290010308 – ident: e_1_2_8_58_1 doi: 10.1016/j.strusafe.2017.12.001 – ident: e_1_2_8_54_1 doi: 10.1016/j.engappai.2020.103947 – ident: e_1_2_8_26_1 doi: 10.1061/(ASCE)CP.1943-5487.0000787 – volume: 34 start-page: 12456 issue: 4 year: 2019 ident: e_1_2_8_27_1 article-title: A locally weighted machine learning model for generalized prediction of drift capacity in seismic vulnerability assessments publication-title: Computer‐Aided Civil and Infrastructure Engineering – ident: e_1_2_8_30_1 doi: 10.1177/87552930211053345 – ident: e_1_2_8_32_1 doi: 10.1111/mice.12538 – ident: e_1_2_8_52_1 doi: 10.1111/mice.12628 – ident: e_1_2_8_14_1 doi: 10.1061/(ASCE)CP.1943-5487.0000450 – ident: e_1_2_8_18_1 doi: 10.1111/mice.12565 – ident: e_1_2_8_46_1 doi: 10.1142/5089 – ident: e_1_2_8_3_1 doi: 10.1108/02644401111131902 – ident: e_1_2_8_23_1 doi: 10.1016/j.ymssp.2020.106738 – ident: e_1_2_8_49_1 doi: 10.1080/15732479.2015.1086386 – ident: e_1_2_8_42_1 doi: 10.14359/51689560 |
SSID | ssj0000443 |
Score | 2.4274476 |
Snippet | Direct integration methods are widely used for dynamic response computation. However, the performance of their computational accuracy significantly degrades... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 26 |
SubjectTerms | Accuracy Computation Constraint modelling Dynamic response Dynamical systems Equilibrium equations Hyperplanes Initial conditions Machine learning Nonlinear dynamics Nonlinear response Optimization Physics Regression models Support vector machines Training |
Title | A data‐free, support vector machine‐based physics‐driven estimator for dynamic response computation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12823 https://www.proquest.com/docview/2773710242 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PS8MwFH_ITnpwOhXnPwJ6UezomqTtwIuIYwh6kAm7SGn-FESdsm6CnvwIfkY_ie-lrZsigt7aNEnTJC_vl9eX3wPYUzoWysSpJ3UUeUJLFCkVIZBTUYba08aG0-Hk84uwdyXOBnIwB0fVWZiCH-LT4EaS4dZrEvBU5TNCTtHaW7i6BkT1Sc5ahIguZ7ijROld3-FeJ4yjkpuU3HimRb9qoynEnAWqTtN063BdtbFwMLltTcaqpV--0Tf-9yOWYLGEoOy4mDPLMGeHDaiXcJSVwp5jUhXxoUprwMIMfeEK3BwzcjB9f33LRtYesnzySGiePbk_Aeze-WlafEyq0rDCiJLjvRnRGsuI4OOeNv0MkTMzz8MUG8pGhdeuZdq93s2cVeh3T_snPa8M3eBpTvEibEDGZp8HCvFDrAWx2PvWD2OuZIogK9Q6k20jjfVtKFPfhBkW49qKLE4zzdegNnwY2nVgwk85Nx3elhprMghoIoRIbYNAVwltZRP2qxFMdElrTtE17pJqe0N9nLg-bsLuZ97Hgszjx1xb1URISoHOkyCKOIExETThwI3oLzUkKEGn7mrjL5k3YZ6C2RcGni2ojUcTu42QZ6x23NT-ABS0AA0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xOMAegOWhLU9LcAGRKo3tJD0iBCoscEBdiVsUPyIhaBc17Upw4ifwG_klzDgOdBFCglsetpPYM57Pk_E3ADtKp0KZNA-kTpJAaIkqpRIEciop0Hra1HDanHx-EXf-iNMreeVjc2gvTMUP8epwI81w8zUpODmkx7Sc0rU3cXqN-CRMU0pvt6K6HGOPEj6-vs2Ddpwmnp2UAnne6v5vj95A5jhUdbbmeL5KqFo6ikIKMblpjoaqqR_eETh--zMWYM6jUHZQic1PmLD9RZj3iJR5fS_xUp30ob62CD_GGAyX4PqAUYzp8-NTMbB2n5WjOwL07J_7GcB6LlTT4m2yloZVfpQSz82ApllGHB89WvczBM_M3PdzfFE2qAJ3LdPu8U54lqF7fNQ97AQ-e0OgOaWMsBH5m0MeKYQQqRZEZB_aME65kjnirFjrQraMNDa0scxDExdYjWsrijQvNF-Bqf7fvv0FTIQ556bNW1JjSwYxTYIoqWUQ6yqhrWzAbj2EmfbM5pRg4zarVzjUx5nr4wZsv5a9q_g8Piy1XktC5nW6zKIk4YTHRNSAPTekn7SQoRIduaPVrxTegplO9_wsOzu5-L0Gs5TbvvL3rMPUcDCyG4iAhmrTyfkLAGAEKA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFD4qnYTgYd24iLJuWIIXEKnS2E5SaS_VoAIGCCGQeEFRfImEoKXqZRI87SfsN-6X7BwnoWVCSPCWOLbj2Of4fHaOvwOwpXQslIlTT-oo8oSWqFIqQiCnogytp40Np8PJJ6fhwaU4upJXFfhenoXJ-SGeNtxIM9x8TQo-MNmMklO09ibOrgGfgw8i9GOS6b3zGfIoUbjXt7nXDuOoICclP55p2efmaIoxZ5GqMzXdGlyXjcw9TG6bk7Fq6sf_-Bvf-xWf4GOBQVknF5rPULH9JagVeJQV2j7CpDLkQ5m2BIsz_IXLcNNh5GH69_efbGjtLhtNBgTn2S_3K4D1nKOmxcdkKw3Ld1FGeG-GNMkyYvjo0aqfIXRm5qGfYkPZMHfbtUy71zvRWYGL7v7FjwOviN3gaU4BI2xAu80-DxQCiFgLorH3rR_GXMkUUVaodSZbRhrr21CmvgkzLMa1FVmcZpqvQrV_37drwISfcm7avCU11mQQ0USIkVoGka4S2so6bJcjmOiC15zCa9wl5fqG-jhxfVyHzae8g5zN48VcjVIQkkKjR0kQRZzQmAjqsONG9JUaElShfXe1_pbMGzB_ttdNjg9Pf36BBQpsn2_2NKA6Hk7sV4Q_Y_XNSfk_GIIC4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data%E2%80%90free%2C+support+vector+machine%E2%80%90based+physics%E2%80%90driven+estimator+for+dynamic+response+computation&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Luo%2C+Huan&rft.au=Paal%2C+Stephanie+German&rft.date=2023-01-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=38&rft.issue=1&rft.spage=26&rft.epage=48&rft_id=info:doi/10.1111%2Fmice.12823&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mice_12823 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon |