Decision support system for major depression detection using spectrogram and convolution neural network with EEG signals

The number of Major Depressive Disorder (MDD) patients is rising rapidly these days following the incidence of COVID‐19 pandemic. It is challenging to detect MDD through personal interviews and by observing electroencephalogram (EEG) signals. Hence, an automated MDD detection system developed using...

Full description

Saved in:
Bibliographic Details
Published inExpert systems Vol. 39; no. 3
Main Authors Loh, Hui Wen, Ooi, Chui Ping, Aydemir, Emrah, Tuncer, Turker, Dogan, Sengul, Acharya, U. Rajendra
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The number of Major Depressive Disorder (MDD) patients is rising rapidly these days following the incidence of COVID‐19 pandemic. It is challenging to detect MDD through personal interviews and by observing electroencephalogram (EEG) signals. Hence, an automated MDD detection system developed using deep learning techniques can help reduce the workload of clinicians by diagnosing MDD accurately. In this study, we have proposed a novel deep learning model based on Convolutional Neural Network (CNN) and spectrogram images. In this work, Short‐Time Fourier Transform (STFT) is first applied to the EEG signals to obtain spectrogram images of MDD patients and healthy subjects. These spectrogram images are then fed to the CNN model for automated detection of MDD patients and healthy subjects. The EEG signals used in this study were obtained from public database with 34 MDD patients and 30 healthy subjects. The highest classification accuracy, precision, sensitivity, specificity, and F1‐score of 99.58%, 99.40%, 99.70%, 99.48%, and 99.55% respectively were obtained with hold‐out validation. Our MDD detection model is highly accurate and needs to be validated with more diverse MDD database before it can be used in clinical settings. Also, we plan to use our developed prototype to detect depression using other physiological signals like electrocardiogram (ECG) and speech signals for accurate and faster diagnosis.
AbstractList The number of Major Depressive Disorder (MDD) patients is rising rapidly these days following the incidence of COVID‐19 pandemic. It is challenging to detect MDD through personal interviews and by observing electroencephalogram (EEG) signals. Hence, an automated MDD detection system developed using deep learning techniques can help reduce the workload of clinicians by diagnosing MDD accurately. In this study, we have proposed a novel deep learning model based on Convolutional Neural Network (CNN) and spectrogram images. In this work, Short‐Time Fourier Transform (STFT) is first applied to the EEG signals to obtain spectrogram images of MDD patients and healthy subjects. These spectrogram images are then fed to the CNN model for automated detection of MDD patients and healthy subjects. The EEG signals used in this study were obtained from public database with 34 MDD patients and 30 healthy subjects. The highest classification accuracy, precision, sensitivity, specificity, and F1‐score of 99.58%, 99.40%, 99.70%, 99.48%, and 99.55% respectively were obtained with hold‐out validation. Our MDD detection model is highly accurate and needs to be validated with more diverse MDD database before it can be used in clinical settings. Also, we plan to use our developed prototype to detect depression using other physiological signals like electrocardiogram (ECG) and speech signals for accurate and faster diagnosis.
Author Ooi, Chui Ping
Acharya, U. Rajendra
Dogan, Sengul
Aydemir, Emrah
Loh, Hui Wen
Tuncer, Turker
Author_xml – sequence: 1
  givenname: Hui Wen
  orcidid: 0000-0003-3114-6523
  surname: Loh
  fullname: Loh, Hui Wen
  organization: Singapore University of Social Sciences
– sequence: 2
  givenname: Chui Ping
  surname: Ooi
  fullname: Ooi, Chui Ping
  organization: Singapore University of Social Sciences
– sequence: 3
  givenname: Emrah
  surname: Aydemir
  fullname: Aydemir, Emrah
  organization: Management Faculty, Sakarya University
– sequence: 4
  givenname: Turker
  surname: Tuncer
  fullname: Tuncer, Turker
  organization: College of Technology, Firat University
– sequence: 5
  givenname: Sengul
  surname: Dogan
  fullname: Dogan, Sengul
  organization: College of Technology, Firat University
– sequence: 6
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  email: aru@np.edu.sg
  organization: University of Southern Queensland
BookMark eNp9kM1KAzEUhYMo2FY3PkHAndCan2kys5Raq1BwoYKuhjRzU1OnkzHJ2PbtnWldiZjFOQl853Jz-ui4chUgdEHJiLbnGrZhN6JMSn6EejQR6ZDwLDlGPcKEGCaSkVPUD2FFCKFSih7a3oK2wboKh6aunY847EKENTbO47VatVpA7SHsmQIi6NjdmmCrJQ51-_Ru6dUaq6rA2lVfrmz2RAWNV2VrceP8B97Y-I6n0xkOdlmpMpyhE9ManP_4AL3cTZ8n98P54-xhcjMfak4ob7VgRsnUiCIBmuqEZApMyhfMyIUeU6EF0XysGUsVgWTBTUYzLhKQxiSaSj5Al4e5tXefDYSYr1zjuw1yJjijhIuMtRQ5UNq7EDyYXNuoun9Er2yZU5J3_eZdv_m-3zZy9StSe7tWfvc3TA_wxpaw-4fMp69Pb4fMN2yhkUs
CitedBy_id crossref_primary_10_3389_fdgth_2023_1080023
crossref_primary_10_1109_ACCESS_2022_3190502
crossref_primary_10_3390_s23021008
crossref_primary_10_1016_j_bspc_2024_107440
crossref_primary_10_1111_exsy_12943
crossref_primary_10_3390_su151612406
crossref_primary_10_1016_j_bspc_2023_104970
crossref_primary_10_1109_ACCESS_2023_3311752
crossref_primary_10_1007_s11571_022_09918_8
crossref_primary_10_1088_1361_6501_ad4dc0
crossref_primary_10_1109_ACCESS_2024_3493140
crossref_primary_10_3390_app11199218
crossref_primary_10_1111_exsy_13651
crossref_primary_10_1016_j_cmpb_2023_107683
crossref_primary_10_1080_00051144_2023_2296793
crossref_primary_10_3390_app12115516
crossref_primary_10_1002_ima_22913
crossref_primary_10_1016_j_culher_2023_05_003
crossref_primary_10_1007_s11042_023_14860_w
crossref_primary_10_1155_2022_8544765
crossref_primary_10_1007_s11042_023_18076_w
crossref_primary_10_2478_amns_2023_2_01382
crossref_primary_10_1007_s44174_025_00301_9
crossref_primary_10_1016_j_jnlssr_2023_10_002
crossref_primary_10_1109_TIM_2021_3132072
crossref_primary_10_22399_ijcesen_851
crossref_primary_10_1007_s12539_023_00567_x
crossref_primary_10_1109_TIM_2024_3370772
crossref_primary_10_29132_ijpas_1398148
crossref_primary_10_3390_diagnostics15020210
crossref_primary_10_3390_diagnostics13030573
crossref_primary_10_1109_ACCESS_2023_3304236
crossref_primary_10_1155_2023_1701429
crossref_primary_10_3390_jpm14010101
crossref_primary_10_3390_su15021293
crossref_primary_10_3389_fnimg_2022_981642
crossref_primary_10_1007_s11571_023_10041_5
crossref_primary_10_1016_j_bspc_2024_106402
crossref_primary_10_1109_ACCESS_2023_3275024
crossref_primary_10_1088_1361_6579_ac59dc
crossref_primary_10_1177_01423312241263140
crossref_primary_10_3390_bios12121087
crossref_primary_10_1016_j_knosys_2022_110190
crossref_primary_10_1109_ACCESS_2024_3496741
crossref_primary_10_1007_s11517_024_03269_8
Cites_doi 10.1038/s41598-018-35147-3
10.1016/j.ipm.2009.03.002
10.3390/genes10020087
10.1007/s10916-019-1486-z
10.3390/ijerph16040599
10.1016/B978-0-12-374490-6.00007-6
10.1113/jphysiol.1962.sp006837
10.1001/jamanetworkopen.2020.19686
10.1177/1550059413480504
10.1166/jmihi.2017.2204
10.1016/j.neubiorev.2019.07.021
10.1109/TIM.2021.3053999
10.1016/j.bspc.2016.07.006
10.3390/s20226526
10.1001/jamanetworkopen.2020.26064
10.1109/IranianCEE.2019.8786540
10.1016/j.compbiomed.2019.103387
10.1176/appi.books.9780890425596
10.1109/ICEngTechnol.2017.8308186
10.1142/S0219519414500353
10.1038/scientificamerican0689-86
10.1007/s00521-015-1959-z
10.1001/jamanetworkopen.2019.6587
10.1007/s11517-019-01959-2
10.1159/000438457
10.1016/B978-0-12-818946-7.00002-0
10.1016/j.cmpb.2021.106007
10.1007/s13755-021-00139-7
10.1155/2018/5238028
10.1007/s11571-020-09619-0
10.1186/s12911-015-0227-6
10.1016/j.cmpb.2012.10.008
10.1109/EMBC44109.2020.9176462
10.1016/j.ijmedinf.2019.103983
10.1016/j.jocn.2017.09.030
10.1016/j.ijchp.2020.07.007
10.1016/j.cmpb.2018.04.012
10.1109/IntelliSys.2015.7361188
10.1007/s10916-019-1345-y
10.1109/TNSRE.2021.3059429
10.1016/j.patcog.2017.05.012
10.1016/j.cogsys.2018.07.010
10.3389/fpsyt.2016.00033
10.1515/bmt.2010.011
10.1111/j.1600-0447.1986.tb02700.x
10.1109/TENCON.2019.8929254
10.1016/j.cmpb.2019.04.032
10.1016/j.ijpsycho.2012.05.001
10.3390/s17061385
10.1007/s13246-020-00938-4
10.3109/09540261.2013.816269
10.1016/j.bspc.2020.102393
10.1016/j.icte.2018.04.001
10.3389/fnhum.2020.00284
10.3390/app8081244
10.1142/S0219519412400192
10.1159/000381950
10.3390/app10248963
10.1371/journal.pone.0171409
10.17694/bajece.631951
10.1007/s12199-010-0186-6
10.1002/ett.4121
10.1177/1550059420916634
10.2147/NDT.S132757
10.1007/s00542-018-4075-z
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1111/exsy.12773
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1468-0394
EndPage n/a
ExternalDocumentID 10_1111_exsy_12773
EXSY12773
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0B8
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
77K
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHC
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3013-c3d2fa78f6d4e18c409aef83b2f7bc516c60c35c228a0e4b3f919364e7ff4c173
IEDL.DBID DR2
ISSN 0266-4720
IngestDate Fri Jul 25 03:00:53 EDT 2025
Tue Jul 01 02:13:46 EDT 2025
Thu Apr 24 23:03:58 EDT 2025
Wed Jan 22 16:27:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3013-c3d2fa78f6d4e18c409aef83b2f7bc516c60c35c228a0e4b3f919364e7ff4c173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3114-6523
PQID 2632103692
PQPubID 32130
PageCount 15
ParticipantIDs proquest_journals_2632103692
crossref_citationtrail_10_1111_exsy_12773
crossref_primary_10_1111_exsy_12773
wiley_primary_10_1111_exsy_12773_EXSY12773
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Expert systems
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2009; 45
2010; 55
2017; 7
2021; 21
2013; 25
2018; 161
1986; 73
2021; 66
2020; 20
2019; 10
2021; 202
2021; 29
2019; 57
1962; 160
2019; 16
2020; 15
2020; 14
2017a; 31
2020; 10
2011; 16
2012; 12
2018; 47
2021; 70
2020; 8
2018; 8
2020; 3
2017b; 12
2018; 4
2017; 70
2015a; 73
2015; 40
2019; 25
2014; 14
2019; 113
2020; 44
2020; 43
2015b; 74
2021; 9
2015; 15
2013; 44
2013; 109
2019; 2
2019; 105
2008
1989; 260
2020; 32
2021; 52
2016; 7
2018; 2018
2021
2017; 17
2019; 43
2020
2017; 13
2019
2017
2016
2018; 52
2015
2014
2013
2016; 27
2012; 85
2019; 176
2019; 132
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Kose U. (e_1_2_9_35_1) 2021
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
Gohil K. (e_1_2_9_24_1) 2015; 40
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Lipton Z. C. (e_1_2_9_41_1) 2014
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 132
  year: 2019
  article-title: A deep learning framework for automatic diagnosis of unipolar depression
  publication-title: International Journal of Medical Informatics
– start-page: 225
  year: 2014
  end-page: 239
– volume: 32
  issue: 7
  year: 2020
  article-title: Deep neural network based anomaly detection in Internet of Things network traffic tracking for the applications of future smart cities
  publication-title: Transactions on Emerging Telecommunications Technologies
– start-page: 95
  year: 2021
  end-page: 106
– volume: 14
  start-page: 284
  year: 2020
  article-title: Machine learning approaches for MDD detection and emotion decoding using EEG signals
  publication-title: Frontiers in Human Neuroscience
– volume: 70
  start-page: 163
  year: 2017
  end-page: 176
  article-title: Learning features for offline handwritten signature verification using deep convolutional neural networks
  publication-title: Pattern Recognition
– volume: 66
  year: 2021
  article-title: DepHNN: A novel hybrid neural network for electroencephalogram (EEG)‐based screening of depression
  publication-title: Biomedical Signal Processing and Control
– volume: 10
  issue: 2
  year: 2019
  article-title: Machine learning and integrative analysis of biomedical big data
  publication-title: Genes
– start-page: 1339
  year: 2019
  end-page: 1344
  article-title: Performance analysis of deep learning CNN in classification of depression EEG signals
  publication-title: TENCON 2019–2019 IEEE Region 10 Conference (TENCON)
– volume: 43
  start-page: 205
  issue: 7
  year: 2019
  article-title: Automated depression detection using deep representation and sequence learning with EEG signals
  publication-title: Journal of Medical Systems
– volume: 202
  year: 2021
  article-title: EEG based Major Depressive disorder and Bipolar disorder detection using Neural Networks:A review
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 20
  issue: 22
  year: 2020
  article-title: Deep‐asymmetry: Asymmetry matrix image for deep learning method in pre‐screening depression
  publication-title: Sensors
– volume: 57
  start-page: 1341
  issue: 6
  year: 2019
  end-page: 1352
  article-title: EEG‐based mild depression recognition using convolutional neural network
  publication-title: Medical & Biological Engineering & Computing
– volume: 4
  start-page: 100
  issue: 2
  year: 2018
  end-page: 106
  article-title: Are the long–short term memory and convolution neural networks really based on biological systems?
  publication-title: ICT Express
– volume: 7
  start-page: 33
  year: 2016
  article-title: Depression and the link with cardiovascular disease
  publication-title: Frontiers in Psychiatry
– volume: 260
  start-page: 86
  issue: 6
  year: 1989
  end-page: 95
  article-title: The Fourier transform
  publication-title: Scientific American
– volume: 2
  issue: 6
  year: 2019
  article-title: Genetic and environmental risk factors associated with trajectories of depression symptoms from adolescence to young adulthood
  publication-title: JAMA Network Open
– volume: 14
  issue: 03
  year: 2014
  article-title: Depression diagnosis support system based on EEG signal entropies
  publication-title: Journal of Mechanics in Medicine and Biology
– start-page: 1
  year: 2017
  end-page: 6
  article-title: Understanding of a convolutional neural network
  publication-title: 2017 International Conference on Engineering and Technology (ICET)
– volume: 17
  issue: 6
  year: 2017
  article-title: Major depression detection from EEG signals using kernel eigen‐filter‐bank common spatial patterns
  publication-title: Sensors
– volume: 15
  start-page: 239
  issue: 2
  year: 2020
  end-page: 252
  article-title: Major depressive disorder diagnosis based on effective connectivity in EEG signals: A convolutional neural network and long short‐term memory approach
  publication-title: Cognitive Neurodynamics
– volume: 105
  start-page: 83
  year: 2019
  end-page: 93
  article-title: Depression biomarkers using non‐invasive EEG: A review
  publication-title: Neuroscience & Biobehavioral Reviews
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 13
  article-title: A pervasive approach to EEG‐based depression detection
  publication-title: Complexity
– volume: 176
  start-page: 81
  year: 2019
  end-page: 91
  article-title: A review of automated sleep stage scoring based on physiological signals for the new millennia
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 25
  start-page: 604
  issue: 5
  year: 2013
  end-page: 618
  article-title: EEG biomarkers in major depressive disorder: Discriminative power and prediction of treatment response
  publication-title: International Review of Psychiatry
– volume: 3
  issue: 10
  year: 2020
  article-title: Levels of severity of depressive symptoms among at‐risk groups in the UK during the COVID‐19 pandemic
  publication-title: JAMA Network Open
– volume: 15
  start-page: 108
  issue: 1
  year: 2015
  article-title: Data mining EEG signals in depression for their diagnostic value
  publication-title: BMC Medical Informatics and Decision Making
– volume: 3
  issue: 9
  year: 2020
  article-title: Prevalence of depression symptoms in US adults before and during the COVID‐19 pandemic
  publication-title: JAMA Network Open
– volume: 12
  issue: 2
  year: 2017b
  article-title: A wavelet‐based technique to predict treatment outcome for Major Depressive Disorder
  publication-title: PLoS One
– volume: 9
  issue: 1
  year: 2021
  article-title: Classification of normal and depressed EEG signals based on centered correntropy of rhythms in empirical wavelet transform domain
  publication-title: Health Information Science and Systems
– volume: 74
  start-page: 79
  issue: 1–2
  year: 2015b
  end-page: 83
  article-title: A novel depression diagnosis index using nonlinear features in EEG signals
  publication-title: European Neurology
– volume: 47
  start-page: 315
  year: 2018
  end-page: 322
  article-title: Neurophysiological correlates of depressive symptoms in young adults: A quantitative EEG study
  publication-title: Journal of Clinical Neuroscience
– volume: 8
  issue: 8
  year: 2018
  article-title: Depression detection using relative EEG power induced by emotionally positive images and a conformal kernel Support vector machine
  publication-title: Applied Sciences
– volume: 8
  start-page: 103
  issue: 1
  year: 2020
  end-page: 107
  article-title: Classification of EEG signals in depressed patients
  publication-title: Balkan Journal of Electrical and Computer Engineering
– volume: 160
  start-page: 106
  year: 1962
  end-page: 154
  article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
  publication-title: The Journal of Physiology
– volume: 73
  start-page: 329
  issue: 5–6
  year: 2015a
  end-page: 336
  article-title: Computer‐aided diagnosis of depression using EEG signals
  publication-title: European Neurology
– volume: 29
  start-page: 566
  year: 2021
  end-page: 575
  article-title: Enhancing EEG‐based classification of depression patients using spatial information
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 27
  start-page: 1607
  issue: 6
  year: 2016
  end-page: 1616
  article-title: Artificial intelligence approach to classify unipolar and bipolar depressive disorders
  publication-title: Neural Computing and Applications
– volume: 16
  start-page: 196
  issue: 3
  year: 2011
  end-page: 201
  article-title: Early impact of depression symptoms on the decline in activities of daily living among older Japanese: Y‐HALE cohort study
  publication-title: Environmental Health and Preventive Medicine
– volume: 73
  start-page: 390
  issue: 4
  year: 1986
  end-page: 394
  article-title: Relationships between EEG and clinical characteristics in major depressive disorder
  publication-title: Acta Psychiatrica Scandinavica
– volume: 85
  start-page: 206
  issue: 2
  year: 2012
  end-page: 211
  article-title: Fractality analysis of frontal brain in major depressive disorder
  publication-title: International Journal of Psychophysiology
– start-page: 5280
  year: 2020
  end-page: 5283
  article-title: Electroencephalography symmetry in power, waveform and power spectrum in major depression
  publication-title: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
– volume: 8
  issue: 1
  year: 2018
  article-title: Automatic detection of major depressive disorder using electrodermal activity
  publication-title: Scientific Reports
– start-page: 1765
  year: 2019
  end-page: 1769
  article-title: Discrimination of depression levels using machine learning methods on EEG signals
  publication-title: 2019 27th Iranian Conference on Electrical Engineering (ICEE)
– volume: 44
  issue: 1
  year: 2020
  article-title: Classification of depression patients and normal subjects based on electroencephalogram (EEG) signal using alpha power and theta asymmetry
  publication-title: Journal of Medical Systems
– volume: 31
  start-page: 108
  year: 2017a
  end-page: 115
  article-title: Electroencephalogram (EEG)‐based computer‐aided technique to diagnose major depressive disorder (MDD)
  publication-title: Biomedical Signal Processing and Control
– year: 2016
– start-page: 518
  year: 2015
  end-page: 521
  article-title: Non invasive EEG signal processing framework for real time depression analysis
  publication-title: 2015 SAI Intelligent Systems Conference (IntelliSys)
– volume: 7
  start-page: 1857
  issue: 8
  year: 2017
  end-page: 1862
  article-title: Automated diagnosis of depression electroencephalograph signals using linear prediction coding and higher order spectra features
  publication-title: Journal of Medical Imaging and Health Informatics
– volume: 55
  start-page: 155
  issue: 3
  year: 2010
  end-page: 161
  article-title: Spectral features of EEG in depression
  publication-title: Biomedizinische Technik/Biomedical Engineering
– volume: 161
  start-page: 103
  year: 2018
  end-page: 113
  article-title: Automated EEG‐based screening of depression using deep convolutional neural network
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 70
  start-page: 1
  year: 2021
  end-page: 13
  article-title: DeprNet: A deep convolution neural network framework for detecting depression using EEG
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 12
  issue: 04
  year: 2012
  article-title: Classification of EEG signals in normal and depression conditions by ANN using RWE and signal entropy
  publication-title: Journal of Mechanics in Medicine and Biology
– volume: 16
  start-page: 599
  issue: 4
  year: 2019
  article-title: A deep learning model for automated sleep stages classification using PSG signals
  publication-title: International Journal of Environmental Research and Public Health
– volume: 10
  issue: 24
  year: 2020
  article-title: Automated detection of sleep stages using deep learning techniques: A systematic review of the last decade (2010–2020)
  publication-title: Applied Sciences
– volume: 52
  start-page: 508
  year: 2018
  end-page: 520
  article-title: An automated diagnosis of depression using three‐channel bandwidth‐duration localized wavelet filter bank with EEG signals
  publication-title: Cognitive Systems Research
– volume: 52
  start-page: 38
  issue: 1
  year: 2021
  end-page: 51
  article-title: Major depressive disorder classification based on different convolutional neural network models: Deep learning approach
  publication-title: Clinical EEG and Neuroscience
– volume: 113
  year: 2019
  article-title: Automated detection of diabetic subject using pre‐trained 2D‐CNN models with frequency spectrum images extracted from heart rate signals
  publication-title: Computers in Biology and Medicine
– start-page: 175
  year: 2008
  end-page: 196
– volume: 25
  start-page: 1065
  issue: 3
  year: 2019
  end-page: 1076
  article-title: Detection of major depressive disorder using linear and non‐linear features from EEG signals
  publication-title: Microsystem Technologies
– volume: 21
  issue: 1
  year: 2021
  article-title: Prevalence of depression during the COVID‐19 outbreak: A meta‐analysis of community‐based studies
  publication-title: International Journal of Clinical and Health Psychology
– volume: 13
  start-page: 881
  year: 2017
  end-page: 887
  article-title: The influence of depression, level of functioning in everyday life, and illness acceptance on quality of life in patients with Parkinson's disease: A preliminary study
  publication-title: Neuropsychiatric Disease and Treatment
– volume: 43
  start-page: 1349
  issue: 4
  year: 2020
  end-page: 1360
  article-title: EEG‐based deep learning model for the automatic detection of clinical depression
  publication-title: Physical and Engineering Sciences in Medicine
– start-page: 29
  year: 2020
  end-page: 50
– volume: 45
  start-page: 427
  issue: 4
  year: 2009
  end-page: 437
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Information Processing & Management
– volume: 109
  start-page: 339
  issue: 3
  year: 2013
  end-page: 345
  article-title: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 40
  start-page: 215
  issue: 3
  year: 2015
  end-page: 217
  article-title: Major depressive disorder: New products are facing a saturated market
  publication-title: Pharmacy and Therapeutics
– volume: 44
  start-page: 175
  issue: 3
  year: 2013
  end-page: 181
  article-title: Spatiotemporal analysis of relative convergence of EEGs reveals differences between brain dynamics of depressive women and men
  publication-title: Clinical EEG and Neuroscience
– year: 2013
– ident: e_1_2_9_34_1
  doi: 10.1038/s41598-018-35147-3
– ident: e_1_2_9_64_1
  doi: 10.1016/j.ipm.2009.03.002
– ident: e_1_2_9_46_1
  doi: 10.3390/genes10020087
– ident: e_1_2_9_44_1
  doi: 10.1007/s10916-019-1486-z
– ident: e_1_2_9_69_1
  doi: 10.3390/ijerph16040599
– ident: e_1_2_9_33_1
  doi: 10.1016/B978-0-12-374490-6.00007-6
– ident: e_1_2_9_28_1
  doi: 10.1113/jphysiol.1962.sp006837
– ident: e_1_2_9_21_1
  doi: 10.1001/jamanetworkopen.2020.19686
– ident: e_1_2_9_6_1
  doi: 10.1177/1550059413480504
– ident: e_1_2_9_11_1
  doi: 10.1166/jmihi.2017.2204
– ident: e_1_2_9_16_1
  doi: 10.1016/j.neubiorev.2019.07.021
– start-page: 95
  volume-title: A practical method for early diagnosis of heart diseases via deep neural network
  year: 2021
  ident: e_1_2_9_35_1
– ident: e_1_2_9_61_1
  doi: 10.1109/TIM.2021.3053999
– ident: e_1_2_9_51_1
  doi: 10.1016/j.bspc.2016.07.006
– ident: e_1_2_9_31_1
  doi: 10.3390/s20226526
– ident: e_1_2_9_29_1
  doi: 10.1001/jamanetworkopen.2020.26064
– ident: e_1_2_9_48_1
  doi: 10.1109/IranianCEE.2019.8786540
– ident: e_1_2_9_70_1
  doi: 10.1016/j.compbiomed.2019.103387
– ident: e_1_2_9_9_1
  doi: 10.1176/appi.books.9780890425596
– ident: e_1_2_9_8_1
  doi: 10.1109/ICEngTechnol.2017.8308186
– ident: e_1_2_9_22_1
  doi: 10.1142/S0219519414500353
– ident: e_1_2_9_13_1
  doi: 10.1038/scientificamerican0689-86
– ident: e_1_2_9_20_1
  doi: 10.1007/s00521-015-1959-z
– ident: e_1_2_9_36_1
  doi: 10.1001/jamanetworkopen.2019.6587
– ident: e_1_2_9_38_1
  doi: 10.1007/s11517-019-01959-2
– ident: e_1_2_9_4_1
  doi: 10.1159/000438457
– ident: e_1_2_9_49_1
– ident: e_1_2_9_56_1
  doi: 10.1016/B978-0-12-818946-7.00002-0
– ident: e_1_2_9_68_1
  doi: 10.1016/j.cmpb.2021.106007
– ident: e_1_2_9_7_1
  doi: 10.1007/s13755-021-00139-7
– ident: e_1_2_9_15_1
  doi: 10.1155/2018/5238028
– ident: e_1_2_9_59_1
  doi: 10.1007/s11571-020-09619-0
– ident: e_1_2_9_47_1
  doi: 10.1186/s12911-015-0227-6
– ident: e_1_2_9_27_1
  doi: 10.1016/j.cmpb.2012.10.008
– ident: e_1_2_9_40_1
  doi: 10.1109/EMBC44109.2020.9176462
– volume: 40
  start-page: 215
  issue: 3
  year: 2015
  ident: e_1_2_9_24_1
  article-title: Major depressive disorder: New products are facing a saturated market
  publication-title: Pharmacy and Therapeutics
– ident: e_1_2_9_50_1
  doi: 10.1016/j.ijmedinf.2019.103983
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jocn.2017.09.030
– ident: e_1_2_9_14_1
  doi: 10.1016/j.ijchp.2020.07.007
– ident: e_1_2_9_2_1
  doi: 10.1016/j.cmpb.2018.04.012
– ident: e_1_2_9_45_1
  doi: 10.1109/IntelliSys.2015.7361188
– ident: e_1_2_9_10_1
  doi: 10.1007/s10916-019-1345-y
– ident: e_1_2_9_30_1
  doi: 10.1109/TNSRE.2021.3059429
– ident: e_1_2_9_25_1
  doi: 10.1016/j.patcog.2017.05.012
– ident: e_1_2_9_63_1
  doi: 10.1016/j.cogsys.2018.07.010
– ident: e_1_2_9_17_1
  doi: 10.3389/fpsyt.2016.00033
– ident: e_1_2_9_26_1
  doi: 10.1515/bmt.2010.011
– ident: e_1_2_9_53_1
  doi: 10.1111/j.1600-0447.1986.tb02700.x
– ident: e_1_2_9_60_1
  doi: 10.1109/TENCON.2019.8929254
– ident: e_1_2_9_23_1
  doi: 10.1016/j.cmpb.2019.04.032
– start-page: 225
  volume-title: Optimal thresholding of classifiers to maximize F1 measure
  year: 2014
  ident: e_1_2_9_41_1
– ident: e_1_2_9_5_1
  doi: 10.1016/j.ijpsycho.2012.05.001
– ident: e_1_2_9_39_1
  doi: 10.3390/s17061385
– ident: e_1_2_9_65_1
  doi: 10.1007/s13246-020-00938-4
– ident: e_1_2_9_54_1
  doi: 10.3109/09540261.2013.816269
– ident: e_1_2_9_62_1
  doi: 10.1016/j.bspc.2020.102393
– ident: e_1_2_9_12_1
  doi: 10.1016/j.icte.2018.04.001
– ident: e_1_2_9_18_1
  doi: 10.3389/fnhum.2020.00284
– ident: e_1_2_9_67_1
  doi: 10.3390/app8081244
– ident: e_1_2_9_55_1
  doi: 10.1142/S0219519412400192
– ident: e_1_2_9_3_1
  doi: 10.1159/000381950
– ident: e_1_2_9_42_1
  doi: 10.3390/app10248963
– ident: e_1_2_9_52_1
  doi: 10.1371/journal.pone.0171409
– ident: e_1_2_9_19_1
  doi: 10.17694/bajece.631951
– ident: e_1_2_9_32_1
  doi: 10.1007/s12199-010-0186-6
– ident: e_1_2_9_57_1
  doi: 10.1002/ett.4121
– ident: e_1_2_9_66_1
  doi: 10.1177/1550059420916634
– ident: e_1_2_9_58_1
  doi: 10.2147/NDT.S132757
– ident: e_1_2_9_43_1
  doi: 10.1007/s00542-018-4075-z
SSID ssj0001776
Score 2.4780834
Snippet The number of Major Depressive Disorder (MDD) patients is rising rapidly these days following the incidence of COVID‐19 pandemic. It is challenging to detect...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial neural networks
Automation
classification
CNN
COVID-19
Decision support systems
Deep learning
Electrocardiography
electroencephalogram (EEG)
Electroencephalography
Fourier transforms
Machine learning
major depressive disorder (MDD)
Medical imaging
Mental depression
Neural networks
spectrograms
STFT
Title Decision support system for major depression detection using spectrogram and convolution neural network with EEG signals
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.12773
https://www.proquest.com/docview/2632103692
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB0WvXjxW1y_COhFoUubJk0LXkR3FXE9qAvrQUqSpoIfVdxdUH-9mbTdVRFBL6WHtKSZTPMS3rwHsMMMRZhrI6CCyGPc9z2peeIpk7OEKVTTwULh7nl00mOnfd5vwH5dC1PqQ4wP3DAz3P8aE1yqwackN6-Dt1ZAhUCpTyRrISK6mGhHBcI5y9k9hu2DoH6lTYo0nsmjX1ejCcT8DFTdStOZg5u6jyXB5L41GqqWfv8m3_jfj5iH2QqCkoNyzixAwxSLMFfbO5Aq25fg9ajy3yGD0TPCdFLKPhOLc8mjvLPXMY-2sLdDx-oqCFLpb4kr4SzJX0QWGUF6ezXNCYpo2h4UJQWd4FkwabePCZJJbDosQ6_Tvjo88SqjBk-H6A6hw4zmUsR5lDETxNruGaXJ41DRXCjNg0hHvg65pjSWvmEqzBOLGyNmRJ4zHYhwBaaKp8KsAmHoIZkYbiKLbbigiocmUTw2WaSkzFQTduuApbpSMUczjYe03s3gkKZuSJuwPW77XGp3_Nhqo457WuXvIEUV-8Au7gltwp4L4C9vSNv9y2t3t_aXxuswQ7GWwhHaNmBq-DIymxbhDNUWTB8cdc8ut9yM_gD9u_yf
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V27TuQwFL3iUUADy0vMwoIloAApo8Sx46SgQDsDw7PgIQ1ViB0HiUcWMTNa2H_iV_im9XWSGUAIiYKCJkphWXHsa59rnXsOwCrTFGGumQHpBQ7jruskikeO1BmLmEQ1HSwUPjwKWmdsr83bQ_BU1cIU-hD9CzeMDLtfY4DjhfSLKNcPnce6R4WovKv39eNfk7F1NncbZnrXKN1unv5uOaWpgKN8dDJQfkqzRIRZkDLthcrkN4nOQl_STEjFvUAFrvK5ojRMXM2kn0UG4wRMiyxjyhO-6XcYRtFCHKX6G8cDtSpPWC87k9WYUQvqlmqoSBwafOvr828Aal9CY3u2bU_Cc_VXCkrLdb3XlXX1741g5Lf5bT9gokTZZKsIiykY0vk0TFYOFqTc0GbgoVFaDJFO7w4zEVIoWxMD5cltcmWefapwbl67lriWE6wWuCS2SrXgt5EkTwky-MtIJqgTar4gL1j2BK-7SbO5Q5AvYyJ-Fs6-ZPxzMJL_yfU8EIY2mZHmOjDwjQsqua8jyUOdBjJJUlmD9WqFxKoUake_kJu4SthwCmM7hTVY6be9K-RJ3m21WC20uNyiOjEK9XsGv0S0Bht2xXzQQ9xsn5zbt5-fabwMY63Tw4P4YPdofwHGKZaOWP7eIox073v6lwF0Xblkw4jAxVcvwP8u2Vlx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2iIFXd8OhDnQLFUsuCShkljh_JoouqMwOUghAPaboKsWNXAhpGzIyAflN_pf9UXyeZAYQqdcGimygLK4pzfZ1zrXPPAXjPDEWY6yKgIhEwHoZBrnkaKGNZyhSq6WCj8O6e2DpmX_q8PwO_ml6YSh9icuCGmeH3a0zwQWFvJbm5Ht60IyplY129Y26uXME2_LjdcdFdp7TXPfq8FdSeAoGO0chAxwW1uUysKJiJEu3Km9zYJFbUSqV5JLQIdcw1pUkeGqZimzqII5iR1jIdydg99wnMMRGmaBTROZiKVUXSW9m5osZNWtKwFkNF3tD0Xe_-_qaY9jYy9r-23gL8bj5KxWg5a49Hqq1_3tOL_F--2iLM1xibfKqSYglmTPkcFhr_ClJvZy_gulMbDJHheIB1CKl0rYkD8uRHfuquE6Jw6W5HnrZWEuwV-E58j2rFbiN5WRDk79d5TFAl1L1BWXHsCR52k253kyBbxuX7Szh-lPm_gtnyojSvgTA0yUwNN8KBNy6p4rFJFU9MIVSeF6oFG80CyXQt045uIedZU65hCDMfwha8m4wdVOIkD45aadZZVm9Qwwxl-iOHXlLagg9-wfzlCVm3f_jN3735l8Fr8HS_08u-bu_tLMMzin0jnry3ArOjy7FZdWhupN76JCJw8tjr7w--3lgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decision+support+system+for+major+depression+detection+using+spectrogram+and+convolution+neural+network+with+EEG+signals&rft.jtitle=Expert+systems&rft.au=Hui+Wen+Loh&rft.au=Ooi%2C+Chui+Ping&rft.au=Aydemir%2C+Emrah&rft.au=Turker+Tuncer&rft.date=2022-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=39&rft.issue=3&rft_id=info:doi/10.1111%2Fexsy.12773&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon