Decision support system for major depression detection using spectrogram and convolution neural network with EEG signals
The number of Major Depressive Disorder (MDD) patients is rising rapidly these days following the incidence of COVID‐19 pandemic. It is challenging to detect MDD through personal interviews and by observing electroencephalogram (EEG) signals. Hence, an automated MDD detection system developed using...
Saved in:
Published in | Expert systems Vol. 39; no. 3 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The number of Major Depressive Disorder (MDD) patients is rising rapidly these days following the incidence of COVID‐19 pandemic. It is challenging to detect MDD through personal interviews and by observing electroencephalogram (EEG) signals. Hence, an automated MDD detection system developed using deep learning techniques can help reduce the workload of clinicians by diagnosing MDD accurately. In this study, we have proposed a novel deep learning model based on Convolutional Neural Network (CNN) and spectrogram images. In this work, Short‐Time Fourier Transform (STFT) is first applied to the EEG signals to obtain spectrogram images of MDD patients and healthy subjects. These spectrogram images are then fed to the CNN model for automated detection of MDD patients and healthy subjects. The EEG signals used in this study were obtained from public database with 34 MDD patients and 30 healthy subjects. The highest classification accuracy, precision, sensitivity, specificity, and F1‐score of 99.58%, 99.40%, 99.70%, 99.48%, and 99.55% respectively were obtained with hold‐out validation. Our MDD detection model is highly accurate and needs to be validated with more diverse MDD database before it can be used in clinical settings. Also, we plan to use our developed prototype to detect depression using other physiological signals like electrocardiogram (ECG) and speech signals for accurate and faster diagnosis. |
---|---|
AbstractList | The number of Major Depressive Disorder (MDD) patients is rising rapidly these days following the incidence of COVID‐19 pandemic. It is challenging to detect MDD through personal interviews and by observing electroencephalogram (EEG) signals. Hence, an automated MDD detection system developed using deep learning techniques can help reduce the workload of clinicians by diagnosing MDD accurately. In this study, we have proposed a novel deep learning model based on Convolutional Neural Network (CNN) and spectrogram images. In this work, Short‐Time Fourier Transform (STFT) is first applied to the EEG signals to obtain spectrogram images of MDD patients and healthy subjects. These spectrogram images are then fed to the CNN model for automated detection of MDD patients and healthy subjects. The EEG signals used in this study were obtained from public database with 34 MDD patients and 30 healthy subjects. The highest classification accuracy, precision, sensitivity, specificity, and F1‐score of 99.58%, 99.40%, 99.70%, 99.48%, and 99.55% respectively were obtained with hold‐out validation. Our MDD detection model is highly accurate and needs to be validated with more diverse MDD database before it can be used in clinical settings. Also, we plan to use our developed prototype to detect depression using other physiological signals like electrocardiogram (ECG) and speech signals for accurate and faster diagnosis. |
Author | Ooi, Chui Ping Acharya, U. Rajendra Dogan, Sengul Aydemir, Emrah Loh, Hui Wen Tuncer, Turker |
Author_xml | – sequence: 1 givenname: Hui Wen orcidid: 0000-0003-3114-6523 surname: Loh fullname: Loh, Hui Wen organization: Singapore University of Social Sciences – sequence: 2 givenname: Chui Ping surname: Ooi fullname: Ooi, Chui Ping organization: Singapore University of Social Sciences – sequence: 3 givenname: Emrah surname: Aydemir fullname: Aydemir, Emrah organization: Management Faculty, Sakarya University – sequence: 4 givenname: Turker surname: Tuncer fullname: Tuncer, Turker organization: College of Technology, Firat University – sequence: 5 givenname: Sengul surname: Dogan fullname: Dogan, Sengul organization: College of Technology, Firat University – sequence: 6 givenname: U. Rajendra surname: Acharya fullname: Acharya, U. Rajendra email: aru@np.edu.sg organization: University of Southern Queensland |
BookMark | eNp9kM1KAzEUhYMo2FY3PkHAndCan2kys5Raq1BwoYKuhjRzU1OnkzHJ2PbtnWldiZjFOQl853Jz-ui4chUgdEHJiLbnGrZhN6JMSn6EejQR6ZDwLDlGPcKEGCaSkVPUD2FFCKFSih7a3oK2wboKh6aunY847EKENTbO47VatVpA7SHsmQIi6NjdmmCrJQ51-_Ru6dUaq6rA2lVfrmz2RAWNV2VrceP8B97Y-I6n0xkOdlmpMpyhE9ManP_4AL3cTZ8n98P54-xhcjMfak4ob7VgRsnUiCIBmuqEZApMyhfMyIUeU6EF0XysGUsVgWTBTUYzLhKQxiSaSj5Al4e5tXefDYSYr1zjuw1yJjijhIuMtRQ5UNq7EDyYXNuoun9Er2yZU5J3_eZdv_m-3zZy9StSe7tWfvc3TA_wxpaw-4fMp69Pb4fMN2yhkUs |
CitedBy_id | crossref_primary_10_3389_fdgth_2023_1080023 crossref_primary_10_1109_ACCESS_2022_3190502 crossref_primary_10_3390_s23021008 crossref_primary_10_1016_j_bspc_2024_107440 crossref_primary_10_1111_exsy_12943 crossref_primary_10_3390_su151612406 crossref_primary_10_1016_j_bspc_2023_104970 crossref_primary_10_1109_ACCESS_2023_3311752 crossref_primary_10_1007_s11571_022_09918_8 crossref_primary_10_1088_1361_6501_ad4dc0 crossref_primary_10_1109_ACCESS_2024_3493140 crossref_primary_10_3390_app11199218 crossref_primary_10_1111_exsy_13651 crossref_primary_10_1016_j_cmpb_2023_107683 crossref_primary_10_1080_00051144_2023_2296793 crossref_primary_10_3390_app12115516 crossref_primary_10_1002_ima_22913 crossref_primary_10_1016_j_culher_2023_05_003 crossref_primary_10_1007_s11042_023_14860_w crossref_primary_10_1155_2022_8544765 crossref_primary_10_1007_s11042_023_18076_w crossref_primary_10_2478_amns_2023_2_01382 crossref_primary_10_1007_s44174_025_00301_9 crossref_primary_10_1016_j_jnlssr_2023_10_002 crossref_primary_10_1109_TIM_2021_3132072 crossref_primary_10_22399_ijcesen_851 crossref_primary_10_1007_s12539_023_00567_x crossref_primary_10_1109_TIM_2024_3370772 crossref_primary_10_29132_ijpas_1398148 crossref_primary_10_3390_diagnostics15020210 crossref_primary_10_3390_diagnostics13030573 crossref_primary_10_1109_ACCESS_2023_3304236 crossref_primary_10_1155_2023_1701429 crossref_primary_10_3390_jpm14010101 crossref_primary_10_3390_su15021293 crossref_primary_10_3389_fnimg_2022_981642 crossref_primary_10_1007_s11571_023_10041_5 crossref_primary_10_1016_j_bspc_2024_106402 crossref_primary_10_1109_ACCESS_2023_3275024 crossref_primary_10_1088_1361_6579_ac59dc crossref_primary_10_1177_01423312241263140 crossref_primary_10_3390_bios12121087 crossref_primary_10_1016_j_knosys_2022_110190 crossref_primary_10_1109_ACCESS_2024_3496741 crossref_primary_10_1007_s11517_024_03269_8 |
Cites_doi | 10.1038/s41598-018-35147-3 10.1016/j.ipm.2009.03.002 10.3390/genes10020087 10.1007/s10916-019-1486-z 10.3390/ijerph16040599 10.1016/B978-0-12-374490-6.00007-6 10.1113/jphysiol.1962.sp006837 10.1001/jamanetworkopen.2020.19686 10.1177/1550059413480504 10.1166/jmihi.2017.2204 10.1016/j.neubiorev.2019.07.021 10.1109/TIM.2021.3053999 10.1016/j.bspc.2016.07.006 10.3390/s20226526 10.1001/jamanetworkopen.2020.26064 10.1109/IranianCEE.2019.8786540 10.1016/j.compbiomed.2019.103387 10.1176/appi.books.9780890425596 10.1109/ICEngTechnol.2017.8308186 10.1142/S0219519414500353 10.1038/scientificamerican0689-86 10.1007/s00521-015-1959-z 10.1001/jamanetworkopen.2019.6587 10.1007/s11517-019-01959-2 10.1159/000438457 10.1016/B978-0-12-818946-7.00002-0 10.1016/j.cmpb.2021.106007 10.1007/s13755-021-00139-7 10.1155/2018/5238028 10.1007/s11571-020-09619-0 10.1186/s12911-015-0227-6 10.1016/j.cmpb.2012.10.008 10.1109/EMBC44109.2020.9176462 10.1016/j.ijmedinf.2019.103983 10.1016/j.jocn.2017.09.030 10.1016/j.ijchp.2020.07.007 10.1016/j.cmpb.2018.04.012 10.1109/IntelliSys.2015.7361188 10.1007/s10916-019-1345-y 10.1109/TNSRE.2021.3059429 10.1016/j.patcog.2017.05.012 10.1016/j.cogsys.2018.07.010 10.3389/fpsyt.2016.00033 10.1515/bmt.2010.011 10.1111/j.1600-0447.1986.tb02700.x 10.1109/TENCON.2019.8929254 10.1016/j.cmpb.2019.04.032 10.1016/j.ijpsycho.2012.05.001 10.3390/s17061385 10.1007/s13246-020-00938-4 10.3109/09540261.2013.816269 10.1016/j.bspc.2020.102393 10.1016/j.icte.2018.04.001 10.3389/fnhum.2020.00284 10.3390/app8081244 10.1142/S0219519412400192 10.1159/000381950 10.3390/app10248963 10.1371/journal.pone.0171409 10.17694/bajece.631951 10.1007/s12199-010-0186-6 10.1002/ett.4121 10.1177/1550059420916634 10.2147/NDT.S132757 10.1007/s00542-018-4075-z |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd |
Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd |
DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1111/exsy.12773 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1468-0394 |
EndPage | n/a |
ExternalDocumentID | 10_1111_exsy_12773 EXSY12773 |
Genre | article |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0B8 0R~ 10A 1OB 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 77K 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHC ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AI. AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ TAE TH9 TN5 TUS UB1 VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZL0 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SC 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3013-c3d2fa78f6d4e18c409aef83b2f7bc516c60c35c228a0e4b3f919364e7ff4c173 |
IEDL.DBID | DR2 |
ISSN | 0266-4720 |
IngestDate | Fri Jul 25 03:00:53 EDT 2025 Tue Jul 01 02:13:46 EDT 2025 Thu Apr 24 23:03:58 EDT 2025 Wed Jan 22 16:27:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3013-c3d2fa78f6d4e18c409aef83b2f7bc516c60c35c228a0e4b3f919364e7ff4c173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3114-6523 |
PQID | 2632103692 |
PQPubID | 32130 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2632103692 crossref_citationtrail_10_1111_exsy_12773 crossref_primary_10_1111_exsy_12773 wiley_primary_10_1111_exsy_12773_EXSY12773 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Expert systems |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2009; 45 2010; 55 2017; 7 2021; 21 2013; 25 2018; 161 1986; 73 2021; 66 2020; 20 2019; 10 2021; 202 2021; 29 2019; 57 1962; 160 2019; 16 2020; 15 2020; 14 2017a; 31 2020; 10 2011; 16 2012; 12 2018; 47 2021; 70 2020; 8 2018; 8 2020; 3 2017b; 12 2018; 4 2017; 70 2015a; 73 2015; 40 2019; 25 2014; 14 2019; 113 2020; 44 2020; 43 2015b; 74 2021; 9 2015; 15 2013; 44 2013; 109 2019; 2 2019; 105 2008 1989; 260 2020; 32 2021; 52 2016; 7 2018; 2018 2021 2017; 17 2019; 43 2020 2017; 13 2019 2017 2016 2018; 52 2015 2014 2013 2016; 27 2012; 85 2019; 176 2019; 132 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Kose U. (e_1_2_9_35_1) 2021 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 Gohil K. (e_1_2_9_24_1) 2015; 40 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Lipton Z. C. (e_1_2_9_41_1) 2014 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 132 year: 2019 article-title: A deep learning framework for automatic diagnosis of unipolar depression publication-title: International Journal of Medical Informatics – start-page: 225 year: 2014 end-page: 239 – volume: 32 issue: 7 year: 2020 article-title: Deep neural network based anomaly detection in Internet of Things network traffic tracking for the applications of future smart cities publication-title: Transactions on Emerging Telecommunications Technologies – start-page: 95 year: 2021 end-page: 106 – volume: 14 start-page: 284 year: 2020 article-title: Machine learning approaches for MDD detection and emotion decoding using EEG signals publication-title: Frontiers in Human Neuroscience – volume: 70 start-page: 163 year: 2017 end-page: 176 article-title: Learning features for offline handwritten signature verification using deep convolutional neural networks publication-title: Pattern Recognition – volume: 66 year: 2021 article-title: DepHNN: A novel hybrid neural network for electroencephalogram (EEG)‐based screening of depression publication-title: Biomedical Signal Processing and Control – volume: 10 issue: 2 year: 2019 article-title: Machine learning and integrative analysis of biomedical big data publication-title: Genes – start-page: 1339 year: 2019 end-page: 1344 article-title: Performance analysis of deep learning CNN in classification of depression EEG signals publication-title: TENCON 2019–2019 IEEE Region 10 Conference (TENCON) – volume: 43 start-page: 205 issue: 7 year: 2019 article-title: Automated depression detection using deep representation and sequence learning with EEG signals publication-title: Journal of Medical Systems – volume: 202 year: 2021 article-title: EEG based Major Depressive disorder and Bipolar disorder detection using Neural Networks:A review publication-title: Computer Methods and Programs in Biomedicine – volume: 20 issue: 22 year: 2020 article-title: Deep‐asymmetry: Asymmetry matrix image for deep learning method in pre‐screening depression publication-title: Sensors – volume: 57 start-page: 1341 issue: 6 year: 2019 end-page: 1352 article-title: EEG‐based mild depression recognition using convolutional neural network publication-title: Medical & Biological Engineering & Computing – volume: 4 start-page: 100 issue: 2 year: 2018 end-page: 106 article-title: Are the long–short term memory and convolution neural networks really based on biological systems? publication-title: ICT Express – volume: 7 start-page: 33 year: 2016 article-title: Depression and the link with cardiovascular disease publication-title: Frontiers in Psychiatry – volume: 260 start-page: 86 issue: 6 year: 1989 end-page: 95 article-title: The Fourier transform publication-title: Scientific American – volume: 2 issue: 6 year: 2019 article-title: Genetic and environmental risk factors associated with trajectories of depression symptoms from adolescence to young adulthood publication-title: JAMA Network Open – volume: 14 issue: 03 year: 2014 article-title: Depression diagnosis support system based on EEG signal entropies publication-title: Journal of Mechanics in Medicine and Biology – start-page: 1 year: 2017 end-page: 6 article-title: Understanding of a convolutional neural network publication-title: 2017 International Conference on Engineering and Technology (ICET) – volume: 17 issue: 6 year: 2017 article-title: Major depression detection from EEG signals using kernel eigen‐filter‐bank common spatial patterns publication-title: Sensors – volume: 15 start-page: 239 issue: 2 year: 2020 end-page: 252 article-title: Major depressive disorder diagnosis based on effective connectivity in EEG signals: A convolutional neural network and long short‐term memory approach publication-title: Cognitive Neurodynamics – volume: 105 start-page: 83 year: 2019 end-page: 93 article-title: Depression biomarkers using non‐invasive EEG: A review publication-title: Neuroscience & Biobehavioral Reviews – volume: 2018 start-page: 1 year: 2018 end-page: 13 article-title: A pervasive approach to EEG‐based depression detection publication-title: Complexity – volume: 176 start-page: 81 year: 2019 end-page: 91 article-title: A review of automated sleep stage scoring based on physiological signals for the new millennia publication-title: Computer Methods and Programs in Biomedicine – volume: 25 start-page: 604 issue: 5 year: 2013 end-page: 618 article-title: EEG biomarkers in major depressive disorder: Discriminative power and prediction of treatment response publication-title: International Review of Psychiatry – volume: 3 issue: 10 year: 2020 article-title: Levels of severity of depressive symptoms among at‐risk groups in the UK during the COVID‐19 pandemic publication-title: JAMA Network Open – volume: 15 start-page: 108 issue: 1 year: 2015 article-title: Data mining EEG signals in depression for their diagnostic value publication-title: BMC Medical Informatics and Decision Making – volume: 3 issue: 9 year: 2020 article-title: Prevalence of depression symptoms in US adults before and during the COVID‐19 pandemic publication-title: JAMA Network Open – volume: 12 issue: 2 year: 2017b article-title: A wavelet‐based technique to predict treatment outcome for Major Depressive Disorder publication-title: PLoS One – volume: 9 issue: 1 year: 2021 article-title: Classification of normal and depressed EEG signals based on centered correntropy of rhythms in empirical wavelet transform domain publication-title: Health Information Science and Systems – volume: 74 start-page: 79 issue: 1–2 year: 2015b end-page: 83 article-title: A novel depression diagnosis index using nonlinear features in EEG signals publication-title: European Neurology – volume: 47 start-page: 315 year: 2018 end-page: 322 article-title: Neurophysiological correlates of depressive symptoms in young adults: A quantitative EEG study publication-title: Journal of Clinical Neuroscience – volume: 8 issue: 8 year: 2018 article-title: Depression detection using relative EEG power induced by emotionally positive images and a conformal kernel Support vector machine publication-title: Applied Sciences – volume: 8 start-page: 103 issue: 1 year: 2020 end-page: 107 article-title: Classification of EEG signals in depressed patients publication-title: Balkan Journal of Electrical and Computer Engineering – volume: 160 start-page: 106 year: 1962 end-page: 154 article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex publication-title: The Journal of Physiology – volume: 73 start-page: 329 issue: 5–6 year: 2015a end-page: 336 article-title: Computer‐aided diagnosis of depression using EEG signals publication-title: European Neurology – volume: 29 start-page: 566 year: 2021 end-page: 575 article-title: Enhancing EEG‐based classification of depression patients using spatial information publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 27 start-page: 1607 issue: 6 year: 2016 end-page: 1616 article-title: Artificial intelligence approach to classify unipolar and bipolar depressive disorders publication-title: Neural Computing and Applications – volume: 16 start-page: 196 issue: 3 year: 2011 end-page: 201 article-title: Early impact of depression symptoms on the decline in activities of daily living among older Japanese: Y‐HALE cohort study publication-title: Environmental Health and Preventive Medicine – volume: 73 start-page: 390 issue: 4 year: 1986 end-page: 394 article-title: Relationships between EEG and clinical characteristics in major depressive disorder publication-title: Acta Psychiatrica Scandinavica – volume: 85 start-page: 206 issue: 2 year: 2012 end-page: 211 article-title: Fractality analysis of frontal brain in major depressive disorder publication-title: International Journal of Psychophysiology – start-page: 5280 year: 2020 end-page: 5283 article-title: Electroencephalography symmetry in power, waveform and power spectrum in major depression publication-title: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) – volume: 8 issue: 1 year: 2018 article-title: Automatic detection of major depressive disorder using electrodermal activity publication-title: Scientific Reports – start-page: 1765 year: 2019 end-page: 1769 article-title: Discrimination of depression levels using machine learning methods on EEG signals publication-title: 2019 27th Iranian Conference on Electrical Engineering (ICEE) – volume: 44 issue: 1 year: 2020 article-title: Classification of depression patients and normal subjects based on electroencephalogram (EEG) signal using alpha power and theta asymmetry publication-title: Journal of Medical Systems – volume: 31 start-page: 108 year: 2017a end-page: 115 article-title: Electroencephalogram (EEG)‐based computer‐aided technique to diagnose major depressive disorder (MDD) publication-title: Biomedical Signal Processing and Control – year: 2016 – start-page: 518 year: 2015 end-page: 521 article-title: Non invasive EEG signal processing framework for real time depression analysis publication-title: 2015 SAI Intelligent Systems Conference (IntelliSys) – volume: 7 start-page: 1857 issue: 8 year: 2017 end-page: 1862 article-title: Automated diagnosis of depression electroencephalograph signals using linear prediction coding and higher order spectra features publication-title: Journal of Medical Imaging and Health Informatics – volume: 55 start-page: 155 issue: 3 year: 2010 end-page: 161 article-title: Spectral features of EEG in depression publication-title: Biomedizinische Technik/Biomedical Engineering – volume: 161 start-page: 103 year: 2018 end-page: 113 article-title: Automated EEG‐based screening of depression using deep convolutional neural network publication-title: Computer Methods and Programs in Biomedicine – volume: 70 start-page: 1 year: 2021 end-page: 13 article-title: DeprNet: A deep convolution neural network framework for detecting depression using EEG publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 12 issue: 04 year: 2012 article-title: Classification of EEG signals in normal and depression conditions by ANN using RWE and signal entropy publication-title: Journal of Mechanics in Medicine and Biology – volume: 16 start-page: 599 issue: 4 year: 2019 article-title: A deep learning model for automated sleep stages classification using PSG signals publication-title: International Journal of Environmental Research and Public Health – volume: 10 issue: 24 year: 2020 article-title: Automated detection of sleep stages using deep learning techniques: A systematic review of the last decade (2010–2020) publication-title: Applied Sciences – volume: 52 start-page: 508 year: 2018 end-page: 520 article-title: An automated diagnosis of depression using three‐channel bandwidth‐duration localized wavelet filter bank with EEG signals publication-title: Cognitive Systems Research – volume: 52 start-page: 38 issue: 1 year: 2021 end-page: 51 article-title: Major depressive disorder classification based on different convolutional neural network models: Deep learning approach publication-title: Clinical EEG and Neuroscience – volume: 113 year: 2019 article-title: Automated detection of diabetic subject using pre‐trained 2D‐CNN models with frequency spectrum images extracted from heart rate signals publication-title: Computers in Biology and Medicine – start-page: 175 year: 2008 end-page: 196 – volume: 25 start-page: 1065 issue: 3 year: 2019 end-page: 1076 article-title: Detection of major depressive disorder using linear and non‐linear features from EEG signals publication-title: Microsystem Technologies – volume: 21 issue: 1 year: 2021 article-title: Prevalence of depression during the COVID‐19 outbreak: A meta‐analysis of community‐based studies publication-title: International Journal of Clinical and Health Psychology – volume: 13 start-page: 881 year: 2017 end-page: 887 article-title: The influence of depression, level of functioning in everyday life, and illness acceptance on quality of life in patients with Parkinson's disease: A preliminary study publication-title: Neuropsychiatric Disease and Treatment – volume: 43 start-page: 1349 issue: 4 year: 2020 end-page: 1360 article-title: EEG‐based deep learning model for the automatic detection of clinical depression publication-title: Physical and Engineering Sciences in Medicine – start-page: 29 year: 2020 end-page: 50 – volume: 45 start-page: 427 issue: 4 year: 2009 end-page: 437 article-title: A systematic analysis of performance measures for classification tasks publication-title: Information Processing & Management – volume: 109 start-page: 339 issue: 3 year: 2013 end-page: 345 article-title: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal publication-title: Computer Methods and Programs in Biomedicine – volume: 40 start-page: 215 issue: 3 year: 2015 end-page: 217 article-title: Major depressive disorder: New products are facing a saturated market publication-title: Pharmacy and Therapeutics – volume: 44 start-page: 175 issue: 3 year: 2013 end-page: 181 article-title: Spatiotemporal analysis of relative convergence of EEGs reveals differences between brain dynamics of depressive women and men publication-title: Clinical EEG and Neuroscience – year: 2013 – ident: e_1_2_9_34_1 doi: 10.1038/s41598-018-35147-3 – ident: e_1_2_9_64_1 doi: 10.1016/j.ipm.2009.03.002 – ident: e_1_2_9_46_1 doi: 10.3390/genes10020087 – ident: e_1_2_9_44_1 doi: 10.1007/s10916-019-1486-z – ident: e_1_2_9_69_1 doi: 10.3390/ijerph16040599 – ident: e_1_2_9_33_1 doi: 10.1016/B978-0-12-374490-6.00007-6 – ident: e_1_2_9_28_1 doi: 10.1113/jphysiol.1962.sp006837 – ident: e_1_2_9_21_1 doi: 10.1001/jamanetworkopen.2020.19686 – ident: e_1_2_9_6_1 doi: 10.1177/1550059413480504 – ident: e_1_2_9_11_1 doi: 10.1166/jmihi.2017.2204 – ident: e_1_2_9_16_1 doi: 10.1016/j.neubiorev.2019.07.021 – start-page: 95 volume-title: A practical method for early diagnosis of heart diseases via deep neural network year: 2021 ident: e_1_2_9_35_1 – ident: e_1_2_9_61_1 doi: 10.1109/TIM.2021.3053999 – ident: e_1_2_9_51_1 doi: 10.1016/j.bspc.2016.07.006 – ident: e_1_2_9_31_1 doi: 10.3390/s20226526 – ident: e_1_2_9_29_1 doi: 10.1001/jamanetworkopen.2020.26064 – ident: e_1_2_9_48_1 doi: 10.1109/IranianCEE.2019.8786540 – ident: e_1_2_9_70_1 doi: 10.1016/j.compbiomed.2019.103387 – ident: e_1_2_9_9_1 doi: 10.1176/appi.books.9780890425596 – ident: e_1_2_9_8_1 doi: 10.1109/ICEngTechnol.2017.8308186 – ident: e_1_2_9_22_1 doi: 10.1142/S0219519414500353 – ident: e_1_2_9_13_1 doi: 10.1038/scientificamerican0689-86 – ident: e_1_2_9_20_1 doi: 10.1007/s00521-015-1959-z – ident: e_1_2_9_36_1 doi: 10.1001/jamanetworkopen.2019.6587 – ident: e_1_2_9_38_1 doi: 10.1007/s11517-019-01959-2 – ident: e_1_2_9_4_1 doi: 10.1159/000438457 – ident: e_1_2_9_49_1 – ident: e_1_2_9_56_1 doi: 10.1016/B978-0-12-818946-7.00002-0 – ident: e_1_2_9_68_1 doi: 10.1016/j.cmpb.2021.106007 – ident: e_1_2_9_7_1 doi: 10.1007/s13755-021-00139-7 – ident: e_1_2_9_15_1 doi: 10.1155/2018/5238028 – ident: e_1_2_9_59_1 doi: 10.1007/s11571-020-09619-0 – ident: e_1_2_9_47_1 doi: 10.1186/s12911-015-0227-6 – ident: e_1_2_9_27_1 doi: 10.1016/j.cmpb.2012.10.008 – ident: e_1_2_9_40_1 doi: 10.1109/EMBC44109.2020.9176462 – volume: 40 start-page: 215 issue: 3 year: 2015 ident: e_1_2_9_24_1 article-title: Major depressive disorder: New products are facing a saturated market publication-title: Pharmacy and Therapeutics – ident: e_1_2_9_50_1 doi: 10.1016/j.ijmedinf.2019.103983 – ident: e_1_2_9_37_1 doi: 10.1016/j.jocn.2017.09.030 – ident: e_1_2_9_14_1 doi: 10.1016/j.ijchp.2020.07.007 – ident: e_1_2_9_2_1 doi: 10.1016/j.cmpb.2018.04.012 – ident: e_1_2_9_45_1 doi: 10.1109/IntelliSys.2015.7361188 – ident: e_1_2_9_10_1 doi: 10.1007/s10916-019-1345-y – ident: e_1_2_9_30_1 doi: 10.1109/TNSRE.2021.3059429 – ident: e_1_2_9_25_1 doi: 10.1016/j.patcog.2017.05.012 – ident: e_1_2_9_63_1 doi: 10.1016/j.cogsys.2018.07.010 – ident: e_1_2_9_17_1 doi: 10.3389/fpsyt.2016.00033 – ident: e_1_2_9_26_1 doi: 10.1515/bmt.2010.011 – ident: e_1_2_9_53_1 doi: 10.1111/j.1600-0447.1986.tb02700.x – ident: e_1_2_9_60_1 doi: 10.1109/TENCON.2019.8929254 – ident: e_1_2_9_23_1 doi: 10.1016/j.cmpb.2019.04.032 – start-page: 225 volume-title: Optimal thresholding of classifiers to maximize F1 measure year: 2014 ident: e_1_2_9_41_1 – ident: e_1_2_9_5_1 doi: 10.1016/j.ijpsycho.2012.05.001 – ident: e_1_2_9_39_1 doi: 10.3390/s17061385 – ident: e_1_2_9_65_1 doi: 10.1007/s13246-020-00938-4 – ident: e_1_2_9_54_1 doi: 10.3109/09540261.2013.816269 – ident: e_1_2_9_62_1 doi: 10.1016/j.bspc.2020.102393 – ident: e_1_2_9_12_1 doi: 10.1016/j.icte.2018.04.001 – ident: e_1_2_9_18_1 doi: 10.3389/fnhum.2020.00284 – ident: e_1_2_9_67_1 doi: 10.3390/app8081244 – ident: e_1_2_9_55_1 doi: 10.1142/S0219519412400192 – ident: e_1_2_9_3_1 doi: 10.1159/000381950 – ident: e_1_2_9_42_1 doi: 10.3390/app10248963 – ident: e_1_2_9_52_1 doi: 10.1371/journal.pone.0171409 – ident: e_1_2_9_19_1 doi: 10.17694/bajece.631951 – ident: e_1_2_9_32_1 doi: 10.1007/s12199-010-0186-6 – ident: e_1_2_9_57_1 doi: 10.1002/ett.4121 – ident: e_1_2_9_66_1 doi: 10.1177/1550059420916634 – ident: e_1_2_9_58_1 doi: 10.2147/NDT.S132757 – ident: e_1_2_9_43_1 doi: 10.1007/s00542-018-4075-z |
SSID | ssj0001776 |
Score | 2.4780834 |
Snippet | The number of Major Depressive Disorder (MDD) patients is rising rapidly these days following the incidence of COVID‐19 pandemic. It is challenging to detect... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Artificial neural networks Automation classification CNN COVID-19 Decision support systems Deep learning Electrocardiography electroencephalogram (EEG) Electroencephalography Fourier transforms Machine learning major depressive disorder (MDD) Medical imaging Mental depression Neural networks spectrograms STFT |
Title | Decision support system for major depression detection using spectrogram and convolution neural network with EEG signals |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.12773 https://www.proquest.com/docview/2632103692 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB0WvXjxW1y_COhFoUubJk0LXkR3FXE9qAvrQUqSpoIfVdxdUH-9mbTdVRFBL6WHtKSZTPMS3rwHsMMMRZhrI6CCyGPc9z2peeIpk7OEKVTTwULh7nl00mOnfd5vwH5dC1PqQ4wP3DAz3P8aE1yqwackN6-Dt1ZAhUCpTyRrISK6mGhHBcI5y9k9hu2DoH6lTYo0nsmjX1ejCcT8DFTdStOZg5u6jyXB5L41GqqWfv8m3_jfj5iH2QqCkoNyzixAwxSLMFfbO5Aq25fg9ajy3yGD0TPCdFLKPhOLc8mjvLPXMY-2sLdDx-oqCFLpb4kr4SzJX0QWGUF6ezXNCYpo2h4UJQWd4FkwabePCZJJbDosQ6_Tvjo88SqjBk-H6A6hw4zmUsR5lDETxNruGaXJ41DRXCjNg0hHvg65pjSWvmEqzBOLGyNmRJ4zHYhwBaaKp8KsAmHoIZkYbiKLbbigiocmUTw2WaSkzFQTduuApbpSMUczjYe03s3gkKZuSJuwPW77XGp3_Nhqo457WuXvIEUV-8Au7gltwp4L4C9vSNv9y2t3t_aXxuswQ7GWwhHaNmBq-DIymxbhDNUWTB8cdc8ut9yM_gD9u_yf |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V27TuQwFL3iUUADy0vMwoIloAApo8Sx46SgQDsDw7PgIQ1ViB0HiUcWMTNa2H_iV_im9XWSGUAIiYKCJkphWXHsa59rnXsOwCrTFGGumQHpBQ7jruskikeO1BmLmEQ1HSwUPjwKWmdsr83bQ_BU1cIU-hD9CzeMDLtfY4DjhfSLKNcPnce6R4WovKv39eNfk7F1NncbZnrXKN1unv5uOaWpgKN8dDJQfkqzRIRZkDLthcrkN4nOQl_STEjFvUAFrvK5ojRMXM2kn0UG4wRMiyxjyhO-6XcYRtFCHKX6G8cDtSpPWC87k9WYUQvqlmqoSBwafOvr828Aal9CY3u2bU_Cc_VXCkrLdb3XlXX1741g5Lf5bT9gokTZZKsIiykY0vk0TFYOFqTc0GbgoVFaDJFO7w4zEVIoWxMD5cltcmWefapwbl67lriWE6wWuCS2SrXgt5EkTwky-MtIJqgTar4gL1j2BK-7SbO5Q5AvYyJ-Fs6-ZPxzMJL_yfU8EIY2mZHmOjDwjQsqua8jyUOdBjJJUlmD9WqFxKoUake_kJu4SthwCmM7hTVY6be9K-RJ3m21WC20uNyiOjEK9XsGv0S0Bht2xXzQQ9xsn5zbt5-fabwMY63Tw4P4YPdofwHGKZaOWP7eIox073v6lwF0Xblkw4jAxVcvwP8u2Vlx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2iIFXd8OhDnQLFUsuCShkljh_JoouqMwOUghAPaboKsWNXAhpGzIyAflN_pf9UXyeZAYQqdcGimygLK4pzfZ1zrXPPAXjPDEWY6yKgIhEwHoZBrnkaKGNZyhSq6WCj8O6e2DpmX_q8PwO_ml6YSh9icuCGmeH3a0zwQWFvJbm5Ht60IyplY129Y26uXME2_LjdcdFdp7TXPfq8FdSeAoGO0chAxwW1uUysKJiJEu3Km9zYJFbUSqV5JLQIdcw1pUkeGqZimzqII5iR1jIdydg99wnMMRGmaBTROZiKVUXSW9m5osZNWtKwFkNF3tD0Xe_-_qaY9jYy9r-23gL8bj5KxWg5a49Hqq1_3tOL_F--2iLM1xibfKqSYglmTPkcFhr_ClJvZy_gulMbDJHheIB1CKl0rYkD8uRHfuquE6Jw6W5HnrZWEuwV-E58j2rFbiN5WRDk79d5TFAl1L1BWXHsCR52k253kyBbxuX7Szh-lPm_gtnyojSvgTA0yUwNN8KBNy6p4rFJFU9MIVSeF6oFG80CyXQt045uIedZU65hCDMfwha8m4wdVOIkD45aadZZVm9Qwwxl-iOHXlLagg9-wfzlCVm3f_jN3735l8Fr8HS_08u-bu_tLMMzin0jnry3ArOjy7FZdWhupN76JCJw8tjr7w--3lgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decision+support+system+for+major+depression+detection+using+spectrogram+and+convolution+neural+network+with+EEG+signals&rft.jtitle=Expert+systems&rft.au=Hui+Wen+Loh&rft.au=Ooi%2C+Chui+Ping&rft.au=Aydemir%2C+Emrah&rft.au=Turker+Tuncer&rft.date=2022-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=39&rft.issue=3&rft_id=info:doi/10.1111%2Fexsy.12773&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon |