Sintering‐induced delamination of thermal barrier coatings by gradient thermal cyclic test

Lifetime is crucial to the application of advanced thermal barrier coatings (TBCs), and proper lifetime evaluation methods should be developed to predict the service lifetime of TBCs precisely and efficiently. In this study, plasma‐sprayed YSZ TBCs were subjected to gradient thermal cyclic tests und...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Ceramic Society Vol. 100; no. 5; pp. 1820 - 1830
Main Authors Cheng, Bo, Zhang, Yu‐Ming, Yang, Ning, Zhang, Meng, Chen, Lin, Yang, Guan‐Jun, Li, Cheng‐Xin, Li, Chang‐Jiu
Format Journal Article
LanguageEnglish
Published Columbus Wiley Subscription Services, Inc 01.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lifetime is crucial to the application of advanced thermal barrier coatings (TBCs), and proper lifetime evaluation methods should be developed to predict the service lifetime of TBCs precisely and efficiently. In this study, plasma‐sprayed YSZ TBCs were subjected to gradient thermal cyclic tests under different surface temperatures, with the aim of elucidating the correlation between the coating surface temperature and the thermal cyclic lifetime. Results showed that the thermal cyclic lifetime of TBCs decreased with the increasing of surface temperatures. However, the failure modes of these TBCs subjected to thermal cyclic tests were irrespective of different surface/BC temperatures, that is, sintering‐induced delamination of the top coat. The thickness of thermally grown oxide (TGO) was significantly less than the critical TGO thickness to result in the failure of TBCs through the delamination of top coat. There was no phase transformation of the top coat after failure. In contrast, in the case concerning the top coat surface of the failure specimens, the elastic modulus and microhardness increased to a comparable level due to sintering despite of the various thermal cyclic conditions. Consequently, it is conclusive that the failure of TBCs subjected to gradient thermal cyclic test was primarily induced by sintering during high‐temperature exposure. A delamination model with multilayer splats was developed to assist in understanding the failure mechanism of TBCs through sintering‐induced delamination of the top coat. Based on the above‐described results, this study should aid in facilitating the lifetime evaluation of the TBCs, which are on active service at relatively lower temperatures, by an accelerated thermal cyclic test at higher temperatures in laboratory conditions.
AbstractList Lifetime is crucial to the application of advanced thermal barrier coatings ( TBC s), and proper lifetime evaluation methods should be developed to predict the service lifetime of TBC s precisely and efficiently. In this study, plasma‐sprayed YSZ TBC s were subjected to gradient thermal cyclic tests under different surface temperatures, with the aim of elucidating the correlation between the coating surface temperature and the thermal cyclic lifetime. Results showed that the thermal cyclic lifetime of TBC s decreased with the increasing of surface temperatures. However, the failure modes of these TBC s subjected to thermal cyclic tests were irrespective of different surface/BC temperatures, that is, sintering‐induced delamination of the top coat. The thickness of thermally grown oxide ( TGO ) was significantly less than the critical TGO thickness to result in the failure of TBC s through the delamination of top coat. There was no phase transformation of the top coat after failure. In contrast, in the case concerning the top coat surface of the failure specimens, the elastic modulus and microhardness increased to a comparable level due to sintering despite of the various thermal cyclic conditions. Consequently, it is conclusive that the failure of TBC s subjected to gradient thermal cyclic test was primarily induced by sintering during high‐temperature exposure. A delamination model with multilayer splats was developed to assist in understanding the failure mechanism of TBC s through sintering‐induced delamination of the top coat. Based on the above‐described results, this study should aid in facilitating the lifetime evaluation of the TBC s, which are on active service at relatively lower temperatures, by an accelerated thermal cyclic test at higher temperatures in laboratory conditions.
Lifetime is crucial to the application of advanced thermal barrier coatings (TBCs), and proper lifetime evaluation methods should be developed to predict the service lifetime of TBCs precisely and efficiently. In this study, plasma-sprayed YSZ TBCs were subjected to gradient thermal cyclic tests under different surface temperatures, with the aim of elucidating the correlation between the coating surface temperature and the thermal cyclic lifetime. Results showed that the thermal cyclic lifetime of TBCs decreased with the increasing of surface temperatures. However, the failure modes of these TBCs subjected to thermal cyclic tests were irrespective of different surface/BC temperatures, that is, sintering-induced delamination of the top coat. The thickness of thermally grown oxide (TGO) was significantly less than the critical TGO thickness to result in the failure of TBCs through the delamination of top coat. There was no phase transformation of the top coat after failure. In contrast, in the case concerning the top coat surface of the failure specimens, the elastic modulus and microhardness increased to a comparable level due to sintering despite of the various thermal cyclic conditions. Consequently, it is conclusive that the failure of TBCs subjected to gradient thermal cyclic test was primarily induced by sintering during high-temperature exposure. A delamination model with multilayer splats was developed to assist in understanding the failure mechanism of TBCs through sintering-induced delamination of the top coat. Based on the above-described results, this study should aid in facilitating the lifetime evaluation of the TBCs, which are on active service at relatively lower temperatures, by an accelerated thermal cyclic test at higher temperatures in laboratory conditions.
Author Chen, Lin
Cheng, Bo
Yang, Guan‐Jun
Li, Cheng‐Xin
Zhang, Meng
Zhang, Yu‐Ming
Li, Chang‐Jiu
Yang, Ning
Author_xml – sequence: 1
  givenname: Bo
  surname: Cheng
  fullname: Cheng, Bo
  organization: Xi'an Jiaotong University
– sequence: 2
  givenname: Yu‐Ming
  surname: Zhang
  fullname: Zhang, Yu‐Ming
  organization: Xi'an Jiaotong University
– sequence: 3
  givenname: Ning
  surname: Yang
  fullname: Yang, Ning
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Meng
  surname: Zhang
  fullname: Zhang, Meng
  organization: Xi'an Jiaotong University
– sequence: 5
  givenname: Lin
  surname: Chen
  fullname: Chen, Lin
  organization: Xi'an Jiaotong University
– sequence: 6
  givenname: Guan‐Jun
  surname: Yang
  fullname: Yang, Guan‐Jun
  email: ygj@mail.xjtu.edu.cn
  organization: Xi'an Jiaotong University
– sequence: 7
  givenname: Cheng‐Xin
  surname: Li
  fullname: Li, Cheng‐Xin
  organization: Xi'an Jiaotong University
– sequence: 8
  givenname: Chang‐Jiu
  surname: Li
  fullname: Li, Chang‐Jiu
  organization: Xi'an Jiaotong University
BookMark eNp9kMFKAzEQhoNUsK1efIKAN2FrZpPsZo-l1KoUPKg3IWSz2ZqyzdZsiuzNR_AZfRK3XfEg4lyGYb5_fuYfoYGrnUHoHMgEurpaK20mwFKgR2gInEMUZ5AM0JAQEkepiMkJGjXNuhshE2yInh-sC8Zbt_p8_7Cu2GlT4MJUamOdCrZ2uC5xeDF-oyqcK--t8VjX3cqtGpy3eOVVYY0LP5BudWU1DqYJp-i4VFVjzr77GD1dzx9nN9HyfnE7my4jTQnQiJZFHgvKmGCgCCSGZUwzkdGC6TwVJWecMkgNJAoopzrReaIVKQmFNM0M0DG66O9uff2664zlut5511lKEBkXIuaCdxTpKe3rpvGmlNqGw4_BK1tJIHKfodxnKA8ZdpLLX5Kttxvl279h6OE3W5n2H1LeTWfzXvMFewKEyQ
CitedBy_id crossref_primary_10_1016_j_surfcoat_2020_126304
crossref_primary_10_3390_coatings8070245
crossref_primary_10_1016_j_surfcoat_2021_127910
crossref_primary_10_3390_coatings9040241
crossref_primary_10_1016_j_cej_2025_159399
crossref_primary_10_1016_j_jeurceramsoc_2018_08_033
crossref_primary_10_1016_j_matchar_2019_110072
crossref_primary_10_1016_j_surfcoat_2022_128923
crossref_primary_10_1016_j_jmst_2020_04_076
crossref_primary_10_1016_j_matdes_2019_107615
crossref_primary_10_3390_coatings12081083
crossref_primary_10_1016_j_apsusc_2020_148847
crossref_primary_10_1016_j_ceramint_2020_10_093
crossref_primary_10_1007_s11665_020_04822_w
crossref_primary_10_1016_j_ceramint_2025_01_375
crossref_primary_10_1016_j_jallcom_2023_172832
crossref_primary_10_26599_JAC_2024_9221002
crossref_primary_10_1016_j_ceramint_2024_09_316
crossref_primary_10_1016_j_surfcoat_2019_125030
crossref_primary_10_1007_s40145_017_0252_2
crossref_primary_10_1016_j_surfcoat_2021_127768
crossref_primary_10_1016_j_ceramint_2019_11_168
crossref_primary_10_1016_j_surfcoat_2023_129748
crossref_primary_10_1007_s11837_021_04867_9
crossref_primary_10_1016_j_matchemphys_2024_129729
crossref_primary_10_1007_s11666_017_0579_9
crossref_primary_10_1016_j_ceramint_2022_04_044
crossref_primary_10_1111_jace_15501
crossref_primary_10_3390_coatings11101214
crossref_primary_10_3390_coatings13091623
crossref_primary_10_1016_j_mtcomm_2023_107514
crossref_primary_10_1016_j_surfcoat_2018_01_003
crossref_primary_10_1007_s12598_020_01393_6
crossref_primary_10_1016_j_jmatprotec_2018_09_016
crossref_primary_10_15407_fm31_02_178
crossref_primary_10_1016_j_ceramint_2021_05_189
crossref_primary_10_1016_j_ceramint_2024_05_166
crossref_primary_10_1016_j_surfcoat_2022_129162
crossref_primary_10_1016_j_ijfatigue_2024_108670
crossref_primary_10_1016_j_matdes_2022_111044
crossref_primary_10_1016_j_ceramint_2019_07_235
crossref_primary_10_1016_j_ceramint_2019_09_226
crossref_primary_10_1007_s11666_018_0754_7
crossref_primary_10_3390_coatings11121474
crossref_primary_10_3390_coatings12081069
crossref_primary_10_1016_j_engfailanal_2022_106335
crossref_primary_10_1007_s12598_019_01351_x
crossref_primary_10_1016_j_ceramint_2022_10_222
crossref_primary_10_3390_coatings13010156
crossref_primary_10_1016_j_ceramint_2019_08_117
crossref_primary_10_1016_j_tsf_2020_138081
crossref_primary_10_1016_j_jeurceramsoc_2019_11_074
crossref_primary_10_3390_cryst11030287
crossref_primary_10_1016_j_surfcoat_2023_130278
crossref_primary_10_1016_j_jeurceramsoc_2023_10_046
crossref_primary_10_1016_j_jeurceramsoc_2019_12_039
crossref_primary_10_3390_coatings11091051
crossref_primary_10_1016_j_ceramint_2020_09_298
crossref_primary_10_1063_5_0083087
crossref_primary_10_3390_coatings11070755
crossref_primary_10_3390_coatings8050187
crossref_primary_10_3390_coatings9020064
crossref_primary_10_1016_j_jmst_2023_07_078
crossref_primary_10_1016_j_jeurceramsoc_2023_01_016
crossref_primary_10_1016_j_jeurceramsoc_2024_117089
crossref_primary_10_3390_coatings11010086
crossref_primary_10_1016_j_ceramint_2018_05_051
crossref_primary_10_1016_j_jeurceramsoc_2023_03_005
crossref_primary_10_1088_1361_6463_ab8de9
crossref_primary_10_1016_j_surfcoat_2019_01_117
crossref_primary_10_1016_j_surfcoat_2023_129928
crossref_primary_10_1016_j_jeurceramsoc_2017_10_058
crossref_primary_10_3390_ma12142238
crossref_primary_10_1111_jace_19400
crossref_primary_10_1016_j_surfcoat_2022_128259
crossref_primary_10_1016_j_jeurceramsoc_2023_09_012
crossref_primary_10_1016_j_jmrt_2024_04_258
crossref_primary_10_3390_coatings8090311
crossref_primary_10_1016_j_ceramint_2022_05_142
crossref_primary_10_1016_j_scriptamat_2018_04_022
crossref_primary_10_1016_j_surfcoat_2019_05_063
Cites_doi 10.1016/S1359-6454(00)00171-3
10.1111/j.1151-2916.2003.tb03357.x
10.1016/0040-6090(89)90648-2
10.1111/jace.12868
10.1007/BF02646310
10.1016/j.actamat.2012.09.079
10.1016/S0257-8972(00)00562-4
10.1111/j.1151-2916.2001.tb00962.x
10.1111/j.1151-2916.2002.tb00574.x
10.1016/S0257-8972(98)00667-7
10.1111/j.1551-2916.2009.03281.x
10.1016/0040-6090(91)90114-D
10.1111/j.1151-2916.1982.tb10357.x
10.1126/science.1068609
10.1111/j.1151-2916.2003.tb03580.x
10.1016/S0257-8972(98)00669-0
10.1016/0257-8972(91)90151-L
10.1016/j.jeurceramsoc.2004.11.007
10.1111/j.1551-2916.2005.00912.x
10.1007/BF00554025
10.1016/j.jeurceramsoc.2004.01.009
10.1016/0257-8972(93)90202-Y
10.2320/matertrans.46.1775
10.1016/j.ceramint.2014.05.068
10.1016/j.actamat.2008.10.058
10.1007/s11666-007-9079-7
10.1038/scientificamerican0988-112
10.1111/j.1551-2916.2012.05451.x
ContentType Journal Article
Copyright 2017 The American Ceramic Society
2017 American Ceramic Society
Copyright_xml – notice: 2017 The American Ceramic Society
– notice: 2017 American Ceramic Society
DBID AAYXX
CITATION
7QQ
7SR
8FD
JG9
DOI 10.1111/jace.14713
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
EISSN 1551-2916
EndPage 1830
ExternalDocumentID 10_1111_jace_14713
JACE14713
Genre article
GrantInformation_xml – fundername: The National Program for Support of Top‐notch Young Professionalstas.
– fundername: The National Science Foundation of China
  funderid: 51671159
– fundername: National Basic Research Program
  funderid: 2013CB035701
– fundername: The Fundamental Research Funds for the Central Universities
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QQ
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c3013-3fdb28344841a016e494c4893d4cb78f5453417e16a1353c6cb6ca0f031779e13
IEDL.DBID DR2
ISSN 0002-7820
IngestDate Fri Jul 25 19:30:52 EDT 2025
Tue Jul 01 01:35:31 EDT 2025
Thu Apr 24 23:04:52 EDT 2025
Wed Jan 22 16:22:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3013-3fdb28344841a016e494c4893d4cb78f5453417e16a1353c6cb6ca0f031779e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1895882585
PQPubID 41752
PageCount 11
ParticipantIDs proquest_journals_1895882585
crossref_citationtrail_10_1111_jace_14713
crossref_primary_10_1111_jace_14713
wiley_primary_10_1111_jace_14713_JACE14713
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2017
2017-05-00
20170501
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: May 2017
PublicationDecade 2010
PublicationPlace Columbus
PublicationPlace_xml – name: Columbus
PublicationTitle Journal of the American Ceramic Society
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 89
2004; 85
2002; 296
2000; 48
1993; 61
2013; 61
1997; 6
2001; 84
2005; 46
2005; 25
2007; 16
2009; 57
1991; 201
1991; 46
1984; 112
2000; 127
1982; 65
2013; 96
2006; 26
1998; 108
1989; 172
2009; 9
1992; 27
2014; 8
2003; 86
1988; 259
2014; 97
e_1_2_6_10_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
Mcpherson R (e_1_2_6_8_1) 1984; 112
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 27
  start-page: 611
  year: 1992
  end-page: 615
  article-title: Phase composition and properties of plasma‐sprayed zirconia thermal barrier coatings
  publication-title: J Mater Sci
– volume: 84
  start-page: 2086
  year: 2001
  end-page: 2090
  article-title: Thermal stability of Lanthanum Zirconate plasma‐sprayed coating
  publication-title: J Am Ceram Soc
– volume: 61
  start-page: 52
  year: 1993
  end-page: 59
  article-title: Microstructural characterization of plasma‐sprayed zirconia thermal barrier coatings by X‐ray‐diffraction full pattern‐analysis
  publication-title: Surf Coat Technol
– volume: 46
  start-page: 1775
  year: 2005
  end-page: 1778
  article-title: Effects of heat treatment on microstructures and physical properties of segmented thermal barrier coatings
  publication-title: Mater Trans
– volume: 86
  start-page: 1906
  year: 2003
  end-page: 1910
  article-title: Fractal perimeters of polishing‐induced pull‐outs present on polished cross sections of plasma‐sprayed Yttria‐stabilized Zirconia coatings
  publication-title: J Am Ceram Soc
– volume: 26
  start-page: 247
  year: 2006
  end-page: 251
  article-title: New double‐ceramic‐layer thermal barrier coatings based on zirconia–rare earth composite oxides
  publication-title: J Eur Ceram Soc
– volume: 65
  start-page: 175
  year: 1982
  end-page: 176
  article-title: A simple method for determining elastic‐modulus‐to‐hardness ratios using knoop indentation measurements
  publication-title: J Am Ceram Soc
– volume: 96
  start-page: 290
  year: 2013
  end-page: 298
  article-title: Phase evolution upon aging of air‐plasma sprayed t’‐Zirconia coatings: I—Synchrotron X‐ray diffraction
  publication-title: J Am Ceram Soc
– volume: 172
  start-page: 185
  year: 1989
  end-page: 196
  article-title: Thermal cyclic response of yttria‐stabilized zirconia/CoNiCrAlY thermal barrier coatings
  publication-title: Thin Solid Films
– volume: 86
  start-page: 676
  year: 2003
  end-page: 685
  article-title: Alumina Grown during deposition of thermal barrier coatings on NiCrAlY
  publication-title: J Am Ceram Soc
– volume: 259
  start-page: 837
  year: 1988
  end-page: 844
  article-title: Plasma‐sprayed coatings
  publication-title: Sci Am
– volume: 89
  start-page: 1432
  year: 2009
  end-page: 1439
  article-title: Microstructures and properties of plasma‐sprayed segmented thermal barrier coatings
  publication-title: J Am Ceram Soc
– volume: 8
  start-page: 13453
  year: 2014
  end-page: 13459
  article-title: Thermal and mechanical properties of nano‐YSZ‐Alumina functionally graded coatings deposited by nano‐agglomerated powder plasma spraying
  publication-title: Ceram Int
– volume: 57
  start-page: 993
  year: 2009
  end-page: 1003
  article-title: A sintering model for plasma‐sprayed zirconia thermal barrier coatings. Part II: coatings bonded to a rigid substrate
  publication-title: Acta Mater
– volume: 85
  start-page: 3031
  year: 2004
  end-page: 3035
  article-title: Low‐thermal‐conductivity rare‐earth zirconates for potential thermal‐barrier‐coating applications
  publication-title: J Am Ceram Soc
– volume: 201
  start-page: 241
  year: 1991
  end-page: 252
  article-title: Quantitative characterization of the structure of plasma‐sprayed Al O coating by using copper electroplating
  publication-title: Thin Solid Films
– volume: 9
  start-page: 2751
  year: 2009
  end-page: 2759
  article-title: Zirconium aluminum carbides: new precursors for synthesizing ZrO ‐Al O composites
  publication-title: J Am Ceram Soc
– volume: 25
  start-page: 393
  year: 2005
  end-page: 400
  article-title: Studies of the sintering kinetics of thick thermal barrier coatings by thermal diffusivity measurements
  publication-title: J Eur Ceram Soc
– volume: 112
  start-page: 89
  year: 1984
  end-page: 95
  article-title: A model for the thermal‐conductivity of plasma‐sprayed ceramic coatings
  publication-title: J Biol Chem
– volume: 97
  start-page: 1226
  year: 2014
  end-page: 1232
  article-title: Effect of TGO thickness on thermal cyclic lifetime and failure mode of plasma‐sprayed TBCs
  publication-title: J Am Ceram Soc
– volume: 16
  start-page: 804
  year: 2007
  end-page: 808
  article-title: Properties and Performance of High‐Purity Thermal Barrier Coatings
  publication-title: J Therm Spray Technol
– volume: 6
  start-page: 35
  year: 1997
  end-page: 42
  article-title: Thermal barrier coatings for aircraft engines: history and directions
  publication-title: J Therm Spray Technol
– volume: 127
  start-page: 120
  year: 2000
  end-page: 129
  article-title: Phase composition and its changes during annealing of plasma‐sprayed YSZ
  publication-title: Surf Coat Technol
– volume: 108
  start-page: 114
  year: 1998
  end-page: 120
  article-title: Sintering and creep behavior of plasma‐sprayed zirconia‐ and hafnia‐based thermal barrier coatings
  publication-title: Surf Coat Technol
– volume: 61
  start-page: 579
  year: 2013
  end-page: 588
  article-title: A methodology, based on sintering‐induced stiffening, for prediction of the spallation lifetime of plasma‐sprayed coatings
  publication-title: Acta Mater
– volume: 46
  start-page: 75
  year: 1991
  end-page: 90
  article-title: Phase stability of zirconia‐based thermal barrier coatings part I. Zirconia‐yttria alloys
  publication-title: Surf Coat Technol
– volume: 48
  start-page: 3963
  year: 2000
  end-page: 3976
  article-title: Failure mechanisms associated with the thermally grown oxide in plasma‐sprayed thermal barrier coatings
  publication-title: Acta Mater
– volume: 296
  start-page: 280
  year: 2002
  end-page: 284
  article-title: Thermal barrier coatings for gas‐turbine engine applications
  publication-title: Science
– volume: 108
  start-page: 73
  year: 1998
  end-page: 79
  article-title: Progress in coatings for gas turbine airfoils
  publication-title: Surf Coat Technol
– ident: e_1_2_6_10_1
  doi: 10.1016/S1359-6454(00)00171-3
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1151-2916.2003.tb03357.x
– ident: e_1_2_6_22_1
  doi: 10.1016/0040-6090(89)90648-2
– ident: e_1_2_6_9_1
  doi: 10.1111/jace.12868
– ident: e_1_2_6_3_1
  doi: 10.1007/BF02646310
– ident: e_1_2_6_16_1
  doi: 10.1016/j.actamat.2012.09.079
– ident: e_1_2_6_12_1
  doi: 10.1016/S0257-8972(00)00562-4
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1151-2916.2001.tb00962.x
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1151-2916.2002.tb00574.x
– ident: e_1_2_6_5_1
  doi: 10.1016/S0257-8972(98)00667-7
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1551-2916.2009.03281.x
– volume: 112
  start-page: 89
  year: 1984
  ident: e_1_2_6_8_1
  article-title: A model for the thermal‐conductivity of plasma‐sprayed ceramic coatings
  publication-title: J Biol Chem
– ident: e_1_2_6_24_1
  doi: 10.1016/0040-6090(91)90114-D
– ident: e_1_2_6_29_1
  doi: 10.1111/j.1151-2916.1982.tb10357.x
– ident: e_1_2_6_2_1
  doi: 10.1126/science.1068609
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1151-2916.2003.tb03580.x
– ident: e_1_2_6_14_1
  doi: 10.1016/S0257-8972(98)00669-0
– ident: e_1_2_6_20_1
  doi: 10.1016/0257-8972(91)90151-L
– ident: e_1_2_6_25_1
  doi: 10.1016/j.jeurceramsoc.2004.11.007
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1551-2916.2005.00912.x
– ident: e_1_2_6_19_1
  doi: 10.1007/BF00554025
– ident: e_1_2_6_17_1
  doi: 10.1016/j.jeurceramsoc.2004.01.009
– ident: e_1_2_6_18_1
  doi: 10.1016/0257-8972(93)90202-Y
– ident: e_1_2_6_15_1
  doi: 10.2320/matertrans.46.1775
– ident: e_1_2_6_23_1
  doi: 10.1016/j.ceramint.2014.05.068
– ident: e_1_2_6_27_1
  doi: 10.1016/j.actamat.2008.10.058
– ident: e_1_2_6_21_1
  doi: 10.1007/s11666-007-9079-7
– ident: e_1_2_6_30_1
  doi: 10.1038/scientificamerican0988-112
– ident: e_1_2_6_13_1
  doi: 10.1111/j.1551-2916.2012.05451.x
SSID ssj0001984
Score 2.5244467
Snippet Lifetime is crucial to the application of advanced thermal barrier coatings (TBCs), and proper lifetime evaluation methods should be developed to predict the...
Lifetime is crucial to the application of advanced thermal barrier coatings ( TBC s), and proper lifetime evaluation methods should be developed to predict the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1820
SubjectTerms Accelerated tests
Coatings
Cyclic testing
Delamination
Failure mechanisms
Failure modes
High temperature
layered ceramics
Microhardness
Modulus of elasticity
Multilayers
Phase transitions
Protective coatings
Service life assessment
sinter/sintering
Sintering
Surface temperature
Thermal barrier coatings
thermal barrier coatings (TBC)
thermal shock/thermal shock resistance
Thickness
Yttria-stabilized zirconia
Title Sintering‐induced delamination of thermal barrier coatings by gradient thermal cyclic test
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjace.14713
https://www.proquest.com/docview/1895882585
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7Ekx58i9UqC3pRiDTJNtuAl1KUIujBFx6UsDvZiFhbadJDPfkT_I3-Emc2j1YRQW8JmQ3Jzk7mm_DtN4ztNQGTIGjtxAANhyTNHeUa4yQx5nLZDGTD7ls7Ow-61-L0tnk7w47KvTC5PkT1w40iw36vKcCVTqeDXIHBOJe2ZS2RtQgRXUy0o7CaFiX2JVG4QpvU0niqoV-z0QRiTgNVm2lOFtl9-Yw5weTpcJTpQ3j9Jt_435dYYgsFBOXtfM0ssxnTX2HzU8KEeHbzmI5ym3SV3V2SqARd-Xh7xxoeV0PMSV2SaDTkWD5IOAHJZxyi1ZCa4HEYKGJUp1yP-cPQEsuyygjG0HsEjjA3W2PXJ8dXna5TdGVwwKdWEH4Sa4-6c7SEqxAwGhEKIAmbWICWrQQhGWZGadxAUU8NCEAHoBoJfj2kDI3rr7PZ_qBvNhhXftjwjFLSC3yRqEDHoZaIX2TLSCE8UWP7pXciKCTLqXNGL6pKF5y_yM5fje1Wti-5UMePVvXSyVERrGnktsImFhpYONXYgfXWL3eITtudY3u0-RfjLTbnESCwVMk6m82GI7ONcCbTO3bZfgIZxPBX
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5ED-rBt1ituqAXhUiTbLPNsfigPg--8CCE3clGitpKkx705E_wN_pLnNmksYoIekvIbCA7O5lvltnvY2yzDpgEQWsnBqg5RGnuKNcYJ4kxl8t6IGv23NrpWdC6Ekc39ZuiN4fOwuT8EOWGG0WG_V9TgNOG9HCUKzAY6JI0a8dI0puo8_fOP9mjsJ4WA_RLtHAFO6lt5CnHfs1HnyBzGKraXHMwnQuqppaikFpM7nf6md6Bl28Ejv_-jBk2VaBQ3syXzSwbMZ05NjnETYh31-20n9uk8-z2gngl6Mn76xuW8bggYk4Ek9RJQ77l3YQTlnzEIVr1SAePQ1dRU3XK9TO_69nesqw0gmd4aANHpJstsKuD_cvdllMIMzjgkxqEn8TaI4GOhnAVYkYjQgHEYhML0LKRICrD5CiNGyiS1YAAdACqluAPRMrQuP4iG-10O2aJceWHNc8oJb3AF4kKdBxqiRBGNowUwhMVtjVwTwQFazmJZzxEZfWC8xfZ-auwjdL2Kefq-NGqOvByVMRrGrmNsI61BtZOFbZt3fXLG6Kj5u6-vVr-i_E6G29dnp5EJ4dnxytswiN8YDsnq2w06_XNKqKbTK_ZNfwBIAL0cw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB9EQdqHVm1Lz151QV8qRPKxl71AXw718BuxVXxoCbuTTZHqndzlHvSpf4J_o39JZzYfXkUK7VtCZkOys5P5TZj9_QDWO0hJEI3xMkTfY0pzTwfWenlGuVx1YuW7fWtHx_Humdy_6FzMwOd6L0zJD9H8cOPIcN9rDvCbLJ8Oco2W4lyxZO2cjP2EhRu2Tx_Jo6icljX4ZVa4ipzU9fE0Y_9MR48YcxqpulTTfw3f64csO0x-bk4Ks4l3T_gb__ctFuBVhUFFr1w0izBjB0vwcoqZkM7OL8eT0mb8Br59YVYJvvLw656KeFoOmWB6Se6jYc-KYS4YSV7TEKNHrIIncKi5pXoszK34MXKdZUVjhLd4dYmCcG7xFs76O1-3dr1KlsHDiLUgojwzIctzdGWgCTFamUhkDptMolHdnDAZpUZlg1izqAbGaGLUfk6fD6USG0TvYHYwHNj3IHSU-KHVWoVxJHMdmywxigCM6lolZShb8Kn2TooVZzlLZ1ylTe1C85e6-WvBWmN7UzJ1PGvVrp2cVtE6ToNu0qFKgyqnFmw4b_3lDul-b2vHHS3_i_EqzJ9s99PDveODD_AiZHDg2ibbMFuMJvYjQZvCrLgV_BtQs_Mi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sintering%E2%80%90induced+delamination+of+thermal+barrier+coatings+by+gradient+thermal+cyclic+test&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Cheng%2C+Bo&rft.au=Zhang%2C+Yu%E2%80%90Ming&rft.au=Yang%2C+Ning&rft.au=Zhang%2C+Meng&rft.date=2017-05-01&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=100&rft.issue=5&rft.spage=1820&rft.epage=1830&rft_id=info:doi/10.1111%2Fjace.14713&rft.externalDBID=10.1111%252Fjace.14713&rft.externalDocID=JACE14713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon