Sintering‐induced delamination of thermal barrier coatings by gradient thermal cyclic test
Lifetime is crucial to the application of advanced thermal barrier coatings (TBCs), and proper lifetime evaluation methods should be developed to predict the service lifetime of TBCs precisely and efficiently. In this study, plasma‐sprayed YSZ TBCs were subjected to gradient thermal cyclic tests und...
Saved in:
Published in | Journal of the American Ceramic Society Vol. 100; no. 5; pp. 1820 - 1830 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Columbus
Wiley Subscription Services, Inc
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lifetime is crucial to the application of advanced thermal barrier coatings (TBCs), and proper lifetime evaluation methods should be developed to predict the service lifetime of TBCs precisely and efficiently. In this study, plasma‐sprayed YSZ TBCs were subjected to gradient thermal cyclic tests under different surface temperatures, with the aim of elucidating the correlation between the coating surface temperature and the thermal cyclic lifetime. Results showed that the thermal cyclic lifetime of TBCs decreased with the increasing of surface temperatures. However, the failure modes of these TBCs subjected to thermal cyclic tests were irrespective of different surface/BC temperatures, that is, sintering‐induced delamination of the top coat. The thickness of thermally grown oxide (TGO) was significantly less than the critical TGO thickness to result in the failure of TBCs through the delamination of top coat. There was no phase transformation of the top coat after failure. In contrast, in the case concerning the top coat surface of the failure specimens, the elastic modulus and microhardness increased to a comparable level due to sintering despite of the various thermal cyclic conditions. Consequently, it is conclusive that the failure of TBCs subjected to gradient thermal cyclic test was primarily induced by sintering during high‐temperature exposure. A delamination model with multilayer splats was developed to assist in understanding the failure mechanism of TBCs through sintering‐induced delamination of the top coat. Based on the above‐described results, this study should aid in facilitating the lifetime evaluation of the TBCs, which are on active service at relatively lower temperatures, by an accelerated thermal cyclic test at higher temperatures in laboratory conditions. |
---|---|
AbstractList | Lifetime is crucial to the application of advanced thermal barrier coatings (
TBC
s), and proper lifetime evaluation methods should be developed to predict the service lifetime of
TBC
s precisely and efficiently. In this study, plasma‐sprayed
YSZ TBC
s were subjected to gradient thermal cyclic tests under different surface temperatures, with the aim of elucidating the correlation between the coating surface temperature and the thermal cyclic lifetime. Results showed that the thermal cyclic lifetime of
TBC
s decreased with the increasing of surface temperatures. However, the failure modes of these
TBC
s subjected to thermal cyclic tests were irrespective of different surface/BC temperatures, that is, sintering‐induced delamination of the top coat. The thickness of thermally grown oxide (
TGO
) was significantly less than the critical
TGO
thickness to result in the failure of
TBC
s through the delamination of top coat. There was no phase transformation of the top coat after failure. In contrast, in the case concerning the top coat surface of the failure specimens, the elastic modulus and microhardness increased to a comparable level due to sintering despite of the various thermal cyclic conditions. Consequently, it is conclusive that the failure of
TBC
s subjected to gradient thermal cyclic test was primarily induced by sintering during high‐temperature exposure. A delamination model with multilayer splats was developed to assist in understanding the failure mechanism of
TBC
s through sintering‐induced delamination of the top coat. Based on the above‐described results, this study should aid in facilitating the lifetime evaluation of the
TBC
s, which are on active service at relatively lower temperatures, by an accelerated thermal cyclic test at higher temperatures in laboratory conditions. Lifetime is crucial to the application of advanced thermal barrier coatings (TBCs), and proper lifetime evaluation methods should be developed to predict the service lifetime of TBCs precisely and efficiently. In this study, plasma-sprayed YSZ TBCs were subjected to gradient thermal cyclic tests under different surface temperatures, with the aim of elucidating the correlation between the coating surface temperature and the thermal cyclic lifetime. Results showed that the thermal cyclic lifetime of TBCs decreased with the increasing of surface temperatures. However, the failure modes of these TBCs subjected to thermal cyclic tests were irrespective of different surface/BC temperatures, that is, sintering-induced delamination of the top coat. The thickness of thermally grown oxide (TGO) was significantly less than the critical TGO thickness to result in the failure of TBCs through the delamination of top coat. There was no phase transformation of the top coat after failure. In contrast, in the case concerning the top coat surface of the failure specimens, the elastic modulus and microhardness increased to a comparable level due to sintering despite of the various thermal cyclic conditions. Consequently, it is conclusive that the failure of TBCs subjected to gradient thermal cyclic test was primarily induced by sintering during high-temperature exposure. A delamination model with multilayer splats was developed to assist in understanding the failure mechanism of TBCs through sintering-induced delamination of the top coat. Based on the above-described results, this study should aid in facilitating the lifetime evaluation of the TBCs, which are on active service at relatively lower temperatures, by an accelerated thermal cyclic test at higher temperatures in laboratory conditions. |
Author | Chen, Lin Cheng, Bo Yang, Guan‐Jun Li, Cheng‐Xin Zhang, Meng Zhang, Yu‐Ming Li, Chang‐Jiu Yang, Ning |
Author_xml | – sequence: 1 givenname: Bo surname: Cheng fullname: Cheng, Bo organization: Xi'an Jiaotong University – sequence: 2 givenname: Yu‐Ming surname: Zhang fullname: Zhang, Yu‐Ming organization: Xi'an Jiaotong University – sequence: 3 givenname: Ning surname: Yang fullname: Yang, Ning organization: Xi'an Jiaotong University – sequence: 4 givenname: Meng surname: Zhang fullname: Zhang, Meng organization: Xi'an Jiaotong University – sequence: 5 givenname: Lin surname: Chen fullname: Chen, Lin organization: Xi'an Jiaotong University – sequence: 6 givenname: Guan‐Jun surname: Yang fullname: Yang, Guan‐Jun email: ygj@mail.xjtu.edu.cn organization: Xi'an Jiaotong University – sequence: 7 givenname: Cheng‐Xin surname: Li fullname: Li, Cheng‐Xin organization: Xi'an Jiaotong University – sequence: 8 givenname: Chang‐Jiu surname: Li fullname: Li, Chang‐Jiu organization: Xi'an Jiaotong University |
BookMark | eNp9kMFKAzEQhoNUsK1efIKAN2FrZpPsZo-l1KoUPKg3IWSz2ZqyzdZsiuzNR_AZfRK3XfEg4lyGYb5_fuYfoYGrnUHoHMgEurpaK20mwFKgR2gInEMUZ5AM0JAQEkepiMkJGjXNuhshE2yInh-sC8Zbt_p8_7Cu2GlT4MJUamOdCrZ2uC5xeDF-oyqcK--t8VjX3cqtGpy3eOVVYY0LP5BudWU1DqYJp-i4VFVjzr77GD1dzx9nN9HyfnE7my4jTQnQiJZFHgvKmGCgCCSGZUwzkdGC6TwVJWecMkgNJAoopzrReaIVKQmFNM0M0DG66O9uff2664zlut5511lKEBkXIuaCdxTpKe3rpvGmlNqGw4_BK1tJIHKfodxnKA8ZdpLLX5Kttxvl279h6OE3W5n2H1LeTWfzXvMFewKEyQ |
CitedBy_id | crossref_primary_10_1016_j_surfcoat_2020_126304 crossref_primary_10_3390_coatings8070245 crossref_primary_10_1016_j_surfcoat_2021_127910 crossref_primary_10_3390_coatings9040241 crossref_primary_10_1016_j_cej_2025_159399 crossref_primary_10_1016_j_jeurceramsoc_2018_08_033 crossref_primary_10_1016_j_matchar_2019_110072 crossref_primary_10_1016_j_surfcoat_2022_128923 crossref_primary_10_1016_j_jmst_2020_04_076 crossref_primary_10_1016_j_matdes_2019_107615 crossref_primary_10_3390_coatings12081083 crossref_primary_10_1016_j_apsusc_2020_148847 crossref_primary_10_1016_j_ceramint_2020_10_093 crossref_primary_10_1007_s11665_020_04822_w crossref_primary_10_1016_j_ceramint_2025_01_375 crossref_primary_10_1016_j_jallcom_2023_172832 crossref_primary_10_26599_JAC_2024_9221002 crossref_primary_10_1016_j_ceramint_2024_09_316 crossref_primary_10_1016_j_surfcoat_2019_125030 crossref_primary_10_1007_s40145_017_0252_2 crossref_primary_10_1016_j_surfcoat_2021_127768 crossref_primary_10_1016_j_ceramint_2019_11_168 crossref_primary_10_1016_j_surfcoat_2023_129748 crossref_primary_10_1007_s11837_021_04867_9 crossref_primary_10_1016_j_matchemphys_2024_129729 crossref_primary_10_1007_s11666_017_0579_9 crossref_primary_10_1016_j_ceramint_2022_04_044 crossref_primary_10_1111_jace_15501 crossref_primary_10_3390_coatings11101214 crossref_primary_10_3390_coatings13091623 crossref_primary_10_1016_j_mtcomm_2023_107514 crossref_primary_10_1016_j_surfcoat_2018_01_003 crossref_primary_10_1007_s12598_020_01393_6 crossref_primary_10_1016_j_jmatprotec_2018_09_016 crossref_primary_10_15407_fm31_02_178 crossref_primary_10_1016_j_ceramint_2021_05_189 crossref_primary_10_1016_j_ceramint_2024_05_166 crossref_primary_10_1016_j_surfcoat_2022_129162 crossref_primary_10_1016_j_ijfatigue_2024_108670 crossref_primary_10_1016_j_matdes_2022_111044 crossref_primary_10_1016_j_ceramint_2019_07_235 crossref_primary_10_1016_j_ceramint_2019_09_226 crossref_primary_10_1007_s11666_018_0754_7 crossref_primary_10_3390_coatings11121474 crossref_primary_10_3390_coatings12081069 crossref_primary_10_1016_j_engfailanal_2022_106335 crossref_primary_10_1007_s12598_019_01351_x crossref_primary_10_1016_j_ceramint_2022_10_222 crossref_primary_10_3390_coatings13010156 crossref_primary_10_1016_j_ceramint_2019_08_117 crossref_primary_10_1016_j_tsf_2020_138081 crossref_primary_10_1016_j_jeurceramsoc_2019_11_074 crossref_primary_10_3390_cryst11030287 crossref_primary_10_1016_j_surfcoat_2023_130278 crossref_primary_10_1016_j_jeurceramsoc_2023_10_046 crossref_primary_10_1016_j_jeurceramsoc_2019_12_039 crossref_primary_10_3390_coatings11091051 crossref_primary_10_1016_j_ceramint_2020_09_298 crossref_primary_10_1063_5_0083087 crossref_primary_10_3390_coatings11070755 crossref_primary_10_3390_coatings8050187 crossref_primary_10_3390_coatings9020064 crossref_primary_10_1016_j_jmst_2023_07_078 crossref_primary_10_1016_j_jeurceramsoc_2023_01_016 crossref_primary_10_1016_j_jeurceramsoc_2024_117089 crossref_primary_10_3390_coatings11010086 crossref_primary_10_1016_j_ceramint_2018_05_051 crossref_primary_10_1016_j_jeurceramsoc_2023_03_005 crossref_primary_10_1088_1361_6463_ab8de9 crossref_primary_10_1016_j_surfcoat_2019_01_117 crossref_primary_10_1016_j_surfcoat_2023_129928 crossref_primary_10_1016_j_jeurceramsoc_2017_10_058 crossref_primary_10_3390_ma12142238 crossref_primary_10_1111_jace_19400 crossref_primary_10_1016_j_surfcoat_2022_128259 crossref_primary_10_1016_j_jeurceramsoc_2023_09_012 crossref_primary_10_1016_j_jmrt_2024_04_258 crossref_primary_10_3390_coatings8090311 crossref_primary_10_1016_j_ceramint_2022_05_142 crossref_primary_10_1016_j_scriptamat_2018_04_022 crossref_primary_10_1016_j_surfcoat_2019_05_063 |
Cites_doi | 10.1016/S1359-6454(00)00171-3 10.1111/j.1151-2916.2003.tb03357.x 10.1016/0040-6090(89)90648-2 10.1111/jace.12868 10.1007/BF02646310 10.1016/j.actamat.2012.09.079 10.1016/S0257-8972(00)00562-4 10.1111/j.1151-2916.2001.tb00962.x 10.1111/j.1151-2916.2002.tb00574.x 10.1016/S0257-8972(98)00667-7 10.1111/j.1551-2916.2009.03281.x 10.1016/0040-6090(91)90114-D 10.1111/j.1151-2916.1982.tb10357.x 10.1126/science.1068609 10.1111/j.1151-2916.2003.tb03580.x 10.1016/S0257-8972(98)00669-0 10.1016/0257-8972(91)90151-L 10.1016/j.jeurceramsoc.2004.11.007 10.1111/j.1551-2916.2005.00912.x 10.1007/BF00554025 10.1016/j.jeurceramsoc.2004.01.009 10.1016/0257-8972(93)90202-Y 10.2320/matertrans.46.1775 10.1016/j.ceramint.2014.05.068 10.1016/j.actamat.2008.10.058 10.1007/s11666-007-9079-7 10.1038/scientificamerican0988-112 10.1111/j.1551-2916.2012.05451.x |
ContentType | Journal Article |
Copyright | 2017 The American Ceramic Society 2017 American Ceramic Society |
Copyright_xml | – notice: 2017 The American Ceramic Society – notice: 2017 American Ceramic Society |
DBID | AAYXX CITATION 7QQ 7SR 8FD JG9 |
DOI | 10.1111/jace.14713 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts Engineering |
EISSN | 1551-2916 |
EndPage | 1830 |
ExternalDocumentID | 10_1111_jace_14713 JACE14713 |
Genre | article |
GrantInformation_xml | – fundername: The National Program for Support of Top‐notch Young Professionalstas. – fundername: The National Science Foundation of China funderid: 51671159 – fundername: National Basic Research Program funderid: 2013CB035701 – fundername: The Fundamental Research Funds for the Central Universities |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29L 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEFU ABEML ABJNI ABPVW ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACKIV ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBO EBS EDO EJD EMK ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 I-F IRD ITF ITG ITH IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QF4 QM1 QN7 QO4 R.K RAX RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TAE TH9 TN5 TUS UB1 UPT V8K VH1 W8V W99 WBKPD WFSAM WH7 WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 YQT ZCG ZE2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX ADMLS ADXHL AEYWJ AGHNM AGQPQ AGYGG CITATION 7QQ 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c3013-3fdb28344841a016e494c4893d4cb78f5453417e16a1353c6cb6ca0f031779e13 |
IEDL.DBID | DR2 |
ISSN | 0002-7820 |
IngestDate | Fri Jul 25 19:30:52 EDT 2025 Tue Jul 01 01:35:31 EDT 2025 Thu Apr 24 23:04:52 EDT 2025 Wed Jan 22 16:22:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3013-3fdb28344841a016e494c4893d4cb78f5453417e16a1353c6cb6ca0f031779e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1895882585 |
PQPubID | 41752 |
PageCount | 11 |
ParticipantIDs | proquest_journals_1895882585 crossref_citationtrail_10_1111_jace_14713 crossref_primary_10_1111_jace_14713 wiley_primary_10_1111_jace_14713_JACE14713 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2017 2017-05-00 20170501 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: May 2017 |
PublicationDecade | 2010 |
PublicationPlace | Columbus |
PublicationPlace_xml | – name: Columbus |
PublicationTitle | Journal of the American Ceramic Society |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009; 89 2004; 85 2002; 296 2000; 48 1993; 61 2013; 61 1997; 6 2001; 84 2005; 46 2005; 25 2007; 16 2009; 57 1991; 201 1991; 46 1984; 112 2000; 127 1982; 65 2013; 96 2006; 26 1998; 108 1989; 172 2009; 9 1992; 27 2014; 8 2003; 86 1988; 259 2014; 97 e_1_2_6_10_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 Mcpherson R (e_1_2_6_8_1) 1984; 112 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 27 start-page: 611 year: 1992 end-page: 615 article-title: Phase composition and properties of plasma‐sprayed zirconia thermal barrier coatings publication-title: J Mater Sci – volume: 84 start-page: 2086 year: 2001 end-page: 2090 article-title: Thermal stability of Lanthanum Zirconate plasma‐sprayed coating publication-title: J Am Ceram Soc – volume: 61 start-page: 52 year: 1993 end-page: 59 article-title: Microstructural characterization of plasma‐sprayed zirconia thermal barrier coatings by X‐ray‐diffraction full pattern‐analysis publication-title: Surf Coat Technol – volume: 46 start-page: 1775 year: 2005 end-page: 1778 article-title: Effects of heat treatment on microstructures and physical properties of segmented thermal barrier coatings publication-title: Mater Trans – volume: 86 start-page: 1906 year: 2003 end-page: 1910 article-title: Fractal perimeters of polishing‐induced pull‐outs present on polished cross sections of plasma‐sprayed Yttria‐stabilized Zirconia coatings publication-title: J Am Ceram Soc – volume: 26 start-page: 247 year: 2006 end-page: 251 article-title: New double‐ceramic‐layer thermal barrier coatings based on zirconia–rare earth composite oxides publication-title: J Eur Ceram Soc – volume: 65 start-page: 175 year: 1982 end-page: 176 article-title: A simple method for determining elastic‐modulus‐to‐hardness ratios using knoop indentation measurements publication-title: J Am Ceram Soc – volume: 96 start-page: 290 year: 2013 end-page: 298 article-title: Phase evolution upon aging of air‐plasma sprayed t’‐Zirconia coatings: I—Synchrotron X‐ray diffraction publication-title: J Am Ceram Soc – volume: 172 start-page: 185 year: 1989 end-page: 196 article-title: Thermal cyclic response of yttria‐stabilized zirconia/CoNiCrAlY thermal barrier coatings publication-title: Thin Solid Films – volume: 86 start-page: 676 year: 2003 end-page: 685 article-title: Alumina Grown during deposition of thermal barrier coatings on NiCrAlY publication-title: J Am Ceram Soc – volume: 259 start-page: 837 year: 1988 end-page: 844 article-title: Plasma‐sprayed coatings publication-title: Sci Am – volume: 89 start-page: 1432 year: 2009 end-page: 1439 article-title: Microstructures and properties of plasma‐sprayed segmented thermal barrier coatings publication-title: J Am Ceram Soc – volume: 8 start-page: 13453 year: 2014 end-page: 13459 article-title: Thermal and mechanical properties of nano‐YSZ‐Alumina functionally graded coatings deposited by nano‐agglomerated powder plasma spraying publication-title: Ceram Int – volume: 57 start-page: 993 year: 2009 end-page: 1003 article-title: A sintering model for plasma‐sprayed zirconia thermal barrier coatings. Part II: coatings bonded to a rigid substrate publication-title: Acta Mater – volume: 85 start-page: 3031 year: 2004 end-page: 3035 article-title: Low‐thermal‐conductivity rare‐earth zirconates for potential thermal‐barrier‐coating applications publication-title: J Am Ceram Soc – volume: 201 start-page: 241 year: 1991 end-page: 252 article-title: Quantitative characterization of the structure of plasma‐sprayed Al O coating by using copper electroplating publication-title: Thin Solid Films – volume: 9 start-page: 2751 year: 2009 end-page: 2759 article-title: Zirconium aluminum carbides: new precursors for synthesizing ZrO ‐Al O composites publication-title: J Am Ceram Soc – volume: 25 start-page: 393 year: 2005 end-page: 400 article-title: Studies of the sintering kinetics of thick thermal barrier coatings by thermal diffusivity measurements publication-title: J Eur Ceram Soc – volume: 112 start-page: 89 year: 1984 end-page: 95 article-title: A model for the thermal‐conductivity of plasma‐sprayed ceramic coatings publication-title: J Biol Chem – volume: 97 start-page: 1226 year: 2014 end-page: 1232 article-title: Effect of TGO thickness on thermal cyclic lifetime and failure mode of plasma‐sprayed TBCs publication-title: J Am Ceram Soc – volume: 16 start-page: 804 year: 2007 end-page: 808 article-title: Properties and Performance of High‐Purity Thermal Barrier Coatings publication-title: J Therm Spray Technol – volume: 6 start-page: 35 year: 1997 end-page: 42 article-title: Thermal barrier coatings for aircraft engines: history and directions publication-title: J Therm Spray Technol – volume: 127 start-page: 120 year: 2000 end-page: 129 article-title: Phase composition and its changes during annealing of plasma‐sprayed YSZ publication-title: Surf Coat Technol – volume: 108 start-page: 114 year: 1998 end-page: 120 article-title: Sintering and creep behavior of plasma‐sprayed zirconia‐ and hafnia‐based thermal barrier coatings publication-title: Surf Coat Technol – volume: 61 start-page: 579 year: 2013 end-page: 588 article-title: A methodology, based on sintering‐induced stiffening, for prediction of the spallation lifetime of plasma‐sprayed coatings publication-title: Acta Mater – volume: 46 start-page: 75 year: 1991 end-page: 90 article-title: Phase stability of zirconia‐based thermal barrier coatings part I. Zirconia‐yttria alloys publication-title: Surf Coat Technol – volume: 48 start-page: 3963 year: 2000 end-page: 3976 article-title: Failure mechanisms associated with the thermally grown oxide in plasma‐sprayed thermal barrier coatings publication-title: Acta Mater – volume: 296 start-page: 280 year: 2002 end-page: 284 article-title: Thermal barrier coatings for gas‐turbine engine applications publication-title: Science – volume: 108 start-page: 73 year: 1998 end-page: 79 article-title: Progress in coatings for gas turbine airfoils publication-title: Surf Coat Technol – ident: e_1_2_6_10_1 doi: 10.1016/S1359-6454(00)00171-3 – ident: e_1_2_6_11_1 doi: 10.1111/j.1151-2916.2003.tb03357.x – ident: e_1_2_6_22_1 doi: 10.1016/0040-6090(89)90648-2 – ident: e_1_2_6_9_1 doi: 10.1111/jace.12868 – ident: e_1_2_6_3_1 doi: 10.1007/BF02646310 – ident: e_1_2_6_16_1 doi: 10.1016/j.actamat.2012.09.079 – ident: e_1_2_6_12_1 doi: 10.1016/S0257-8972(00)00562-4 – ident: e_1_2_6_6_1 doi: 10.1111/j.1151-2916.2001.tb00962.x – ident: e_1_2_6_7_1 doi: 10.1111/j.1151-2916.2002.tb00574.x – ident: e_1_2_6_5_1 doi: 10.1016/S0257-8972(98)00667-7 – ident: e_1_2_6_28_1 doi: 10.1111/j.1551-2916.2009.03281.x – volume: 112 start-page: 89 year: 1984 ident: e_1_2_6_8_1 article-title: A model for the thermal‐conductivity of plasma‐sprayed ceramic coatings publication-title: J Biol Chem – ident: e_1_2_6_24_1 doi: 10.1016/0040-6090(91)90114-D – ident: e_1_2_6_29_1 doi: 10.1111/j.1151-2916.1982.tb10357.x – ident: e_1_2_6_2_1 doi: 10.1126/science.1068609 – ident: e_1_2_6_4_1 doi: 10.1111/j.1151-2916.2003.tb03580.x – ident: e_1_2_6_14_1 doi: 10.1016/S0257-8972(98)00669-0 – ident: e_1_2_6_20_1 doi: 10.1016/0257-8972(91)90151-L – ident: e_1_2_6_25_1 doi: 10.1016/j.jeurceramsoc.2004.11.007 – ident: e_1_2_6_26_1 doi: 10.1111/j.1551-2916.2005.00912.x – ident: e_1_2_6_19_1 doi: 10.1007/BF00554025 – ident: e_1_2_6_17_1 doi: 10.1016/j.jeurceramsoc.2004.01.009 – ident: e_1_2_6_18_1 doi: 10.1016/0257-8972(93)90202-Y – ident: e_1_2_6_15_1 doi: 10.2320/matertrans.46.1775 – ident: e_1_2_6_23_1 doi: 10.1016/j.ceramint.2014.05.068 – ident: e_1_2_6_27_1 doi: 10.1016/j.actamat.2008.10.058 – ident: e_1_2_6_21_1 doi: 10.1007/s11666-007-9079-7 – ident: e_1_2_6_30_1 doi: 10.1038/scientificamerican0988-112 – ident: e_1_2_6_13_1 doi: 10.1111/j.1551-2916.2012.05451.x |
SSID | ssj0001984 |
Score | 2.5244467 |
Snippet | Lifetime is crucial to the application of advanced thermal barrier coatings (TBCs), and proper lifetime evaluation methods should be developed to predict the... Lifetime is crucial to the application of advanced thermal barrier coatings ( TBC s), and proper lifetime evaluation methods should be developed to predict the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1820 |
SubjectTerms | Accelerated tests Coatings Cyclic testing Delamination Failure mechanisms Failure modes High temperature layered ceramics Microhardness Modulus of elasticity Multilayers Phase transitions Protective coatings Service life assessment sinter/sintering Sintering Surface temperature Thermal barrier coatings thermal barrier coatings (TBC) thermal shock/thermal shock resistance Thickness Yttria-stabilized zirconia |
Title | Sintering‐induced delamination of thermal barrier coatings by gradient thermal cyclic test |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjace.14713 https://www.proquest.com/docview/1895882585 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7Ekx58i9UqC3pRiDTJNtuAl1KUIujBFx6UsDvZiFhbadJDPfkT_I3-Emc2j1YRQW8JmQ3Jzk7mm_DtN4ztNQGTIGjtxAANhyTNHeUa4yQx5nLZDGTD7ls7Ow-61-L0tnk7w47KvTC5PkT1w40iw36vKcCVTqeDXIHBOJe2ZS2RtQgRXUy0o7CaFiX2JVG4QpvU0niqoV-z0QRiTgNVm2lOFtl9-Yw5weTpcJTpQ3j9Jt_435dYYgsFBOXtfM0ssxnTX2HzU8KEeHbzmI5ym3SV3V2SqARd-Xh7xxoeV0PMSV2SaDTkWD5IOAHJZxyi1ZCa4HEYKGJUp1yP-cPQEsuyygjG0HsEjjA3W2PXJ8dXna5TdGVwwKdWEH4Sa4-6c7SEqxAwGhEKIAmbWICWrQQhGWZGadxAUU8NCEAHoBoJfj2kDI3rr7PZ_qBvNhhXftjwjFLSC3yRqEDHoZaIX2TLSCE8UWP7pXciKCTLqXNGL6pKF5y_yM5fje1Wti-5UMePVvXSyVERrGnktsImFhpYONXYgfXWL3eITtudY3u0-RfjLTbnESCwVMk6m82GI7ONcCbTO3bZfgIZxPBX |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5ED-rBt1ituqAXhUiTbLPNsfigPg--8CCE3clGitpKkx705E_wN_pLnNmksYoIekvIbCA7O5lvltnvY2yzDpgEQWsnBqg5RGnuKNcYJ4kxl8t6IGv23NrpWdC6Ekc39ZuiN4fOwuT8EOWGG0WG_V9TgNOG9HCUKzAY6JI0a8dI0puo8_fOP9mjsJ4WA_RLtHAFO6lt5CnHfs1HnyBzGKraXHMwnQuqppaikFpM7nf6md6Bl28Ejv_-jBk2VaBQ3syXzSwbMZ05NjnETYh31-20n9uk8-z2gngl6Mn76xuW8bggYk4Ek9RJQ77l3YQTlnzEIVr1SAePQ1dRU3XK9TO_69nesqw0gmd4aANHpJstsKuD_cvdllMIMzjgkxqEn8TaI4GOhnAVYkYjQgHEYhML0LKRICrD5CiNGyiS1YAAdACqluAPRMrQuP4iG-10O2aJceWHNc8oJb3AF4kKdBxqiRBGNowUwhMVtjVwTwQFazmJZzxEZfWC8xfZ-auwjdL2Kefq-NGqOvByVMRrGrmNsI61BtZOFbZt3fXLG6Kj5u6-vVr-i_E6G29dnp5EJ4dnxytswiN8YDsnq2w06_XNKqKbTK_ZNfwBIAL0cw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB9EQdqHVm1Lz151QV8qRPKxl71AXw718BuxVXxoCbuTTZHqndzlHvSpf4J_o39JZzYfXkUK7VtCZkOys5P5TZj9_QDWO0hJEI3xMkTfY0pzTwfWenlGuVx1YuW7fWtHx_Humdy_6FzMwOd6L0zJD9H8cOPIcN9rDvCbLJ8Oco2W4lyxZO2cjP2EhRu2Tx_Jo6icljX4ZVa4ipzU9fE0Y_9MR48YcxqpulTTfw3f64csO0x-bk4Ks4l3T_gb__ctFuBVhUFFr1w0izBjB0vwcoqZkM7OL8eT0mb8Br59YVYJvvLw656KeFoOmWB6Se6jYc-KYS4YSV7TEKNHrIIncKi5pXoszK34MXKdZUVjhLd4dYmCcG7xFs76O1-3dr1KlsHDiLUgojwzIctzdGWgCTFamUhkDptMolHdnDAZpUZlg1izqAbGaGLUfk6fD6USG0TvYHYwHNj3IHSU-KHVWoVxJHMdmywxigCM6lolZShb8Kn2TooVZzlLZ1ylTe1C85e6-WvBWmN7UzJ1PGvVrp2cVtE6ToNu0qFKgyqnFmw4b_3lDul-b2vHHS3_i_EqzJ9s99PDveODD_AiZHDg2ibbMFuMJvYjQZvCrLgV_BtQs_Mi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sintering%E2%80%90induced+delamination+of+thermal+barrier+coatings+by+gradient+thermal+cyclic+test&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Cheng%2C+Bo&rft.au=Zhang%2C+Yu%E2%80%90Ming&rft.au=Yang%2C+Ning&rft.au=Zhang%2C+Meng&rft.date=2017-05-01&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=100&rft.issue=5&rft.spage=1820&rft.epage=1830&rft_id=info:doi/10.1111%2Fjace.14713&rft.externalDBID=10.1111%252Fjace.14713&rft.externalDocID=JACE14713 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon |