Transforming Assessment: The Impacts and Implications of Large Language Models and Generative AI
The remarkable strides in artificial intelligence (AI), exemplified by ChatGPT, have unveiled a wealth of opportunities and challenges in assessment. Applying cutting‐edge large language models (LLMs) and generative AI to assessment holds great promise in boosting efficiency, mitigating bias, and fa...
Saved in:
Published in | Educational measurement, issues and practice Vol. 43; no. 2; pp. 16 - 29 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
Wiley Subscription Services, Inc
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The remarkable strides in artificial intelligence (AI), exemplified by ChatGPT, have unveiled a wealth of opportunities and challenges in assessment. Applying cutting‐edge large language models (LLMs) and generative AI to assessment holds great promise in boosting efficiency, mitigating bias, and facilitating customized evaluations. Conversely, these innovations raise significant concerns regarding validity, reliability, transparency, fairness, equity, and test security, necessitating careful thinking when applying them in assessments. In this article, we discuss the impacts and implications of LLMs and generative AI on critical dimensions of assessment with example use cases and call for a community effort to equip assessment professionals with the needed AI literacy to harness the potential effectively. |
---|---|
AbstractList | The remarkable strides in artificial intelligence (AI), exemplified by ChatGPT, have unveiled a wealth of opportunities and challenges in assessment. Applying cutting‐edge large language models (LLMs) and generative AI to assessment holds great promise in boosting efficiency, mitigating bias, and facilitating customized evaluations. Conversely, these innovations raise significant concerns regarding validity, reliability, transparency, fairness, equity, and test security, necessitating careful thinking when applying them in assessments. In this article, we discuss the impacts and implications of LLMs and generative AI on critical dimensions of assessment with example use cases and call for a community effort to equip assessment professionals with the needed AI literacy to harness the potential effectively. |
Author | Harris, Deborah J. Davier, Matthias Hao, Jiangang Yaneva, Victoria Davier, Alina A. Lottridge, Susan |
Author_xml | – sequence: 1 givenname: Jiangang orcidid: 0000-0003-0502-7571 surname: Hao fullname: Hao, Jiangang organization: Educational Testing Service – sequence: 2 givenname: Alina A. surname: Davier fullname: Davier, Alina A. organization: Duolingo, Inc – sequence: 3 givenname: Victoria surname: Yaneva fullname: Yaneva, Victoria organization: National Board of Medical Examiners – sequence: 4 givenname: Susan orcidid: 0000-0002-9857-3282 surname: Lottridge fullname: Lottridge, Susan organization: Cambium Assessment, Inc – sequence: 5 givenname: Matthias surname: Davier fullname: Davier, Matthias organization: Boston College – sequence: 6 givenname: Deborah J. surname: Harris fullname: Harris, Deborah J. organization: University of Iowa |
BookMark | eNp9kMFOwzAMhiM0JLbBhSeoxA2pI0nbZOU2TWNUGoLDOIcsdUanNhlJB9rbk66cEMIH27K-35b_ERoYawCha4InJMQdNNV-QijD9AwNCU-zOMlzOkBDzBMSd4MLNPJ-hzHJWM6H6G3tpPHauqYy22jmPXjfgGnvo_U7REWzl6r1kTRl19eVkm1ljY-sjlbSbSFksz3I0DzZEuqeXIIBF8BPiGbFJTrXsvZw9VPH6PVhsZ4_xqvnZTGfrWKVYELjDdMsUZLniQacEloyrrIUiNRSU7VRU5hKyEq6KbHkVGIADYwDYTwFnhNIxuim37t39uMAvhU7e3AmnBQJzgLGgi2Bwj2lnPXegRaqak8_tU5WtSBYdD6Kzkdx8jFIbn9J9q5qpDv-DZMe_qpqOP5DisVT8dJrvgHSuIZs |
CitedBy_id | crossref_primary_10_1111_emip_12662 crossref_primary_10_1016_j_caeai_2025_100370 crossref_primary_10_1111_emip_12655 crossref_primary_10_1111_emip_12623 crossref_primary_10_1002_ets2_12388 crossref_primary_10_1002_rrq_591 crossref_primary_10_1007_s10639_024_13187_9 crossref_primary_10_1016_j_compedu_2024_105070 crossref_primary_10_3389_feduc_2024_1463208 crossref_primary_10_1111_ijsa_70005 crossref_primary_10_1111_emip_12647 crossref_primary_10_1111_emip_12629 crossref_primary_10_1111_jedm_12416 crossref_primary_10_3389_frai_2024_1460651 |
Cites_doi | 10.4324/9780429329098 10.1007/978-3-319-33261-1_9 10.1007/s11336-007-9046-8 10.18653/v1/2023.bea-1.32 10.3115/v1/W15-0610 10.4324/9780203664803 10.1002/j.2333‐8504.2012.tb02307.x 10.1016/j.chb.2017.04.059 10.1093/oso/9780192845290.001.0001 10.18653/v1/2020.bea-1.20 10.18653/v1/W18-5446 10.1162/tacl_a_00310 10.1016/j.patter.2023.100779 10.1111/jedm.12350 10.1126/science.adj0998 10.1007/s11336-013-9317-5 10.3102/1076998610396899 10.1111/emip.12410 10.1002/ets2.12276 10.1007/978-3-031-36336-8_66 10.1002/j.2333‐8504.2002.tb01890.x 10.1111/jedm.12208 10.2307/1177234 10.18653/v1/2021.emnlp-main.67 10.3389/frai.2022.903077 10.1177/014662168300700306 10.46999/KIQF4328 10.1111/j.1745-3984.2003.tb01096.x 10.1177/014662168601000405 10.1111/jedm.12141 10.1109/CVPR52688.2022.01042 10.1007/s11336‐018‐9608‐y 10.1177/00131644221098021 10.18653/v1/W19-4402 10.1002/ets2.12150 10.1103/PHYSREVE.81.036104 10.1177/0013164414568716 10.1007/978-3-030-74394-9 10.1002/ets2.12215 10.1111/jedm.12129 10.18653/v1/2023.bea-1.49 10.4324/9781315884677 10.1007/978-3-030-74394-9_8 10.18653/v1/2022.acl-long.376 10.1016/j.caeai.2023.100161 10.1177/0013164416632287 10.4324/9780203803912 10.1002/ets2.12326 10.1080/15366367.2018.1436827 10.1016/j.caeai.2022.100056 10.3102/1076998621994563 10.1186/s40536-024-00199-7 |
ContentType | Journal Article |
Copyright | 2024 by the National Council on Measurement in Education. |
Copyright_xml | – notice: 2024 by the National Council on Measurement in Education. |
DBID | AAYXX CITATION AHOVV |
DOI | 10.1111/emip.12602 |
DatabaseName | CrossRef Education Research Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Education |
EISSN | 1745-3992 |
EndPage | 29 |
ExternalDocumentID | 10_1111_emip_12602 EMIP12602 |
Genre | article |
GroupedDBID | --Z -DZ -W8 -~X .3N .GA .GO .Y3 05W 0R~ 10A 186 1OB 1OC 29G 31~ 33P 4.4 50Y 50Z 51W 51Y 52M 52O 52Q 52S 52T 52U 52W 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A04 AABNI AAESR AAHQN AAHSB AAMNL AANHP AAONW AAOUF AASGY AAXRX AAYCA AAYOK AAZKR ABCQN ABCUV ABEML ABIVO ABJNI ABPPZ ABPVW ABSOO ACAHQ ACBKW ACBWZ ACCZN ACGFS ACNCT ACPOU ACRPL ACSCC ACXQS ACYXJ ADBBV ADEMA ADEOM ADIZJ ADMGS ADMHC ADNMO ADXAS AEIGN AEIMD AETEA AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFKFF AFWVQ AFZJQ AGHNM AGQPQ AHBTC AHEFC AIDBO AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BY8 CAG COF CS3 D-C D-D DCZOG DPXWK DR2 DRFUL DRMBU DRSSH EBS EDJ EJD F00 F01 FEDTE G-S G.N G50 GODZA HF~ HGLYW HVGLF HZI HZ~ IX1 J0M K48 LATKE LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSSH MSFUL MSSSH MXFUL MXSSH N04 N06 N9A NF~ NHB O66 O9- OIG P2P P2W P2Y P4C PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RWL RX1 SAMSI SUPJJ TAE TN5 TWZ UB1 UBH W8V W99 WBKPD WGMDG WH7 WHG WIH WII WOHZO WQZ WSUWO WXSBR XG1 XOL XSW YYQ YZZ ZCA ZCG ZHY ZZTAW ~IA ~WP AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION AHOVV |
ID | FETCH-LOGICAL-c3012-b6f63ca793fe0412d67c54e1afaf2cbc8e8ae5d2bd0a72a0eefe67e1674e791e3 |
IEDL.DBID | DR2 |
ISSN | 0731-1745 |
IngestDate | Wed Sep 03 07:11:20 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Tue Jul 01 01:45:55 EDT 2025 Sun Jul 06 04:45:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3012-b6f63ca793fe0412d67c54e1afaf2cbc8e8ae5d2bd0a72a0eefe67e1674e791e3 |
Notes | All authors contributed equally to this article. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0502-7571 0000-0002-9857-3282 |
PQID | 3056746126 |
PQPubID | 30860 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3056746126 crossref_citationtrail_10_1111_emip_12602 crossref_primary_10_1111_emip_12602 wiley_primary_10_1111_emip_12602_EMIP12602 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Educational measurement, issues and practice |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 2019 2012; 2012 2023; 5 2015; 75 1983; 7 2019; 56 2023b 2023a 2022; 64 2018; 83 2008; 73 2023; 83 2002; 2002 2020; 8 2023; 65 2017; 77 2017; 76 2023, May 10 2022; 35 2003; 40 2021; 2021 2021; 46 2012 2017; 2017 2011 2020; 40 1986; 10 2006 2006; 4 2004 2020; 33 2012; 37 2010; 81 2018; 2018 2023 2022; 3 2022 2022; 5 2021 2020 2013; 78 2019b 2019a 1991; 20 2017; 54 2019 2018 2022c 2022; 59 2017 2022b 2022a 2016 2015 2014 2013 2018; 16 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_49_1 Meijer R. R. (e_1_2_7_68_1) 2006 Mislevy R. J. (e_1_2_7_70_1) 2006 e_1_2_7_116_1 e_1_2_7_90_1 Hao J. (e_1_2_7_36_1) 2023 e_1_2_7_112_1 Lottridge S. (e_1_2_7_59_1) 2022 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 Braun H. (e_1_2_7_11_1) 2006 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_109_1 e_1_2_7_105_1 Zu J. (e_1_2_7_119_1) 2023; 65 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 Wollack J. A. (e_1_2_7_114_1) 2017 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_78_1 Saharia C. (e_1_2_7_85_1) 2022; 35 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_9_1 Fife J. H. (e_1_2_7_28_1) 2017 Brown T. (e_1_2_7_15_1) 2020; 33 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_47_1 e_1_2_7_89_1 Griffin P. (e_1_2_7_31_1) 2014 Jung J. (e_1_2_7_46_1) 2022; 64 e_1_2_7_118_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 e_1_2_7_115_1 Yan D. (e_1_2_7_117_1) 2023; 65 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 Attali Y. (e_1_2_7_4_1) 2006; 4 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
References_xml | – start-page: 81 year: 2015 end-page: 85 article-title: The impact of training data on automated short answer scoring performance – volume: 78 start-page: 557 year: 2013 end-page: 575 article-title: Monitoring scale scores over time via quality control charts, model‐based approaches, and time series techniques publication-title: Psychometrika – year: 2021 – volume: 2017 start-page: 1 issue: 1 year: 2017 end-page: 9 article-title: A statistical procedure for testing unusually frequent exactly matching responses and nearly matching responses publication-title: ETS Research Report Series – volume: 5 year: 2023 article-title: Automated reading passage generation with OpenAI's large language model publication-title: Computers and Education: Artificial Intelligence – volume: 37 start-page: 180 issue: 1 year: 2012 end-page: 199 article-title: Modeling answer changes on test items publication-title: Journal of Educational and Behavioral Statistics – start-page: 135 year: 2017 end-page: 156 article-title: Initial steps towards a standardized assessment for collaborative problem solving (CPS): Practical challenges and strategies – start-page: 10684 year: 2022 end-page: 10695 article-title: High‐resolution image synthesis with latent diffusion models – volume: 20 start-page: 2 issue: 3 year: 1991 end-page: 9 article-title: Partners in cognition: Extending human intelligence with intelligent technologies publication-title: Educational researcher – year: 2019a – year: 2018 – start-page: 15 year: 2022b – year: 2014 – volume: 5 year: 2022 article-title: The interactive reading task: Transformer‐based automatic item generation. Front publication-title: Artificial Intelligence – volume: 76 start-page: 631 year: 2017 end-page: 640 article-title: Interdisciplinary research agenda in support of assessment of collaborative problem solving: Lessons learned from developing a collaborative science assessment prototype publication-title: Computers in Human Behavior – year: 2023b article-title: U.S. Copyright Office says some AI‐assisted works may be copyrighted – year: 2017 article-title: The m‐rater Engine: Introduction to the automated scoring of mathematics items publication-title: Research Memorandum, ETS RM‐17‐02 – volume: 35 start-page: 36479 year: 2022 end-page: 36494 article-title: Photorealistic text‐to‐image diffusion models with deep language understanding publication-title: Advances in Neural Information Processing Systems – volume: 65 start-page: 55 issue: 2 year: 2023 end-page: 75 article-title: Automated distractor generation for fill‐in‐the‐blank items using a prompt‐based learning approach publication-title: Psychological Testing and Assessment Modeling – year: 2011 article-title: Detecting cheating through the use of hierarchical growth models – year: 2021 article-title: Systematic inequalities in language technology performance across the world's languages – start-page: 3245 year: 2016 end-page: 3253 article-title: Textual complexity as a predictor of difficulty of listening items in language proficiency tests – volume: 2021 start-page: 1 issue: 1 year: 2021 end-page: 13 article-title: Benchmark keystroke biometrics accuracy from high‐stakes writing tasks publication-title: ETS Research Report Series – start-page: 883 year: 2021 end-page: 899 article-title: Jump‐starting item parameters for adaptive language tests – start-page: 394 year: 2023 end-page: 403 article-title: Automated evaluation of written discourse using GPT‐4 – year: 2022 – volume: 33 start-page: 1877 year: 2020 end-page: 1901 article-title: Language models are few‐shot learners publication-title: Advances in neural information processing systems – year: 2004 – volume: 83 start-page: 847 issue: 4 year: 2018 end-page: 857 article-title: Automated item generation with recurrent neural networks publication-title: Psychometrika – year: 2023b – year: 2023 article-title: Microsoft bets big on the creator of ChatGPT in race to dominate AI – volume: 56 start-page: 251 issue: 2 year: 2019 end-page: 279 article-title: Use of data mining methods to detect test fraud publication-title: Journal of Educational Measurement – volume: 75 start-page: 931 year: 2015 end-page: 953 article-title: Detecting test tampering using item response theory publication-title: Educational and Psychological Measurement – start-page: 214 year: 2017 end-page: 231 – volume: 54 start-page: 200 issue: 2 year: 2017 end-page: 217 article-title: A new statistic for detection of aberrant answer changes publication-title: Journal of Educational Measurement – volume: 2019 start-page: 1 issue: 1 year: 2019 end-page: 17 article-title: Psychometric considerations and a general scoring strategy for assessments of collaborative problem solving publication-title: ETS Research Report Series – year: 2019b – year: 2019 – year: 2021 article-title: N‐gram language models – volume: 2012 start-page: i year: 2012 end-page: 43 article-title: From biology to education: Scoring and clustering multilingual text sequences and other sequential tasks publication-title: ETS Research Report Series – volume: 40 start-page: 53 issue: 1 year: 2003 end-page: 69 article-title: Two new statistics to detect answer copying publication-title: Journal of Educational Measurement – volume: 81 year: 2010 article-title: Reconstructing the Hopfield network as an inverse Ising problem publication-title: Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics – year: 2022a – year: 2023a article-title: RALD‐ and Rubric‐based assertions and annotations: Defining and automating feedback to students – volume: 2002 start-page: i year: 2002 end-page: 44 article-title: A feasibility study of on‐the‐fly item generation in adaptive testing publication-title: ETS Research Report Series – volume: 83 start-page: 556 issue: 3 year: 2023 end-page: 585 article-title: Scoring graphical responses in TIMSS 2019 using artificial neural networks publication-title: Educational and Psychological Measurement – year: 2023a article-title: AI‐created images lose U.S. copyrights in test for new technology – start-page: 11 year: 2019 end-page: 20 article-title: Predicting the difficulty of multiple choice questions in a high‐stakes medical exam – start-page: 133 year: 2021 end-page: 158 – year: 2023 article-title: Artists sue AI company for billions, alleging “parasite” app used their work for free – year: 2023a – volume: 8 start-page: 247 year: 2020 end-page: 263 article-title: Machine learning–driven language assessment publication-title: Transactions of the Association for Computational Linguistics – start-page: 193 year: 2020 end-page: 197 article-title: Predicting the difficulty and response time of multiple choice questions using transfer learning – volume: 46 start-page: 611 issue: 5 year: 2021 end-page: 648 article-title: Monitoring item performance with CUSUM statistics in continuous testing publication-title: Journal of Educational and Behavioral Statistics – volume: 4 issue: 3 year: 2006 article-title: Automated essay scoring with e‐rater® V. 2 publication-title: The Journal of Technology, Learning and Assessment – start-page: 83 year: 2006 end-page: 122 – volume: 73 start-page: 365 year: 2008 end-page: 384 article-title: Bayesian procedures for identifying aberrant response‐time patterns in adaptive testing publication-title: Psychometrika – volume: 65 issue: 1 year: 2023 article-title: Detection of AI‐generated essays in writing assessments publication-title: Psychological Test and Assessment Modeling – year: 2012 – year: 2021 article-title: Pre‐train, prompt, and predict: A systematic survey of prompting methods in Natural Language Processing – year: 2011 article-title: Erasure descriptive statistics and covariates – year: 2023 article-title: Getty Images is suing makers of popular AI art tools for allegedly stealing photos – volume: 64 start-page: 471 issue: 4 year: 2022 end-page: 494 article-title: Automated scoring of constructed‐response items using artificial neural networks in international large‐scale assessment publication-title: Psychological Testing and Assessment Modeling – volume: 40 start-page: 72 year: 2020 end-page: 80 article-title: A rubric for the detection of students in crisis publication-title: Educational Measurement: Issues and Practice – year: 2018 article-title: BERT: Pre‐training of deep bidirectional transformers for language understanding – volume: 10 start-page: 369 issue: 4 year: 1986 end-page: 380 article-title: Rule‐based item bank construction and evaluation within the linear logistic framework publication-title: Applied Psychological Measurement – year: 2006 – year: 2020 – year: 2023b article-title: Automated speech scoring methods and results – volume: 16 start-page: 59 year: 2018 end-page: 70 article-title: Diagnosing diagnostic models: From Von Neumann's elephant to model equivalencies and network psychometrics publication-title: Measurement: Interdisciplinary Research and Perspectives – year: 2023 – start-page: 15 year: 2006 end-page: 47 article-title: Concepts, terminology, and basic models of evidence‐centered design publication-title: Automated scoring of complex tasks in computer‐based testing – volume: 59 start-page: 398 issue: 4 year: 2022 end-page: 417 article-title: NCME Presidential Address 2022: Turning the page to the next chapter of educational measurement publication-title: Journal of Educational Measurement – start-page: 576 year: 2023 end-page: 584 article-title: Rating short L2 essays on the CEFR scale with GPT‐4 – volume: 7 start-page: 303 issue: 3 year: 1983 end-page: 310 article-title: Subject matter experts' assessment of item statistics publication-title: Applied Psychological Measurement – start-page: 422 year: 2023 end-page: 427 article-title: Using large language models to develop readability formulas for educational settings – volume: 3 year: 2022 article-title: Rethinking the entwinement between artificial intelligence and human learning: What capabilities do learners need for a world with AI? publication-title: Computers and Education: Artificial Intelligence – year: 2017 – volume: 2018 start-page: 1 issue: 1 year: 2018 end-page: 16 article-title: The evidence trace file: A data structure for virtual performance assessments informed by data analytics and evidence‐centered design publication-title: ETS Research Report Series – volume: 77 start-page: 54 issue: 1 year: 2017 end-page: 81 article-title: Three new methods for analysis of answer changes publication-title: Educational and Psychological Measurement – volume: 54 start-page: 3 issue: 1 year: 2017 end-page: 11 article-title: Computational psychometrics in support of collaborative educational assessments publication-title: Journal of Educational Measurement – year: 2022 article-title: Machine generated text: A comprehensive survey of threat models and detection methods – year: 2022c – year: 2023, May 10 – year: 2013 – volume: 65 start-page: 55 issue: 2 year: 2023 ident: e_1_2_7_119_1 article-title: Automated distractor generation for fill‐in‐the‐blank items using a prompt‐based learning approach publication-title: Psychological Testing and Assessment Modeling – ident: e_1_2_7_73_1 doi: 10.4324/9780429329098 – ident: e_1_2_7_37_1 doi: 10.1007/978-3-319-33261-1_9 – ident: e_1_2_7_56_1 – ident: e_1_2_7_98_1 doi: 10.1007/s11336-007-9046-8 – ident: e_1_2_7_72_1 doi: 10.18653/v1/2023.bea-1.32 – ident: e_1_2_7_41_1 doi: 10.3115/v1/W15-0610 – ident: e_1_2_7_113_1 doi: 10.4324/9780203664803 – ident: e_1_2_7_74_1 – ident: e_1_2_7_94_1 doi: 10.1002/j.2333‐8504.2012.tb02307.x – ident: e_1_2_7_60_1 – ident: e_1_2_7_102_1 doi: 10.1016/j.chb.2017.04.059 – start-page: 214 volume-title: Handbook of quantitative methods for detecting cheating on tests year: 2017 ident: e_1_2_7_114_1 – ident: e_1_2_7_88_1 doi: 10.1093/oso/9780192845290.001.0001 – year: 2017 ident: e_1_2_7_28_1 article-title: The m‐rater Engine: Introduction to the automated scoring of mathematics items publication-title: Research Memorandum, ETS RM‐17‐02 – ident: e_1_2_7_116_1 doi: 10.18653/v1/2020.bea-1.20 – volume-title: Machine learning, natural language processing and psychometrics year: 2023 ident: e_1_2_7_36_1 – ident: e_1_2_7_13_1 – ident: e_1_2_7_30_1 – ident: e_1_2_7_24_1 – ident: e_1_2_7_27_1 – ident: e_1_2_7_108_1 doi: 10.18653/v1/W18-5446 – ident: e_1_2_7_87_1 doi: 10.1162/tacl_a_00310 – ident: e_1_2_7_55_1 doi: 10.1016/j.patter.2023.100779 – ident: e_1_2_7_12_1 doi: 10.1111/jedm.12350 – ident: e_1_2_7_25_1 doi: 10.1126/science.adj0998 – ident: e_1_2_7_54_1 – ident: e_1_2_7_52_1 doi: 10.1007/s11336-013-9317-5 – ident: e_1_2_7_57_1 – ident: e_1_2_7_99_1 doi: 10.3102/1076998610396899 – ident: e_1_2_7_92_1 – volume: 65 issue: 1 year: 2023 ident: e_1_2_7_117_1 article-title: Detection of AI‐generated essays in writing assessments publication-title: Psychological Test and Assessment Modeling – volume-title: Detection of advance item knowledge using response times in computer adaptive testing year: 2006 ident: e_1_2_7_68_1 – ident: e_1_2_7_16_1 doi: 10.1111/emip.12410 – ident: e_1_2_7_45_1 – ident: e_1_2_7_14_1 – ident: e_1_2_7_38_1 doi: 10.1002/ets2.12276 – ident: e_1_2_7_20_1 doi: 10.1007/978-3-031-36336-8_66 – ident: e_1_2_7_8_1 doi: 10.1002/j.2333‐8504.2002.tb01890.x – ident: e_1_2_7_65_1 doi: 10.1111/jedm.12208 – ident: e_1_2_7_71_1 – ident: e_1_2_7_86_1 doi: 10.2307/1177234 – ident: e_1_2_7_67_1 doi: 10.18653/v1/2021.emnlp-main.67 – start-page: 83 volume-title: Automated scoring of complex tasks in computer based testing year: 2006 ident: e_1_2_7_11_1 – ident: e_1_2_7_5_1 doi: 10.3389/frai.2022.903077 – ident: e_1_2_7_109_1 – ident: e_1_2_7_7_1 doi: 10.1177/014662168300700306 – ident: e_1_2_7_18_1 doi: 10.46999/KIQF4328 – volume-title: Assessment and teaching of 21st‐century skills: Methods and approach year: 2014 ident: e_1_2_7_31_1 – start-page: 15 volume-title: Advancing natural language processing in educational assessment year: 2022 ident: e_1_2_7_59_1 – ident: e_1_2_7_112_1 – ident: e_1_2_7_83_1 – ident: e_1_2_7_58_1 – ident: e_1_2_7_77_1 – ident: e_1_2_7_80_1 – ident: e_1_2_7_93_1 doi: 10.1111/j.1745-3984.2003.tb01096.x – ident: e_1_2_7_64_1 – ident: e_1_2_7_61_1 – ident: e_1_2_7_6_1 – ident: e_1_2_7_43_1 doi: 10.1177/014662168601000405 – ident: e_1_2_7_42_1 – ident: e_1_2_7_26_1 – ident: e_1_2_7_23_1 – ident: e_1_2_7_89_1 doi: 10.1111/jedm.12141 – ident: e_1_2_7_84_1 doi: 10.1109/CVPR52688.2022.01042 – ident: e_1_2_7_34_1 – ident: e_1_2_7_104_1 doi: 10.1007/s11336‐018‐9608‐y – ident: e_1_2_7_79_1 – ident: e_1_2_7_51_1 – ident: e_1_2_7_96_1 – ident: e_1_2_7_107_1 doi: 10.1177/00131644221098021 – ident: e_1_2_7_48_1 – ident: e_1_2_7_3_1 – ident: e_1_2_7_32_1 doi: 10.18653/v1/W19-4402 – ident: e_1_2_7_105_1 – ident: e_1_2_7_33_1 doi: 10.1002/ets2.12150 – ident: e_1_2_7_44_1 doi: 10.1103/PHYSREVE.81.036104 – ident: e_1_2_7_78_1 – ident: e_1_2_7_106_1 – ident: e_1_2_7_115_1 doi: 10.1177/0013164414568716 – ident: e_1_2_7_17_1 – ident: e_1_2_7_82_1 – ident: e_1_2_7_101_1 doi: 10.1007/978-3-030-74394-9 – volume: 4 issue: 3 year: 2006 ident: e_1_2_7_4_1 article-title: Automated essay scoring with e‐rater® V. 2 publication-title: The Journal of Technology, Learning and Assessment – ident: e_1_2_7_39_1 doi: 10.1002/ets2.12215 – volume: 35 start-page: 36479 year: 2022 ident: e_1_2_7_85_1 article-title: Photorealistic text‐to‐image diffusion models with deep language understanding publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_7_100_1 doi: 10.1111/jedm.12129 – ident: e_1_2_7_2_1 – ident: e_1_2_7_21_1 – ident: e_1_2_7_35_1 – ident: e_1_2_7_95_1 – ident: e_1_2_7_118_1 doi: 10.18653/v1/2023.bea-1.49 – ident: e_1_2_7_49_1 doi: 10.4324/9781315884677 – ident: e_1_2_7_81_1 – ident: e_1_2_7_76_1 – ident: e_1_2_7_62_1 – ident: e_1_2_7_40_1 doi: 10.1007/978-3-030-74394-9_8 – ident: e_1_2_7_10_1 doi: 10.18653/v1/2022.acl-long.376 – volume: 33 start-page: 1877 year: 2020 ident: e_1_2_7_15_1 article-title: Language models are few‐shot learners publication-title: Advances in neural information processing systems – ident: e_1_2_7_22_1 – ident: e_1_2_7_9_1 doi: 10.1016/j.caeai.2023.100161 – ident: e_1_2_7_110_1 – ident: e_1_2_7_111_1 – ident: e_1_2_7_90_1 doi: 10.1177/0013164416632287 – ident: e_1_2_7_63_1 – volume: 64 start-page: 471 issue: 4 year: 2022 ident: e_1_2_7_46_1 article-title: Automated scoring of constructed‐response items using artificial neural networks in international large‐scale assessment publication-title: Psychological Testing and Assessment Modeling – ident: e_1_2_7_29_1 doi: 10.4324/9780203803912 – ident: e_1_2_7_97_1 – ident: e_1_2_7_19_1 doi: 10.1002/ets2.12326 – ident: e_1_2_7_91_1 – ident: e_1_2_7_103_1 doi: 10.1080/15366367.2018.1436827 – ident: e_1_2_7_75_1 – ident: e_1_2_7_69_1 – ident: e_1_2_7_66_1 doi: 10.1016/j.caeai.2022.100056 – ident: e_1_2_7_53_1 doi: 10.3102/1076998621994563 – ident: e_1_2_7_50_1 – ident: e_1_2_7_47_1 doi: 10.1186/s40536-024-00199-7 – start-page: 15 year: 2006 ident: e_1_2_7_70_1 article-title: Concepts, terminology, and basic models of evidence‐centered design publication-title: Automated scoring of complex tasks in computer‐based testing |
SSID | ssj0015697 |
Score | 2.466246 |
Snippet | The remarkable strides in artificial intelligence (AI), exemplified by ChatGPT, have unveiled a wealth of opportunities and challenges in assessment. Applying... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 16 |
SubjectTerms | Artificial Intelligence assessment Community Action Educational evaluation Educational tests & measurements generative AI Generative artificial intelligence Large language models LLMs |
Title | Transforming Assessment: The Impacts and Implications of Large Language Models and Generative AI |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Femip.12602 https://www.proquest.com/docview/3056746126 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jJy9-i9MpAb0odKxdkrbiZYhjExWRDXaRmqSvIM5tuO3iX29e0nZTRNBLyeG1tHlfv6Qvv0fIKTcpAbivPcAfh6zJUk9ifxPEyiBCJrmlUrq7F90BuxnyYYVcFmdhHD9EueGGnmHjNTq4VLMVJ4e3l2nDN3AcAzAWayEieiy5o8y6xHZWMSbsewZ285ybFMt4lrd-zUZLiLkKVG2m6WyQp-IdXYHJa2MxVw398Y2-8b8fsUnWcwhK285mtkgFxtvYvTmv9Nghz_0CzZq8Rtsld-cFNUZFe_Zc5YzKcYrjctOPTjJ6i3Xl5ur2QCk2Whs5SUdvjbGVtnu7ZNC57l91vbwTg6dNAAg8JTLR0tL4cgZI0JWKUHMGvsxkFmilI4gk8DRQaVOGgWwCZEbRgCccIIx9aO2R6ngyhn1CRWx0JUIZAlcsCOIoiJnMYtUCzWQUsxo5KzSS6JymHLtljJJiuYJzltg5q5GTUnbqyDl-lKoXik1yB50luHIKmYF3okbOrYZ-eUJiXOLBjg7-InxI1gIDgVxhWZ1U5-8LODIQZq6Oral-Akel7As |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2kHvTit1ituqAXhZQm2WwSb0UsrbZFpIXe4mYzAbGmxbYXf707u0laRQS9hD1MAsnszLyZzL4h5NJTIQE8W1qAPw5ZgyWWwPkmiJWB-0x4mkqp1-ftIbsfeaO8NwfPwhh-iLLghpah_TUaOBakV6wc3l6mdVvhceWB13Gkt86onkr2KJWZ6NkqahPblgLeXs5Oio08y3u_xqMlyFyFqjrWtLbNQNWZpijEFpPX-mIe1-XHNwLHf7_GDtnKUShtmm2zS9Yg28MBznmzxz55HhSAVoU22izpO2-o2le0o49WzqjIElyXdT86SWkXW8vV1ZRBKc5aGxtJw3CN7pU2Owdk2Lob3LatfBiDJZUPcKyYp9yVQplzCsjRlXBfegxskYrUkbEMIBDgJU6cNITviAZAqnQNeMgB_NAG95BUskkGR4Ty0HY594UPXswcJwyckIk0jF2QTAQhq5KrQiWRzJnKcWDGOCoyFvxmkf5mVXJRyk4NP8ePUrVCs1Fuo7MIkyefKYTHq-Raq-iXJ0TKKh716vgvwudkoz3odaNup_9wQjYdhYhMn1mNVObvCzhViGYen-l9-wkGqPAm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DQbz4LU6nBvSi0LG2adqKl-Ecm84xZINdpKbpK4izG267-Nebl35sigh6KTm8ljbv65f05fcIOXdUSgDHlAbgj0NWY5EhsL8JYmXgLhOOplJ66PLWgN0NnWGJXOdnYVJ-iGLDDT1Dx2t08EkULzk5vL1MqqaC4yoArzJe89CmG48FeZRamOjWKsqGTUPhbicjJ8U6nsW9X9PRAmMuI1Wdapqb5Cl_ybTC5LU6n4VV-fGNv_G_X7FFNjIMSuup0WyTEiQ72L45K_XYJc_9HM6qxEbrBXnnFVVWRdv6YOWUiiTCcbHrR8cx7WBhubqmm6AUO62NUsmU3xqDK62398igedu_aRlZKwZDqghgGSGPuS2FcuYYkKEr4q50GJgiFrElQ-mBJ8CJrDCqCdcSNYBYaRrwiAO4vgn2PllJxgkcEMp90-bcFS44IbMs37N8JmI_tEEy4fmsTC5yjQQy4ynHdhmjIF-v4JwFes7K5KyQnaTsHD9KVXLFBpmHTgNcOrlM4TteJpdaQ788IVA-0dOjw78In5K1XqMZdNrd-yOybik4lBaZVcjK7H0OxwrOzMITbbWfYYHu3g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transforming+Assessment%3A+The+Impacts+and+Implications+of+Large+Language+Models+and+Generative+AI&rft.jtitle=Educational+measurement%2C+issues+and+practice&rft.au=Hao%2C+Jiangang&rft.au=von+Davier%2C+Alina+A.&rft.au=Yaneva%2C+Victoria&rft.au=Lottridge%2C+Susan&rft.date=2024-06-01&rft.issn=0731-1745&rft.eissn=1745-3992&rft.volume=43&rft.issue=2&rft.spage=16&rft.epage=29&rft_id=info:doi/10.1111%2Femip.12602&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_emip_12602 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0731-1745&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0731-1745&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0731-1745&client=summon |