Computational approach for content‐based image retrieval of K‐similar images from brain MR image database
Content‐based medical image retrieval (CBMIR) is a mechanism to handle a huge quantity of image data generated in various medical imaging modalities. In recent years, due to the evolution of computer vision and digital imaging modalities, a large number of medical images are generated. Consequently,...
Saved in:
Published in | Expert systems Vol. 39; no. 7 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Content‐based medical image retrieval (CBMIR) is a mechanism to handle a huge quantity of image data generated in various medical imaging modalities. In recent years, due to the evolution of computer vision and digital imaging modalities, a large number of medical images are generated. Consequently, the task of retrieving medical images from a large image database becomes more tedious due to variation in the size and shape of the images. Hence, it is necessary to design an appropriate system for medical image retrieval. In this paper a methodology for CBMIR using features of an image such as colour, shape, and texture is proposed to represent and retrieve the images from a large database that are relevant to a given query image. This methodology is evaluated for the application of retrieving the brain MRI images of different planes (coronal, sagittal, and transverse) from a dataset of normal and demented subjects. The features are determined in terms of Grey level co‐occurrence based Haralik's features and histogram based cumulative distribution function (CDF). The image retrieval mechanism is designed using the K‐Nearest Neighbour algorithm by finding the minimum distance between query and database images. The performance parameters such as precision and recall are calculated. The average accuracy of 95.5% are obtained. The results provided ensures the capability to use it as assistive framework for radiologists in radiology image retrieval and classification. |
---|---|
AbstractList | Content‐based medical image retrieval (CBMIR) is a mechanism to handle a huge quantity of image data generated in various medical imaging modalities. In recent years, due to the evolution of computer vision and digital imaging modalities, a large number of medical images are generated. Consequently, the task of retrieving medical images from a large image database becomes more tedious due to variation in the size and shape of the images. Hence, it is necessary to design an appropriate system for medical image retrieval. In this paper a methodology for CBMIR using features of an image such as colour, shape, and texture is proposed to represent and retrieve the images from a large database that are relevant to a given query image. This methodology is evaluated for the application of retrieving the brain MRI images of different planes (coronal, sagittal, and transverse) from a dataset of normal and demented subjects. The features are determined in terms of Grey level co‐occurrence based Haralik's features and histogram based cumulative distribution function (CDF). The image retrieval mechanism is designed using the K‐Nearest Neighbour algorithm by finding the minimum distance between query and database images. The performance parameters such as precision and recall are calculated. The average accuracy of 95.5% are obtained. The results provided ensures the capability to use it as assistive framework for radiologists in radiology image retrieval and classification. |
Author | Martis, Roshan Joy Sampathila, Niranjana Pavithra |
Author_xml | – sequence: 1 givenname: Niranjana orcidid: 0000-0002-3345-360X surname: Sampathila fullname: Sampathila, Niranjana email: sn.manipal@gmail.com, niranjana.s@manipal.edu organization: Manipal Institute of Technology, Manipal Academy of Higher Education – sequence: 2 surname: Pavithra fullname: Pavithra organization: Manipal Institute of Technology, Manipal Academy of Higher Education – sequence: 3 givenname: Roshan Joy surname: Martis fullname: Martis, Roshan Joy organization: Global Academy of Technology |
BookMark | eNp9kM1KAzEUhYMo2FY3PkHAnTA1f5OZWUqpP1gR_AFdhUwm0Skzk5qkanc-gs_ok5g6XYl4N3dxv3O45wzBdmc7DcABRmMc51i_-9UYE56SLTDAjOcJogXbBgNEOE9YRtAuGHo_RwjhLOMD0E5su1gGGWrbyQbKxcJZqZ6hsQ4q2wXdha-Pz1J6XcG6lU8aOh1crV8jbA28jEdft3UjXX_20DjbwtLJuoNXNxtNJYNce-yBHSMbr_c3ewTuT6d3k_Nkdn12MTmZJYoiTBKSY4U1M7hCRDFOTaUKnkmNKJIFUVwTmbIqZSanRqmy5Ck2lJaGs5wyTTEdgcPeN6Z5WWofxNwuXQzoBeF5jlleZCRSqKeUs947bYSq-yZCfL8RGIl1qWJdqvgpNUqOfkkWLkZ0q79h3MNvdaNX_5Bi-nD72Gu-AcixjWM |
CitedBy_id | crossref_primary_10_1016_j_iswa_2023_200233 crossref_primary_10_1109_ACCESS_2022_3174099 crossref_primary_10_1186_s40537_023_00791_8 crossref_primary_10_3390_diagnostics13020220 crossref_primary_10_1016_j_jrras_2024_100968 crossref_primary_10_1080_23311916_2021_2009093 crossref_primary_10_1111_exsy_13445 crossref_primary_10_1007_s11042_023_16226_8 crossref_primary_10_1016_j_bspc_2024_106069 crossref_primary_10_1038_s41598_025_93309_6 crossref_primary_10_1155_2022_3297316 crossref_primary_10_3390_app13074581 |
Cites_doi | 10.1016/j.ijmedinf.2003.11.024 10.14569/ijacsa.2015.060929 10.1162/jocn.2009.21407 10.1016/j.patcog.2006.04.045 10.1016/j.neucom.2012.09.042 10.1016/j.ipm.2010.06.003 10.1016/j.jbi.2017.01.002 10.17010/ijcs/2018/v3/i6/141444 10.1166/jmihi.2017.2058 10.1016/s0169-2607(05)80008-2 10.1016/j.jbi.2014.02.018 10.5120/14223-2369 10.1162/jocn.2007.19.9.1498 10.1155/2015/370194 10.1109/INDCON.2012.6420654 10.3844/ajassp.2012.938.945 10.1016/j.procs.2015.07.438 10.1016/j.asoc.2015.01.058 10.5120/7842-1055 10.5772/64641 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons Ltd 2022 John Wiley & Sons, Ltd |
Copyright_xml | – notice: 2020 John Wiley & Sons Ltd – notice: 2022 John Wiley & Sons, Ltd |
DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1111/exsy.12652 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1468-0394 |
EndPage | n/a |
ExternalDocumentID | 10_1111_exsy_12652 EXSY12652 |
Genre | article |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0B8 0R~ 10A 1OB 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 77K 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHC ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AHQJS AI. AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ TAE TH9 TN5 TUS UB1 VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZL0 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SC 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3012-281c1e4f1d02c463fdc967ae030a92c6e2a54d54f83fccbb651f33bf64834e313 |
IEDL.DBID | DR2 |
ISSN | 0266-4720 |
IngestDate | Fri Jul 25 19:56:16 EDT 2025 Thu Apr 24 22:59:15 EDT 2025 Tue Jul 01 02:13:45 EDT 2025 Wed Jan 22 16:23:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3012-281c1e4f1d02c463fdc967ae030a92c6e2a54d54f83fccbb651f33bf64834e313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3345-360X |
PQID | 2688148972 |
PQPubID | 32130 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2688148972 crossref_citationtrail_10_1111_exsy_12652 crossref_primary_10_1111_exsy_12652 wiley_primary_10_1111_exsy_12652_EXSY12652 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Expert systems |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2015; 57 2017; 7 2007; 19 2015; 6 2013; 3 2013; 4 2019; 3 2015; 3 2011; 1 2013; 2 2012 2017; 66 2015; 30 2014; 49 2005; 80 2004; 1 2013; 120 2012; 50 2010; 22 2004; 73 2015; 2015 2018 2013; 81 2016 2007; 40 2011; 47 2012; 9 Ashna S. (e_1_2_9_4_1) 2015; 3 e_1_2_9_10_1 e_1_2_9_12_1 Charde P. A. (e_1_2_9_8_1) 2013; 4 Kodituwakku S. R. (e_1_2_9_13_1) 2004; 1 Bagade S. S. (e_1_2_9_5_1) 2011; 1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_18_1 Malakar A. (e_1_2_9_19_1) 2013; 2 Gonzalez R. C. (e_1_2_9_9_1) 2018 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_3_1 e_1_2_9_2_1 Ranjidha A. (e_1_2_9_24_1) 2013; 2 Imandoust S. B. (e_1_2_9_11_1) 2013; 3 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 66 start-page: 148 year: 2017 end-page: 158 article-title: A new method of content based medical image retrieval and its applications to CT imaging sign retrieval publication-title: Journal of Biomedical Informatics – volume: 1 start-page: 6 issue: 2 year: 2011 end-page: 10 article-title: Use of histogram equalization in image processing for image enhancement publication-title: International Journal of Software Engineering Research & Practices – volume: 47 start-page: 176 issue: 2 year: 2011 end-page: 185 article-title: Brain CT image database building for computer‐aided diagnosis using content‐based image retrieval publication-title: Information Processing and Management – volume: 3 start-page: 605 issue: 5 year: 2013 end-page: 610 article-title: Application of k‐nearest neighbor (knn) approach for predicting economic events: Theoretical background publication-title: International Journal of Engineering Research and Applications – volume: 3 start-page: 8 issue: 6 year: 2019 article-title: A survey of content based image retrieval using color and texture features publication-title: Indian Journal of Computer Science – volume: 9 start-page: 938 issue: 6 year: 2012 end-page: 945 article-title: Content based image retrieval of ultrasound liver diseases based on hybrid approach publication-title: American Journal of Applied Sciences – volume: 2 start-page: 532 issue: 1 year: 2013 end-page: 537 article-title: Image clustering using color moments, histogram, edge and K‐means clustering publication-title: International Journal of Science and Research – volume: 6 start-page: 58 issue: 9 year: 2015 end-page: 66 article-title: Content‐based image retrieval using local features descriptors and bag‐of‐visual words publication-title: International Journal of Advanced Computer Science and Applications – volume: 80 start-page: S71 year: 2005 end-page: S83 article-title: Using an image‐extended relational database to support content‐based image retrieval in a PACS publication-title: Computer Methods and Programs in Biomedicine – volume: 30 start-page: 650 year: 2015 end-page: 662 article-title: Content‐based image retrieval techniques for the analysis of dermatological lesions using particle swarm optimization technique publication-title: Applied Soft Computing – year: 2016 – year: 2018 – volume: 3 start-page: 1028 issue: 2 year: 2015 end-page: 1034 article-title: Mild brain injury detection using texture features publication-title: International Journal of Engineering Research and General Science. – volume: 7 start-page: 293 issue: 2 year: 2017 end-page: 304 article-title: Morphological and texture based classification of dementia from MR images publication-title: Journal of Medical Imaging and Health Informatics – volume: 120 start-page: 336 year: 2013 end-page: 345 article-title: Multi‐scale gray level co‐occurrence matrices for texture description publication-title: Neurocomputing – volume: 73 start-page: 1 issue: 1 year: 2004 end-page: 23 article-title: A review of content‐based image retrieval systems in medical applications‐clinical benefits and future directions publication-title: International Journal of Medical Informatics – volume: 1 start-page: 207 issue: 3 year: 2004 end-page: 211 article-title: Comparison of color features for image retrieval publication-title: Indian Journal of Computer Science and Engineering – volume: 50 start-page: 35 issue: 14 year: 2012 end-page: 39 article-title: Performance evaluation of SVM and K‐nearest neighbor algorithm over medical data set publication-title: International Journal of Computer Applications – volume: 2015 year: 2015 article-title: Big data analytics in healthcare publication-title: BioMed Research International – volume: 81 start-page: 16 issue: 18 year: 2013 end-page: 22 article-title: Content based image retrieval based on cumulative distribution function a performance evaluation publication-title: International Journal of Computer Applications – volume: 4 start-page: 760 issue: 8 year: 2013 end-page: 765 article-title: Classification using k nearest neighbor for brain image retrieval publication-title: International Journal of Scientific & Engineering Research – start-page: 416 year: 2012 end-page: 421 – volume: 49 start-page: 227 year: 2014 end-page: 244 article-title: A hierarchical knowledge‐based approach for retrieving similar medical images described with semantic annotations publication-title: Journal of Biomedical Informatics – volume: 22 start-page: 2677 year: 2010 end-page: 2684 article-title: Open access series of imaging studies: Longitudinal MRI data in nondemented and demented older adults publication-title: Journal of Cognitive Neuroscience – volume: 19 start-page: 1498 issue: 9 year: 2007 end-page: 1507 article-title: Open access series of imaging studies (OASIS): Cross‐sectional MRI data in young, middle aged, nondemented, and demented older adults publication-title: Journal of Cognitive Neuroscience – volume: 57 start-page: 1289 year: 2015 end-page: 1298 article-title: Comparative analysis of nearest neighbor query processing techniques publication-title: Procedia Computer Science – volume: 2 start-page: 333 issue: 3 year: 2013 end-page: 339 article-title: Survey on medical image retrieval based on shape features and relevance vector machine classification publication-title: International Journal of Emerging Trends & Technology in Computer Science – volume: 40 start-page: 262 issue: 1 year: 2007 end-page: 282 article-title: A survey of content‐based image retrieval with high‐level semantics publication-title: Pattern Recognition – ident: e_1_2_9_22_1 doi: 10.1016/j.ijmedinf.2003.11.024 – volume: 1 start-page: 207 issue: 3 year: 2004 ident: e_1_2_9_13_1 article-title: Comparison of color features for image retrieval publication-title: Indian Journal of Computer Science and Engineering – ident: e_1_2_9_2_1 doi: 10.14569/ijacsa.2015.060929 – ident: e_1_2_9_20_1 doi: 10.1162/jocn.2009.21407 – ident: e_1_2_9_16_1 doi: 10.1016/j.patcog.2006.04.045 – ident: e_1_2_9_25_1 doi: 10.1016/j.neucom.2012.09.042 – ident: e_1_2_9_29_1 doi: 10.1016/j.ipm.2010.06.003 – volume-title: Digital image processing year: 2018 ident: e_1_2_9_9_1 – ident: e_1_2_9_17_1 doi: 10.1016/j.jbi.2017.01.002 – volume: 3 start-page: 1028 issue: 2 year: 2015 ident: e_1_2_9_4_1 article-title: Mild brain injury detection using texture features publication-title: International Journal of Engineering Research and General Science. – volume: 4 start-page: 760 issue: 8 year: 2013 ident: e_1_2_9_8_1 article-title: Classification using k nearest neighbor for brain image retrieval publication-title: International Journal of Scientific & Engineering Research – ident: e_1_2_9_26_1 doi: 10.17010/ijcs/2018/v3/i6/141444 – ident: e_1_2_9_7_1 doi: 10.1166/jmihi.2017.2058 – ident: e_1_2_9_28_1 doi: 10.1016/s0169-2607(05)80008-2 – volume: 2 start-page: 333 issue: 3 year: 2013 ident: e_1_2_9_24_1 article-title: Survey on medical image retrieval based on shape features and relevance vector machine classification publication-title: International Journal of Emerging Trends & Technology in Computer Science – ident: e_1_2_9_14_1 doi: 10.1016/j.jbi.2014.02.018 – volume: 3 start-page: 605 issue: 5 year: 2013 ident: e_1_2_9_11_1 article-title: Application of k‐nearest neighbor (knn) approach for predicting economic events: Theoretical background publication-title: International Journal of Engineering Research and Applications – ident: e_1_2_9_10_1 doi: 10.5120/14223-2369 – ident: e_1_2_9_21_1 doi: 10.1162/jocn.2007.19.9.1498 – ident: e_1_2_9_6_1 doi: 10.1155/2015/370194 – ident: e_1_2_9_3_1 doi: 10.1109/INDCON.2012.6420654 – ident: e_1_2_9_27_1 doi: 10.3844/ajassp.2012.938.945 – volume: 2 start-page: 532 issue: 1 year: 2013 ident: e_1_2_9_19_1 article-title: Image clustering using color moments, histogram, edge and K‐means clustering publication-title: International Journal of Science and Research – volume: 1 start-page: 6 issue: 2 year: 2011 ident: e_1_2_9_5_1 article-title: Use of histogram equalization in image processing for image enhancement publication-title: International Journal of Software Engineering Research & Practices – ident: e_1_2_9_18_1 doi: 10.1016/j.procs.2015.07.438 – ident: e_1_2_9_12_1 doi: 10.1016/j.asoc.2015.01.058 – ident: e_1_2_9_23_1 doi: 10.5120/7842-1055 – ident: e_1_2_9_15_1 doi: 10.5772/64641 |
SSID | ssj0001776 |
Score | 2.3761413 |
Snippet | Content‐based medical image retrieval (CBMIR) is a mechanism to handle a huge quantity of image data generated in various medical imaging modalities. In recent... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Brain CBMIR Computer vision Digital computers Digital imaging Distribution functions Histograms Image classification Image databases Image management Image retrieval K nearest neighbour Magnetic resonance imaging Mathematical analysis medical image Medical imaging MRI query image |
Title | Computational approach for content‐based image retrieval of K‐similar images from brain MR image database |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.12652 https://www.proquest.com/docview/2688148972 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFy--xUeVgF4Utuwjm3TBS1FLUevBWqgHWZJsAkXbSrcF9eRP8Df6S8xks1ZFBL0tm9duMq8MM98gtJ8BogqT3CNJFnmER8zjAmpo-IRzISRPrB-ydUmbHXLWjbsz6KjMhSnwIT4cbsAZVl4Dg3ORf2Jy9Zg_VYOQxiCAIVgLLKKrKXZUwGxlOXPHoB5hoe-wSSGMZzr0qzaampifDVWraRqL6Lb8xiLA5K46GYuqfP4G3_jfn1hCC84ExfWCZpbRjBqsoMWyvAN23L6K-sUr5y3EJfo4NmYuhgh3o67eXl5BDWa41zdyCY9seS5Du3io8blpzHv9nrk6F805hlwWLKAoBW5duTEQogpzrKFO4_T6uOm56gyeNEIBcroDGSiig8wPJaGRzmRCGVdGavAklFSFPCZZTHQt0lIKQeNAR5HQFNyXKgqidTQ7GA7UBsIi4MTXZsIs5oQJnUhDKIwpVTNrxKHeRAflKaXSQZdDBY37tLzCwD6mdh830d5H34cCsOPHXpXysFPHtHkaUrMeqSXMNB_aU_tlhvS0276xT1t_6byN5kNIoLAhhBU0Ox5N1I4xa8ZiF83VT1oX7V1Lxu-zq_mo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6iD_riXbwb0BeFjrVNm_VRZGO6zQfdYD6VJE1g6KbYCeqTP8Hf6C_xnDR1KiLoW2kupTmXnBxOvo-QgwwRVbgSHkuy0GMi5J6QyKFRZUJIqURi85Cd87jZY2f9qO9qc_AuTIEP8ZFwQ8uw_hoNHBPSn6xcP-ZPFT-II_DAM0jpbU9UFxP0KJ9bbjk4ZcQe40HVoZNiIc9k7Nf9aBJkfg5V7V7TWCgIVXMLUYglJteVh7GsqOdvAI7__o1FMu-iUHpcqM0SmdKjZbJQMjxQZ_ArZFi8cglDWgKQU4h0KRa5w4719vKKO2FGB0NwTfTeMnSB-tJbQ1vQmA-GAzg9F805xessVCIvBe1cuDFYpYpzrJJeo949aXqOoMFT4BfwWrevfM2Mn1UDxeLQZCqJudDgOEQSqFgHImJZxEwtNEpJCTIyYShNjBlMHfrhGpke3Y70OqHSF6xqYMIsEoxLkyjQFc61rsE3osBskMNSTKly6OVIonGTlqcYXMfUruMG2f_oe1dgdvzYa7uUdursNk-DGL7HagmH5iMrtl9mSOv9yyv7tPmXzntkttnttNP26Xlri8wFeJ_CVhRuk-nx_YPegShnLHetLr8DViD8Lw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jgvjiXZzXgL4odPSSJiv4IuqYTodMB_NBSpImMHRzbBPUJ3-Cv9FfYk7auiki6Ftpbm1ybjmc8x2EdhNAVGGSOyRKAofwgDlcQA0Nl3AuhOSR9UNeNGitRc7aYbuADvJcmBQf4tPhBpxh5TUweD_RE0yunobPZc-noRHAU4S6FaDp4-YYPMpjtrScuWRQhzDfzcBJIY5nPParOhrbmJOWqlU11Tl0m39kGmFyV34cibJ8-Ybf-N-_mEezmQ2KD1OiWUAF1VtEc3l9B5yx-xLqpq8ydyHO4cexsXMxhLgbffX--gZ6MMGdrhFMeGDrcxnixQ8a103jsNPtmLtz2jzEkMyCBVSlwBfNbAzEqMIcy6hVPbk-qjlZeQZHGqkASd2e9BTRXuL6ktBAJzKijCsjNnjkS6p8HpIkJLoSaCmFoKGng0BoCv5LFXjBCir2HnpqFWHhceJqM2EScsKEjqShFMaUqpg1Ql-X0F5-SrHMsMuhhMZ9nN9hYB9ju48ltPPZt58idvzYayM_7Djj2mHsU7MeqUTMNO_bU_tlhvikfXVjn9b-0nkbTV8eV-Pz00Z9Hc34kExhwwk3UHE0eFSbxsQZiS1LyR-QGPrn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+approach+for+content%E2%80%90based+image+retrieval+of+K%E2%80%90similar+images+from+brain+MR+image+database&rft.jtitle=Expert+systems&rft.au=Sampathila%2C+Niranjana&rft.au=Pavithra&rft.au=Martis%2C+Roshan+Joy&rft.date=2022-08-01&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=39&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fexsy.12652&rft.externalDBID=10.1111%252Fexsy.12652&rft.externalDocID=EXSY12652 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon |