The role of small molecular cations in the chemical flow of the interstellar environments
Molecular ions have been ubiquitous in a variety of environments in the interstellar medium, from Circumstellar Envelopes to Dark Molecular Clouds and to Diffuse Clouds. Their role in the multitude of molecular processes which have been found to occur in those environments has been the subject of ma...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 25; no. 35; pp. 2337 - 23383 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
13.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1463-9076 1463-9084 1463-9084 |
DOI | 10.1039/d3cp03000h |
Cover
Loading…
Abstract | Molecular ions have been ubiquitous in a variety of environments in the interstellar medium, from Circumstellar Envelopes to Dark Molecular Clouds and to Diffuse Clouds. Their role in the multitude of molecular processes which have been found to occur in those environments has been the subject of many studies over the years, so that we have acquired by now a complex body of data on their chemical structures, their possible function within chemical reactions and their most likely paths to formation. In the present work we review a broad range of such molecular ions, focusing exclusively on positive ions involving the smallest and simplest cations which have been either detected or conjectured as present in the interstellar medium (ISM). We therefore consider mainly molecular cations formed with components like H, H
+
, He and He
+
, atomic species which are by far the most abundant baryons in the ISM in general. Their likely structures and their roles in a variety of chemical energy flow paths are discussed and presented within the context of their interstellar environments.
Formation and destruction channels for HeH
+
are superimposed on this image depicting NGC 7027, or the "Jewel Bug" nebula, where it has been detected recently. Image by NASA, ESA, and J. Kastner (RIT). |
---|---|
AbstractList | Molecular ions have been ubiquitous in a variety of environments in the interstellar medium, from Circumstellar Envelopes to Dark Molecular Clouds and to Diffuse Clouds. Their role in the multitude of molecular processes which have been found to occur in those environments has been the subject of many studies over the years, so that we have acquired by now a complex body of data on their chemical structures, their possible function within chemical reactions and their most likely paths to formation. In the present work we review a broad range of such molecular ions, focusing exclusively on positive ions involving the smallest and simplest cations which have been either detected or conjectured as present in the interstellar medium (ISM). We therefore consider mainly molecular cations formed with components like H, H+, He and He+, atomic species which are by far the most abundant baryons in the ISM in general. Their likely structures and their roles in a variety of chemical energy flow paths are discussed and presented within the context of their interstellar environments.Molecular ions have been ubiquitous in a variety of environments in the interstellar medium, from Circumstellar Envelopes to Dark Molecular Clouds and to Diffuse Clouds. Their role in the multitude of molecular processes which have been found to occur in those environments has been the subject of many studies over the years, so that we have acquired by now a complex body of data on their chemical structures, their possible function within chemical reactions and their most likely paths to formation. In the present work we review a broad range of such molecular ions, focusing exclusively on positive ions involving the smallest and simplest cations which have been either detected or conjectured as present in the interstellar medium (ISM). We therefore consider mainly molecular cations formed with components like H, H+, He and He+, atomic species which are by far the most abundant baryons in the ISM in general. Their likely structures and their roles in a variety of chemical energy flow paths are discussed and presented within the context of their interstellar environments. Molecular ions have been ubiquitous in a variety of environments in the interstellar medium, from Circumstellar Envelopes to Dark Molecular Clouds and to Diffuse Clouds. Their role in the multitude of molecular processes which have been found to occur in those environments has been the subject of many studies over the years, so that we have acquired by now a complex body of data on their chemical structures, their possible function within chemical reactions and their most likely paths to formation. In the present work we review a broad range of such molecular ions, focusing exclusively on positive ions involving the smallest and simplest cations which have been either detected or conjectured as present in the interstellar medium (ISM). We therefore consider mainly molecular cations formed with components like H, H + , He and He + , atomic species which are by far the most abundant baryons in the ISM in general. Their likely structures and their roles in a variety of chemical energy flow paths are discussed and presented within the context of their interstellar environments. Formation and destruction channels for HeH + are superimposed on this image depicting NGC 7027, or the "Jewel Bug" nebula, where it has been detected recently. Image by NASA, ESA, and J. Kastner (RIT). Molecular ions have been ubiquitous in a variety of environments in the interstellar medium, from Circumstellar Envelopes to Dark Molecular Clouds and to Diffuse Clouds. Their role in the multitude of molecular processes which have been found to occur in those environments has been the subject of many studies over the years, so that we have acquired by now a complex body of data on their chemical structures, their possible function within chemical reactions and their most likely paths to formation. In the present work we review a broad range of such molecular ions, focusing exclusively on positive ions involving the smallest and simplest cations which have been either detected or conjectured as present in the interstellar medium (ISM). We therefore consider mainly molecular cations formed with components like H, H + , He and He + , atomic species which are by far the most abundant baryons in the ISM in general. Their likely structures and their roles in a variety of chemical energy flow paths are discussed and presented within the context of their interstellar environments. Molecular ions have been ubiquitous in a variety of environments in the interstellar medium, from Circumstellar Envelopes to Dark Molecular Clouds and to Diffuse Clouds. Their role in the multitude of molecular processes which have been found to occur in those environments has been the subject of many studies over the years, so that we have acquired by now a complex body of data on their chemical structures, their possible function within chemical reactions and their most likely paths to formation. In the present work we review a broad range of such molecular ions, focusing exclusively on positive ions involving the smallest and simplest cations which have been either detected or conjectured as present in the interstellar medium (ISM). We therefore consider mainly molecular cations formed with components like H, H+, He and He+, atomic species which are by far the most abundant baryons in the ISM in general. Their likely structures and their roles in a variety of chemical energy flow paths are discussed and presented within the context of their interstellar environments. |
Author | Sathyamurthy, N Gianturco, Francesco A González-Sánchez, Lola |
AuthorAffiliation | Departamento de Química Física Universität Innsbruck Institut für Ionenphysik und Angewandte Physik Indian Institute of Science Education and Research Mohali University of Salamanca |
AuthorAffiliation_xml | – sequence: 0 name: Indian Institute of Science Education and Research Mohali – sequence: 0 name: Institut für Ionenphysik und Angewandte Physik – sequence: 0 name: Universität Innsbruck – sequence: 0 name: Departamento de Química Física – sequence: 0 name: University of Salamanca |
Author_xml | – sequence: 1 givenname: Lola surname: González-Sánchez fullname: González-Sánchez, Lola – sequence: 2 givenname: N surname: Sathyamurthy fullname: Sathyamurthy, N – sequence: 3 givenname: Francesco A surname: Gianturco fullname: Gianturco, Francesco A |
BookMark | eNptkUtLAzEUhYNUsK1u3AsDbkQYTSaTdLKU-qhQ0EVduBrSTEJTMklNMor_3kwrFYqr--A7h8u5IzCwzkoAzhG8QRCz2waLDcQQwtURGKKS4pzBqhzs-wk9AaMQ1olABOEheF-sZOadkZlTWWi5MVmbJtEZ7jPBo3Y2ZNpmMWFiJVstuMmUcV893y-1jdKHKE0vkPZTe2dbaWM4BceKmyDPfusYvD0-LKazfP7y9Dy9m-cCQ4RyvmS4URJx0tCiIbSqlhVsGK6KooHlhCKqhISTQlBCmgJVS8YUQ1AIpUpZkQKPwdXOd-PdRydDrFsdRH-Pla4LdVHRkiLGSJnQywN07Tpv03VbqiTJmCbqekcJ70LwUtUbr1vuv2sE6z7l-h5PX7cpzxIMD2Ch4za26Lk2_0sudhIfxN7673H4B0hXihw |
CitedBy_id | crossref_primary_10_1039_D3CP05623F crossref_primary_10_1021_acs_jpca_4c03237 |
Cites_doi | 10.1093/mnras/288.3.638 10.1103/RevModPhys.69.995 10.1039/C1CP22315A 10.3389/fspas.2021.776942 10.3390/molecules25092183 10.1021/acsearthspacechem.2c00131 10.1146/annurev.astro.46.060407.145211 10.1039/C9CP05259C 10.1088/0004-637X/752/1/19 10.1063/1.1680656 10.1088/0004-637X/795/1/40 10.1021/acs.jpca.1c10309 10.1039/b805750h 10.1088/0004-637X/748/2/150 10.1086/506522 10.1016/j.chempr.2019.04.016 10.1016/0301-0104(94)00428-D 10.1051/0004-6361:20066807 10.1063/5.0015813 10.1002/mas.20114 10.1051/0004-6361/201731441 10.1146/annurev-astro-082812-141029 10.1063/1.456748 10.1063/1.5142655 10.1016/0301-0104(80)80053-X 10.1086/169475 10.1051/0004-6361:20034534 10.1126/science.aax5921 10.1088/0034-4885/75/6/066901 10.1051/0004-6361/201220062 10.1093/oso/9780198501589.001.0001 10.1063/1.433585 10.1063/5.0040018 10.1103/PhysRevLett.45.531 10.1016/S0301-0104(00)00038-0 10.1039/C4CP00502C 10.1088/0004-637X/713/1/662 10.1038/322524a0 10.1103/PhysRevA.95.043411 10.1093/mnras/stv2429 10.1088/0004-637X/754/2/105 10.1103/RevModPhys.29.547 10.1086/506313 10.1051/0004-6361/201220519 10.1063/1.1672518 10.1088/2041-8205/716/1/L1 10.1093/mnras/stab3015 10.1063/1.4978475 10.1086/310225 10.1086/152436 10.1086/176824 10.1046/j.1365-8711.1998.01574.x 10.1021/jp9633207 10.1086/323147 10.1063/1.1672748 10.1103/RevModPhys.85.1021 10.3847/2041-8213/aca144 10.1080/0144235X.2022.2037883 10.1080/00268976.2020.1811907 10.1016/j.jms.2021.111423 10.1080/14786440208637024 10.1086/303834 10.1093/mnras/staa1086 10.1016/0301-0104(77)85083-0 10.1103/PhysRev.26.44 10.1051/0004-6361:20035629 10.1088/0004-637X/708/2/1560 10.1038/s41586-019-1090-x 10.1051/0004-6361:200810803 10.3847/1538-4357/ac0f57 10.1063/1.1681453 10.1021/acs.jpca.1c01820 10.1086/499047 10.3847/1538-4357/ab7191 10.1063/1.1744477 10.1063/1.1682221 10.1073/pnas.0601242103 10.1051/0004-6361:200809861 10.1063/1.1573184 10.1051/0004-6361:20041170 10.1126/science.274.5291.1327 10.1086/186781 10.1063/1.1670068 10.1051/0004-6361/201014283 10.1063/1.1924453 10.1063/1.478324 10.1063/5.0062147 10.1051/0004-6361/201014671 10.1088/0004-637X/743/1/36 10.1063/1.1680620 10.1038/384334a0 10.1063/1.440524 10.1016/S0039-6028(01)01538-2 10.1051/0004-6361/201014519 10.1086/310729 10.1088/1361-6455/aa97b0 10.1021/jp051796x 10.1051/0004-6361/201014656 10.1016/0009-2614(95)00187-9 10.1088/0004-637X/740/2/101 10.1016/0009-2614(77)80538-1 10.1086/424701 10.1126/science.aay5825 10.1039/D0CP04649C 10.1088/0004-637X/699/1/383 10.1063/1.1458248 10.1140/epjd/e2017-80043-8 10.1063/1.437823 10.1046/j.1365-8711.1999.02187.x 10.1093/mnras/stac3221 10.1021/jp0123435 10.1088/2041-8205/783/1/L4 10.1051/0004-6361/202346467 10.1016/S0009-2614(96)01079-2 10.1088/0953-4075/35/10/201 10.1086/144342 10.1016/j.cplett.2008.12.035 10.1021/jp0301296 10.3847/1538-4357/ab9a50 10.1086/176707 10.1051/0004-6361/201937012 10.1051/0004-6361/201936372 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d3cp03000h |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 23383 |
ExternalDocumentID | 10_1039_D3CP03000H d3cp03000h |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29O 4.4 53G 705 70~ 7~J 87K AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3I M4U N9A NHB O9- OK1 P2P R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 YNT AAYXX AFRZK AKMSF ALUYA CITATION R56 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3011-ab93dfe1a5d62d5688b80d93822d047616fce072c655d218b99f910ccff4e8523 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 05:56:59 EDT 2025 Mon Jun 30 04:06:51 EDT 2025 Tue Jul 01 00:48:05 EDT 2025 Thu Apr 24 23:09:36 EDT 2025 Tue Dec 17 20:58:43 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3011-ab93dfe1a5d62d5688b80d93822d047616fce072c655d218b99f910ccff4e8523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7800-5739 0000-0002-6402-2765 0000-0003-3962-530X |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2023/cp/d3cp03000h |
PQID | 2864459106 |
PQPubID | 2047499 |
PageCount | 14 |
ParticipantIDs | rsc_primary_d3cp03000h crossref_primary_10_1039_D3CP03000H proquest_journals_2864459106 proquest_miscellaneous_2864619954 crossref_citationtrail_10_1039_D3CP03000H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230913 |
PublicationDateYYYYMMDD | 2023-09-13 |
PublicationDate_xml | – month: 9 year: 2023 text: 20230913 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Burbidge (D3CP03000H/cit116/1) 1957; 29 Carrington (D3CP03000H/cit55/1) 1996; 274 Bovino (D3CP03000H/cit65/1) 2010; 708 Agundez (D3CP03000H/cit105/1) 2010; 713 Galli (D3CP03000H/cit12/1) 2013; 51 Cernicharo (D3CP03000H/cit98/1) 1997; 483 Meuwly (D3CP03000H/cit57/1) 1999; 302 Desrousseaux (D3CP03000H/cit37/1) 2020; 152 De Fazio (D3CP03000H/cit23/1) 2014; 16 Brueken (D3CP03000H/cit114/1) 2014; 783 Lepp (D3CP03000H/cit15/1) 2002; 35 Lesaffre (D3CP03000H/cit104/1) 2007; 469 Adams (D3CP03000H/cit29/1) 1970; 52 Pulliam (D3CP03000H/cit127/1) 2011; 743 Hamilton (D3CP03000H/cit41/1) 2016; 455 Falgarone (D3CP03000H/cit102/1) 2005; 634 González-Sánchez (D3CP03000H/cit90/1) 2021; 125 Larsson (D3CP03000H/cit9/1) 2012; 75 Tacconi (D3CP03000H/cit78/1) 2012; 14 Amano (D3CP03000H/cit97/1) 2010; 716 Vera (D3CP03000H/cit52/1) 2018; 51 Kawaguchi (D3CP03000H/cit132/1) 1993; 406 Ravi (D3CP03000H/cit60/1) 2021; 119 Dalgarno (D3CP03000H/cit63/1) 1987 Hartquist (D3CP03000H/cit14/1) 1998 Godard (D3CP03000H/cit106/1) 2010; 520 Williams (D3CP03000H/cit3/1) 2002; 500 Naylor (D3CP03000H/cit101/1) 2010; 518 Hollenbach (D3CP03000H/cit124/1) 2012; 754 Schiller (D3CP03000H/cit51/1) 2017; 95 Balta (D3CP03000H/cit42/1) 2000; 254 de Bernardis (D3CP03000H/cit68/1) 1993; 269 Oka (D3CP03000H/cit81/1) 1980; 45 Pety (D3CP03000H/cit109/1) 2005; 435 Pino (D3CP03000H/cit72/1) 2008; 10 Schauer (D3CP03000H/cit24/1) 1989; 91 Tielens (D3CP03000H/cit108/1) 2008; 46 Fortenberry (D3CP03000H/cit85/1) 2020; 25 Stancil (D3CP03000H/cit66/1) 1996; 458 Agundez (D3CP03000H/cit128/1) 2006; 650 Schleicher (D3CP03000H/cit74/1) 2008; 490 Dubrovich (D3CP03000H/cit67/1) 1993; 19 Moore (D3CP03000H/cit13/1) 1970 Denis-Alpizar (D3CP03000H/cit91/1) 2022; 6 Cernicharo (D3CP03000H/cit134/1) 2019; 630 Karpas (D3CP03000H/cit28/1) 1979; 70 Poshusta (D3CP03000H/cit86/1) 1969; 51 Galli (D3CP03000H/cit11/1) 1998; 335 Gianturco (D3CP03000H/cit40/1) 2021; 155 Nagy (D3CP03000H/cit112/1) 2013; 550 Novotný (D3CP03000H/cit25/1) 2019; 365 Chhabra (D3CP03000H/cit115/1) 2020; 494 Griffin (D3CP03000H/cit100/1) 2010; 518 Rimola (D3CP03000H/cit129/1) 2021; 8 Bovino (D3CP03000H/cit75/1) 2012; 752 Tiwari (D3CP03000H/cit53/1) 2006; 110 Wallerstein (D3CP03000H/cit117/1) 1997; 69 Herbst (D3CP03000H/cit135/1) 2021; 8 Fortenberry (D3CP03000H/cit84/1) 2019; 5 Herbst (D3CP03000H/cit5/1) 2005; 4 Panda (D3CP03000H/cit36/1) 2003; 107 Gammie (D3CP03000H/cit58/1) 2002; 116 Changala (D3CP03000H/cit133/1) 2022; 940 Snow (D3CP03000H/cit2/1) 1996; 468 Bovino (D3CP03000H/cit71/1) 2009; 699 Oka (D3CP03000H/cit82/1) 2006; 103 Baccarelli (D3CP03000H/cit87/1) 1997; 101 Töpfer (D3CP03000H/cit89/1) 2020; 22 Hogness (D3CP03000H/cit17/1) 1925; 26 Rutherford (D3CP03000H/cit31/1) 1973; 59 Pety (D3CP03000H/cit113/1) 2012; 548 Douglas (D3CP03000H/cit94/1) 1941; 94 Geballe (D3CP03000H/cit7/1) 1996; 384 Güsten (D3CP03000H/cit18/1) 2019; 568 Jurek (D3CP03000H/cit16/1) 1995; 193 Orient (D3CP03000H/cit34/1) 1977; 52 Bovino (D3CP03000H/cit77/1) 2012; 748 Petrie (D3CP03000H/cit8/1) 2007; 26 Ryan (D3CP03000H/cit30/1) 1973; 59 Kim (D3CP03000H/cit88/1) 1999; 110 Bovino (D3CP03000H/cit76/1) 2011; 740 Pearson (D3CP03000H/cit96/1) 2006; 647 Demes (D3CP03000H/cit122/1) 2023; 518 Teyssier (D3CP03000H/cit110/1) 2004; 417 Asvany (D3CP03000H/cit61/1) 2021; 377 Gianturco (D3CP03000H/cit38/1) 2021; 154 Li (D3CP03000H/cit4/1) 2001; 554 Neufeld (D3CP03000H/cit19/1) 2020; 894 Herbst (D3CP03000H/cit6/1) 1973; 185 Wakelam (D3CP03000H/cit111/1) 2010; 156 Bovino (D3CP03000H/cit93/1) 2019; 365 Adhikari (D3CP03000H/cit22/1) 2022; 41 Fontani (D3CP03000H/cit119/1) 2021; 653 Hopper (D3CP03000H/cit59/1) 1980; 73 Gayatri (D3CP03000H/cit48/1) 1980; 48 Carrington (D3CP03000H/cit56/1) 1996; 262 Wootten (D3CP03000H/cit120/1) 1986; 166 Ramachandran (D3CP03000H/cit50/1) 2009; 469 Cernicharo (D3CP03000H/cit118/1) 2014; 795 Cernicharo (D3CP03000H/cit130/1) 2023; 672 Theard (D3CP03000H/cit35/1) 1974; 60 Chupka (D3CP03000H/cit45/1) 1968; 49 Bettens (D3CP03000H/cit107/1) 1997; 478 Tielens (D3CP03000H/cit10/1) 2013; 85 Forrey (D3CP03000H/cit26/1) 2020; 898 Gioumousis (D3CP03000H/cit32/1) 1958; 29 Polanyi (D3CP03000H/cit47/1) 1977; 24 Signore (D3CP03000H/cit70/1) 1997; 35 Maioli (D3CP03000H/cit69/1) 1996; 457 Le Petit (D3CP03000H/cit1/1) 2004; 417 Zygelman (D3CP03000H/cit20/1) 1990; 365 Thomson (D3CP03000H/cit79/1) 1911; 21 Johnsen (D3CP03000H/cit33/1) 1974; 61 Hollis (D3CP03000H/cit121/1) 1986; 322 Mrugała (D3CP03000H/cit54/1) 2003; 118 Koner (D3CP03000H/cit62/1) 2019; 21 Bodo (D3CP03000H/cit64/1) 2001; 105 Iskandarov (D3CP03000H/cit49/1) 2017; 71 Hernández Vera (D3CP03000H/cit44/1) 2017; 146 Demes (D3CP03000H/cit123/1) 2022; 509 Gianturco (D3CP03000H/cit92/1) 2021; 154 Cernicharo (D3CP03000H/cit131/1) 1987; 183 Giri (D3CP03000H/cit39/1) 2022; 126 Carney (D3CP03000H/cit80/1) 1976; 65 Flower (D3CP03000H/cit103/1) 1998; 297 Chupka (D3CP03000H/cit46/1) 1969; ICPEAC VI Zicler (D3CP03000H/cit83/1) 2017; 607 Kraemer (D3CP03000H/cit21/1) 1995; 236 Courtney (D3CP03000H/cit27/1) 2021; 919 Bougleux (D3CP03000H/cit73/1) 1997; 288 Mrugała (D3CP03000H/cit43/1) 2005; 122 Milam (D3CP03000H/cit126/1) 2004; 615 Demes (D3CP03000H/cit125/1) 2020; 153 Godard (D3CP03000H/cit95/1) 2009; 495 Falgarone (D3CP03000H/cit99/1) 2010; 518 |
References_xml | – issn: 1987 publication-title: Astrochemistry doi: Dalgarno Lepp – issn: 1998 publication-title: The Molecular Astrophysics of Stars and Galaxies doi: Hartquist Williams – volume: 288 start-page: 638 year: 1997 ident: D3CP03000H/cit73/1 publication-title: MNRAS doi: 10.1093/mnras/288.3.638 – volume: 69 start-page: 995 year: 1997 ident: D3CP03000H/cit117/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.69.995 – volume: 14 start-page: 637 year: 2012 ident: D3CP03000H/cit78/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22315A – volume: 8 start-page: 776942 year: 2021 ident: D3CP03000H/cit135/1 publication-title: Front. Astron. Space Sci. doi: 10.3389/fspas.2021.776942 – volume: 25 start-page: 2183 year: 2020 ident: D3CP03000H/cit85/1 publication-title: Molecules doi: 10.3390/molecules25092183 – volume: 6 start-page: 1924 year: 2022 ident: D3CP03000H/cit91/1 publication-title: ACS Earth Space Chem. doi: 10.1021/acsearthspacechem.2c00131 – volume: 46 start-page: 289 year: 2008 ident: D3CP03000H/cit108/1 publication-title: Annu. Rev. Astron. Astrophys. doi: 10.1146/annurev.astro.46.060407.145211 – volume: 21 start-page: 24976 year: 2019 ident: D3CP03000H/cit62/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP05259C – start-page: 34 year: 1970 ident: D3CP03000H/cit13/1 publication-title: Natl. Bur. Stand. – volume: 752 start-page: 19 year: 2012 ident: D3CP03000H/cit75/1 publication-title: Astrophys. J. doi: 10.1088/0004-637X/752/1/19 – volume: 183 start-page: L10 year: 1987 ident: D3CP03000H/cit131/1 publication-title: Astron. Astrophys. – volume: 59 start-page: 4561 year: 1973 ident: D3CP03000H/cit31/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1680656 – volume: 795 start-page: 40 year: 2014 ident: D3CP03000H/cit118/1 publication-title: Astrophys. J. doi: 10.1088/0004-637X/795/1/40 – volume: 126 start-page: 2244 year: 2022 ident: D3CP03000H/cit39/1 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.1c10309 – volume: 10 start-page: 5545 year: 2008 ident: D3CP03000H/cit72/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b805750h – volume: 748 start-page: 150 year: 2012 ident: D3CP03000H/cit77/1 publication-title: Astrophys. J. doi: 10.1088/0004-637X/748/2/150 – volume: 647 start-page: L83 year: 2006 ident: D3CP03000H/cit96/1 publication-title: Astrophys. J. doi: 10.1086/506522 – volume: 5 start-page: 1028 year: 2019 ident: D3CP03000H/cit84/1 publication-title: Chem doi: 10.1016/j.chempr.2019.04.016 – volume: 193 start-page: 287 year: 1995 ident: D3CP03000H/cit16/1 publication-title: Chem. Phys. doi: 10.1016/0301-0104(94)00428-D – volume: 469 start-page: 949 year: 2007 ident: D3CP03000H/cit104/1 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20066807 – volume: 153 start-page: 094301 year: 2020 ident: D3CP03000H/cit125/1 publication-title: J. Chem. Phys. doi: 10.1063/5.0015813 – volume: 26 start-page: 258 year: 2007 ident: D3CP03000H/cit8/1 publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.20114 – volume: 607 start-page: A61 year: 2017 ident: D3CP03000H/cit83/1 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201731441 – volume: 51 start-page: 163 year: 2013 ident: D3CP03000H/cit12/1 publication-title: Annu. Rev. Astron. Astrophys. doi: 10.1146/annurev-astro-082812-141029 – volume: 269 start-page: 1 year: 1993 ident: D3CP03000H/cit68/1 publication-title: Astron. Astrophys. – volume: 156 start-page: 13 year: 2010 ident: D3CP03000H/cit111/1 publication-title: SSRv – volume: 91 start-page: 4593 year: 1989 ident: D3CP03000H/cit24/1 publication-title: J. Chem. Phys. doi: 10.1063/1.456748 – volume: 152 start-page: 74303 year: 2020 ident: D3CP03000H/cit37/1 publication-title: J. Chem. Phys. doi: 10.1063/1.5142655 – volume: 48 start-page: 227 year: 1980 ident: D3CP03000H/cit48/1 publication-title: Chem. Phys. doi: 10.1016/0301-0104(80)80053-X – volume: 365 start-page: 239 year: 1990 ident: D3CP03000H/cit20/1 publication-title: Astrophys. J. doi: 10.1086/169475 – volume-title: Astrochemistry year: 1987 ident: D3CP03000H/cit63/1 – volume: 417 start-page: 135 year: 2004 ident: D3CP03000H/cit110/1 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20034534 – volume: 365 start-page: 676 year: 2019 ident: D3CP03000H/cit25/1 publication-title: Science doi: 10.1126/science.aax5921 – volume: 75 start-page: 066901 year: 2012 ident: D3CP03000H/cit9/1 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/75/6/066901 – volume: 548 start-page: A68 year: 2012 ident: D3CP03000H/cit113/1 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201220062 – volume-title: The Molecular Astrophysics of Stars and Galaxies year: 1998 ident: D3CP03000H/cit14/1 doi: 10.1093/oso/9780198501589.001.0001 – volume: 65 start-page: 3547 year: 1976 ident: D3CP03000H/cit80/1 publication-title: J. Chem. Phys. doi: 10.1063/1.433585 – volume: 154 start-page: 54311 year: 2021 ident: D3CP03000H/cit92/1 publication-title: J. Chem. Phys. doi: 10.1063/5.0040018 – volume: 19 start-page: 53 year: 1993 ident: D3CP03000H/cit67/1 publication-title: J. Astron. Lett. – volume: 45 start-page: 531 year: 1980 ident: D3CP03000H/cit81/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.531 – volume: 254 start-page: 215 year: 2000 ident: D3CP03000H/cit42/1 publication-title: Chem. Phys. doi: 10.1016/S0301-0104(00)00038-0 – volume: 16 start-page: 11662 year: 2014 ident: D3CP03000H/cit23/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP00502C – volume: 4 start-page: 17 year: 2005 ident: D3CP03000H/cit5/1 publication-title: J. Phys.: Conf. Ser. – volume: 713 start-page: 662 year: 2010 ident: D3CP03000H/cit105/1 publication-title: Astrophys. J. doi: 10.1088/0004-637X/713/1/662 – volume: 322 start-page: 524 year: 1986 ident: D3CP03000H/cit121/1 publication-title: Nature doi: 10.1038/322524a0 – volume: 95 start-page: 043411 year: 2017 ident: D3CP03000H/cit51/1 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.95.043411 – volume: 455 start-page: 3281 year: 2016 ident: D3CP03000H/cit41/1 publication-title: MNRAS doi: 10.1093/mnras/stv2429 – volume: 754 start-page: 105 year: 2012 ident: D3CP03000H/cit124/1 publication-title: Astrophys. J. doi: 10.1088/0004-637X/754/2/105 – volume: 29 start-page: 547 year: 1957 ident: D3CP03000H/cit116/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.29.547 – volume: 650 start-page: 374 year: 2006 ident: D3CP03000H/cit128/1 publication-title: Astrophys. J. doi: 10.1086/506313 – volume: ICPEAC VI start-page: 71 year: 1969 ident: D3CP03000H/cit46/1 publication-title: 6th Int. Conf. on the Physics of Electronic and Atomic Collisions – volume: 550 start-page: A96 year: 2013 ident: D3CP03000H/cit112/1 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201220519 – volume: 51 start-page: 3343 year: 1969 ident: D3CP03000H/cit86/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1672518 – volume: 716 start-page: L1 year: 2010 ident: D3CP03000H/cit97/1 publication-title: Astrophys. J. doi: 10.1088/2041-8205/716/1/L1 – volume: 509 start-page: 1252 year: 2022 ident: D3CP03000H/cit123/1 publication-title: MNRAS doi: 10.1093/mnras/stab3015 – volume: 146 start-page: 124310 year: 2017 ident: D3CP03000H/cit44/1 publication-title: J. Chem. Phys. doi: 10.1063/1.4978475 – volume: 468 start-page: L65 year: 1996 ident: D3CP03000H/cit2/1 publication-title: Astrophys. J. doi: 10.1086/310225 – volume: 185 start-page: 505 year: 1973 ident: D3CP03000H/cit6/1 publication-title: Astrophys. J. doi: 10.1086/152436 – volume: 458 start-page: 401 year: 1996 ident: D3CP03000H/cit66/1 publication-title: Astrophys. J. doi: 10.1086/176824 – volume: 297 start-page: 1182 year: 1998 ident: D3CP03000H/cit103/1 publication-title: MNRAS doi: 10.1046/j.1365-8711.1998.01574.x – volume: 101 start-page: 6054 year: 1997 ident: D3CP03000H/cit87/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp9633207 – volume: 554 start-page: 778 year: 2001 ident: D3CP03000H/cit4/1 publication-title: Astrophys. J. doi: 10.1086/323147 – volume: 52 start-page: 5101 year: 1970 ident: D3CP03000H/cit29/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1672748 – volume: 85 start-page: 1021 year: 2013 ident: D3CP03000H/cit10/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.1021 – volume: 940 start-page: L42 year: 2022 ident: D3CP03000H/cit133/1 publication-title: Astrophys. J. doi: 10.3847/2041-8213/aca144 – volume: 41 start-page: 49 year: 2022 ident: D3CP03000H/cit22/1 publication-title: Int. Rev. Phys. Chem. doi: 10.1080/0144235X.2022.2037883 – volume: 119 start-page: e1811907 year: 2021 ident: D3CP03000H/cit60/1 publication-title: Mol. Phys. doi: 10.1080/00268976.2020.1811907 – volume: 377 start-page: 111423 year: 2021 ident: D3CP03000H/cit61/1 publication-title: J. Mol. Spect. doi: 10.1016/j.jms.2021.111423 – volume: 21 start-page: 225 year: 1911 ident: D3CP03000H/cit79/1 publication-title: London, Edinburgh Dublin Philos. Mag. J. Sci. doi: 10.1080/14786440208637024 – volume: 478 start-page: 585 year: 1997 ident: D3CP03000H/cit107/1 publication-title: Astrophys. J. doi: 10.1086/303834 – volume: 35 start-page: 349 year: 1997 ident: D3CP03000H/cit70/1 publication-title: Asron. Lett. Commun. – volume: 494 start-page: 5675 year: 2020 ident: D3CP03000H/cit115/1 publication-title: MNRAS doi: 10.1093/mnras/staa1086 – volume: 24 start-page: 105 year: 1977 ident: D3CP03000H/cit47/1 publication-title: Chem. Phys. doi: 10.1016/0301-0104(77)85083-0 – volume: 26 start-page: 44 year: 1925 ident: D3CP03000H/cit17/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.26.44 – volume: 417 start-page: 993 year: 2004 ident: D3CP03000H/cit1/1 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20035629 – volume: 708 start-page: 1560 year: 2010 ident: D3CP03000H/cit65/1 publication-title: Astrophys. J. doi: 10.1088/0004-637X/708/2/1560 – volume: 154 start-page: 054311 year: 2021 ident: D3CP03000H/cit38/1 publication-title: J. Chem. Phys. doi: 10.1063/5.0040018 – volume: 568 start-page: 357 year: 2019 ident: D3CP03000H/cit18/1 publication-title: Nature doi: 10.1038/s41586-019-1090-x – volume: 495 start-page: 847 year: 2009 ident: D3CP03000H/cit95/1 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:200810803 – volume: 919 start-page: 70 year: 2021 ident: D3CP03000H/cit27/1 publication-title: Astrophys. J. doi: 10.3847/1538-4357/ac0f57 – volume: 60 start-page: 2840 year: 1974 ident: D3CP03000H/cit35/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1681453 – volume: 125 start-page: 3748 year: 2021 ident: D3CP03000H/cit90/1 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.1c01820 – volume: 634 start-page: L149 year: 2005 ident: D3CP03000H/cit102/1 publication-title: Astrophys. J. doi: 10.1086/499047 – volume: 894 start-page: 37 year: 2020 ident: D3CP03000H/cit19/1 publication-title: Astrophys. J. doi: 10.3847/1538-4357/ab7191 – volume: 29 start-page: 294 year: 1958 ident: D3CP03000H/cit32/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1744477 – volume: 61 start-page: 2112 year: 1974 ident: D3CP03000H/cit33/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1682221 – volume: 103 start-page: 12235 year: 2006 ident: D3CP03000H/cit82/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0601242103 – volume: 490 start-page: 521 year: 2008 ident: D3CP03000H/cit74/1 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:200809861 – volume: 118 start-page: 10547 year: 2003 ident: D3CP03000H/cit54/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1573184 – volume: 435 start-page: 885 year: 2005 ident: D3CP03000H/cit109/1 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20041170 – volume: 274 start-page: 1327 year: 1996 ident: D3CP03000H/cit55/1 publication-title: Science doi: 10.1126/science.274.5291.1327 – volume: 406 start-page: L39 year: 1993 ident: D3CP03000H/cit132/1 publication-title: Astrophys. J. doi: 10.1086/186781 – volume: 49 start-page: 5426 year: 1968 ident: D3CP03000H/cit45/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1670068 – volume: 520 start-page: A20 year: 2010 ident: D3CP03000H/cit106/1 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201014283 – volume: 122 start-page: 224321 year: 2005 ident: D3CP03000H/cit43/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1924453 – volume: 110 start-page: 4413 year: 1999 ident: D3CP03000H/cit88/1 publication-title: J. Chem. Phys. doi: 10.1063/1.478324 – volume: 155 start-page: 154301 year: 2021 ident: D3CP03000H/cit40/1 publication-title: J. Chem. Phys. doi: 10.1063/5.0062147 – volume: 518 start-page: L118 year: 2010 ident: D3CP03000H/cit99/1 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201014671 – volume: 743 start-page: 36 year: 2011 ident: D3CP03000H/cit127/1 publication-title: Astrophys. J. doi: 10.1088/0004-637X/743/1/36 – volume: 59 start-page: 4260 year: 1973 ident: D3CP03000H/cit30/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1680620 – volume: 384 start-page: 334 year: 1996 ident: D3CP03000H/cit7/1 publication-title: Nature doi: 10.1038/384334a0 – volume: 335 start-page: 403 year: 1998 ident: D3CP03000H/cit11/1 publication-title: Astron. Astrophys. – volume: 73 start-page: 3289 year: 1980 ident: D3CP03000H/cit59/1 publication-title: J. Chem. Phys. doi: 10.1063/1.440524 – volume: 500 start-page: 823 year: 2002 ident: D3CP03000H/cit3/1 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(01)01538-2 – volume: 166 start-page: L15 year: 1986 ident: D3CP03000H/cit120/1 publication-title: Astron. Astrophys. – volume: 518 start-page: L3 year: 2010 ident: D3CP03000H/cit100/1 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201014519 – volume: 483 start-page: L65 year: 1997 ident: D3CP03000H/cit98/1 publication-title: Astrophys. J. doi: 10.1086/310729 – volume: 51 start-page: 014004 year: 2018 ident: D3CP03000H/cit52/1 publication-title: J. Phys. B: At., Mol. Opt. Phys. doi: 10.1088/1361-6455/aa97b0 – volume: 110 start-page: 389 year: 2006 ident: D3CP03000H/cit53/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp051796x – volume: 518 start-page: L117 year: 2010 ident: D3CP03000H/cit101/1 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201014656 – volume: 236 start-page: 177 year: 1995 ident: D3CP03000H/cit21/1 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(95)00187-9 – volume: 740 start-page: 101 year: 2011 ident: D3CP03000H/cit76/1 publication-title: Astrophys. J. doi: 10.1088/0004-637X/740/2/101 – volume: 52 start-page: 264 year: 1977 ident: D3CP03000H/cit34/1 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(77)80538-1 – volume: 615 start-page: 1054 year: 2004 ident: D3CP03000H/cit126/1 publication-title: Astrophys. J. doi: 10.1086/424701 – volume: 365 start-page: 639 year: 2019 ident: D3CP03000H/cit93/1 publication-title: Science doi: 10.1126/science.aay5825 – volume: 22 start-page: 22885 year: 2020 ident: D3CP03000H/cit89/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP04649C – volume: 699 start-page: 383 year: 2009 ident: D3CP03000H/cit71/1 publication-title: Astrophys. J. doi: 10.1088/0004-637X/699/1/383 – volume: 116 start-page: 6072 year: 2002 ident: D3CP03000H/cit58/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1458248 – volume: 71 start-page: 141 year: 2017 ident: D3CP03000H/cit49/1 publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2017-80043-8 – volume: 70 start-page: 2877 year: 1979 ident: D3CP03000H/cit28/1 publication-title: J. Chem. Phys. doi: 10.1063/1.437823 – volume: 302 start-page: 790 year: 1999 ident: D3CP03000H/cit57/1 publication-title: MNRAS doi: 10.1046/j.1365-8711.1999.02187.x – volume: 8 start-page: 1 year: 2021 ident: D3CP03000H/cit129/1 publication-title: Front. Astron. Space Sci. – volume: 518 start-page: 3593 year: 2023 ident: D3CP03000H/cit122/1 publication-title: MNRAS doi: 10.1093/mnras/stac3221 – volume: 105 start-page: 10986 year: 2001 ident: D3CP03000H/cit64/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp0123435 – volume: 783 start-page: L4 year: 2014 ident: D3CP03000H/cit114/1 publication-title: ApJL doi: 10.1088/2041-8205/783/1/L4 – volume: 672 start-page: L13 year: 2023 ident: D3CP03000H/cit130/1 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/202346467 – volume: 262 start-page: 598 year: 1996 ident: D3CP03000H/cit56/1 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(96)01079-2 – volume: 35 start-page: R57 year: 2002 ident: D3CP03000H/cit15/1 publication-title: J. Phys. B: At., Mol. Opt. Phys. doi: 10.1088/0953-4075/35/10/201 – volume: 94 start-page: 381 year: 1941 ident: D3CP03000H/cit94/1 publication-title: Astrophys. J. doi: 10.1086/144342 – volume: 469 start-page: 26 year: 2009 ident: D3CP03000H/cit50/1 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2008.12.035 – volume: 107 start-page: 7125 year: 2003 ident: D3CP03000H/cit36/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp0301296 – volume: 898 start-page: 86 year: 2020 ident: D3CP03000H/cit26/1 publication-title: Astrophys. J. doi: 10.3847/1538-4357/ab9a50 – volume: 457 start-page: 1 year: 1996 ident: D3CP03000H/cit69/1 publication-title: Astrophys. J. doi: 10.1086/176707 – volume: 653 start-page: A45 year: 2021 ident: D3CP03000H/cit119/1 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201937012 – volume: 630 start-page: L2 year: 2019 ident: D3CP03000H/cit134/1 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201936372 |
SSID | ssj0001513 |
Score | 2.4234939 |
SecondaryResourceType | review_article |
Snippet | Molecular ions have been ubiquitous in a variety of environments in the interstellar medium, from Circumstellar Envelopes to Dark Molecular Clouds and to... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2337 |
SubjectTerms | Cations Chemical energy Chemical reactions Energy flow Flow paths Interstellar chemistry Interstellar matter Molecular clouds Molecular ions Positive ions Stellar envelopes |
Title | The role of small molecular cations in the chemical flow of the interstellar environments |
URI | https://www.proquest.com/docview/2864459106 https://www.proquest.com/docview/2864619954 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZY9wAviAEThYE8wQtCGUmcmx-n0K2gMiotlcpTlNiOQGqTqRch-us5viWZ1oeNlzRyHSfy-Xz82T4XhD4kRRElCfUc4fMAFihV6cA0whzP91kUU17EyuT_-1U0ngXf5uG8MytS3iWb8ozt9vqV_I9UoQzkKr1kHyDZtlEogHuQL1xBwnC9t4yteeB6KQ-Zlzbb7aeelbjklswGBqgWzR9rGCBjRQD7kwZQq1sub33KOrWSZDY3XNeY3hdZq32FaZq2vmKXTb1TR_DeQuyca31bw2Nqu3rSLNrJ4BoY6N9iuV1ttLjbk6FLwC1Mh6yx9BoUGmvM1qvZpvCJtKnQXqZGswYRcair88GdiT1lRh1rP2gDOxL2lSshOsnIHbXvEhk1lRN2AzrLdX91k5s90L_6kV_MJpM8G82zA3Tow6LCH6DD81H2ddLO3MB-iPZG059lw9kS-rlr-zaB6VYlByubMkZRk-wZemrWFPhcA-QIPRL1c_Q4teJ6gX4CULAECm4qrICCW6BgAxT8u8aACWxliyVQZH1Z2AcK7gPlJZpdjLJ07JicGg6TqtwpSkp4Jbwi5JHPQxinZeJySoAncjeIIy-qmHBjGKhhyIH-lZRWwCgZq6pAJKFPjtGgbmrxCmGg9iVjVDYhghhmviQRFbBF-I0TRr0h-mg7Kmcm4LzMe7LIleEDofkXkk5Vp46H6H1b90aHWdlb68T2d26G4Tr3E6D0IXxjNESn7d_QwfLkq6hFs9V1IhmMIBiiY5BT-45OrK_v8fAb9KSD9gkabFZb8RY46aZ8Z6D0D9hwjVY |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+small+molecular+cations+in+the+chemical+flow+of+the+interstellar+environments&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Gonz%C3%A1lez-S%C3%A1nchez%2C+Lola&rft.au=Sathyamurthy%2C+N&rft.au=Gianturco%2C+Francesco+A&rft.date=2023-09-13&rft.issn=1463-9084&rft.eissn=1463-9084&rft.volume=25&rft.issue=35&rft.spage=23370&rft_id=info:doi/10.1039%2Fd3cp03000h&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |