The role of small molecular cations in the chemical flow of the interstellar environments

Molecular ions have been ubiquitous in a variety of environments in the interstellar medium, from Circumstellar Envelopes to Dark Molecular Clouds and to Diffuse Clouds. Their role in the multitude of molecular processes which have been found to occur in those environments has been the subject of ma...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 25; no. 35; pp. 2337 - 23383
Main Authors González-Sánchez, Lola, Sathyamurthy, N, Gianturco, Francesco A
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 13.09.2023
Subjects
Online AccessGet full text
ISSN1463-9076
1463-9084
1463-9084
DOI10.1039/d3cp03000h

Cover

Loading…
Abstract Molecular ions have been ubiquitous in a variety of environments in the interstellar medium, from Circumstellar Envelopes to Dark Molecular Clouds and to Diffuse Clouds. Their role in the multitude of molecular processes which have been found to occur in those environments has been the subject of many studies over the years, so that we have acquired by now a complex body of data on their chemical structures, their possible function within chemical reactions and their most likely paths to formation. In the present work we review a broad range of such molecular ions, focusing exclusively on positive ions involving the smallest and simplest cations which have been either detected or conjectured as present in the interstellar medium (ISM). We therefore consider mainly molecular cations formed with components like H, H + , He and He + , atomic species which are by far the most abundant baryons in the ISM in general. Their likely structures and their roles in a variety of chemical energy flow paths are discussed and presented within the context of their interstellar environments. Formation and destruction channels for HeH + are superimposed on this image depicting NGC 7027, or the "Jewel Bug" nebula, where it has been detected recently. Image by NASA, ESA, and J. Kastner (RIT).
AbstractList Molecular ions have been ubiquitous in a variety of environments in the interstellar medium, from Circumstellar Envelopes to Dark Molecular Clouds and to Diffuse Clouds. Their role in the multitude of molecular processes which have been found to occur in those environments has been the subject of many studies over the years, so that we have acquired by now a complex body of data on their chemical structures, their possible function within chemical reactions and their most likely paths to formation. In the present work we review a broad range of such molecular ions, focusing exclusively on positive ions involving the smallest and simplest cations which have been either detected or conjectured as present in the interstellar medium (ISM). We therefore consider mainly molecular cations formed with components like H, H+, He and He+, atomic species which are by far the most abundant baryons in the ISM in general. Their likely structures and their roles in a variety of chemical energy flow paths are discussed and presented within the context of their interstellar environments.Molecular ions have been ubiquitous in a variety of environments in the interstellar medium, from Circumstellar Envelopes to Dark Molecular Clouds and to Diffuse Clouds. Their role in the multitude of molecular processes which have been found to occur in those environments has been the subject of many studies over the years, so that we have acquired by now a complex body of data on their chemical structures, their possible function within chemical reactions and their most likely paths to formation. In the present work we review a broad range of such molecular ions, focusing exclusively on positive ions involving the smallest and simplest cations which have been either detected or conjectured as present in the interstellar medium (ISM). We therefore consider mainly molecular cations formed with components like H, H+, He and He+, atomic species which are by far the most abundant baryons in the ISM in general. Their likely structures and their roles in a variety of chemical energy flow paths are discussed and presented within the context of their interstellar environments.
Molecular ions have been ubiquitous in a variety of environments in the interstellar medium, from Circumstellar Envelopes to Dark Molecular Clouds and to Diffuse Clouds. Their role in the multitude of molecular processes which have been found to occur in those environments has been the subject of many studies over the years, so that we have acquired by now a complex body of data on their chemical structures, their possible function within chemical reactions and their most likely paths to formation. In the present work we review a broad range of such molecular ions, focusing exclusively on positive ions involving the smallest and simplest cations which have been either detected or conjectured as present in the interstellar medium (ISM). We therefore consider mainly molecular cations formed with components like H, H + , He and He + , atomic species which are by far the most abundant baryons in the ISM in general. Their likely structures and their roles in a variety of chemical energy flow paths are discussed and presented within the context of their interstellar environments. Formation and destruction channels for HeH + are superimposed on this image depicting NGC 7027, or the "Jewel Bug" nebula, where it has been detected recently. Image by NASA, ESA, and J. Kastner (RIT).
Molecular ions have been ubiquitous in a variety of environments in the interstellar medium, from Circumstellar Envelopes to Dark Molecular Clouds and to Diffuse Clouds. Their role in the multitude of molecular processes which have been found to occur in those environments has been the subject of many studies over the years, so that we have acquired by now a complex body of data on their chemical structures, their possible function within chemical reactions and their most likely paths to formation. In the present work we review a broad range of such molecular ions, focusing exclusively on positive ions involving the smallest and simplest cations which have been either detected or conjectured as present in the interstellar medium (ISM). We therefore consider mainly molecular cations formed with components like H, H + , He and He + , atomic species which are by far the most abundant baryons in the ISM in general. Their likely structures and their roles in a variety of chemical energy flow paths are discussed and presented within the context of their interstellar environments.
Molecular ions have been ubiquitous in a variety of environments in the interstellar medium, from Circumstellar Envelopes to Dark Molecular Clouds and to Diffuse Clouds. Their role in the multitude of molecular processes which have been found to occur in those environments has been the subject of many studies over the years, so that we have acquired by now a complex body of data on their chemical structures, their possible function within chemical reactions and their most likely paths to formation. In the present work we review a broad range of such molecular ions, focusing exclusively on positive ions involving the smallest and simplest cations which have been either detected or conjectured as present in the interstellar medium (ISM). We therefore consider mainly molecular cations formed with components like H, H+, He and He+, atomic species which are by far the most abundant baryons in the ISM in general. Their likely structures and their roles in a variety of chemical energy flow paths are discussed and presented within the context of their interstellar environments.
Author Sathyamurthy, N
Gianturco, Francesco A
González-Sánchez, Lola
AuthorAffiliation Departamento de Química Física
Universität Innsbruck
Institut für Ionenphysik und Angewandte Physik
Indian Institute of Science Education and Research Mohali
University of Salamanca
AuthorAffiliation_xml – sequence: 0
  name: Indian Institute of Science Education and Research Mohali
– sequence: 0
  name: Institut für Ionenphysik und Angewandte Physik
– sequence: 0
  name: Universität Innsbruck
– sequence: 0
  name: Departamento de Química Física
– sequence: 0
  name: University of Salamanca
Author_xml – sequence: 1
  givenname: Lola
  surname: González-Sánchez
  fullname: González-Sánchez, Lola
– sequence: 2
  givenname: N
  surname: Sathyamurthy
  fullname: Sathyamurthy, N
– sequence: 3
  givenname: Francesco A
  surname: Gianturco
  fullname: Gianturco, Francesco A
BookMark eNptkUtLAzEUhYNUsK1u3AsDbkQYTSaTdLKU-qhQ0EVduBrSTEJTMklNMor_3kwrFYqr--A7h8u5IzCwzkoAzhG8QRCz2waLDcQQwtURGKKS4pzBqhzs-wk9AaMQ1olABOEheF-sZOadkZlTWWi5MVmbJtEZ7jPBo3Y2ZNpmMWFiJVstuMmUcV893y-1jdKHKE0vkPZTe2dbaWM4BceKmyDPfusYvD0-LKazfP7y9Dy9m-cCQ4RyvmS4URJx0tCiIbSqlhVsGK6KooHlhCKqhISTQlBCmgJVS8YUQ1AIpUpZkQKPwdXOd-PdRydDrFsdRH-Pla4LdVHRkiLGSJnQywN07Tpv03VbqiTJmCbqekcJ70LwUtUbr1vuv2sE6z7l-h5PX7cpzxIMD2Ch4za26Lk2_0sudhIfxN7673H4B0hXihw
CitedBy_id crossref_primary_10_1039_D3CP05623F
crossref_primary_10_1021_acs_jpca_4c03237
Cites_doi 10.1093/mnras/288.3.638
10.1103/RevModPhys.69.995
10.1039/C1CP22315A
10.3389/fspas.2021.776942
10.3390/molecules25092183
10.1021/acsearthspacechem.2c00131
10.1146/annurev.astro.46.060407.145211
10.1039/C9CP05259C
10.1088/0004-637X/752/1/19
10.1063/1.1680656
10.1088/0004-637X/795/1/40
10.1021/acs.jpca.1c10309
10.1039/b805750h
10.1088/0004-637X/748/2/150
10.1086/506522
10.1016/j.chempr.2019.04.016
10.1016/0301-0104(94)00428-D
10.1051/0004-6361:20066807
10.1063/5.0015813
10.1002/mas.20114
10.1051/0004-6361/201731441
10.1146/annurev-astro-082812-141029
10.1063/1.456748
10.1063/1.5142655
10.1016/0301-0104(80)80053-X
10.1086/169475
10.1051/0004-6361:20034534
10.1126/science.aax5921
10.1088/0034-4885/75/6/066901
10.1051/0004-6361/201220062
10.1093/oso/9780198501589.001.0001
10.1063/1.433585
10.1063/5.0040018
10.1103/PhysRevLett.45.531
10.1016/S0301-0104(00)00038-0
10.1039/C4CP00502C
10.1088/0004-637X/713/1/662
10.1038/322524a0
10.1103/PhysRevA.95.043411
10.1093/mnras/stv2429
10.1088/0004-637X/754/2/105
10.1103/RevModPhys.29.547
10.1086/506313
10.1051/0004-6361/201220519
10.1063/1.1672518
10.1088/2041-8205/716/1/L1
10.1093/mnras/stab3015
10.1063/1.4978475
10.1086/310225
10.1086/152436
10.1086/176824
10.1046/j.1365-8711.1998.01574.x
10.1021/jp9633207
10.1086/323147
10.1063/1.1672748
10.1103/RevModPhys.85.1021
10.3847/2041-8213/aca144
10.1080/0144235X.2022.2037883
10.1080/00268976.2020.1811907
10.1016/j.jms.2021.111423
10.1080/14786440208637024
10.1086/303834
10.1093/mnras/staa1086
10.1016/0301-0104(77)85083-0
10.1103/PhysRev.26.44
10.1051/0004-6361:20035629
10.1088/0004-637X/708/2/1560
10.1038/s41586-019-1090-x
10.1051/0004-6361:200810803
10.3847/1538-4357/ac0f57
10.1063/1.1681453
10.1021/acs.jpca.1c01820
10.1086/499047
10.3847/1538-4357/ab7191
10.1063/1.1744477
10.1063/1.1682221
10.1073/pnas.0601242103
10.1051/0004-6361:200809861
10.1063/1.1573184
10.1051/0004-6361:20041170
10.1126/science.274.5291.1327
10.1086/186781
10.1063/1.1670068
10.1051/0004-6361/201014283
10.1063/1.1924453
10.1063/1.478324
10.1063/5.0062147
10.1051/0004-6361/201014671
10.1088/0004-637X/743/1/36
10.1063/1.1680620
10.1038/384334a0
10.1063/1.440524
10.1016/S0039-6028(01)01538-2
10.1051/0004-6361/201014519
10.1086/310729
10.1088/1361-6455/aa97b0
10.1021/jp051796x
10.1051/0004-6361/201014656
10.1016/0009-2614(95)00187-9
10.1088/0004-637X/740/2/101
10.1016/0009-2614(77)80538-1
10.1086/424701
10.1126/science.aay5825
10.1039/D0CP04649C
10.1088/0004-637X/699/1/383
10.1063/1.1458248
10.1140/epjd/e2017-80043-8
10.1063/1.437823
10.1046/j.1365-8711.1999.02187.x
10.1093/mnras/stac3221
10.1021/jp0123435
10.1088/2041-8205/783/1/L4
10.1051/0004-6361/202346467
10.1016/S0009-2614(96)01079-2
10.1088/0953-4075/35/10/201
10.1086/144342
10.1016/j.cplett.2008.12.035
10.1021/jp0301296
10.3847/1538-4357/ab9a50
10.1086/176707
10.1051/0004-6361/201937012
10.1051/0004-6361/201936372
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d3cp03000h
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 23383
ExternalDocumentID 10_1039_D3CP03000H
d3cp03000h
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29O
4.4
53G
705
70~
7~J
87K
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3I
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
YNT
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3011-ab93dfe1a5d62d5688b80d93822d047616fce072c655d218b99f910ccff4e8523
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 05:56:59 EDT 2025
Mon Jun 30 04:06:51 EDT 2025
Tue Jul 01 00:48:05 EDT 2025
Thu Apr 24 23:09:36 EDT 2025
Tue Dec 17 20:58:43 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3011-ab93dfe1a5d62d5688b80d93822d047616fce072c655d218b99f910ccff4e8523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7800-5739
0000-0002-6402-2765
0000-0003-3962-530X
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2023/cp/d3cp03000h
PQID 2864459106
PQPubID 2047499
PageCount 14
ParticipantIDs rsc_primary_d3cp03000h
crossref_primary_10_1039_D3CP03000H
proquest_journals_2864459106
proquest_miscellaneous_2864619954
crossref_citationtrail_10_1039_D3CP03000H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230913
PublicationDateYYYYMMDD 2023-09-13
PublicationDate_xml – month: 9
  year: 2023
  text: 20230913
  day: 13
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Burbidge (D3CP03000H/cit116/1) 1957; 29
Carrington (D3CP03000H/cit55/1) 1996; 274
Bovino (D3CP03000H/cit65/1) 2010; 708
Agundez (D3CP03000H/cit105/1) 2010; 713
Galli (D3CP03000H/cit12/1) 2013; 51
Cernicharo (D3CP03000H/cit98/1) 1997; 483
Meuwly (D3CP03000H/cit57/1) 1999; 302
Desrousseaux (D3CP03000H/cit37/1) 2020; 152
De Fazio (D3CP03000H/cit23/1) 2014; 16
Brueken (D3CP03000H/cit114/1) 2014; 783
Lepp (D3CP03000H/cit15/1) 2002; 35
Lesaffre (D3CP03000H/cit104/1) 2007; 469
Adams (D3CP03000H/cit29/1) 1970; 52
Pulliam (D3CP03000H/cit127/1) 2011; 743
Hamilton (D3CP03000H/cit41/1) 2016; 455
Falgarone (D3CP03000H/cit102/1) 2005; 634
González-Sánchez (D3CP03000H/cit90/1) 2021; 125
Larsson (D3CP03000H/cit9/1) 2012; 75
Tacconi (D3CP03000H/cit78/1) 2012; 14
Amano (D3CP03000H/cit97/1) 2010; 716
Vera (D3CP03000H/cit52/1) 2018; 51
Kawaguchi (D3CP03000H/cit132/1) 1993; 406
Ravi (D3CP03000H/cit60/1) 2021; 119
Dalgarno (D3CP03000H/cit63/1) 1987
Hartquist (D3CP03000H/cit14/1) 1998
Godard (D3CP03000H/cit106/1) 2010; 520
Williams (D3CP03000H/cit3/1) 2002; 500
Naylor (D3CP03000H/cit101/1) 2010; 518
Hollenbach (D3CP03000H/cit124/1) 2012; 754
Schiller (D3CP03000H/cit51/1) 2017; 95
Balta (D3CP03000H/cit42/1) 2000; 254
de Bernardis (D3CP03000H/cit68/1) 1993; 269
Oka (D3CP03000H/cit81/1) 1980; 45
Pety (D3CP03000H/cit109/1) 2005; 435
Pino (D3CP03000H/cit72/1) 2008; 10
Schauer (D3CP03000H/cit24/1) 1989; 91
Tielens (D3CP03000H/cit108/1) 2008; 46
Fortenberry (D3CP03000H/cit85/1) 2020; 25
Stancil (D3CP03000H/cit66/1) 1996; 458
Agundez (D3CP03000H/cit128/1) 2006; 650
Schleicher (D3CP03000H/cit74/1) 2008; 490
Dubrovich (D3CP03000H/cit67/1) 1993; 19
Moore (D3CP03000H/cit13/1) 1970
Denis-Alpizar (D3CP03000H/cit91/1) 2022; 6
Cernicharo (D3CP03000H/cit134/1) 2019; 630
Karpas (D3CP03000H/cit28/1) 1979; 70
Poshusta (D3CP03000H/cit86/1) 1969; 51
Galli (D3CP03000H/cit11/1) 1998; 335
Gianturco (D3CP03000H/cit40/1) 2021; 155
Nagy (D3CP03000H/cit112/1) 2013; 550
Novotný (D3CP03000H/cit25/1) 2019; 365
Chhabra (D3CP03000H/cit115/1) 2020; 494
Griffin (D3CP03000H/cit100/1) 2010; 518
Rimola (D3CP03000H/cit129/1) 2021; 8
Bovino (D3CP03000H/cit75/1) 2012; 752
Tiwari (D3CP03000H/cit53/1) 2006; 110
Wallerstein (D3CP03000H/cit117/1) 1997; 69
Herbst (D3CP03000H/cit135/1) 2021; 8
Fortenberry (D3CP03000H/cit84/1) 2019; 5
Herbst (D3CP03000H/cit5/1) 2005; 4
Panda (D3CP03000H/cit36/1) 2003; 107
Gammie (D3CP03000H/cit58/1) 2002; 116
Changala (D3CP03000H/cit133/1) 2022; 940
Snow (D3CP03000H/cit2/1) 1996; 468
Bovino (D3CP03000H/cit71/1) 2009; 699
Oka (D3CP03000H/cit82/1) 2006; 103
Baccarelli (D3CP03000H/cit87/1) 1997; 101
Töpfer (D3CP03000H/cit89/1) 2020; 22
Hogness (D3CP03000H/cit17/1) 1925; 26
Rutherford (D3CP03000H/cit31/1) 1973; 59
Pety (D3CP03000H/cit113/1) 2012; 548
Douglas (D3CP03000H/cit94/1) 1941; 94
Geballe (D3CP03000H/cit7/1) 1996; 384
Güsten (D3CP03000H/cit18/1) 2019; 568
Jurek (D3CP03000H/cit16/1) 1995; 193
Orient (D3CP03000H/cit34/1) 1977; 52
Bovino (D3CP03000H/cit77/1) 2012; 748
Petrie (D3CP03000H/cit8/1) 2007; 26
Ryan (D3CP03000H/cit30/1) 1973; 59
Kim (D3CP03000H/cit88/1) 1999; 110
Bovino (D3CP03000H/cit76/1) 2011; 740
Pearson (D3CP03000H/cit96/1) 2006; 647
Demes (D3CP03000H/cit122/1) 2023; 518
Teyssier (D3CP03000H/cit110/1) 2004; 417
Asvany (D3CP03000H/cit61/1) 2021; 377
Gianturco (D3CP03000H/cit38/1) 2021; 154
Li (D3CP03000H/cit4/1) 2001; 554
Neufeld (D3CP03000H/cit19/1) 2020; 894
Herbst (D3CP03000H/cit6/1) 1973; 185
Wakelam (D3CP03000H/cit111/1) 2010; 156
Bovino (D3CP03000H/cit93/1) 2019; 365
Adhikari (D3CP03000H/cit22/1) 2022; 41
Fontani (D3CP03000H/cit119/1) 2021; 653
Hopper (D3CP03000H/cit59/1) 1980; 73
Gayatri (D3CP03000H/cit48/1) 1980; 48
Carrington (D3CP03000H/cit56/1) 1996; 262
Wootten (D3CP03000H/cit120/1) 1986; 166
Ramachandran (D3CP03000H/cit50/1) 2009; 469
Cernicharo (D3CP03000H/cit118/1) 2014; 795
Cernicharo (D3CP03000H/cit130/1) 2023; 672
Theard (D3CP03000H/cit35/1) 1974; 60
Chupka (D3CP03000H/cit45/1) 1968; 49
Bettens (D3CP03000H/cit107/1) 1997; 478
Tielens (D3CP03000H/cit10/1) 2013; 85
Forrey (D3CP03000H/cit26/1) 2020; 898
Gioumousis (D3CP03000H/cit32/1) 1958; 29
Polanyi (D3CP03000H/cit47/1) 1977; 24
Signore (D3CP03000H/cit70/1) 1997; 35
Maioli (D3CP03000H/cit69/1) 1996; 457
Le Petit (D3CP03000H/cit1/1) 2004; 417
Zygelman (D3CP03000H/cit20/1) 1990; 365
Thomson (D3CP03000H/cit79/1) 1911; 21
Johnsen (D3CP03000H/cit33/1) 1974; 61
Hollis (D3CP03000H/cit121/1) 1986; 322
Mrugała (D3CP03000H/cit54/1) 2003; 118
Koner (D3CP03000H/cit62/1) 2019; 21
Bodo (D3CP03000H/cit64/1) 2001; 105
Iskandarov (D3CP03000H/cit49/1) 2017; 71
Hernández Vera (D3CP03000H/cit44/1) 2017; 146
Demes (D3CP03000H/cit123/1) 2022; 509
Gianturco (D3CP03000H/cit92/1) 2021; 154
Cernicharo (D3CP03000H/cit131/1) 1987; 183
Giri (D3CP03000H/cit39/1) 2022; 126
Carney (D3CP03000H/cit80/1) 1976; 65
Flower (D3CP03000H/cit103/1) 1998; 297
Chupka (D3CP03000H/cit46/1) 1969; ICPEAC VI
Zicler (D3CP03000H/cit83/1) 2017; 607
Kraemer (D3CP03000H/cit21/1) 1995; 236
Courtney (D3CP03000H/cit27/1) 2021; 919
Bougleux (D3CP03000H/cit73/1) 1997; 288
Mrugała (D3CP03000H/cit43/1) 2005; 122
Milam (D3CP03000H/cit126/1) 2004; 615
Demes (D3CP03000H/cit125/1) 2020; 153
Godard (D3CP03000H/cit95/1) 2009; 495
Falgarone (D3CP03000H/cit99/1) 2010; 518
References_xml – issn: 1987
  publication-title: Astrochemistry
  doi: Dalgarno Lepp
– issn: 1998
  publication-title: The Molecular Astrophysics of Stars and Galaxies
  doi: Hartquist Williams
– volume: 288
  start-page: 638
  year: 1997
  ident: D3CP03000H/cit73/1
  publication-title: MNRAS
  doi: 10.1093/mnras/288.3.638
– volume: 69
  start-page: 995
  year: 1997
  ident: D3CP03000H/cit117/1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.69.995
– volume: 14
  start-page: 637
  year: 2012
  ident: D3CP03000H/cit78/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP22315A
– volume: 8
  start-page: 776942
  year: 2021
  ident: D3CP03000H/cit135/1
  publication-title: Front. Astron. Space Sci.
  doi: 10.3389/fspas.2021.776942
– volume: 25
  start-page: 2183
  year: 2020
  ident: D3CP03000H/cit85/1
  publication-title: Molecules
  doi: 10.3390/molecules25092183
– volume: 6
  start-page: 1924
  year: 2022
  ident: D3CP03000H/cit91/1
  publication-title: ACS Earth Space Chem.
  doi: 10.1021/acsearthspacechem.2c00131
– volume: 46
  start-page: 289
  year: 2008
  ident: D3CP03000H/cit108/1
  publication-title: Annu. Rev. Astron. Astrophys.
  doi: 10.1146/annurev.astro.46.060407.145211
– volume: 21
  start-page: 24976
  year: 2019
  ident: D3CP03000H/cit62/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP05259C
– start-page: 34
  year: 1970
  ident: D3CP03000H/cit13/1
  publication-title: Natl. Bur. Stand.
– volume: 752
  start-page: 19
  year: 2012
  ident: D3CP03000H/cit75/1
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/752/1/19
– volume: 183
  start-page: L10
  year: 1987
  ident: D3CP03000H/cit131/1
  publication-title: Astron. Astrophys.
– volume: 59
  start-page: 4561
  year: 1973
  ident: D3CP03000H/cit31/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1680656
– volume: 795
  start-page: 40
  year: 2014
  ident: D3CP03000H/cit118/1
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/795/1/40
– volume: 126
  start-page: 2244
  year: 2022
  ident: D3CP03000H/cit39/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.1c10309
– volume: 10
  start-page: 5545
  year: 2008
  ident: D3CP03000H/cit72/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b805750h
– volume: 748
  start-page: 150
  year: 2012
  ident: D3CP03000H/cit77/1
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/748/2/150
– volume: 647
  start-page: L83
  year: 2006
  ident: D3CP03000H/cit96/1
  publication-title: Astrophys. J.
  doi: 10.1086/506522
– volume: 5
  start-page: 1028
  year: 2019
  ident: D3CP03000H/cit84/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.04.016
– volume: 193
  start-page: 287
  year: 1995
  ident: D3CP03000H/cit16/1
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(94)00428-D
– volume: 469
  start-page: 949
  year: 2007
  ident: D3CP03000H/cit104/1
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20066807
– volume: 153
  start-page: 094301
  year: 2020
  ident: D3CP03000H/cit125/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0015813
– volume: 26
  start-page: 258
  year: 2007
  ident: D3CP03000H/cit8/1
  publication-title: Mass Spectrom. Rev.
  doi: 10.1002/mas.20114
– volume: 607
  start-page: A61
  year: 2017
  ident: D3CP03000H/cit83/1
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201731441
– volume: 51
  start-page: 163
  year: 2013
  ident: D3CP03000H/cit12/1
  publication-title: Annu. Rev. Astron. Astrophys.
  doi: 10.1146/annurev-astro-082812-141029
– volume: 269
  start-page: 1
  year: 1993
  ident: D3CP03000H/cit68/1
  publication-title: Astron. Astrophys.
– volume: 156
  start-page: 13
  year: 2010
  ident: D3CP03000H/cit111/1
  publication-title: SSRv
– volume: 91
  start-page: 4593
  year: 1989
  ident: D3CP03000H/cit24/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456748
– volume: 152
  start-page: 74303
  year: 2020
  ident: D3CP03000H/cit37/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5142655
– volume: 48
  start-page: 227
  year: 1980
  ident: D3CP03000H/cit48/1
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(80)80053-X
– volume: 365
  start-page: 239
  year: 1990
  ident: D3CP03000H/cit20/1
  publication-title: Astrophys. J.
  doi: 10.1086/169475
– volume-title: Astrochemistry
  year: 1987
  ident: D3CP03000H/cit63/1
– volume: 417
  start-page: 135
  year: 2004
  ident: D3CP03000H/cit110/1
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20034534
– volume: 365
  start-page: 676
  year: 2019
  ident: D3CP03000H/cit25/1
  publication-title: Science
  doi: 10.1126/science.aax5921
– volume: 75
  start-page: 066901
  year: 2012
  ident: D3CP03000H/cit9/1
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/75/6/066901
– volume: 548
  start-page: A68
  year: 2012
  ident: D3CP03000H/cit113/1
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201220062
– volume-title: The Molecular Astrophysics of Stars and Galaxies
  year: 1998
  ident: D3CP03000H/cit14/1
  doi: 10.1093/oso/9780198501589.001.0001
– volume: 65
  start-page: 3547
  year: 1976
  ident: D3CP03000H/cit80/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.433585
– volume: 154
  start-page: 54311
  year: 2021
  ident: D3CP03000H/cit92/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0040018
– volume: 19
  start-page: 53
  year: 1993
  ident: D3CP03000H/cit67/1
  publication-title: J. Astron. Lett.
– volume: 45
  start-page: 531
  year: 1980
  ident: D3CP03000H/cit81/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.531
– volume: 254
  start-page: 215
  year: 2000
  ident: D3CP03000H/cit42/1
  publication-title: Chem. Phys.
  doi: 10.1016/S0301-0104(00)00038-0
– volume: 16
  start-page: 11662
  year: 2014
  ident: D3CP03000H/cit23/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP00502C
– volume: 4
  start-page: 17
  year: 2005
  ident: D3CP03000H/cit5/1
  publication-title: J. Phys.: Conf. Ser.
– volume: 713
  start-page: 662
  year: 2010
  ident: D3CP03000H/cit105/1
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/713/1/662
– volume: 322
  start-page: 524
  year: 1986
  ident: D3CP03000H/cit121/1
  publication-title: Nature
  doi: 10.1038/322524a0
– volume: 95
  start-page: 043411
  year: 2017
  ident: D3CP03000H/cit51/1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.043411
– volume: 455
  start-page: 3281
  year: 2016
  ident: D3CP03000H/cit41/1
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2429
– volume: 754
  start-page: 105
  year: 2012
  ident: D3CP03000H/cit124/1
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/754/2/105
– volume: 29
  start-page: 547
  year: 1957
  ident: D3CP03000H/cit116/1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.29.547
– volume: 650
  start-page: 374
  year: 2006
  ident: D3CP03000H/cit128/1
  publication-title: Astrophys. J.
  doi: 10.1086/506313
– volume: ICPEAC VI
  start-page: 71
  year: 1969
  ident: D3CP03000H/cit46/1
  publication-title: 6th Int. Conf. on the Physics of Electronic and Atomic Collisions
– volume: 550
  start-page: A96
  year: 2013
  ident: D3CP03000H/cit112/1
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201220519
– volume: 51
  start-page: 3343
  year: 1969
  ident: D3CP03000H/cit86/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1672518
– volume: 716
  start-page: L1
  year: 2010
  ident: D3CP03000H/cit97/1
  publication-title: Astrophys. J.
  doi: 10.1088/2041-8205/716/1/L1
– volume: 509
  start-page: 1252
  year: 2022
  ident: D3CP03000H/cit123/1
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3015
– volume: 146
  start-page: 124310
  year: 2017
  ident: D3CP03000H/cit44/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4978475
– volume: 468
  start-page: L65
  year: 1996
  ident: D3CP03000H/cit2/1
  publication-title: Astrophys. J.
  doi: 10.1086/310225
– volume: 185
  start-page: 505
  year: 1973
  ident: D3CP03000H/cit6/1
  publication-title: Astrophys. J.
  doi: 10.1086/152436
– volume: 458
  start-page: 401
  year: 1996
  ident: D3CP03000H/cit66/1
  publication-title: Astrophys. J.
  doi: 10.1086/176824
– volume: 297
  start-page: 1182
  year: 1998
  ident: D3CP03000H/cit103/1
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1998.01574.x
– volume: 101
  start-page: 6054
  year: 1997
  ident: D3CP03000H/cit87/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9633207
– volume: 554
  start-page: 778
  year: 2001
  ident: D3CP03000H/cit4/1
  publication-title: Astrophys. J.
  doi: 10.1086/323147
– volume: 52
  start-page: 5101
  year: 1970
  ident: D3CP03000H/cit29/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1672748
– volume: 85
  start-page: 1021
  year: 2013
  ident: D3CP03000H/cit10/1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.85.1021
– volume: 940
  start-page: L42
  year: 2022
  ident: D3CP03000H/cit133/1
  publication-title: Astrophys. J.
  doi: 10.3847/2041-8213/aca144
– volume: 41
  start-page: 49
  year: 2022
  ident: D3CP03000H/cit22/1
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/0144235X.2022.2037883
– volume: 119
  start-page: e1811907
  year: 2021
  ident: D3CP03000H/cit60/1
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2020.1811907
– volume: 377
  start-page: 111423
  year: 2021
  ident: D3CP03000H/cit61/1
  publication-title: J. Mol. Spect.
  doi: 10.1016/j.jms.2021.111423
– volume: 21
  start-page: 225
  year: 1911
  ident: D3CP03000H/cit79/1
  publication-title: London, Edinburgh Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786440208637024
– volume: 478
  start-page: 585
  year: 1997
  ident: D3CP03000H/cit107/1
  publication-title: Astrophys. J.
  doi: 10.1086/303834
– volume: 35
  start-page: 349
  year: 1997
  ident: D3CP03000H/cit70/1
  publication-title: Asron. Lett. Commun.
– volume: 494
  start-page: 5675
  year: 2020
  ident: D3CP03000H/cit115/1
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1086
– volume: 24
  start-page: 105
  year: 1977
  ident: D3CP03000H/cit47/1
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(77)85083-0
– volume: 26
  start-page: 44
  year: 1925
  ident: D3CP03000H/cit17/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.26.44
– volume: 417
  start-page: 993
  year: 2004
  ident: D3CP03000H/cit1/1
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20035629
– volume: 708
  start-page: 1560
  year: 2010
  ident: D3CP03000H/cit65/1
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/708/2/1560
– volume: 154
  start-page: 054311
  year: 2021
  ident: D3CP03000H/cit38/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0040018
– volume: 568
  start-page: 357
  year: 2019
  ident: D3CP03000H/cit18/1
  publication-title: Nature
  doi: 10.1038/s41586-019-1090-x
– volume: 495
  start-page: 847
  year: 2009
  ident: D3CP03000H/cit95/1
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:200810803
– volume: 919
  start-page: 70
  year: 2021
  ident: D3CP03000H/cit27/1
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/ac0f57
– volume: 60
  start-page: 2840
  year: 1974
  ident: D3CP03000H/cit35/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1681453
– volume: 125
  start-page: 3748
  year: 2021
  ident: D3CP03000H/cit90/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.1c01820
– volume: 634
  start-page: L149
  year: 2005
  ident: D3CP03000H/cit102/1
  publication-title: Astrophys. J.
  doi: 10.1086/499047
– volume: 894
  start-page: 37
  year: 2020
  ident: D3CP03000H/cit19/1
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/ab7191
– volume: 29
  start-page: 294
  year: 1958
  ident: D3CP03000H/cit32/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1744477
– volume: 61
  start-page: 2112
  year: 1974
  ident: D3CP03000H/cit33/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1682221
– volume: 103
  start-page: 12235
  year: 2006
  ident: D3CP03000H/cit82/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0601242103
– volume: 490
  start-page: 521
  year: 2008
  ident: D3CP03000H/cit74/1
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:200809861
– volume: 118
  start-page: 10547
  year: 2003
  ident: D3CP03000H/cit54/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1573184
– volume: 435
  start-page: 885
  year: 2005
  ident: D3CP03000H/cit109/1
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20041170
– volume: 274
  start-page: 1327
  year: 1996
  ident: D3CP03000H/cit55/1
  publication-title: Science
  doi: 10.1126/science.274.5291.1327
– volume: 406
  start-page: L39
  year: 1993
  ident: D3CP03000H/cit132/1
  publication-title: Astrophys. J.
  doi: 10.1086/186781
– volume: 49
  start-page: 5426
  year: 1968
  ident: D3CP03000H/cit45/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1670068
– volume: 520
  start-page: A20
  year: 2010
  ident: D3CP03000H/cit106/1
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201014283
– volume: 122
  start-page: 224321
  year: 2005
  ident: D3CP03000H/cit43/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1924453
– volume: 110
  start-page: 4413
  year: 1999
  ident: D3CP03000H/cit88/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478324
– volume: 155
  start-page: 154301
  year: 2021
  ident: D3CP03000H/cit40/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0062147
– volume: 518
  start-page: L118
  year: 2010
  ident: D3CP03000H/cit99/1
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201014671
– volume: 743
  start-page: 36
  year: 2011
  ident: D3CP03000H/cit127/1
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/743/1/36
– volume: 59
  start-page: 4260
  year: 1973
  ident: D3CP03000H/cit30/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1680620
– volume: 384
  start-page: 334
  year: 1996
  ident: D3CP03000H/cit7/1
  publication-title: Nature
  doi: 10.1038/384334a0
– volume: 335
  start-page: 403
  year: 1998
  ident: D3CP03000H/cit11/1
  publication-title: Astron. Astrophys.
– volume: 73
  start-page: 3289
  year: 1980
  ident: D3CP03000H/cit59/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.440524
– volume: 500
  start-page: 823
  year: 2002
  ident: D3CP03000H/cit3/1
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(01)01538-2
– volume: 166
  start-page: L15
  year: 1986
  ident: D3CP03000H/cit120/1
  publication-title: Astron. Astrophys.
– volume: 518
  start-page: L3
  year: 2010
  ident: D3CP03000H/cit100/1
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201014519
– volume: 483
  start-page: L65
  year: 1997
  ident: D3CP03000H/cit98/1
  publication-title: Astrophys. J.
  doi: 10.1086/310729
– volume: 51
  start-page: 014004
  year: 2018
  ident: D3CP03000H/cit52/1
  publication-title: J. Phys. B: At., Mol. Opt. Phys.
  doi: 10.1088/1361-6455/aa97b0
– volume: 110
  start-page: 389
  year: 2006
  ident: D3CP03000H/cit53/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp051796x
– volume: 518
  start-page: L117
  year: 2010
  ident: D3CP03000H/cit101/1
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201014656
– volume: 236
  start-page: 177
  year: 1995
  ident: D3CP03000H/cit21/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(95)00187-9
– volume: 740
  start-page: 101
  year: 2011
  ident: D3CP03000H/cit76/1
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/740/2/101
– volume: 52
  start-page: 264
  year: 1977
  ident: D3CP03000H/cit34/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(77)80538-1
– volume: 615
  start-page: 1054
  year: 2004
  ident: D3CP03000H/cit126/1
  publication-title: Astrophys. J.
  doi: 10.1086/424701
– volume: 365
  start-page: 639
  year: 2019
  ident: D3CP03000H/cit93/1
  publication-title: Science
  doi: 10.1126/science.aay5825
– volume: 22
  start-page: 22885
  year: 2020
  ident: D3CP03000H/cit89/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP04649C
– volume: 699
  start-page: 383
  year: 2009
  ident: D3CP03000H/cit71/1
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/699/1/383
– volume: 116
  start-page: 6072
  year: 2002
  ident: D3CP03000H/cit58/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1458248
– volume: 71
  start-page: 141
  year: 2017
  ident: D3CP03000H/cit49/1
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2017-80043-8
– volume: 70
  start-page: 2877
  year: 1979
  ident: D3CP03000H/cit28/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.437823
– volume: 302
  start-page: 790
  year: 1999
  ident: D3CP03000H/cit57/1
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02187.x
– volume: 8
  start-page: 1
  year: 2021
  ident: D3CP03000H/cit129/1
  publication-title: Front. Astron. Space Sci.
– volume: 518
  start-page: 3593
  year: 2023
  ident: D3CP03000H/cit122/1
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3221
– volume: 105
  start-page: 10986
  year: 2001
  ident: D3CP03000H/cit64/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0123435
– volume: 783
  start-page: L4
  year: 2014
  ident: D3CP03000H/cit114/1
  publication-title: ApJL
  doi: 10.1088/2041-8205/783/1/L4
– volume: 672
  start-page: L13
  year: 2023
  ident: D3CP03000H/cit130/1
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/202346467
– volume: 262
  start-page: 598
  year: 1996
  ident: D3CP03000H/cit56/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(96)01079-2
– volume: 35
  start-page: R57
  year: 2002
  ident: D3CP03000H/cit15/1
  publication-title: J. Phys. B: At., Mol. Opt. Phys.
  doi: 10.1088/0953-4075/35/10/201
– volume: 94
  start-page: 381
  year: 1941
  ident: D3CP03000H/cit94/1
  publication-title: Astrophys. J.
  doi: 10.1086/144342
– volume: 469
  start-page: 26
  year: 2009
  ident: D3CP03000H/cit50/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2008.12.035
– volume: 107
  start-page: 7125
  year: 2003
  ident: D3CP03000H/cit36/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0301296
– volume: 898
  start-page: 86
  year: 2020
  ident: D3CP03000H/cit26/1
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/ab9a50
– volume: 457
  start-page: 1
  year: 1996
  ident: D3CP03000H/cit69/1
  publication-title: Astrophys. J.
  doi: 10.1086/176707
– volume: 653
  start-page: A45
  year: 2021
  ident: D3CP03000H/cit119/1
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201937012
– volume: 630
  start-page: L2
  year: 2019
  ident: D3CP03000H/cit134/1
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201936372
SSID ssj0001513
Score 2.4234939
SecondaryResourceType review_article
Snippet Molecular ions have been ubiquitous in a variety of environments in the interstellar medium, from Circumstellar Envelopes to Dark Molecular Clouds and to...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2337
SubjectTerms Cations
Chemical energy
Chemical reactions
Energy flow
Flow paths
Interstellar chemistry
Interstellar matter
Molecular clouds
Molecular ions
Positive ions
Stellar envelopes
Title The role of small molecular cations in the chemical flow of the interstellar environments
URI https://www.proquest.com/docview/2864459106
https://www.proquest.com/docview/2864619954
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZY9wAviAEThYE8wQtCGUmcmx-n0K2gMiotlcpTlNiOQGqTqRch-us5viWZ1oeNlzRyHSfy-Xz82T4XhD4kRRElCfUc4fMAFihV6cA0whzP91kUU17EyuT_-1U0ngXf5uG8MytS3iWb8ozt9vqV_I9UoQzkKr1kHyDZtlEogHuQL1xBwnC9t4yteeB6KQ-Zlzbb7aeelbjklswGBqgWzR9rGCBjRQD7kwZQq1sub33KOrWSZDY3XNeY3hdZq32FaZq2vmKXTb1TR_DeQuyca31bw2Nqu3rSLNrJ4BoY6N9iuV1ttLjbk6FLwC1Mh6yx9BoUGmvM1qvZpvCJtKnQXqZGswYRcair88GdiT1lRh1rP2gDOxL2lSshOsnIHbXvEhk1lRN2AzrLdX91k5s90L_6kV_MJpM8G82zA3Tow6LCH6DD81H2ddLO3MB-iPZG059lw9kS-rlr-zaB6VYlByubMkZRk-wZemrWFPhcA-QIPRL1c_Q4teJ6gX4CULAECm4qrICCW6BgAxT8u8aACWxliyVQZH1Z2AcK7gPlJZpdjLJ07JicGg6TqtwpSkp4Jbwi5JHPQxinZeJySoAncjeIIy-qmHBjGKhhyIH-lZRWwCgZq6pAJKFPjtGgbmrxCmGg9iVjVDYhghhmviQRFbBF-I0TRr0h-mg7Kmcm4LzMe7LIleEDofkXkk5Vp46H6H1b90aHWdlb68T2d26G4Tr3E6D0IXxjNESn7d_QwfLkq6hFs9V1IhmMIBiiY5BT-45OrK_v8fAb9KSD9gkabFZb8RY46aZ8Z6D0D9hwjVY
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+small+molecular+cations+in+the+chemical+flow+of+the+interstellar+environments&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Gonz%C3%A1lez-S%C3%A1nchez%2C+Lola&rft.au=Sathyamurthy%2C+N&rft.au=Gianturco%2C+Francesco+A&rft.date=2023-09-13&rft.issn=1463-9084&rft.eissn=1463-9084&rft.volume=25&rft.issue=35&rft.spage=23370&rft_id=info:doi/10.1039%2Fd3cp03000h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon