Multivariate analysis of variance and change points estimation for high‐dimensional longitudinal data
This article considers the problem of testing temporal homogeneity of p‐dimensional population mean vectors from repeated measurements on n subjects over T times. To cope with the challenges brought about by high‐dimensional longitudinal data, we propose methodology that takes into account not only...
Saved in:
Published in | Scandinavian journal of statistics Vol. 48; no. 2; pp. 375 - 405 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article considers the problem of testing temporal homogeneity of p‐dimensional population mean vectors from repeated measurements on n subjects over T times. To cope with the challenges brought about by high‐dimensional longitudinal data, we propose methodology that takes into account not only the “large p, large T, and small n” situation but also the complex temporospatial dependence. We consider both the multivariate analysis of variance problem and the change point problem. The asymptotic distributions of the proposed test statistics are established under mild conditions. In the change point setting, when the null hypothesis of temporal homogeneity is rejected, we further propose a binary segmentation method and show that it is consistent with a rate that explicitly depends on p,T, and n. Simulation studies and an application to fMRI data are provided to demonstrate the performance and applicability of the proposed methods. |
---|---|
AbstractList | This article considers the problem of testing temporal homogeneity of p‐dimensional population mean vectors from repeated measurements on n subjects over T times. To cope with the challenges brought about by high‐dimensional longitudinal data, we propose methodology that takes into account not only the “large p, large T, and small n” situation but also the complex temporospatial dependence. We consider both the multivariate analysis of variance problem and the change point problem. The asymptotic distributions of the proposed test statistics are established under mild conditions. In the change point setting, when the null hypothesis of temporal homogeneity is rejected, we further propose a binary segmentation method and show that it is consistent with a rate that explicitly depends on p,T, and n. Simulation studies and an application to fMRI data are provided to demonstrate the performance and applicability of the proposed methods. This article considers the problem of testing temporal homogeneity of p ‐dimensional population mean vectors from repeated measurements on n subjects over T times. To cope with the challenges brought about by high‐dimensional longitudinal data, we propose methodology that takes into account not only the “large p , large T , and small n ” situation but also the complex temporospatial dependence. We consider both the multivariate analysis of variance problem and the change point problem. The asymptotic distributions of the proposed test statistics are established under mild conditions. In the change point setting, when the null hypothesis of temporal homogeneity is rejected, we further propose a binary segmentation method and show that it is consistent with a rate that explicitly depends on p , T , and n . Simulation studies and an application to fMRI data are provided to demonstrate the performance and applicability of the proposed methods. |
Author | Li, Jun Kokoszka, Piotr Zhong, Ping‐Shou |
Author_xml | – sequence: 1 givenname: Ping‐Shou surname: Zhong fullname: Zhong, Ping‐Shou organization: University of Illinois at Chicago – sequence: 2 givenname: Jun surname: Li fullname: Li, Jun organization: Kent State University – sequence: 3 givenname: Piotr orcidid: 0000-0001-9979-6536 surname: Kokoszka fullname: Kokoszka, Piotr email: pszhong@uic.edu organization: Colorado State University |
BookMark | eNp9UMtOwzAQtFCRaAsXvsASN6QUv5ImR1TxVFEPhXO0iZ3UVWoX2wX1xifwjXwJScMJIeay2tHMaHdGaGCsUQidUzKhLa782voJZSIhR2hIRTKNMpFkAzQknPAoSbP0BI28XxNCE0HTIaqfdk3Qb-A0BIXBQLP32mNb4QNnyo6UuFyBqRXeWm2Cx8oHvYGgrcGVdXil69XXx6fUG2V8S0KDG2tqHXZSd4uEAKfouILGq7OfOUYvtzfPs_tovrh7mF3Po5ITSiIKghYEsoSWjMgkLiHjMqacScUEFFCyBGJW8CoVlPI0rmLFChVnxVRwXgjJx-iiz906-7prD83XdufaK3zOYp6JFiRuVZe9qnTWe6eqfOvaj9w-pyTvisy7IvNDka2Y_BKXOhy-Dw5087eF9pZ33aj9P-H58nGx7D3fj3WK0g |
CitedBy_id | crossref_primary_10_1093_jrsssb_qkad021 crossref_primary_10_1016_j_jmva_2021_104833 crossref_primary_10_1111_sjos_12537 crossref_primary_10_1177_09622802241232125 crossref_primary_10_1016_j_spl_2021_109228 crossref_primary_10_1111_biom_13844 crossref_primary_10_1115_1_4054234 |
Cites_doi | 10.1016/j.jmva.2012.10.011 10.1007/s00221-006-0766-2 10.1007/s10463-015-0543-8 10.1016/j.jmva.2006.11.007 10.1080/01621459.2014.988215 10.1214/09-AOS716 10.1214/aoms/1177706437 10.1214/12-AOAS565 10.1002/9780470539873 10.1093/biomet/24.3-4.471 10.1111/rssb.12079 10.1214/aos/1074290335 10.1214/14-AOS1269 10.1016/j.jmva.2012.03.006 10.1214/15-AOS1347 10.1038/33402 10.1111/rssb.12243 10.7551/mitpress/8764.001.0001 10.1002/9780470316962 10.1080/13506285.2011.596852 10.2307/2527954 10.1007/s00184-014-0522-8 10.1214/16-AOS1481 |
ContentType | Journal Article |
Copyright | 2020 Board of the Foundation of the Scandinavian Journal of Statistics 2021 Board of the Foundation of the Scandinavian Journal of Statistics |
Copyright_xml | – notice: 2020 Board of the Foundation of the Scandinavian Journal of Statistics – notice: 2021 Board of the Foundation of the Scandinavian Journal of Statistics |
DBID | AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
DOI | 10.1111/sjos.12460 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1467-9469 |
EndPage | 405 |
ExternalDocumentID | 10_1111_sjos_12460 SJOS12460 |
Genre | article |
GroupedDBID | -ET .3N .GA .GJ .L6 .Y3 05W 0R~ 10A 123 1OC 3-9 31~ 33P 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5HH 5LA 5VS 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8V8 930 A03 AAESR AAEVG AAHHS AAHQN AAKYL AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABDBF ABEML ABFAN ABIVO ABJNI ABPVW ABQDR ABXSQ ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACDIW ACGFS ACIWK ACMTB ACPOU ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADODI ADOZA ADULT ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AELLO AELPN AEMOZ AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFVYC AFWVQ AFZJQ AHBTC AHQJS AITYG AIURR AIWBW AJBDE AJXKR AKBRZ AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN ALVPJ AMBMR AMYDB ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BHOJU BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DU5 EAD EAP EBA EBO EBR EBS EBU ECEWR EJD EMK EST ESX F00 F01 F04 F5P FEDTE G-S G.N GIFXF GODZA H.T H.X HF~ HGLYW HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K RNS ROL RX1 SA0 SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 ZZTAW ~IA ~WT AAWIL AAYXX ABAWQ ACHJO AEYWJ AGHNM AGLNM AGQPQ AGYGG AIHAF AMVHM CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY H8D JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3010-1a41b0a961c20d65ca93d5132de24abac26a52b3f8411385f5e2be59b7433b4d3 |
IEDL.DBID | DR2 |
ISSN | 0303-6898 |
IngestDate | Fri Jul 25 19:41:43 EDT 2025 Tue Jul 01 01:27:16 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 Wed Jan 22 16:28:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3010-1a41b0a961c20d65ca93d5132de24abac26a52b3f8411385f5e2be59b7433b4d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9979-6536 |
PQID | 2539444405 |
PQPubID | 30873 |
PageCount | 31 |
ParticipantIDs | proquest_journals_2539444405 crossref_primary_10_1111_sjos_12460 crossref_citationtrail_10_1111_sjos_12460 wiley_primary_10_1111_sjos_12460_SJOS12460 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Scandinavian journal of statistics |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2015; 78 2019; 2019 2010; 38 2011 2017; 69 2010 2015; 77 1960; 16 2017; 45 1997 1981; 24 2018; 80 2007; 98 2011; 19 2003; 31 1998; 392 1999 2012a; 109 2007; 179 1958; 29 2013; 115 2015; 43 2015; 110 1932; 24 1992; 24 1980 1996; 6 2012b; 6 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 Hall P. (e_1_2_8_15_1) 1980 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 Csörgő M. (e_1_2_8_10_1) 1997 Vostrikova L. J. (e_1_2_8_26_1) 1981; 24 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 Pešta M. (e_1_2_8_20_1) 2019; 2019 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_16_1 Bai Z. (e_1_2_8_5_1) 1996; 6 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_30_1 |
References_xml | – year: 2011 – volume: 29 start-page: 995 year: 1958 end-page: 1010 article-title: A high dimensional two sample significance test publication-title: The Annals of Mathematical Statistics – volume: 43 start-page: 139 year: 2015 end-page: 176 article-title: Graph‐based change‐point detection publication-title: The Annals of Statistics – volume: 69 start-page: 365 year: 2017 end-page: 387 article-title: On testing the equality of high dimensional mean vectors with unequal covariance matrices publication-title: Annals of the Institute of Statistical Mathematics – volume: 16 start-page: 41 year: 1960 end-page: 50 article-title: A significance test for the separation of two highly multivariate small samples publication-title: Biometrics – volume: 109 start-page: 204 year: 2012a end-page: 220 article-title: Detecting and estimating epidemic changes in dependent functional data publication-title: Journal of Multivariate Analysis – volume: 6 start-page: 1906 year: 2012b end-page: 1948 article-title: Evaluating stationarity via change–point alternatives with applications to fMRI data publication-title: The Annals of Applied Statistics – volume: 43 start-page: 2451 issue: 6 year: 2015 end-page: 2483 article-title: Uniform change point tests in high dimension publication-title: The Annals of Statistics – volume: 110 start-page: 1658 year: 2015 end-page: 1669 article-title: A high‐dimensional nonparametric multivariate test for mean vector publication-title: Journal of the American Statistical Association – volume: 392 start-page: 598 year: 1998 end-page: 601 article-title: A cortical representation of the local visual environment publication-title: Nature – volume: 115 start-page: 204 year: 2013 end-page: 216 article-title: Tests for multivariate analysis of variance in high dimension under non‐normality publication-title: Journal of Multivariate Analysis – volume: 98 start-page: 1825 year: 2007 end-page: 1839 article-title: Some High‐dimensional Tests for a one‐way MANOVA publication-title: Journal of Multivariate Analysis – volume: 24 start-page: 55 year: 1981 end-page: 59 article-title: Detecting "disorder" in multidimensional random processes publication-title: Soviet Mathematics: Doklady – volume: 45 start-page: 1185 year: 2017 end-page: 1213 article-title: Tests for covariance structures with high‐dimensional repeated measurements publication-title: The Annals of Statistics – volume: 31 start-page: 2013 year: 2003 end-page: 2035 article-title: The positive false discovery rate: A Bayesian interpretation and the q‐value publication-title: The Annals of Statistics – volume: 78 start-page: 665 year: 2015 end-page: 689 article-title: Testing structural changes in panel data with small fixed panel size and bootstrap publication-title: Metrika – year: 2010 – volume: 6 start-page: 311 year: 1996 end-page: 329 article-title: Effect of high dimension: By an example of two sample problem publication-title: Statistica Sinica – volume: 2019 start-page: 1 year: 2019 end-page: 30 article-title: Nuisance‐parameter‐free changepoint detection in non‐stationary series publication-title: Test – volume: 80 start-page: 57 year: 2018 end-page: 83 article-title: High dimensional change point estimation via sparse projection publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 19 start-page: 910 year: 2011 end-page: 927 article-title: Functions of parahippocampal place area and retrosplenial cortex in real‐world scene analysis: An fMRI study publication-title: Visual Cognition – volume: 24 start-page: 471 year: 1932 end-page: 494 article-title: Certain generalizations in the analysis of variance publication-title: Biometrika – year: 1980 – volume: 179 start-page: 75 year: 2007 end-page: 84 article-title: Cortical activation to indoor versus outdoor scenes: An fMRI study publication-title: Experimental Brain Research – year: 1997 – volume: 77 start-page: 475 year: 2015 end-page: 507 article-title: Multiple‐change‐point detection for high dimensional time series via sparsified binary segmentation publication-title: Journal of the Royal Statistical Society (B) – year: 1999 – volume: 38 start-page: 808 year: 2010 end-page: 835 article-title: A two‐sample test for high‐dimensional data with applications to gene‐set testing publication-title: The Annals of Statistics – volume: 24 year: 1992 – ident: e_1_2_8_23_1 doi: 10.1016/j.jmva.2012.10.011 – volume-title: Limit theorems in change‐point analysis year: 1997 ident: e_1_2_8_10_1 – ident: e_1_2_8_16_1 doi: 10.1007/s00221-006-0766-2 – ident: e_1_2_8_18_1 doi: 10.1007/s10463-015-0543-8 – ident: e_1_2_8_22_1 doi: 10.1016/j.jmva.2006.11.007 – ident: e_1_2_8_25_1 – ident: e_1_2_8_27_1 doi: 10.1080/01621459.2014.988215 – ident: e_1_2_8_8_1 doi: 10.1214/09-AOS716 – ident: e_1_2_8_11_1 doi: 10.1214/aoms/1177706437 – ident: e_1_2_8_4_1 doi: 10.1214/12-AOAS565 – ident: e_1_2_8_14_1 doi: 10.1002/9780470539873 – volume: 2019 start-page: 1 year: 2019 ident: e_1_2_8_20_1 article-title: Nuisance‐parameter‐free changepoint detection in non‐stationary series publication-title: Test – ident: e_1_2_8_29_1 doi: 10.1093/biomet/24.3-4.471 – ident: e_1_2_8_9_1 doi: 10.1111/rssb.12079 – ident: e_1_2_8_24_1 doi: 10.1214/aos/1074290335 – ident: e_1_2_8_7_1 doi: 10.1214/14-AOS1269 – ident: e_1_2_8_3_1 doi: 10.1016/j.jmva.2012.03.006 – ident: e_1_2_8_19_1 doi: 10.1214/15-AOS1347 – volume: 24 start-page: 55 year: 1981 ident: e_1_2_8_26_1 article-title: Detecting "disorder" in multidimensional random processes publication-title: Soviet Mathematics: Doklady – ident: e_1_2_8_13_1 doi: 10.1038/33402 – ident: e_1_2_8_28_1 doi: 10.1111/rssb.12243 – ident: e_1_2_8_2_1 doi: 10.7551/mitpress/8764.001.0001 – ident: e_1_2_8_6_1 doi: 10.1002/9780470316962 – volume: 6 start-page: 311 year: 1996 ident: e_1_2_8_5_1 article-title: Effect of high dimension: By an example of two sample problem publication-title: Statistica Sinica – ident: e_1_2_8_17_1 doi: 10.1080/13506285.2011.596852 – volume-title: Martingale limit theory and applications year: 1980 ident: e_1_2_8_15_1 – ident: e_1_2_8_12_1 doi: 10.2307/2527954 – ident: e_1_2_8_21_1 doi: 10.1007/s00184-014-0522-8 – ident: e_1_2_8_30_1 doi: 10.1214/16-AOS1481 |
SSID | ssj0016418 |
Score | 2.2976162 |
Snippet | This article considers the problem of testing temporal homogeneity of p‐dimensional population mean vectors from repeated measurements on n subjects over T... This article considers the problem of testing temporal homogeneity of p ‐dimensional population mean vectors from repeated measurements on n subjects over T... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 375 |
SubjectTerms | change points fMRI data high‐dimensional means Homogeneity longitudinal data Multivariate analysis Segmentation spatial dependence Statistical tests temporal dependence Variance analysis |
Title | Multivariate analysis of variance and change points estimation for high‐dimensional longitudinal data |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsjos.12460 https://www.proquest.com/docview/2539444405 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSsRAEC3Ekx5cRsVxo0EvChkmSXebgBcRBxFUcAEvEnpJiwsTMTMePPkJfqNfYlUnGRdE0FtoOiHprkq9al69AtiQLtfKKRvkiAUCjPhJoOPIBd1kW2sndZg6T5A9lgcX_PBSXI7BTlMLU-lDjA7cyDP8_5ocXOnyk5OXt0XZwegkKWEnshYhotORdhSmAf5wD404DmSSJrU2KdF4Pm79Go0-IOZnoOojTW8arpp3rAgmd53hQHfM8zf5xv9-xAxM1RCU7VY2Mwtjeb8Fk0cj_dayBROEQSsJ5zm49kW6T5hUIy5lqlYxYYVjfgytBgctq0qI2UNx0x-UjMQ7qqpIhrCYkSry28urpV4ClQ4Iuy-oVdLQUlsuRkTVebjo7Z_vHQR1f4bAxJ7UoXiouyqVoYm6Vgqj0tgKTG9tHnGllYmkEpGOXcLDME6EE3mkc5FqRC2x5jZegPF-0c8XgQkEElI4Lqxx3MhECacQKyWGY0blnGrDZrNPmanFy6mHxn3WJDG0kplfyTasj-Y-VJIdP85aabY7q922zCJBdcIcQWwbtvy-_fKE7Ozw5MxfLf1l8jJMRMSL8Sc5KzA-eBzmqwhsBnrNG_A72Zf4AQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_XgW1yfAb0odNmmSWyPIi7rG3yAt5JHI-qyFbvrwZM_wd_oL3Em7a6riKC3EpJCMzOdb4aZbwjZki7TyikbZIAFAvD4caAj5oJGvKu1kzpMnC-QPZOta350I26q2hzshSn5IQYJN7QM_79GA8eE9JCVF_d5UQf3JCFiH8OR3j6iuhiwR0Eg4NN7oMZRIOMkrthJsZDn8-xXf_QJMoehqvc1zelyoGrhKQqxxOSh3uvqunn5RuD478-YIVMVCqV7pdrMkpGsM0cmTwcUrsUcmUAYWrI4z5Nb36f7DHE1QFOqKiITmjvq10BxYNHSsouYPuZ3nW5Bkb-jbIykgIwpEiO_v75ZHCdQUoHQdo7TknoWJ3NRrFVdINfNg6v9VlCNaAhM5Os6FA91QyUyNKxhpTAqiSxIgtmMcaWVYVIJpiMX8zCMYuFExnQmEg3AJdLcRotktJN3siVCBWAJKRwX1jhuZKyEUwCXYsMhqHJO1ch2X1CpqfjLcYxGO-3HMXiTqb_JGtkc7H0sWTt-3LXal3daWW6RMoGtwhxwbI3seMH98ob08uj80j8t_2XzBhlvXZ2epCeHZ8crZIJhmYxP7KyS0e5TL1sDnNPV616bPwBHpfwc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED9CCyV7WNtso1nbVbC9bOAQ25IqQ19Gu9BmWzaWBfIyjP5YY1uxQ530oU_9CP2M-yQ9yXaSjTHYXowRZ2NJd77fibvfAbzgNlPSShNkiAUC9PgiUHFkg744VspyFSbWJ8iO-PmEDqds2oKTpham4odYHrg5y_D_a2fgM2PXjLz8XpQ99E4cA_ZNvAqn02efluRRGAf40z3U4jjgIhE1OanL41k9-6s7WmHMdaTqXc1gG740H1llmPzoLeaqp29-42_831nswMMag5LXldLsQivLO_Dg_ZLAtexA24HQisP5EXz1VbrXGFUjMCWypjEhhSV-DNUGBw2paojJrPiWz0vi2DuqskiCuJg4WuSft3fGNROoiEDIZeF6JS2M68tFXKbqY5gM3nw-PQ_qBg2Bjn1Wh6Sh6suEhzrqG860TGLDML41WUSlkjrikkUqtoKGYSyYZVmkMpYohC2xoiZ-Aht5kWd7QBgiCc4sZUZbqrmQzEoES0JTDKmslV142exTqmv2ctdE4zJtohi3kqlfyS48X8rOKs6OP0odNNud1nZbphFzhcIUUWwXXvl9-8sb0vHww9jfPf0X4SPY-ng2SN9djN7uQztyOTL-VOcANuZXi-wQQc5cPfO6fA9-1vrU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+analysis+of+variance+and+change+points+estimation+for+high%E2%80%90dimensional+longitudinal+data&rft.jtitle=Scandinavian+journal+of+statistics&rft.au=Zhong%2C+Ping%E2%80%90Shou&rft.au=Li%2C+Jun&rft.au=Kokoszka%2C+Piotr&rft.date=2021-06-01&rft.issn=0303-6898&rft.eissn=1467-9469&rft.volume=48&rft.issue=2&rft.spage=375&rft.epage=405&rft_id=info:doi/10.1111%2Fsjos.12460&rft.externalDBID=10.1111%252Fsjos.12460&rft.externalDocID=SJOS12460 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-6898&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-6898&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-6898&client=summon |