Multivariate analysis of variance and change points estimation for high‐dimensional longitudinal data

This article considers the problem of testing temporal homogeneity of p‐dimensional population mean vectors from repeated measurements on n subjects over T times. To cope with the challenges brought about by high‐dimensional longitudinal data, we propose methodology that takes into account not only...

Full description

Saved in:
Bibliographic Details
Published inScandinavian journal of statistics Vol. 48; no. 2; pp. 375 - 405
Main Authors Zhong, Ping‐Shou, Li, Jun, Kokoszka, Piotr
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article considers the problem of testing temporal homogeneity of p‐dimensional population mean vectors from repeated measurements on n subjects over T times. To cope with the challenges brought about by high‐dimensional longitudinal data, we propose methodology that takes into account not only the “large p, large T, and small n” situation but also the complex temporospatial dependence. We consider both the multivariate analysis of variance problem and the change point problem. The asymptotic distributions of the proposed test statistics are established under mild conditions. In the change point setting, when the null hypothesis of temporal homogeneity is rejected, we further propose a binary segmentation method and show that it is consistent with a rate that explicitly depends on p,T, and n. Simulation studies and an application to fMRI data are provided to demonstrate the performance and applicability of the proposed methods.
AbstractList This article considers the problem of testing temporal homogeneity of p‐dimensional population mean vectors from repeated measurements on n subjects over T times. To cope with the challenges brought about by high‐dimensional longitudinal data, we propose methodology that takes into account not only the “large p, large T, and small n” situation but also the complex temporospatial dependence. We consider both the multivariate analysis of variance problem and the change point problem. The asymptotic distributions of the proposed test statistics are established under mild conditions. In the change point setting, when the null hypothesis of temporal homogeneity is rejected, we further propose a binary segmentation method and show that it is consistent with a rate that explicitly depends on p,T, and n. Simulation studies and an application to fMRI data are provided to demonstrate the performance and applicability of the proposed methods.
This article considers the problem of testing temporal homogeneity of p ‐dimensional population mean vectors from repeated measurements on n subjects over T times. To cope with the challenges brought about by high‐dimensional longitudinal data, we propose methodology that takes into account not only the “large p , large T , and small n ” situation but also the complex temporospatial dependence. We consider both the multivariate analysis of variance problem and the change point problem. The asymptotic distributions of the proposed test statistics are established under mild conditions. In the change point setting, when the null hypothesis of temporal homogeneity is rejected, we further propose a binary segmentation method and show that it is consistent with a rate that explicitly depends on p , T , and n . Simulation studies and an application to fMRI data are provided to demonstrate the performance and applicability of the proposed methods.
Author Li, Jun
Kokoszka, Piotr
Zhong, Ping‐Shou
Author_xml – sequence: 1
  givenname: Ping‐Shou
  surname: Zhong
  fullname: Zhong, Ping‐Shou
  organization: University of Illinois at Chicago
– sequence: 2
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  organization: Kent State University
– sequence: 3
  givenname: Piotr
  orcidid: 0000-0001-9979-6536
  surname: Kokoszka
  fullname: Kokoszka, Piotr
  email: pszhong@uic.edu
  organization: Colorado State University
BookMark eNp9UMtOwzAQtFCRaAsXvsASN6QUv5ImR1TxVFEPhXO0iZ3UVWoX2wX1xifwjXwJScMJIeay2tHMaHdGaGCsUQidUzKhLa782voJZSIhR2hIRTKNMpFkAzQknPAoSbP0BI28XxNCE0HTIaqfdk3Qb-A0BIXBQLP32mNb4QNnyo6UuFyBqRXeWm2Cx8oHvYGgrcGVdXil69XXx6fUG2V8S0KDG2tqHXZSd4uEAKfouILGq7OfOUYvtzfPs_tovrh7mF3Po5ITSiIKghYEsoSWjMgkLiHjMqacScUEFFCyBGJW8CoVlPI0rmLFChVnxVRwXgjJx-iiz906-7prD83XdufaK3zOYp6JFiRuVZe9qnTWe6eqfOvaj9w-pyTvisy7IvNDka2Y_BKXOhy-Dw5087eF9pZ33aj9P-H58nGx7D3fj3WK0g
CitedBy_id crossref_primary_10_1093_jrsssb_qkad021
crossref_primary_10_1016_j_jmva_2021_104833
crossref_primary_10_1111_sjos_12537
crossref_primary_10_1177_09622802241232125
crossref_primary_10_1016_j_spl_2021_109228
crossref_primary_10_1111_biom_13844
crossref_primary_10_1115_1_4054234
Cites_doi 10.1016/j.jmva.2012.10.011
10.1007/s00221-006-0766-2
10.1007/s10463-015-0543-8
10.1016/j.jmva.2006.11.007
10.1080/01621459.2014.988215
10.1214/09-AOS716
10.1214/aoms/1177706437
10.1214/12-AOAS565
10.1002/9780470539873
10.1093/biomet/24.3-4.471
10.1111/rssb.12079
10.1214/aos/1074290335
10.1214/14-AOS1269
10.1016/j.jmva.2012.03.006
10.1214/15-AOS1347
10.1038/33402
10.1111/rssb.12243
10.7551/mitpress/8764.001.0001
10.1002/9780470316962
10.1080/13506285.2011.596852
10.2307/2527954
10.1007/s00184-014-0522-8
10.1214/16-AOS1481
ContentType Journal Article
Copyright 2020 Board of the Foundation of the Scandinavian Journal of Statistics
2021 Board of the Foundation of the Scandinavian Journal of Statistics
Copyright_xml – notice: 2020 Board of the Foundation of the Scandinavian Journal of Statistics
– notice: 2021 Board of the Foundation of the Scandinavian Journal of Statistics
DBID AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1111/sjos.12460
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1467-9469
EndPage 405
ExternalDocumentID 10_1111_sjos_12460
SJOS12460
Genre article
GroupedDBID -ET
.3N
.GA
.GJ
.L6
.Y3
05W
0R~
10A
123
1OC
3-9
31~
33P
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8V8
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAKYL
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABDBF
ABEML
ABFAN
ABIVO
ABJNI
ABPVW
ABQDR
ABXSQ
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACDIW
ACGFS
ACIWK
ACMTB
ACPOU
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADODI
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AELLO
AELPN
AEMOZ
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFVYC
AFWVQ
AFZJQ
AHBTC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKBRZ
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BHOJU
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
ECEWR
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GIFXF
GODZA
H.T
H.X
HF~
HGLYW
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RNS
ROL
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
ZZTAW
~IA
~WT
AAWIL
AAYXX
ABAWQ
ACHJO
AEYWJ
AGHNM
AGLNM
AGQPQ
AGYGG
AIHAF
AMVHM
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3010-1a41b0a961c20d65ca93d5132de24abac26a52b3f8411385f5e2be59b7433b4d3
IEDL.DBID DR2
ISSN 0303-6898
IngestDate Fri Jul 25 19:41:43 EDT 2025
Tue Jul 01 01:27:16 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
Wed Jan 22 16:28:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3010-1a41b0a961c20d65ca93d5132de24abac26a52b3f8411385f5e2be59b7433b4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9979-6536
PQID 2539444405
PQPubID 30873
PageCount 31
ParticipantIDs proquest_journals_2539444405
crossref_primary_10_1111_sjos_12460
crossref_citationtrail_10_1111_sjos_12460
wiley_primary_10_1111_sjos_12460_SJOS12460
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Scandinavian journal of statistics
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2015; 78
2019; 2019
2010; 38
2011
2017; 69
2010
2015; 77
1960; 16
2017; 45
1997
1981; 24
2018; 80
2007; 98
2011; 19
2003; 31
1998; 392
1999
2012a; 109
2007; 179
1958; 29
2013; 115
2015; 43
2015; 110
1932; 24
1992; 24
1980
1996; 6
2012b; 6
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
Hall P. (e_1_2_8_15_1) 1980
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
Csörgő M. (e_1_2_8_10_1) 1997
Vostrikova L. J. (e_1_2_8_26_1) 1981; 24
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
Pešta M. (e_1_2_8_20_1) 2019; 2019
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_16_1
Bai Z. (e_1_2_8_5_1) 1996; 6
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – year: 2011
– volume: 29
  start-page: 995
  year: 1958
  end-page: 1010
  article-title: A high dimensional two sample significance test
  publication-title: The Annals of Mathematical Statistics
– volume: 43
  start-page: 139
  year: 2015
  end-page: 176
  article-title: Graph‐based change‐point detection
  publication-title: The Annals of Statistics
– volume: 69
  start-page: 365
  year: 2017
  end-page: 387
  article-title: On testing the equality of high dimensional mean vectors with unequal covariance matrices
  publication-title: Annals of the Institute of Statistical Mathematics
– volume: 16
  start-page: 41
  year: 1960
  end-page: 50
  article-title: A significance test for the separation of two highly multivariate small samples
  publication-title: Biometrics
– volume: 109
  start-page: 204
  year: 2012a
  end-page: 220
  article-title: Detecting and estimating epidemic changes in dependent functional data
  publication-title: Journal of Multivariate Analysis
– volume: 6
  start-page: 1906
  year: 2012b
  end-page: 1948
  article-title: Evaluating stationarity via change–point alternatives with applications to fMRI data
  publication-title: The Annals of Applied Statistics
– volume: 43
  start-page: 2451
  issue: 6
  year: 2015
  end-page: 2483
  article-title: Uniform change point tests in high dimension
  publication-title: The Annals of Statistics
– volume: 110
  start-page: 1658
  year: 2015
  end-page: 1669
  article-title: A high‐dimensional nonparametric multivariate test for mean vector
  publication-title: Journal of the American Statistical Association
– volume: 392
  start-page: 598
  year: 1998
  end-page: 601
  article-title: A cortical representation of the local visual environment
  publication-title: Nature
– volume: 115
  start-page: 204
  year: 2013
  end-page: 216
  article-title: Tests for multivariate analysis of variance in high dimension under non‐normality
  publication-title: Journal of Multivariate Analysis
– volume: 98
  start-page: 1825
  year: 2007
  end-page: 1839
  article-title: Some High‐dimensional Tests for a one‐way MANOVA
  publication-title: Journal of Multivariate Analysis
– volume: 24
  start-page: 55
  year: 1981
  end-page: 59
  article-title: Detecting "disorder" in multidimensional random processes
  publication-title: Soviet Mathematics: Doklady
– volume: 45
  start-page: 1185
  year: 2017
  end-page: 1213
  article-title: Tests for covariance structures with high‐dimensional repeated measurements
  publication-title: The Annals of Statistics
– volume: 31
  start-page: 2013
  year: 2003
  end-page: 2035
  article-title: The positive false discovery rate: A Bayesian interpretation and the q‐value
  publication-title: The Annals of Statistics
– volume: 78
  start-page: 665
  year: 2015
  end-page: 689
  article-title: Testing structural changes in panel data with small fixed panel size and bootstrap
  publication-title: Metrika
– year: 2010
– volume: 6
  start-page: 311
  year: 1996
  end-page: 329
  article-title: Effect of high dimension: By an example of two sample problem
  publication-title: Statistica Sinica
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 30
  article-title: Nuisance‐parameter‐free changepoint detection in non‐stationary series
  publication-title: Test
– volume: 80
  start-page: 57
  year: 2018
  end-page: 83
  article-title: High dimensional change point estimation via sparse projection
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 19
  start-page: 910
  year: 2011
  end-page: 927
  article-title: Functions of parahippocampal place area and retrosplenial cortex in real‐world scene analysis: An fMRI study
  publication-title: Visual Cognition
– volume: 24
  start-page: 471
  year: 1932
  end-page: 494
  article-title: Certain generalizations in the analysis of variance
  publication-title: Biometrika
– year: 1980
– volume: 179
  start-page: 75
  year: 2007
  end-page: 84
  article-title: Cortical activation to indoor versus outdoor scenes: An fMRI study
  publication-title: Experimental Brain Research
– year: 1997
– volume: 77
  start-page: 475
  year: 2015
  end-page: 507
  article-title: Multiple‐change‐point detection for high dimensional time series via sparsified binary segmentation
  publication-title: Journal of the Royal Statistical Society (B)
– year: 1999
– volume: 38
  start-page: 808
  year: 2010
  end-page: 835
  article-title: A two‐sample test for high‐dimensional data with applications to gene‐set testing
  publication-title: The Annals of Statistics
– volume: 24
  year: 1992
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jmva.2012.10.011
– volume-title: Limit theorems in change‐point analysis
  year: 1997
  ident: e_1_2_8_10_1
– ident: e_1_2_8_16_1
  doi: 10.1007/s00221-006-0766-2
– ident: e_1_2_8_18_1
  doi: 10.1007/s10463-015-0543-8
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jmva.2006.11.007
– ident: e_1_2_8_25_1
– ident: e_1_2_8_27_1
  doi: 10.1080/01621459.2014.988215
– ident: e_1_2_8_8_1
  doi: 10.1214/09-AOS716
– ident: e_1_2_8_11_1
  doi: 10.1214/aoms/1177706437
– ident: e_1_2_8_4_1
  doi: 10.1214/12-AOAS565
– ident: e_1_2_8_14_1
  doi: 10.1002/9780470539873
– volume: 2019
  start-page: 1
  year: 2019
  ident: e_1_2_8_20_1
  article-title: Nuisance‐parameter‐free changepoint detection in non‐stationary series
  publication-title: Test
– ident: e_1_2_8_29_1
  doi: 10.1093/biomet/24.3-4.471
– ident: e_1_2_8_9_1
  doi: 10.1111/rssb.12079
– ident: e_1_2_8_24_1
  doi: 10.1214/aos/1074290335
– ident: e_1_2_8_7_1
  doi: 10.1214/14-AOS1269
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jmva.2012.03.006
– ident: e_1_2_8_19_1
  doi: 10.1214/15-AOS1347
– volume: 24
  start-page: 55
  year: 1981
  ident: e_1_2_8_26_1
  article-title: Detecting "disorder" in multidimensional random processes
  publication-title: Soviet Mathematics: Doklady
– ident: e_1_2_8_13_1
  doi: 10.1038/33402
– ident: e_1_2_8_28_1
  doi: 10.1111/rssb.12243
– ident: e_1_2_8_2_1
  doi: 10.7551/mitpress/8764.001.0001
– ident: e_1_2_8_6_1
  doi: 10.1002/9780470316962
– volume: 6
  start-page: 311
  year: 1996
  ident: e_1_2_8_5_1
  article-title: Effect of high dimension: By an example of two sample problem
  publication-title: Statistica Sinica
– ident: e_1_2_8_17_1
  doi: 10.1080/13506285.2011.596852
– volume-title: Martingale limit theory and applications
  year: 1980
  ident: e_1_2_8_15_1
– ident: e_1_2_8_12_1
  doi: 10.2307/2527954
– ident: e_1_2_8_21_1
  doi: 10.1007/s00184-014-0522-8
– ident: e_1_2_8_30_1
  doi: 10.1214/16-AOS1481
SSID ssj0016418
Score 2.2976162
Snippet This article considers the problem of testing temporal homogeneity of p‐dimensional population mean vectors from repeated measurements on n subjects over T...
This article considers the problem of testing temporal homogeneity of p ‐dimensional population mean vectors from repeated measurements on n subjects over T...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 375
SubjectTerms change points
fMRI data
high‐dimensional means
Homogeneity
longitudinal data
Multivariate analysis
Segmentation
spatial dependence
Statistical tests
temporal dependence
Variance analysis
Title Multivariate analysis of variance and change points estimation for high‐dimensional longitudinal data
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsjos.12460
https://www.proquest.com/docview/2539444405
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSsRAEC3Ekx5cRsVxo0EvChkmSXebgBcRBxFUcAEvEnpJiwsTMTMePPkJfqNfYlUnGRdE0FtoOiHprkq9al69AtiQLtfKKRvkiAUCjPhJoOPIBd1kW2sndZg6T5A9lgcX_PBSXI7BTlMLU-lDjA7cyDP8_5ocXOnyk5OXt0XZwegkKWEnshYhotORdhSmAf5wD404DmSSJrU2KdF4Pm79Go0-IOZnoOojTW8arpp3rAgmd53hQHfM8zf5xv9-xAxM1RCU7VY2Mwtjeb8Fk0cj_dayBROEQSsJ5zm49kW6T5hUIy5lqlYxYYVjfgytBgctq0qI2UNx0x-UjMQ7qqpIhrCYkSry28urpV4ClQ4Iuy-oVdLQUlsuRkTVebjo7Z_vHQR1f4bAxJ7UoXiouyqVoYm6Vgqj0tgKTG9tHnGllYmkEpGOXcLDME6EE3mkc5FqRC2x5jZegPF-0c8XgQkEElI4Lqxx3MhECacQKyWGY0blnGrDZrNPmanFy6mHxn3WJDG0kplfyTasj-Y-VJIdP85aabY7q922zCJBdcIcQWwbtvy-_fKE7Ozw5MxfLf1l8jJMRMSL8Sc5KzA-eBzmqwhsBnrNG_A72Zf4AQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_XgW1yfAb0odNmmSWyPIi7rG3yAt5JHI-qyFbvrwZM_wd_oL3Em7a6riKC3EpJCMzOdb4aZbwjZki7TyikbZIAFAvD4caAj5oJGvKu1kzpMnC-QPZOta350I26q2hzshSn5IQYJN7QM_79GA8eE9JCVF_d5UQf3JCFiH8OR3j6iuhiwR0Eg4NN7oMZRIOMkrthJsZDn8-xXf_QJMoehqvc1zelyoGrhKQqxxOSh3uvqunn5RuD478-YIVMVCqV7pdrMkpGsM0cmTwcUrsUcmUAYWrI4z5Nb36f7DHE1QFOqKiITmjvq10BxYNHSsouYPuZ3nW5Bkb-jbIykgIwpEiO_v75ZHCdQUoHQdo7TknoWJ3NRrFVdINfNg6v9VlCNaAhM5Os6FA91QyUyNKxhpTAqiSxIgtmMcaWVYVIJpiMX8zCMYuFExnQmEg3AJdLcRotktJN3siVCBWAJKRwX1jhuZKyEUwCXYsMhqHJO1ch2X1CpqfjLcYxGO-3HMXiTqb_JGtkc7H0sWTt-3LXal3daWW6RMoGtwhxwbI3seMH98ob08uj80j8t_2XzBhlvXZ2epCeHZ8crZIJhmYxP7KyS0e5TL1sDnNPV616bPwBHpfwc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED9CCyV7WNtso1nbVbC9bOAQ25IqQ19Gu9BmWzaWBfIyjP5YY1uxQ530oU_9CP2M-yQ9yXaSjTHYXowRZ2NJd77fibvfAbzgNlPSShNkiAUC9PgiUHFkg744VspyFSbWJ8iO-PmEDqds2oKTpham4odYHrg5y_D_a2fgM2PXjLz8XpQ99E4cA_ZNvAqn02efluRRGAf40z3U4jjgIhE1OanL41k9-6s7WmHMdaTqXc1gG740H1llmPzoLeaqp29-42_831nswMMag5LXldLsQivLO_Dg_ZLAtexA24HQisP5EXz1VbrXGFUjMCWypjEhhSV-DNUGBw2paojJrPiWz0vi2DuqskiCuJg4WuSft3fGNROoiEDIZeF6JS2M68tFXKbqY5gM3nw-PQ_qBg2Bjn1Wh6Sh6suEhzrqG860TGLDML41WUSlkjrikkUqtoKGYSyYZVmkMpYohC2xoiZ-Aht5kWd7QBgiCc4sZUZbqrmQzEoES0JTDKmslV142exTqmv2ctdE4zJtohi3kqlfyS48X8rOKs6OP0odNNud1nZbphFzhcIUUWwXXvl9-8sb0vHww9jfPf0X4SPY-ng2SN9djN7uQztyOTL-VOcANuZXi-wQQc5cPfO6fA9-1vrU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+analysis+of+variance+and+change+points+estimation+for+high%E2%80%90dimensional+longitudinal+data&rft.jtitle=Scandinavian+journal+of+statistics&rft.au=Zhong%2C+Ping%E2%80%90Shou&rft.au=Li%2C+Jun&rft.au=Kokoszka%2C+Piotr&rft.date=2021-06-01&rft.issn=0303-6898&rft.eissn=1467-9469&rft.volume=48&rft.issue=2&rft.spage=375&rft.epage=405&rft_id=info:doi/10.1111%2Fsjos.12460&rft.externalDBID=10.1111%252Fsjos.12460&rft.externalDocID=SJOS12460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-6898&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-6898&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-6898&client=summon