Statistical and machine learning models in credit scoring: A systematic literature survey
In practice, as a well-known statistical method, the logistic regression model is used to evaluate the credit-worthiness of borrowers due to its simplicity and transparency in predictions. However, in literature, sophisticated machine learning models can be found that can replace the logistic regres...
Saved in:
Published in | Applied soft computing Vol. 91; p. 106263 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2020.106263 |
Cover
Loading…
Abstract | In practice, as a well-known statistical method, the logistic regression model is used to evaluate the credit-worthiness of borrowers due to its simplicity and transparency in predictions. However, in literature, sophisticated machine learning models can be found that can replace the logistic regression model. Despite the advances and applications of machine learning models in credit scoring, there are still two major issues: the incapability of some of the machine learning models to explain predictions; and the issue of imbalanced datasets. As such, there is a need for a thorough survey of recent literature in credit scoring. This article employs a systematic literature survey approach to systematically review statistical and machine learning models in credit scoring, to identify limitations in literature, to propose a guiding machine learning framework, and to point to emerging directions. This literature survey is based on 74 primary studies, such as journal and conference articles, that were published between 2010 and 2018. According to the meta-analysis of this literature survey, we found that in general, an ensemble of classifiers performs better than single classifiers. Although deep learning models have not been applied extensively in credit scoring literature, they show promising results.
•Ensemble classifiers outperform single classifiers.•Deep Learning models to replace classical models in credit scoring.•Convolutional Neural Nets outperform statistical and classical ML models.•Non-transparency of DL models serves as a bottleneck for them to be used. |
---|---|
AbstractList | In practice, as a well-known statistical method, the logistic regression model is used to evaluate the credit-worthiness of borrowers due to its simplicity and transparency in predictions. However, in literature, sophisticated machine learning models can be found that can replace the logistic regression model. Despite the advances and applications of machine learning models in credit scoring, there are still two major issues: the incapability of some of the machine learning models to explain predictions; and the issue of imbalanced datasets. As such, there is a need for a thorough survey of recent literature in credit scoring. This article employs a systematic literature survey approach to systematically review statistical and machine learning models in credit scoring, to identify limitations in literature, to propose a guiding machine learning framework, and to point to emerging directions. This literature survey is based on 74 primary studies, such as journal and conference articles, that were published between 2010 and 2018. According to the meta-analysis of this literature survey, we found that in general, an ensemble of classifiers performs better than single classifiers. Although deep learning models have not been applied extensively in credit scoring literature, they show promising results.
•Ensemble classifiers outperform single classifiers.•Deep Learning models to replace classical models in credit scoring.•Convolutional Neural Nets outperform statistical and classical ML models.•Non-transparency of DL models serves as a bottleneck for them to be used. |
ArticleNumber | 106263 |
Author | Celik, Turgay Dastile, Xolani Potsane, Moshe |
Author_xml | – sequence: 1 givenname: Xolani surname: Dastile fullname: Dastile, Xolani email: xdastile12@gmail.com organization: School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa – sequence: 2 givenname: Turgay orcidid: 0000-0001-6925-6010 surname: Celik fullname: Celik, Turgay email: celikturgay@gmail.com organization: School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa – sequence: 3 givenname: Moshe surname: Potsane fullname: Potsane, Moshe email: Moshe.Potsane@wesbank.co.za organization: School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa |
BookMark | eNp9kE1LAzEQhoNUsK3-AU_5A1vzsTubFS-l-AUFD-rBU0iTWU3ZZiVJC_337lJPHjzNMC_PC_PMyCT0AQm55mzBGYeb7cKk3i4EE-MBBMgzMuWqFkUDik-GvQJVlE0JF2SW0pYNUCPUlHy8ZpN9yt6ajprg6M7YLx-Qdmhi8OGT7nqHXaI-UBvR-UyT7eMQ3NIlTceUcTcUWNr5jNHkfUSa9vGAx0ty3pou4dXvnJP3h_u31VOxfnl8Xi3XhZWM5aJtod1UjlVVVSqoGComuXONAL5R0NSudAakBNfWpUEBVsKGQ902TCmpGMg5UadeG_uUIrba-vGnPuRofKc506MivdWjIj0q0idFAyr-oN_R70w8_g_dnaDBCh48Rp2sx2AHNxFt1q73_-E_T3yChQ |
CitedBy_id | crossref_primary_10_1016_j_asoc_2020_106852 crossref_primary_10_3390_math10111790 crossref_primary_10_1007_s40745_023_00464_6 crossref_primary_10_1016_j_pacfin_2024_102550 crossref_primary_10_3233_IDA_216228 crossref_primary_10_3390_math13071045 crossref_primary_10_1007_s10115_023_01943_1 crossref_primary_10_1016_j_procs_2024_04_129 crossref_primary_10_1016_j_ejor_2023_08_031 crossref_primary_10_1007_s10479_025_06528_5 crossref_primary_10_1002_for_2891 crossref_primary_10_1007_s10462_023_10697_9 crossref_primary_10_1016_j_ijforecast_2022_01_006 crossref_primary_10_1007_s11334_022_00522_x crossref_primary_10_1007_s10489_023_04944_3 crossref_primary_10_1016_j_jeconbus_2022_106069 crossref_primary_10_1016_j_joitmc_2024_100385 crossref_primary_10_1016_j_asoc_2021_107391 crossref_primary_10_1080_01605682_2022_2057819 crossref_primary_10_3390_math12060855 crossref_primary_10_1016_j_dss_2023_114084 crossref_primary_10_1155_2022_6584352 crossref_primary_10_1016_j_engappai_2024_109082 crossref_primary_10_3846_tede_2022_17045 crossref_primary_10_3390_math12050701 crossref_primary_10_3390_systems10050160 crossref_primary_10_3390_en16031512 crossref_primary_10_1016_j_knosys_2023_110646 crossref_primary_10_1016_j_orp_2024_100308 crossref_primary_10_48175_IJARSCT_15452 crossref_primary_10_1007_s12553_021_00551_9 crossref_primary_10_1109_ACCESS_2022_3177783 crossref_primary_10_1016_j_aei_2023_102227 crossref_primary_10_1186_s40854_022_00433_7 crossref_primary_10_1371_journal_pone_0316557 crossref_primary_10_12677_mm_2024_1412364 crossref_primary_10_1007_s10916_024_02085_9 crossref_primary_10_1186_s40854_024_00629_z crossref_primary_10_1007_s11518_022_5545_5 crossref_primary_10_1016_j_techfore_2024_123491 crossref_primary_10_1016_j_ipm_2024_103703 crossref_primary_10_1016_j_knosys_2024_111761 crossref_primary_10_3390_app12094724 crossref_primary_10_1002_dac_6023 crossref_primary_10_1007_s10845_021_01792_1 crossref_primary_10_1108_APJML_02_2021_0126 crossref_primary_10_1109_TPAMI_2023_3331846 crossref_primary_10_1016_j_ijforecast_2024_07_005 crossref_primary_10_3390_electronics11193181 crossref_primary_10_1007_s10614_024_10808_w crossref_primary_10_3390_app11198884 crossref_primary_10_1080_03461238_2022_2161413 crossref_primary_10_3390_e23040407 crossref_primary_10_1021_acs_iecr_4c03131 crossref_primary_10_1177_14738716231180803 crossref_primary_10_1016_j_eswa_2023_121418 crossref_primary_10_1016_j_eswa_2022_116624 crossref_primary_10_1016_j_eswa_2023_121138 crossref_primary_10_1007_s12351_024_00864_3 crossref_primary_10_3390_app13021043 crossref_primary_10_7717_peerj_cs_1257 crossref_primary_10_1016_j_comnet_2024_110303 crossref_primary_10_1186_s43093_020_00041_w crossref_primary_10_1016_j_qref_2025_101960 crossref_primary_10_1155_2021_6655510 crossref_primary_10_1016_j_heliyon_2024_e32092 crossref_primary_10_3390_info14030200 crossref_primary_10_1007_s12599_023_00787_x crossref_primary_10_1007_s42786_020_00020_3 crossref_primary_10_1080_01605682_2024_2418882 crossref_primary_10_1016_j_seps_2024_101818 crossref_primary_10_1038_s41598_024_78055_5 crossref_primary_10_1111_exsy_13203 crossref_primary_10_1007_s10796_021_10195_9 crossref_primary_10_1016_j_eswa_2021_115513 crossref_primary_10_1038_s41598_024_57548_3 crossref_primary_10_3390_risks9030054 crossref_primary_10_1016_j_aej_2024_09_016 crossref_primary_10_1016_j_eswa_2022_118991 crossref_primary_10_1093_oxrep_grab017 crossref_primary_10_1108_REGE_05_2022_0079 crossref_primary_10_3233_JIFS_233334 crossref_primary_10_1108_K_09_2023_1888 crossref_primary_10_3390_su12187830 crossref_primary_10_1177_21582440211061333 crossref_primary_10_1016_j_eap_2022_02_001 crossref_primary_10_1016_j_engappai_2024_109137 crossref_primary_10_1016_j_eswa_2022_118878 crossref_primary_10_1080_01605682_2024_2416908 crossref_primary_10_7717_peerj_cs_1481 crossref_primary_10_1016_j_jjimei_2025_100323 crossref_primary_10_1007_s10479_024_06299_5 crossref_primary_10_1108_IJAIM_06_2021_0124 crossref_primary_10_47473_2020rmm0141 crossref_primary_10_1016_j_ijforecast_2021_12_011 crossref_primary_10_3390_risks10040071 crossref_primary_10_3390_risks9070136 crossref_primary_10_1016_j_dss_2022_113910 crossref_primary_10_1016_j_eswa_2022_117013 crossref_primary_10_1016_j_socec_2025_102366 crossref_primary_10_1007_s00521_024_10452_3 crossref_primary_10_2478_logi_2024_0008 crossref_primary_10_1016_j_asoc_2021_108160 crossref_primary_10_1016_j_eswa_2023_121876 crossref_primary_10_1111_ajfs_12467 crossref_primary_10_1109_MCI_2021_3129960 crossref_primary_10_1016_j_irfa_2021_101971 crossref_primary_10_3390_e23050582 crossref_primary_10_3390_jrfm14090434 crossref_primary_10_1016_j_ejor_2022_10_032 crossref_primary_10_1002_jsc_2525 crossref_primary_10_1002_jsc_2526 crossref_primary_10_15622_ia_22_1_8 crossref_primary_10_2139_ssrn_4624501 crossref_primary_10_3233_JIFS_211825 crossref_primary_10_1109_ACCESS_2021_3068854 crossref_primary_10_1145_3610100 crossref_primary_10_1016_j_eswa_2022_118732 crossref_primary_10_1142_S0219622023500281 crossref_primary_10_2139_ssrn_4483793 crossref_primary_10_3390_jrfm16120496 crossref_primary_10_1002_aaai_12195 crossref_primary_10_1186_s40537_023_00768_7 crossref_primary_10_1007_s41111_024_00265_z crossref_primary_10_1016_j_asoc_2021_107485 crossref_primary_10_1080_23737484_2022_2106325 crossref_primary_10_32604_cmc_2023_036365 crossref_primary_10_1016_j_jbusres_2022_01_087 crossref_primary_10_1016_j_kjs_2024_100324 crossref_primary_10_1016_j_eswa_2023_121484 crossref_primary_10_1007_s10614_023_10496_y crossref_primary_10_1186_s40854_021_00295_5 crossref_primary_10_1007_s11633_023_1425_9 crossref_primary_10_1007_s41060_022_00350_z crossref_primary_10_1016_j_ejor_2022_10_022 crossref_primary_10_1016_j_eswa_2024_124525 crossref_primary_10_2298_TSCI231111008C crossref_primary_10_1080_13504851_2023_2275647 crossref_primary_10_3390_machines9120361 crossref_primary_10_1016_j_cej_2022_136013 crossref_primary_10_1109_ACCESS_2024_3441037 crossref_primary_10_1016_j_tre_2024_103445 crossref_primary_10_1016_j_asoc_2024_112355 crossref_primary_10_3390_jrfm14070298 crossref_primary_10_3233_JIFS_233141 crossref_primary_10_3390_app11073227 crossref_primary_10_1016_j_irfa_2024_103474 crossref_primary_10_28989_compiler_v12i2_1911 crossref_primary_10_1109_ACCESS_2023_3284137 crossref_primary_10_1109_ACCESS_2024_3490778 crossref_primary_10_1016_j_ipm_2023_103267 crossref_primary_10_1007_s10115_024_02129_z crossref_primary_10_1016_j_eswa_2021_114985 crossref_primary_10_1016_j_jfds_2022_07_002 crossref_primary_10_1007_s10479_024_06369_8 crossref_primary_10_1016_j_eswa_2022_118158 crossref_primary_10_3233_JIFS_230825 crossref_primary_10_3390_jrfm18020074 crossref_primary_10_1016_j_asoc_2025_112771 crossref_primary_10_1007_s10614_023_10410_6 crossref_primary_10_1016_j_dss_2020_113366 crossref_primary_10_1080_09540091_2023_2184310 crossref_primary_10_2139_ssrn_4167821 crossref_primary_10_1051_shsconf_202521302005 crossref_primary_10_3390_math10173036 crossref_primary_10_1080_08839514_2021_1982475 crossref_primary_10_1631_FITEE_2200039 crossref_primary_10_1016_j_asoc_2024_111538 crossref_primary_10_3390_math9070746 crossref_primary_10_3233_IDA_216460 |
Cites_doi | 10.1109/CAIPT.2017.8320700 10.1016/j.ejor.2017.02.037 10.3390/jrfm11010012 10.1016/j.asoc.2014.08.047 10.1016/S0925-2312(97)00038-6 10.1016/j.eswa.2017.01.011 10.1145/2783258.2788613 10.1109/TENCON.2017.8228247 10.1016/j.eswa.2014.12.006 10.1016/j.asoc.2018.04.049 10.1111/j.1469-1809.1936.tb02137.x 10.1016/j.eswa.2019.01.083 10.1016/j.eswa.2017.04.006 10.1631/jzus.C1200205 10.1016/j.eswa.2011.08.093 10.1016/j.knosys.2008.08.002 10.1109/CSAE.2012.6272911 10.1109/INISTA.2015.7276736 10.1145/2480741.2480752 10.1016/j.eswa.2010.04.054 10.1016/j.eswa.2012.03.033 10.1016/S0022-2496(02)00028-7 10.1016/j.eswa.2018.11.008 10.1016/j.asoc.2018.04.024 10.1016/j.eswa.2018.02.029 10.1016/j.eswa.2012.02.092 10.1016/j.asoc.2018.09.029 10.1016/j.eswa.2011.04.147 10.1016/j.eswa.2014.08.029 10.1287/mnsc.49.3.312.12739 10.1016/j.eswa.2015.02.042 10.1016/j.eswa.2016.12.020 10.1016/j.eswa.2013.05.051 10.1613/jair.953 10.1214/aos/1013203451 10.1109/WOCC.2015.7346197 10.1016/j.jbankfin.2015.02.006 10.1016/j.eswa.2017.03.073 10.1016/j.eswa.2007.05.019 10.1007/BF00994018 10.1016/j.eswa.2017.02.049 10.1016/j.eswa.2013.12.003 10.1016/j.eswa.2018.09.022 10.1109/CIS.2017.00045 10.1109/ICAIBD.2018.8396195 10.1016/j.eswa.2010.06.048 10.1016/j.eswa.2014.11.028 10.1007/BF00058655 10.1016/j.eswa.2011.06.023 10.1109/CSE.2014.312 10.1016/j.eswa.2011.02.179 10.1109/CSIE.2009.481 10.1109/MedCom.2014.7005973 10.1007/s10696-015-9226-2 10.1109/FTC.2016.7821603 10.1016/j.asoc.2016.02.022 10.1109/2.485895 10.1016/j.eswa.2011.09.033 10.1016/j.trit.2016.11.001 10.1109/CSO.2011.143 10.1109/TSMCC.2011.2170420 10.1016/j.eswa.2011.08.120 10.1162/neco.2006.18.7.1527 10.1016/j.procs.2010.04.273 10.1016/j.eswa.2009.05.059 10.1016/j.eswa.2017.10.040 10.1109/CCWC.2018.8301707 10.1016/j.eswa.2011.11.011 10.1109/IEIS.2017.8078596 10.1109/CSCI.2017.36 10.1016/j.procs.2017.11.423 10.1016/0378-4266(78)90012-2 10.1016/S0377-2217(96)00382-7 10.1006/jcss.1997.1504 10.1016/j.eswa.2017.02.017 10.1016/j.eswa.2017.05.050 10.1002/isaf.325 10.1016/j.knosys.2014.10.010 10.1109/ICIFE.2010.5609428 10.1016/S0957-4174(96)00055-3 10.1109/ICComm.2018.8484751 10.3233/KES-2009-0184 10.1109/IJCNN.1990.137710 10.1023/A:1010933404324 10.3390/risks6020038 10.1016/j.eswa.2017.10.022 10.1162/neco.1989.1.4.541 10.1111/j.2517-6161.1948.tb00008.x 10.1016/j.engappai.2016.12.002 10.1016/j.eswa.2009.10.018 10.1109/ACCESS.2018.2810864 10.1016/j.knosys.2016.04.013 10.1016/j.eswa.2014.10.016 10.1111/j.1467-9868.2011.00771.x 10.1109/ICSIIT.2017.48 10.1111/j.2517-6161.1977.tb01600.x 10.1016/j.eswa.2012.01.134 10.1109/34.908974 10.1016/S0169-2070(00)00034-0 10.1186/s40537-019-0197-0 10.1016/j.eswa.2011.04.059 10.1016/j.eswa.2013.09.004 10.1016/j.eswa.2009.12.025 10.21629/JSEE.2017.01.18 10.1016/j.procs.2010.04.278 10.1016/j.engappai.2012.10.005 10.1016/j.asoc.2018.04.033 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2020.106263 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2020_106263 S1568494620302039 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-ff6fb5d055548650e8031dd9261b8697d4da6336df74ae26c36b167f908838063 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 22:56:22 EDT 2025 Tue Jul 01 01:50:05 EDT 2025 Fri Feb 23 02:47:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Statistical learning Systematic literature survey Credit scoring Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-ff6fb5d055548650e8031dd9261b8697d4da6336df74ae26c36b167f908838063 |
ORCID | 0000-0001-6925-6010 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2020_106263 crossref_primary_10_1016_j_asoc_2020_106263 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106263 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Vanderheyden, Priestley (b143) 2018 Marqués, García, Sánchez (b120) 2012; 39 Xia, Liu, Da, Xie (b145) 2018; 93 Breiman (b50) 2001; 45 LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (b58) 1989; 1 Han, Han, Zhao (b103) 2013; 26 Siddiqi (b3) 2005 Bishop (b66) 1995 Gómez-Ríos, Tabik, Luengo, Shihavuddin, Krawczyk, Herrera (b91) 2018; abs/1804.00516 Y. Li, X. Lin, X. Wang, F. Shen, Z. Gong, Credit risk assessment algorithm using deep neural networks with clustering and merging, in: 2017 13th International Conference on Computational Intelligence and Security, CIS, 2017, pp. 173–176. Q. Li, J. Zhang, Y. Wang, K. Kang, Credit risk classification using discriminative restricted boltzmann machines, in: 2014 IEEE 17th International Conference on Computational Science and Engineering, 2014, pp. 1697–1700. Setiono, Liu (b73) 1996; 29 Bijak, Thomas (b16) 2012; 39 Saia, Carta (b72) 2016 M.F. Kiani, F. Mahmoudi, A new hybrid method for credit scoring based on clustering and support vector machine (ClsSVM), in: 2010 2nd IEEE International Conference on Information and Financial Engineering, 2010, pp. 585–589. Louzada, Anacleto-Junior, Candolo, Mazucheli (b119) 2011; 38 Hamori, Kawai, Kume, Murakami, Watanabe (b89) 2018; 11 Mancisidor, Kampffmeyer, Aas, Jenssen (b108) 2018 Cao, He, Chen, Zhang (b148) 2018; 6 Song, Jiang, Liu (b23) 2017; 81 Myung (b4) 2003; 47 Liu, Mernik, Bryant (b31) 2009; 13 S. Sehgal, H. Singh, M. Agarwal, V. Bhasker, . Shantanu, Data analysis using principal component analysis, in: 2014 International Conference on Medical Imaging, M-Health and Emerging Communication Systems, MedCom, 2014, pp. 45–48. Xiao, Xiao, Wang (b135) 2016; 43 Tomczak, Zieba (b67) 2015; 42 Luo, Wu, Wu (b84) 2017; 65 Oreski, Oreski (b22) 2014; 41 R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, N. Elhadad, Intelligible models for healthCare: Predicting pneumonia risk and hospital 30-day readmission, in: KDD ’15, 2015. Lundberg, Lee (b82) 2017; abs/1705.07874 Zhang, Zhou, Leung, Zheng (b99) 2010; 37 H. Sutrisno, S. Halim, Credit scoring refinement using optimized logistic regression, in: 2017 International Conference on Soft Computing, Intelligent System and Information Technology, ICSIIT, 2017, pp. 26–31. Devi, Radhika (b13) 2018 Wang, Hao, Ma, Jiang (b115) 2011; 38 Wang, Xu, Pusatli (b11) 2015 Perez, Wang (b94) 2017 B. Zhu, W. Yang, H. Wang, Y. Yuan, A hybrid deep learning model for consumer credit scoring, in: 2018 International Conference on Artificial Intelligence and Big Data, ICAIBD, 2018, pp. 205–208. Saia, Carta, Fenu (b70) 2018 Reynolds (b40) 2015 Jones, Johnstone, Wilson (b127) 2015; 56 Rao (b38) 1948 Wang, Hedar, Wang, Ma (b102) 2012; 39 H. Chen, M. Jiang, X. Wang, Bayesian ensemble assessment for credit scoring, in: 2017 4th International Conference on Industrial Economics System and Industrial Security Engineering, IEIS, 2017, pp. 1–5. Xia, Liu, Li, Liu (b54) 2017; 78 Ribeiro, Lopes (b117) 2011 Henley, Hand (b42) 1996; 45 John, Langley (b77) 1995 Breiman (b55) 1996; 24 Friedman (b83) 2000; 29 Tsai (b27) 2009; 22 Farquad, Ravi, Sriramjee, Praveen (b100) 2011 Basel Committee on Banking Supervision (b149) 2006 Schölkopf (b44) 2000 Salamon, Bello (b95) 2016 Maldonado, Pérez, Bravo (b106) 2017; 261 Setiono, Liu (b80) 1997; 17 Hsieh, Hung (b113) 2010; 37 Yu, Zhou, Tang, Chen (b56) 2018; 69 Kvamme, Sellereite, Aas, Sjursen (b92) 2018; 102 Zheng, Casari (b34) 2018 Abellán, Castellano (b142) 2017; 73 Craven, Shavlik (b74) 1995 Florez-Lopez, Ramon-Jeronimo (b131) 2015; 42 Aláraj, Abbod (b133) 2016; 104 Nobre, Neves (b53) 2019; 125 Liang, Tsai, Wu (b14) 2015; 73 S. Ramasamy, K. Rajaraman, A hybrid meta-cognitive restricted Boltzmann machine classifier for credit scoring, in: TENCON 2017 - 2017 IEEE Region 10 Conference, 2017, pp. 2313–2318. B. Tang, S. Qiu, A new credit scoring method based on improved fuzzy support vector machine, in: 2012 IEEE International Conference on Computer Science and Automation Engineering, CSAE, Vol. 3, 2012, pp. 73–75. Wang, Guo, Wang (b25) 2010; 1 Q. Wang, K.K. Lai, D. Niu, Green credit scoring system and its risk assessemt model with support vector machine, in: 2011 Fourth International Joint Conference on Computational Sciences and Optimization, 2011, pp. 284–287. Fisher (b36) 1936; 7 Krizhevsky, Sutskever, Hinton (b93) 2012; 25 Cortes, Vapnik (b43) 1995; 20 V. Neagoe, A. Ciotec, G. Cucu, Deep convolutional neural networks versus multilayer perceptron for financial prediction, in: 2018 International Conference on Communications, COMM, 2018, pp. 201–206. Chang, Chang, Wu (b146) 2018; 73 Zhang, Xie, Wang (b26) 2016; 1 Nobre, Neves (b71) 2019; 125 Back, Laitinen, Sere (b21) 1996; 11 Sezer, Ozbayoglu (b62) 2018; 70 Louzada, Ferreira-Silva, Diniz (b123) 2012; 39 Zhao, Lu, Chen, Liu, Wu (b63) 2017; 28 Goodfellow, Bengio, Courville (b65) 2016 Chawla, Bowyer, Hall, Kegelmeyer (b69) 2002; 16 Thomas (b2) 2000; 16 Alaka, Oyedele, Owolabi, Kumar, Ajayi, Akinade, Bilal (b6) 2018; 94 Tibshirani (b33) 2011; 73 Tsai, Wu (b48) 2008; 34 Y. Jiang, Credit scoring model based on the decision tree and the simulated annealing algorithm, in: 2009 WRI World Congress on Computer Science and Information Engineering, Vol. 4, 2009, pp. 18–22. Twala (b112) 2010; 37 O.J. Okesola, K.O. Okokpujie, A.A. Adewale, S.N. John, O. Omoruyi, An improved bank credit scoring model: A Naïve Bayesian approach, in: 2017 International Conference on Computational Science and Computational Intelligence, CSCI, 2017, pp. 228–233. K. Tran, T. Duong, Q. Ho, Credit scoring model: A combination of genetic programming and deep learning, in: 2016 Future Technologies Conference, FTC, 2016, pp. 145–149. Shorten, Khoshgoftaar (b90) 2019; 6 Bellovary, Giacomino, Akers (b8) 2007; 33 Ribeiro, Singh, Guestrin (b75) 2016; abs/1602.04938 M. Aláraj, M. Abbod, A systematic credit scoring model based on heterogeneous classifier ensembles, in: 2015 International Symposium on Innovations in Intelligent SysTems and Applications, INISTA, 2015, pp. 1–7. Ting, Tan, Sim (b61) 2019; 120 Li, Tian, Li, Zhou, Yang (b139) 2017; 74 Chollet (b64) 2017 Yu, Yao, Wang, Lai (b78) 2011; 38 Zhao, Xu, Kang, Kabir, Liu, Wasinger (b129) 2015; 42 J. Chen, L. Xu, A method of improving credit evaluation with support vector machines, in: 2015 11th International Conference on Natural Computation, ICNC, 2015, pp. 615–619. Mitchell (b28) 1996 Barboza, Kimura, Altman (b46) 2017; 83 Yu, Yang, Tang (b134) 2016; 28 Duda, Hart, Stork (b39) 2001 Tsai, Hsu, Yen (b47) 2014; 24 Crepinsek, Liu, Mernik (b30) 2013; 45 Ping, Yongheng (b101) 2011; 38 Baesens, Setiono, Mues, Vanthienen (b5) 2003; 49 Yu, Yao, Wang, Lai (b114) 2011; 38 Douzas, Bacao (b68) 2017; 82 W. Chen, L. Shi, Credit scoring with F-score based on support vector machine, in: Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer, MEC, 2013, pp. 1512–1516. Kozeny (b29) 2015; 42 Lecun, Bengio (b60) 1995 Louzada, Ara, Fernandes (b12) 2016; 21 Chen, Xiang (b19) 2017; 122 Florez-Lopez, Ramon-Jeronimo (b130) 2015; 42 Yap, Ong, Husain (b118) 2011; 38 Thomas, Crook, Edelman (b1) 2002 Dong, Lai, Yen (b111) 2010; 1 Dempster, Laird, Rubin (b41) 1977; 39 Chen, Li (b17) 2010; 37 Bequé, Lessmann (b136) 2017; 86 Harris (b125) 2015; 42 M.D. Odom, R. Sharda, A neural network model for bankruptcy prediction, in: 1990 IJCNN International Joint Conference on Neural Networks, vol. 2, 1990, pp. 163–168. Schlosser (b7) 2007 Mitchell (b45) 1997 Marqués, García, Sánchez (b121) 2012; 39 Brown, Mues (b15) 2012; 39 Cadenas, Garrido, Martínez (b32) 2013; 40 Martey Addo, Guegan, Hassani (b144) 2018; 6 Pawlak (b24) 1997; 99 Jadhav, He, Jenkins (b110) 2018; 69 Li, Ding, Chen, Yang (b147) 2018; 6 X. Zhang, Y. Yang, Z. Zhou, A novel credit scoring model based on optimized random forest, in: 2018 IEEE 8th Annual Computing and Communication Workshop and Conference, CCWC, 2018, pp. 60–65. B. Yi, J. Zhu, Credit scoring with an improved fuzzy support vector machine based on grey incidence analysis, in: 2015 IEEE International Conference on Grey Systems and Intelligent Services, GSIS, 2015, pp. 173–178. Chen, Guestrin (b52) 2016 Hinton, Osindero, Teh (b57) 2006; 18 Shi, Zhang, Qiu (b104) 2013; 14 Chi, Hsu (b20) 2012; 39 Frid-Adar, Klang, Amitai, Goldberger, Greenspan (b96) 2018 Abellán, Mantas (b124) 2014; 41 Martinez, Kak (b37) 2001; 23 Lin, Hu, Tsai (b10) 2012; 42 A. Lawi, F. Aziz, S. Syarif, Ensemble gradientboost for increasing classification accuracy of credit scoring, in: 2017 4th International Conference on Computer Applications and Information Processing Technology, CAIPT, 2017, pp. 1–4. Freund, Schapire (b51) 1997; 55 Seo, shik Shin (b59) 2019; 116 Eisenbeis (b76) 1978; 2 Abdou, Pointon (b9) 2011; 18 S.H. Yeh, C.J. Wang, M.F. Tsai, Deep belief networks for predicting corporate defaults, in: 2015 24th Wireless and Optical Communication Conference, WOCC, 2015, pp. 159–163. Xia (10.1016/j.asoc.2020.106263_b54) 2017; 78 Lundberg (10.1016/j.asoc.2020.106263_b82) 2017; abs/1705.07874 Li (10.1016/j.asoc.2020.106263_b139) 2017; 74 Ribeiro (10.1016/j.asoc.2020.106263_b75) 2016; abs/1602.04938 Chi (10.1016/j.asoc.2020.106263_b20) 2012; 39 Zhang (10.1016/j.asoc.2020.106263_b26) 2016; 1 Harris (10.1016/j.asoc.2020.106263_b125) 2015; 42 10.1016/j.asoc.2020.106263_b116 Back (10.1016/j.asoc.2020.106263_b21) 1996; 11 Barboza (10.1016/j.asoc.2020.106263_b46) 2017; 83 Breiman (10.1016/j.asoc.2020.106263_b55) 1996; 24 Thomas (10.1016/j.asoc.2020.106263_b2) 2000; 16 Bijak (10.1016/j.asoc.2020.106263_b16) 2012; 39 Tomczak (10.1016/j.asoc.2020.106263_b67) 2015; 42 Yu (10.1016/j.asoc.2020.106263_b114) 2011; 38 Yap (10.1016/j.asoc.2020.106263_b118) 2011; 38 Bequé (10.1016/j.asoc.2020.106263_b136) 2017; 86 Louzada (10.1016/j.asoc.2020.106263_b12) 2016; 21 Tsai (10.1016/j.asoc.2020.106263_b27) 2009; 22 Saia (10.1016/j.asoc.2020.106263_b72) 2016 10.1016/j.asoc.2020.106263_b122 Lin (10.1016/j.asoc.2020.106263_b10) 2012; 42 Chen (10.1016/j.asoc.2020.106263_b52) 2016 10.1016/j.asoc.2020.106263_b126 Perez (10.1016/j.asoc.2020.106263_b94) 2017 10.1016/j.asoc.2020.106263_b128 Jones (10.1016/j.asoc.2020.106263_b127) 2015; 56 Douzas (10.1016/j.asoc.2020.106263_b68) 2017; 82 Marqués (10.1016/j.asoc.2020.106263_b121) 2012; 39 Dempster (10.1016/j.asoc.2020.106263_b41) 1977; 39 Zhao (10.1016/j.asoc.2020.106263_b129) 2015; 42 Ping (10.1016/j.asoc.2020.106263_b101) 2011; 38 Myung (10.1016/j.asoc.2020.106263_b4) 2003; 47 Mitchell (10.1016/j.asoc.2020.106263_b45) 1997 Chen (10.1016/j.asoc.2020.106263_b17) 2010; 37 Cortes (10.1016/j.asoc.2020.106263_b43) 1995; 20 Friedman (10.1016/j.asoc.2020.106263_b83) 2000; 29 Bishop (10.1016/j.asoc.2020.106263_b66) 1995 Nobre (10.1016/j.asoc.2020.106263_b53) 2019; 125 10.1016/j.asoc.2020.106263_b132 Frid-Adar (10.1016/j.asoc.2020.106263_b96) 2018 Pawlak (10.1016/j.asoc.2020.106263_b24) 1997; 99 10.1016/j.asoc.2020.106263_b137 Mitchell (10.1016/j.asoc.2020.106263_b28) 1996 10.1016/j.asoc.2020.106263_b138 Liang (10.1016/j.asoc.2020.106263_b14) 2015; 73 Martey Addo (10.1016/j.asoc.2020.106263_b144) 2018; 6 10.1016/j.asoc.2020.106263_b35 Setiono (10.1016/j.asoc.2020.106263_b73) 1996; 29 Li (10.1016/j.asoc.2020.106263_b147) 2018; 6 Wang (10.1016/j.asoc.2020.106263_b25) 2010; 1 Chawla (10.1016/j.asoc.2020.106263_b69) 2002; 16 Luo (10.1016/j.asoc.2020.106263_b84) 2017; 65 Marqués (10.1016/j.asoc.2020.106263_b120) 2012; 39 Craven (10.1016/j.asoc.2020.106263_b74) 1995 Sezer (10.1016/j.asoc.2020.106263_b62) 2018; 70 Goodfellow (10.1016/j.asoc.2020.106263_b65) 2016 Florez-Lopez (10.1016/j.asoc.2020.106263_b131) 2015; 42 Xiao (10.1016/j.asoc.2020.106263_b135) 2016; 43 10.1016/j.asoc.2020.106263_b140 10.1016/j.asoc.2020.106263_b141 Louzada (10.1016/j.asoc.2020.106263_b119) 2011; 38 Nobre (10.1016/j.asoc.2020.106263_b71) 2019; 125 Farquad (10.1016/j.asoc.2020.106263_b100) 2011 Cadenas (10.1016/j.asoc.2020.106263_b32) 2013; 40 Hsieh (10.1016/j.asoc.2020.106263_b113) 2010; 37 Tsai (10.1016/j.asoc.2020.106263_b47) 2014; 24 Hamori (10.1016/j.asoc.2020.106263_b89) 2018; 11 Siddiqi (10.1016/j.asoc.2020.106263_b3) 2005 Abdou (10.1016/j.asoc.2020.106263_b9) 2011; 18 Krizhevsky (10.1016/j.asoc.2020.106263_b93) 2012; 25 Oreski (10.1016/j.asoc.2020.106263_b22) 2014; 41 Han (10.1016/j.asoc.2020.106263_b103) 2013; 26 10.1016/j.asoc.2020.106263_b49 Breiman (10.1016/j.asoc.2020.106263_b50) 2001; 45 Jadhav (10.1016/j.asoc.2020.106263_b110) 2018; 69 Gómez-Ríos (10.1016/j.asoc.2020.106263_b91) 2018; abs/1804.00516 Devi (10.1016/j.asoc.2020.106263_b13) 2018 Freund (10.1016/j.asoc.2020.106263_b51) 1997; 55 Abellán (10.1016/j.asoc.2020.106263_b142) 2017; 73 Reynolds (10.1016/j.asoc.2020.106263_b40) 2015 Zhao (10.1016/j.asoc.2020.106263_b63) 2017; 28 Baesens (10.1016/j.asoc.2020.106263_b5) 2003; 49 Alaka (10.1016/j.asoc.2020.106263_b6) 2018; 94 Shi (10.1016/j.asoc.2020.106263_b104) 2013; 14 Schölkopf (10.1016/j.asoc.2020.106263_b44) 2000 Chang (10.1016/j.asoc.2020.106263_b146) 2018; 73 Wang (10.1016/j.asoc.2020.106263_b115) 2011; 38 Zheng (10.1016/j.asoc.2020.106263_b34) 2018 Twala (10.1016/j.asoc.2020.106263_b112) 2010; 37 10.1016/j.asoc.2020.106263_b97 Louzada (10.1016/j.asoc.2020.106263_b123) 2012; 39 Yu (10.1016/j.asoc.2020.106263_b134) 2016; 28 10.1016/j.asoc.2020.106263_b98 Mancisidor (10.1016/j.asoc.2020.106263_b108) 2018 10.1016/j.asoc.2020.106263_b18 Fisher (10.1016/j.asoc.2020.106263_b36) 1936; 7 Song (10.1016/j.asoc.2020.106263_b23) 2017; 81 Salamon (10.1016/j.asoc.2020.106263_b95) 2016 Ting (10.1016/j.asoc.2020.106263_b61) 2019; 120 Eisenbeis (10.1016/j.asoc.2020.106263_b76) 1978; 2 Dong (10.1016/j.asoc.2020.106263_b111) 2010; 1 Xia (10.1016/j.asoc.2020.106263_b145) 2018; 93 Hinton (10.1016/j.asoc.2020.106263_b57) 2006; 18 Kozeny (10.1016/j.asoc.2020.106263_b29) 2015; 42 Kvamme (10.1016/j.asoc.2020.106263_b92) 2018; 102 Thomas (10.1016/j.asoc.2020.106263_b1) 2002 Rao (10.1016/j.asoc.2020.106263_b38) 1948 LeCun (10.1016/j.asoc.2020.106263_b58) 1989; 1 Florez-Lopez (10.1016/j.asoc.2020.106263_b130) 2015; 42 Setiono (10.1016/j.asoc.2020.106263_b80) 1997; 17 Yu (10.1016/j.asoc.2020.106263_b56) 2018; 69 10.1016/j.asoc.2020.106263_b81 Wang (10.1016/j.asoc.2020.106263_b11) 2015 Liu (10.1016/j.asoc.2020.106263_b31) 2009; 13 John (10.1016/j.asoc.2020.106263_b77) 1995 Wang (10.1016/j.asoc.2020.106263_b102) 2012; 39 Bellovary (10.1016/j.asoc.2020.106263_b8) 2007; 33 Tsai (10.1016/j.asoc.2020.106263_b48) 2008; 34 10.1016/j.asoc.2020.106263_b79 Martinez (10.1016/j.asoc.2020.106263_b37) 2001; 23 Saia (10.1016/j.asoc.2020.106263_b70) 2018 Basel Committee on Banking Supervision (10.1016/j.asoc.2020.106263_b149) 2006 Henley (10.1016/j.asoc.2020.106263_b42) 1996; 45 Schlosser (10.1016/j.asoc.2020.106263_b7) 2007 Shorten (10.1016/j.asoc.2020.106263_b90) 2019; 6 Aláraj (10.1016/j.asoc.2020.106263_b133) 2016; 104 Cao (10.1016/j.asoc.2020.106263_b148) 2018; 6 Abellán (10.1016/j.asoc.2020.106263_b124) 2014; 41 Brown (10.1016/j.asoc.2020.106263_b15) 2012; 39 Tibshirani (10.1016/j.asoc.2020.106263_b33) 2011; 73 Ribeiro (10.1016/j.asoc.2020.106263_b117) 2011 Chen (10.1016/j.asoc.2020.106263_b19) 2017; 122 10.1016/j.asoc.2020.106263_b85 10.1016/j.asoc.2020.106263_b86 10.1016/j.asoc.2020.106263_b105 10.1016/j.asoc.2020.106263_b107 10.1016/j.asoc.2020.106263_b109 10.1016/j.asoc.2020.106263_b87 Maldonado (10.1016/j.asoc.2020.106263_b106) 2017; 261 Lecun (10.1016/j.asoc.2020.106263_b60) 1995 Chollet (10.1016/j.asoc.2020.106263_b64) 2017 10.1016/j.asoc.2020.106263_b88 Yu (10.1016/j.asoc.2020.106263_b78) 2011; 38 Seo (10.1016/j.asoc.2020.106263_b59) 2019; 116 Vanderheyden (10.1016/j.asoc.2020.106263_b143) 2018 Crepinsek (10.1016/j.asoc.2020.106263_b30) 2013; 45 Duda (10.1016/j.asoc.2020.106263_b39) 2001 Zhang (10.1016/j.asoc.2020.106263_b99) 2010; 37 |
References_xml | – volume: 42 start-page: 421 year: 2012 end-page: 436 ident: b10 article-title: Machine learning in financial crisis prediction: A survey publication-title: IEEE Trans. Syst. Man Cybern. C – volume: 21 start-page: 117 year: 2016 end-page: 134 ident: b12 article-title: Classification methods applied to credit scoring: Systematic review and overall comparison publication-title: Surv. Oper. Res. Manag. Sci. – volume: 45 start-page: 77 year: 1996 end-page: 95 ident: b42 article-title: A publication-title: J. R. Stat. Soc. – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: b57 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – year: 2018 ident: b108 article-title: Segment-based credit scoring using latent clusters in the variational autoencoder – volume: 29 start-page: 71 year: 1996 end-page: 77 ident: b73 article-title: Symbolic representation of neural networks publication-title: Computer – volume: 1 start-page: 2425 year: 2010 end-page: 2432 ident: b25 article-title: Rough set and tabu search based feature selection for credit scoring publication-title: Procedia Comput. Sci. – start-page: 249 year: 2011 end-page: 253 ident: b100 article-title: Credit scoring using PCA-SVM hybrid model publication-title: Computer Networks and Information Technologies – volume: 42 start-page: 2998 year: 2015 end-page: 3004 ident: b29 article-title: Genetic algorithms for credit scoring: Alternative fitness function performance comparison publication-title: Expert Syst. Appl. – reference: B. Zhu, W. Yang, H. Wang, Y. Yuan, A hybrid deep learning model for consumer credit scoring, in: 2018 International Conference on Artificial Intelligence and Big Data, ICAIBD, 2018, pp. 205–208. – volume: 104 start-page: 89 year: 2016 end-page: 105 ident: b133 article-title: Classifiers consensus system approach for credit scoring publication-title: Knowl.-Based Syst. – reference: W. Chen, L. Shi, Credit scoring with F-score based on support vector machine, in: Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer, MEC, 2013, pp. 1512–1516. – year: 1996 ident: b28 article-title: An Introduction to Genetic Algorithms – reference: H. Chen, M. Jiang, X. Wang, Bayesian ensemble assessment for credit scoring, in: 2017 4th International Conference on Industrial Economics System and Industrial Security Engineering, IEIS, 2017, pp. 1–5. – volume: 14 start-page: 197 year: 2013 end-page: 204 ident: b104 article-title: Credit scoring by feature-weighted support vector machines publication-title: J. Zhejiang Univ. Sci. C – volume: 73 year: 2018 ident: b146 article-title: Application of extreme gradient boosting trees in the construction of credit risk assessment models for financial institutions publication-title: Appl. Soft Comput. – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: b69 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J. Artificial Intelligence Res. – reference: K. Tran, T. Duong, Q. Ho, Credit scoring model: A combination of genetic programming and deep learning, in: 2016 Future Technologies Conference, FTC, 2016, pp. 145–149. – volume: 125 year: 2019 ident: b71 article-title: Combining principal component analysis, discrete wavelet transform and xgboost to trade in the financial markets publication-title: Expert Syst. Appl. – volume: 18 start-page: 59 year: 2011 end-page: 88 ident: b9 article-title: Credit scoring, statistical techniques and evaluation criteria: A review of the literature publication-title: Int. J. Intell. Syst. Account. Financ. Manage. – volume: 6 start-page: 38 year: 2018 ident: b144 article-title: Credit risk analysis using machine and deep learning models publication-title: Risks – volume: 29 start-page: 1189 year: 2000 end-page: 1232 ident: b83 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Statist. – volume: 39 start-page: 10244 year: 2012 end-page: 10250 ident: b120 article-title: Exploring the behaviour of base classifiers in credit scoring ensembles publication-title: Expert Syst. Appl. – volume: 102 year: 2018 ident: b92 article-title: Predicting mortgage default using convolutional neural networks publication-title: Expert Syst. Appl. – reference: Q. Wang, K.K. Lai, D. Niu, Green credit scoring system and its risk assessemt model with support vector machine, in: 2011 Fourth International Joint Conference on Computational Sciences and Optimization, 2011, pp. 284–287. – volume: 37 start-page: 7838 year: 2010 end-page: 7843 ident: b99 article-title: Vertical bagging decision trees model for credit scoring publication-title: Expert Syst. Appl. – year: 2018 ident: b70 article-title: A Wavelet-Based Data Analysis to Credit Scoring – volume: 37 start-page: 534 year: 2010 end-page: 545 ident: b113 article-title: A data driven ensemble classifier for credit scoring analysis publication-title: Expert Syst. Appl. – volume: 43 start-page: 73 year: 2016 end-page: 86 ident: b135 article-title: Ensemble classification based on supervised clustering for credit scoring publication-title: Appl. Soft Comput. – start-page: 24 year: 1995 end-page: 30 ident: b74 article-title: Extracting tree-structured representations of trained networks publication-title: Proceedings of the 8th International Conference on Neural Information Processing Systems – reference: V. Neagoe, A. Ciotec, G. Cucu, Deep convolutional neural networks versus multilayer perceptron for financial prediction, in: 2018 International Conference on Communications, COMM, 2018, pp. 201–206. – year: 2017 ident: b94 article-title: The effectiveness of data augmentation in image classification using deep learning publication-title: CoRR – volume: 81 start-page: 22 year: 2017 end-page: 27 ident: b23 article-title: Feature selection based on FDA and F-score for multi-class classification publication-title: Expert Syst. Appl. – volume: 41 start-page: 3825 year: 2014 end-page: 3830 ident: b124 article-title: Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring publication-title: Expert Syst. Appl. – volume: 2 start-page: 205 year: 1978 end-page: 219 ident: b76 article-title: Problems in applying discriminant analysis in credit scoring models publication-title: J. Bank. Financ. – reference: A. Lawi, F. Aziz, S. Syarif, Ensemble gradientboost for increasing classification accuracy of credit scoring, in: 2017 4th International Conference on Computer Applications and Information Processing Technology, CAIPT, 2017, pp. 1–4. – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: b51 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. System Sci. – volume: 82 start-page: 40 year: 2017 end-page: 52 ident: b68 article-title: Self-organizing map oversampling (SOMO) for imbalanced data set learning publication-title: Expert Syst. Appl. – volume: 6 start-page: 255 year: 2018 end-page: 260 ident: b148 article-title: Performance evaluation of machine learning approaches for credit scoring publication-title: Int. J. Econ. Finance Manag. Sci. – volume: 65 start-page: 465 year: 2017 end-page: 470 ident: b84 article-title: A deep learning approach for credit scoring using credit default swaps publication-title: Eng. Appl. Artif. Intell. – volume: 261 start-page: 656 year: 2017 end-page: 665 ident: b106 article-title: Cost-based feature selection for support vector machines: An application in credit scoring publication-title: European J. Oper. Res. – start-page: 159 year: 1948 end-page: 203 ident: b38 article-title: The utilization of multiple measurements in problems of biological classification publication-title: J. R. Stat. Soc. – volume: 16 start-page: 149 year: 2000 end-page: 172 ident: b2 article-title: A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers publication-title: Int. J. Forecast. – year: 2018 ident: b34 article-title: Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists – year: 2016 ident: b65 article-title: Deep Learning – year: 2016 ident: b95 article-title: Deep convolutional neural networks and data augmentation for environmental sound classification publication-title: CoRR – volume: 6 start-page: 54396 year: 2018 end-page: 54406 ident: b147 article-title: Heterogeneous ensemble for default prediction of peer-to-peer lending in China publication-title: IEEE Access – reference: S. Ramasamy, K. Rajaraman, A hybrid meta-cognitive restricted Boltzmann machine classifier for credit scoring, in: TENCON 2017 - 2017 IEEE Region 10 Conference, 2017, pp. 2313–2318. – reference: Y. Li, X. Lin, X. Wang, F. Shen, Z. Gong, Credit risk assessment algorithm using deep neural networks with clustering and merging, in: 2017 13th International Conference on Computational Intelligence and Security, CIS, 2017, pp. 173–176. – reference: M.F. Kiani, F. Mahmoudi, A new hybrid method for credit scoring based on clustering and support vector machine (ClsSVM), in: 2010 2nd IEEE International Conference on Information and Financial Engineering, 2010, pp. 585–589. – volume: abs/1804.00516 year: 2018 ident: b91 article-title: Towards highly accurate coral texture images classification using deep convolutional neural networks and data augmentation publication-title: CoRR – volume: 39 start-page: 3446 year: 2012 end-page: 3453 ident: b15 article-title: An experimental comparison of classification algorithms for imbalanced credit scoring data sets publication-title: Expert Syst. Appl. – reference: B. Tang, S. Qiu, A new credit scoring method based on improved fuzzy support vector machine, in: 2012 IEEE International Conference on Computer Science and Automation Engineering, CSAE, Vol. 3, 2012, pp. 73–75. – volume: 42 start-page: 5737 year: 2015 end-page: 5753 ident: b131 article-title: Enhancing accuracy and interpretability of ensemble strategies in credit risk assessment. A correlated-adjusted decision forest proposal publication-title: Expert Syst. Appl. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b55 article-title: Bagging predictors publication-title: Mach. Learn. – reference: S. Sehgal, H. Singh, M. Agarwal, V. Bhasker, . Shantanu, Data analysis using principal component analysis, in: 2014 International Conference on Medical Imaging, M-Health and Emerging Communication Systems, MedCom, 2014, pp. 45–48. – reference: M. Aláraj, M. Abbod, A systematic credit scoring model based on heterogeneous classifier ensembles, in: 2015 International Symposium on Innovations in Intelligent SysTems and Applications, INISTA, 2015, pp. 1–7. – volume: 39 start-page: 2433 year: 2012 end-page: 2442 ident: b16 article-title: Does segmentation always improve model performance in credit scoring? publication-title: Expert Syst. Appl. – volume: 7 start-page: 179 year: 1936 end-page: 188 ident: b36 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen. – start-page: 766 year: 2011 end-page: 773 ident: b117 article-title: Deep belief networks for financial prediction publication-title: Neural Information Processing – volume: 93 start-page: 182 year: 2018 end-page: 199 ident: b145 article-title: A novel heterogeneous ensemble credit scoring model based on bstacking approach publication-title: Expert Syst. Appl. – volume: 39 start-page: 2650 year: 2012 end-page: 2661 ident: b20 article-title: A hybrid approach to integrate genetic algorithm into dual scoring model in enhancing the performance of credit scoring model publication-title: Expert Syst. Appl. – reference: Y. Jiang, Credit scoring model based on the decision tree and the simulated annealing algorithm, in: 2009 WRI World Congress on Computer Science and Information Engineering, Vol. 4, 2009, pp. 18–22. – volume: 49 start-page: 312 year: 2003 end-page: 329 ident: b5 article-title: Using neural network rule extraction and decision tables for credit-risk evaluation publication-title: Manage. Sci. – reference: R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, N. Elhadad, Intelligible models for healthCare: Predicting pneumonia risk and hospital 30-day readmission, in: KDD ’15, 2015. – volume: 56 start-page: 72 year: 2015 end-page: 85 ident: b127 article-title: An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes publication-title: J. Bank. I Finance – year: 2006 ident: b149 article-title: Basel II: International convergence of capital measurement and capital standards: A revised framework - comprehensive version, bank for international settlements publication-title: BIS – start-page: 283 year: 2000 end-page: 289 ident: b44 article-title: The kernel trick for distances publication-title: Proceedings of the 13th International Conference on Neural Information Processing Systems – volume: 11 year: 2018 ident: b89 article-title: Ensemble learning or deep learning? Application to default risk analysis publication-title: J. Risk Financial Manag. – volume: 94 start-page: 164 year: 2018 end-page: 184 ident: b6 article-title: Systematic review of bankruptcy prediction models: Towards a framework for tool selection publication-title: Expert Syst. Appl. – volume: 69 start-page: 192 year: 2018 end-page: 202 ident: b56 article-title: A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data publication-title: Appl. Soft Comput. – reference: O.J. Okesola, K.O. Okokpujie, A.A. Adewale, S.N. John, O. Omoruyi, An improved bank credit scoring model: A Naïve Bayesian approach, in: 2017 International Conference on Computational Science and Computational Intelligence, CSCI, 2017, pp. 228–233. – year: 2018 ident: b96 article-title: Synthetic data augmentation using GAN for improved liver lesion classification publication-title: CoRR – year: 1995 ident: b60 article-title: The Handbook of Brain Theory and Neural Networks – volume: 39 start-page: 8071 year: 2012 end-page: 8078 ident: b123 article-title: On the impact of disproportional samples in credit scoring models: An application to a Brazilian bank data publication-title: Expert Syst. Appl. – volume: 42 start-page: 1789 year: 2015 end-page: 1796 ident: b67 article-title: Classification restricted Boltzmann machine for comprehensible credit scoring model publication-title: Expert Syst. Appl. – volume: 120 start-page: 103 year: 2019 end-page: 115 ident: b61 article-title: Convolutional neural network improvement for breast cancer classification publication-title: Expert Syst. Appl. – volume: 38 start-page: 15392 year: 2011 end-page: 15399 ident: b114 article-title: Credit risk evaluation using a weighted least squares SVM classifier with design of experiment for parameter selection publication-title: Expert Syst. Appl. – volume: 38 start-page: 11300 year: 2011 end-page: 11304 ident: b101 article-title: Neighborhood rough set and SVM based hybrid credit scoring classifier publication-title: Expert Syst. Appl. – volume: 41 start-page: 2052 year: 2014 end-page: 2064 ident: b22 article-title: Genetic algorithm-based heuristic for feature selection in credit risk assessment publication-title: Expert Syst. Appl. – volume: 34 start-page: 2639 year: 2008 end-page: 2649 ident: b48 article-title: Using neural network ensembles for bankruptcy prediction and credit scoring publication-title: Expert Syst. Appl. – volume: 26 start-page: 848 year: 2013 end-page: 862 ident: b103 article-title: Orthogonal support vector machine for credit scoring publication-title: Eng. Appl. Artif. Intell. – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: b41 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 42 start-page: 741 year: 2015 end-page: 750 ident: b125 article-title: Credit scoring using the clustered support vector machine publication-title: Expert Syst. Appl. – volume: 86 start-page: 42 year: 2017 end-page: 53 ident: b136 article-title: Extreme learning machines for credit scoring: An empirical evaluation publication-title: Expert Syst. Appl. – start-page: 785 year: 2016 end-page: 794 ident: b52 article-title: XGBoost: A scalable tree boosting system publication-title: Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 83 start-page: 405 year: 2017 end-page: 417 ident: b46 article-title: Machine learning models and bankruptcy prediction publication-title: Expert Syst. Appl. – year: 2017 ident: b64 article-title: Deep Learning with Python – year: 1995 ident: b66 article-title: Neural Networks for Pattern Recognition – volume: 39 start-page: 6123 year: 2012 end-page: 6128 ident: b102 article-title: Rough set and scatter search metaheuristic based feature selection for credit scoring publication-title: Expert Syst. Appl. – volume: abs/1602.04938 year: 2016 ident: b75 article-title: “Why should I trust you?”: Explaining the predictions of any classifier publication-title: CoRR – volume: 28 start-page: 576 year: 2016 end-page: 592 ident: b134 article-title: A novel multistage deep belief network based extreme learning machine ensemble learning paradigm for credit risk assessment publication-title: Flex. Serv. Manuf. J. – volume: 28 start-page: 162 year: 2017 end-page: 169 ident: b63 article-title: Convolutional neural networks for time series classification publication-title: J. Syst. Eng. Electron. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b50 article-title: Random forests publication-title: Mach. Learn. – year: 2018 ident: b143 article-title: Logistic ensemble models – start-page: 1 year: 2007 end-page: 8 ident: b7 article-title: Appraising the Quality of Systematic Reviews – volume: 6 start-page: 60 year: 2019 ident: b90 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data – volume: 38 start-page: 13274 year: 2011 end-page: 13283 ident: b118 article-title: Using data mining to improve assessment of credit worthiness via credit scoring models publication-title: Expert Syst. Appl. – reference: B. Yi, J. Zhu, Credit scoring with an improved fuzzy support vector machine based on grey incidence analysis, in: 2015 IEEE International Conference on Grey Systems and Intelligent Services, GSIS, 2015, pp. 173–178. – year: 2016 ident: b72 article-title: A Linear-Dependence-Based Approach to Design Proactive Credit Scoring Models – reference: S.H. Yeh, C.J. Wang, M.F. Tsai, Deep belief networks for predicting corporate defaults, in: 2015 24th Wireless and Optical Communication Conference, WOCC, 2015, pp. 159–163. – volume: 38 start-page: 223 year: 2011 end-page: 230 ident: b115 article-title: A comparative assessment of ensemble learning for credit scoring publication-title: Expert Syst. Appl. – start-page: 122 year: 2015 end-page: 132 ident: b11 article-title: A survey of applying machine learning techniques for credit rating: existing models and open issues publication-title: Neural Information Processing – volume: 25 year: 2012 ident: b93 article-title: Imagenet classification with deep convolutional neural networks publication-title: Neural Inf. Process. Syst. – volume: 73 start-page: 1 year: 2017 end-page: 10 ident: b142 article-title: A comparative study on base classifiers in ensemble methods for credit scoring publication-title: Expert Syst. Appl. – volume: 22 start-page: 120 year: 2009 end-page: 127 ident: b27 article-title: Feature selection in bankruptcy prediction publication-title: Knowl.-Based Syst. – year: 2001 ident: b39 article-title: Pattern Classification – volume: 47 start-page: 90 year: 2003 end-page: 100 ident: b4 article-title: Tutorial on maximum likelihood estimation publication-title: J. Math. Psych. – volume: 73 start-page: 289 year: 2015 end-page: 297 ident: b14 article-title: The effect of feature selection on financial distress prediction publication-title: Knowl.-Based Syst. – volume: 116 start-page: 328 year: 2019 end-page: 339 ident: b59 article-title: Hierarchical convolutional neural networks for fashion image classification publication-title: Expert Syst. Appl. – volume: 1 start-page: 2463 year: 2010 end-page: 2468 ident: b111 article-title: Credit scorecard based on logistic regression with random coefficients publication-title: Procedia Comput. Sci. – reference: Q. Li, J. Zhang, Y. Wang, K. Kang, Credit risk classification using discriminative restricted boltzmann machines, in: 2014 IEEE 17th International Conference on Computational Science and Engineering, 2014, pp. 1697–1700. – volume: 17 start-page: 1 year: 1997 end-page: 24 ident: b80 article-title: Neurolinear: From neural networks to oblique decision rules publication-title: Neurocomputing – volume: 74 start-page: 105 year: 2017 end-page: 114 ident: b139 article-title: Reject inference in credit scoring using semi-supervised support vector machines publication-title: Expert Syst. Appl. – volume: 1 start-page: 541 year: 1989 end-page: 551 ident: b58 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. – volume: 11 start-page: 407 year: 1996 end-page: 413 ident: b21 article-title: Neural networks and genetic algorithms for bankruptcy predictions publication-title: Expert Syst. Appl. – volume: 125 year: 2019 ident: b53 article-title: Combining principal component analysis, discrete wavelet transform and xgboost to trade in the financial markets publication-title: Expert Syst. Appl. – year: 2005 ident: b3 article-title: Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scoring – reference: X. Zhang, Y. Yang, Z. Zhou, A novel credit scoring model based on optimized random forest, in: 2018 IEEE 8th Annual Computing and Communication Workshop and Conference, CCWC, 2018, pp. 60–65. – volume: 40 start-page: 6241 year: 2013 end-page: 6252 ident: b32 article-title: Feature subset selection filter–wrapper based on low quality data publication-title: Expert Syst. Appl. – volume: 37 start-page: 4902 year: 2010 end-page: 4909 ident: b17 article-title: Combination of feature selection approaches with SVM in credit scoring publication-title: Expert Syst. Appl. – volume: 69 start-page: 541 year: 2018 end-page: 553 ident: b110 article-title: Information gain directed genetic algorithm wrapper feature selection for credit rating publication-title: Appl. Soft Comput. – reference: J. Chen, L. Xu, A method of improving credit evaluation with support vector machines, in: 2015 11th International Conference on Natural Computation, ICNC, 2015, pp. 615–619. – volume: 42 start-page: 5737 year: 2015 end-page: 5753 ident: b130 article-title: Enhancing accuracy and interpretability of ensemble strategies in credit risk assessment. A correlated-adjusted decision forest proposal publication-title: Expert Syst. Appl. – volume: 122 start-page: 677 year: 2017 end-page: 684 ident: b19 article-title: The study of credit scoring model based on group lasso publication-title: Procedia Comput. Sci. – start-page: 338 year: 1995 end-page: 345 ident: b77 article-title: Estimating continuous distributions in Bayesian classifiers publication-title: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence – volume: 24 start-page: 977 year: 2014 end-page: 984 ident: b47 article-title: A comparative study of classifier ensembles for bankruptcy prediction publication-title: Appl. Soft Comput. – volume: 70 start-page: 525 year: 2018 end-page: 538 ident: b62 article-title: Algorithmic financial trading with deep convolutional neural networks: time series to image conversion approach publication-title: Appl. Soft Comput. – reference: H. Sutrisno, S. Halim, Credit scoring refinement using optimized logistic regression, in: 2017 International Conference on Soft Computing, Intelligent System and Information Technology, ICSIIT, 2017, pp. 26–31. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b43 article-title: Support-vector networks publication-title: Mach. Learn. – year: 1997 ident: b45 article-title: Machine Learning – start-page: 827 year: 2015 end-page: 832 ident: b40 article-title: Gaussian mixture models publication-title: Encyclopedia of Biometrics – volume: 99 start-page: 48 year: 1997 end-page: 57 ident: b24 article-title: Rough set approach to knowledge-based decision support publication-title: European J. Oper. Res. – year: 2018 ident: b13 article-title: A Survey on Machine Learning and Statistical Techniques in Bankruptcy Prediction – volume: 38 start-page: 15392 year: 2011 end-page: 15399 ident: b78 article-title: Credit risk evaluation using a weighted least squares SVM classifier with design of experiment for parameter selection publication-title: Expert Syst. Appl. – year: 2002 ident: b1 article-title: Credit Scoring and Its Applications – reference: M.D. Odom, R. Sharda, A neural network model for bankruptcy prediction, in: 1990 IJCNN International Joint Conference on Neural Networks, vol. 2, 1990, pp. 163–168. – volume: 42 start-page: 3508 year: 2015 end-page: 3516 ident: b129 article-title: Investigation and improvement of multi-layer perceptron neural networks for credit scoring publication-title: Expert Syst. Appl. – volume: 33 start-page: 1 year: 2007 end-page: 42 ident: b8 article-title: A review of bankruptcy prediction studies: 1930 to present publication-title: J. Financial Educ. – volume: 37 start-page: 3326 year: 2010 end-page: 3336 ident: b112 article-title: Multiple classifier application to credit risk assessment publication-title: Expert Syst. Appl. – volume: 45 start-page: 35:1 year: 2013 end-page: 35:33 ident: b30 article-title: Exploration and exploitation in evolutionary algorithms: A survey publication-title: ACM Comput. Surv. – volume: abs/1705.07874 year: 2017 ident: b82 article-title: A unified approach to interpreting model predictions publication-title: CoRR – volume: 38 start-page: 12717 year: 2011 end-page: 12720 ident: b119 article-title: Poly-bagging predictors for classification modelling for credit scoring publication-title: Expert Syst. Appl. – volume: 1 start-page: 323 year: 2016 end-page: 333 ident: b26 article-title: A survey on rough set theory and its applications publication-title: CAAI Trans. Intell. Technol. – volume: 23 start-page: 228 year: 2001 end-page: 233 ident: b37 article-title: PCA versus LDA publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 73 start-page: 273 year: 2011 end-page: 282 ident: b33 article-title: Regression shrinkage and selection via the lasso: a retrospective publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 39 start-page: 10916 year: 2012 end-page: 10922 ident: b121 article-title: Two-level classifier ensembles for credit risk assessment publication-title: Expert Syst. Appl. – volume: 13 start-page: 185 year: 2009 end-page: 206 ident: b31 article-title: To explore or to exploit: An entropy-driven approach for evolutionary algorithms publication-title: KES J. – volume: 78 year: 2017 ident: b54 article-title: A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring publication-title: Expert Syst. Appl. – ident: 10.1016/j.asoc.2020.106263_b137 doi: 10.1109/CAIPT.2017.8320700 – volume: 261 start-page: 656 issue: 2 year: 2017 ident: 10.1016/j.asoc.2020.106263_b106 article-title: Cost-based feature selection for support vector machines: An application in credit scoring publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2017.02.037 – volume: 11 issue: 1 year: 2018 ident: 10.1016/j.asoc.2020.106263_b89 article-title: Ensemble learning or deep learning? Application to default risk analysis publication-title: J. Risk Financial Manag. doi: 10.3390/jrfm11010012 – volume: 24 start-page: 977 year: 2014 ident: 10.1016/j.asoc.2020.106263_b47 article-title: A comparative study of classifier ensembles for bankruptcy prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.08.047 – volume: 17 start-page: 1 issue: 1 year: 1997 ident: 10.1016/j.asoc.2020.106263_b80 article-title: Neurolinear: From neural networks to oblique decision rules publication-title: Neurocomputing doi: 10.1016/S0925-2312(97)00038-6 – volume: 74 start-page: 105 year: 2017 ident: 10.1016/j.asoc.2020.106263_b139 article-title: Reject inference in credit scoring using semi-supervised support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.01.011 – ident: 10.1016/j.asoc.2020.106263_b81 doi: 10.1145/2783258.2788613 – ident: 10.1016/j.asoc.2020.106263_b126 – ident: 10.1016/j.asoc.2020.106263_b85 doi: 10.1109/TENCON.2017.8228247 – volume: 42 start-page: 3508 issue: 7 year: 2015 ident: 10.1016/j.asoc.2020.106263_b129 article-title: Investigation and improvement of multi-layer perceptron neural networks for credit scoring publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.12.006 – volume: 69 start-page: 192 year: 2018 ident: 10.1016/j.asoc.2020.106263_b56 article-title: A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.04.049 – volume: 7 start-page: 179 issue: 2 year: 1936 ident: 10.1016/j.asoc.2020.106263_b36 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugen. doi: 10.1111/j.1469-1809.1936.tb02137.x – volume: 125 year: 2019 ident: 10.1016/j.asoc.2020.106263_b53 article-title: Combining principal component analysis, discrete wavelet transform and xgboost to trade in the financial markets publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.01.083 – volume: 83 start-page: 405 year: 2017 ident: 10.1016/j.asoc.2020.106263_b46 article-title: Machine learning models and bankruptcy prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.04.006 – volume: 14 start-page: 197 issue: 3 year: 2013 ident: 10.1016/j.asoc.2020.106263_b104 article-title: Credit scoring by feature-weighted support vector machines publication-title: J. Zhejiang Univ. Sci. C doi: 10.1631/jzus.C1200205 – volume: 39 start-page: 2433 issue: 3 year: 2012 ident: 10.1016/j.asoc.2020.106263_b16 article-title: Does segmentation always improve model performance in credit scoring? publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.08.093 – volume: 22 start-page: 120 issue: 2 year: 2009 ident: 10.1016/j.asoc.2020.106263_b27 article-title: Feature selection in bankruptcy prediction publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2008.08.002 – ident: 10.1016/j.asoc.2020.106263_b122 doi: 10.1109/CSAE.2012.6272911 – ident: 10.1016/j.asoc.2020.106263_b132 doi: 10.1109/INISTA.2015.7276736 – volume: 45 start-page: 35:1 year: 2013 ident: 10.1016/j.asoc.2020.106263_b30 article-title: Exploration and exploitation in evolutionary algorithms: A survey publication-title: ACM Comput. Surv. doi: 10.1145/2480741.2480752 – volume: 37 start-page: 7838 issue: 12 year: 2010 ident: 10.1016/j.asoc.2020.106263_b99 article-title: Vertical bagging decision trees model for credit scoring publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.04.054 – volume: 39 start-page: 10916 issue: 12 year: 2012 ident: 10.1016/j.asoc.2020.106263_b121 article-title: Two-level classifier ensembles for credit risk assessment publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.03.033 – volume: 47 start-page: 90 issue: 1 year: 2003 ident: 10.1016/j.asoc.2020.106263_b4 article-title: Tutorial on maximum likelihood estimation publication-title: J. Math. Psych. doi: 10.1016/S0022-2496(02)00028-7 – year: 2018 ident: 10.1016/j.asoc.2020.106263_b143 – volume: 125 year: 2019 ident: 10.1016/j.asoc.2020.106263_b71 article-title: Combining principal component analysis, discrete wavelet transform and xgboost to trade in the financial markets publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.01.083 – volume: 120 start-page: 103 year: 2019 ident: 10.1016/j.asoc.2020.106263_b61 article-title: Convolutional neural network improvement for breast cancer classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.11.008 – start-page: 338 year: 1995 ident: 10.1016/j.asoc.2020.106263_b77 article-title: Estimating continuous distributions in Bayesian classifiers – volume: 70 start-page: 525 year: 2018 ident: 10.1016/j.asoc.2020.106263_b62 article-title: Algorithmic financial trading with deep convolutional neural networks: time series to image conversion approach publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.04.024 – volume: 102 year: 2018 ident: 10.1016/j.asoc.2020.106263_b92 article-title: Predicting mortgage default using convolutional neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.02.029 – volume: 39 start-page: 10244 issue: 11 year: 2012 ident: 10.1016/j.asoc.2020.106263_b120 article-title: Exploring the behaviour of base classifiers in credit scoring ensembles publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.02.092 – volume: 73 year: 2018 ident: 10.1016/j.asoc.2020.106263_b146 article-title: Application of extreme gradient boosting trees in the construction of credit risk assessment models for financial institutions publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.09.029 – volume: 38 start-page: 13274 issue: 10 year: 2011 ident: 10.1016/j.asoc.2020.106263_b118 article-title: Using data mining to improve assessment of credit worthiness via credit scoring models publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.147 – volume: 42 start-page: 741 issue: 2 year: 2015 ident: 10.1016/j.asoc.2020.106263_b125 article-title: Credit scoring using the clustered support vector machine publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.08.029 – volume: 6 start-page: 255 year: 2018 ident: 10.1016/j.asoc.2020.106263_b148 article-title: Performance evaluation of machine learning approaches for credit scoring publication-title: Int. J. Econ. Finance Manag. Sci. – start-page: 24 year: 1995 ident: 10.1016/j.asoc.2020.106263_b74 article-title: Extracting tree-structured representations of trained networks – volume: abs/1804.00516 year: 2018 ident: 10.1016/j.asoc.2020.106263_b91 article-title: Towards highly accurate coral texture images classification using deep convolutional neural networks and data augmentation publication-title: CoRR – volume: 49 start-page: 312 issue: 3 year: 2003 ident: 10.1016/j.asoc.2020.106263_b5 article-title: Using neural network rule extraction and decision tables for credit-risk evaluation publication-title: Manage. Sci. doi: 10.1287/mnsc.49.3.312.12739 – volume: 42 start-page: 5737 issue: 13 year: 2015 ident: 10.1016/j.asoc.2020.106263_b130 article-title: Enhancing accuracy and interpretability of ensemble strategies in credit risk assessment. A correlated-adjusted decision forest proposal publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.02.042 – volume: 73 start-page: 1 year: 2017 ident: 10.1016/j.asoc.2020.106263_b142 article-title: A comparative study on base classifiers in ensemble methods for credit scoring publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.12.020 – volume: 40 start-page: 6241 issue: 16 year: 2013 ident: 10.1016/j.asoc.2020.106263_b32 article-title: Feature subset selection filter–wrapper based on low quality data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.05.051 – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.asoc.2020.106263_b69 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J. Artificial Intelligence Res. doi: 10.1613/jair.953 – volume: 29 start-page: 1189 year: 2000 ident: 10.1016/j.asoc.2020.106263_b83 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Statist. doi: 10.1214/aos/1013203451 – ident: 10.1016/j.asoc.2020.106263_b87 doi: 10.1109/WOCC.2015.7346197 – ident: 10.1016/j.asoc.2020.106263_b128 – volume: 56 start-page: 72 year: 2015 ident: 10.1016/j.asoc.2020.106263_b127 article-title: An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes publication-title: J. Bank. I Finance doi: 10.1016/j.jbankfin.2015.02.006 – volume: 25 year: 2012 ident: 10.1016/j.asoc.2020.106263_b93 article-title: Imagenet classification with deep convolutional neural networks publication-title: Neural Inf. Process. Syst. – volume: 82 start-page: 40 year: 2017 ident: 10.1016/j.asoc.2020.106263_b68 article-title: Self-organizing map oversampling (SOMO) for imbalanced data set learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.03.073 – volume: 34 start-page: 2639 issue: 4 year: 2008 ident: 10.1016/j.asoc.2020.106263_b48 article-title: Using neural network ensembles for bankruptcy prediction and credit scoring publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.05.019 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.asoc.2020.106263_b43 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – year: 1997 ident: 10.1016/j.asoc.2020.106263_b45 – start-page: 1 year: 2007 ident: 10.1016/j.asoc.2020.106263_b7 – volume: 81 start-page: 22 year: 2017 ident: 10.1016/j.asoc.2020.106263_b23 article-title: Feature selection based on FDA and F-score for multi-class classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.02.049 – volume: 41 start-page: 3825 issue: 8 year: 2014 ident: 10.1016/j.asoc.2020.106263_b124 article-title: Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.12.003 – volume: 116 start-page: 328 year: 2019 ident: 10.1016/j.asoc.2020.106263_b59 article-title: Hierarchical convolutional neural networks for fashion image classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.09.022 – year: 1995 ident: 10.1016/j.asoc.2020.106263_b66 – ident: 10.1016/j.asoc.2020.106263_b138 doi: 10.1109/CIS.2017.00045 – ident: 10.1016/j.asoc.2020.106263_b97 doi: 10.1109/ICAIBD.2018.8396195 – volume: 38 start-page: 223 issue: 1 year: 2011 ident: 10.1016/j.asoc.2020.106263_b115 article-title: A comparative assessment of ensemble learning for credit scoring publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.06.048 – volume: 21 start-page: 117 issue: 2 year: 2016 ident: 10.1016/j.asoc.2020.106263_b12 article-title: Classification methods applied to credit scoring: Systematic review and overall comparison publication-title: Surv. Oper. Res. Manag. Sci. – volume: 42 start-page: 2998 issue: 6 year: 2015 ident: 10.1016/j.asoc.2020.106263_b29 article-title: Genetic algorithms for credit scoring: Alternative fitness function performance comparison publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.11.028 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.asoc.2020.106263_b55 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – volume: 38 start-page: 15392 issue: 12 year: 2011 ident: 10.1016/j.asoc.2020.106263_b114 article-title: Credit risk evaluation using a weighted least squares SVM classifier with design of experiment for parameter selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.06.023 – ident: 10.1016/j.asoc.2020.106263_b105 doi: 10.1109/CSE.2014.312 – volume: 38 start-page: 11300 issue: 9 year: 2011 ident: 10.1016/j.asoc.2020.106263_b101 article-title: Neighborhood rough set and SVM based hybrid credit scoring classifier publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.179 – volume: 45 start-page: 77 issue: 1 year: 1996 ident: 10.1016/j.asoc.2020.106263_b42 article-title: A k-nearest-neighbour classifier for assessing consumer credit risk publication-title: J. R. Stat. Soc. – ident: 10.1016/j.asoc.2020.106263_b79 doi: 10.1109/CSIE.2009.481 – start-page: 766 year: 2011 ident: 10.1016/j.asoc.2020.106263_b117 article-title: Deep belief networks for financial prediction – year: 2005 ident: 10.1016/j.asoc.2020.106263_b3 – ident: 10.1016/j.asoc.2020.106263_b35 doi: 10.1109/MedCom.2014.7005973 – year: 1995 ident: 10.1016/j.asoc.2020.106263_b60 – volume: 28 start-page: 576 issue: 4 year: 2016 ident: 10.1016/j.asoc.2020.106263_b134 article-title: A novel multistage deep belief network based extreme learning machine ensemble learning paradigm for credit risk assessment publication-title: Flex. Serv. Manuf. J. doi: 10.1007/s10696-015-9226-2 – ident: 10.1016/j.asoc.2020.106263_b86 doi: 10.1109/FTC.2016.7821603 – volume: 43 start-page: 73 year: 2016 ident: 10.1016/j.asoc.2020.106263_b135 article-title: Ensemble classification based on supervised clustering for credit scoring publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.02.022 – volume: 29 start-page: 71 issue: 3 year: 1996 ident: 10.1016/j.asoc.2020.106263_b73 article-title: Symbolic representation of neural networks publication-title: Computer doi: 10.1109/2.485895 – volume: 39 start-page: 3446 issue: 3 year: 2012 ident: 10.1016/j.asoc.2020.106263_b15 article-title: An experimental comparison of classification algorithms for imbalanced credit scoring data sets publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.033 – year: 2018 ident: 10.1016/j.asoc.2020.106263_b70 – volume: 1 start-page: 323 issue: 4 year: 2016 ident: 10.1016/j.asoc.2020.106263_b26 article-title: A survey on rough set theory and its applications publication-title: CAAI Trans. Intell. Technol. doi: 10.1016/j.trit.2016.11.001 – year: 1996 ident: 10.1016/j.asoc.2020.106263_b28 – ident: 10.1016/j.asoc.2020.106263_b116 doi: 10.1109/CSO.2011.143 – volume: 42 start-page: 421 issue: 4 year: 2012 ident: 10.1016/j.asoc.2020.106263_b10 article-title: Machine learning in financial crisis prediction: A survey publication-title: IEEE Trans. Syst. Man Cybern. C doi: 10.1109/TSMCC.2011.2170420 – volume: 39 start-page: 2650 issue: 3 year: 2012 ident: 10.1016/j.asoc.2020.106263_b20 article-title: A hybrid approach to integrate genetic algorithm into dual scoring model in enhancing the performance of credit scoring model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.08.120 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.asoc.2020.106263_b57 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 1 start-page: 2425 issue: 1 year: 2010 ident: 10.1016/j.asoc.2020.106263_b25 article-title: Rough set and tabu search based feature selection for credit scoring publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2010.04.273 – volume: 37 start-page: 534 issue: 1 year: 2010 ident: 10.1016/j.asoc.2020.106263_b113 article-title: A data driven ensemble classifier for credit scoring analysis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.05.059 – volume: 94 start-page: 164 year: 2018 ident: 10.1016/j.asoc.2020.106263_b6 article-title: Systematic review of bankruptcy prediction models: Towards a framework for tool selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.10.040 – start-page: 122 year: 2015 ident: 10.1016/j.asoc.2020.106263_b11 article-title: A survey of applying machine learning techniques for credit rating: existing models and open issues – start-page: 249 year: 2011 ident: 10.1016/j.asoc.2020.106263_b100 article-title: Credit scoring using PCA-SVM hybrid model – ident: 10.1016/j.asoc.2020.106263_b109 doi: 10.1109/CCWC.2018.8301707 – volume: 39 start-page: 6123 issue: 6 year: 2012 ident: 10.1016/j.asoc.2020.106263_b102 article-title: Rough set and scatter search metaheuristic based feature selection for credit scoring publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.11.011 – ident: 10.1016/j.asoc.2020.106263_b141 doi: 10.1109/IEIS.2017.8078596 – ident: 10.1016/j.asoc.2020.106263_b140 doi: 10.1109/CSCI.2017.36 – volume: 122 start-page: 677 year: 2017 ident: 10.1016/j.asoc.2020.106263_b19 article-title: The study of credit scoring model based on group lasso publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.11.423 – year: 2018 ident: 10.1016/j.asoc.2020.106263_b108 – volume: 2 start-page: 205 issue: 3 year: 1978 ident: 10.1016/j.asoc.2020.106263_b76 article-title: Problems in applying discriminant analysis in credit scoring models publication-title: J. Bank. Financ. doi: 10.1016/0378-4266(78)90012-2 – year: 2002 ident: 10.1016/j.asoc.2020.106263_b1 – volume: 99 start-page: 48 issue: 1 year: 1997 ident: 10.1016/j.asoc.2020.106263_b24 article-title: Rough set approach to knowledge-based decision support publication-title: European J. Oper. Res. doi: 10.1016/S0377-2217(96)00382-7 – volume: 55 start-page: 119 issue: 1 year: 1997 ident: 10.1016/j.asoc.2020.106263_b51 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. System Sci. doi: 10.1006/jcss.1997.1504 – year: 2016 ident: 10.1016/j.asoc.2020.106263_b72 – volume: 78 year: 2017 ident: 10.1016/j.asoc.2020.106263_b54 article-title: A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.02.017 – volume: 86 start-page: 42 year: 2017 ident: 10.1016/j.asoc.2020.106263_b136 article-title: Extreme learning machines for credit scoring: An empirical evaluation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.05.050 – volume: 18 start-page: 59 issue: 2–3 year: 2011 ident: 10.1016/j.asoc.2020.106263_b9 article-title: Credit scoring, statistical techniques and evaluation criteria: A review of the literature publication-title: Int. J. Intell. Syst. Account. Financ. Manage. doi: 10.1002/isaf.325 – volume: 73 start-page: 289 year: 2015 ident: 10.1016/j.asoc.2020.106263_b14 article-title: The effect of feature selection on financial distress prediction publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.10.010 – ident: 10.1016/j.asoc.2020.106263_b98 doi: 10.1109/ICIFE.2010.5609428 – volume: 11 start-page: 407 issue: 4 year: 1996 ident: 10.1016/j.asoc.2020.106263_b21 article-title: Neural networks and genetic algorithms for bankruptcy predictions publication-title: Expert Syst. Appl. doi: 10.1016/S0957-4174(96)00055-3 – year: 2001 ident: 10.1016/j.asoc.2020.106263_b39 – ident: 10.1016/j.asoc.2020.106263_b88 doi: 10.1109/ICComm.2018.8484751 – volume: 13 start-page: 185 year: 2009 ident: 10.1016/j.asoc.2020.106263_b31 article-title: To explore or to exploit: An entropy-driven approach for evolutionary algorithms publication-title: KES J. doi: 10.3233/KES-2009-0184 – ident: 10.1016/j.asoc.2020.106263_b49 doi: 10.1109/IJCNN.1990.137710 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.asoc.2020.106263_b50 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 6 start-page: 38 year: 2018 ident: 10.1016/j.asoc.2020.106263_b144 article-title: Credit risk analysis using machine and deep learning models publication-title: Risks doi: 10.3390/risks6020038 – volume: 93 start-page: 182 issue: C year: 2018 ident: 10.1016/j.asoc.2020.106263_b145 article-title: A novel heterogeneous ensemble credit scoring model based on bstacking approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.10.022 – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 10.1016/j.asoc.2020.106263_b58 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – year: 2018 ident: 10.1016/j.asoc.2020.106263_b13 – start-page: 159 year: 1948 ident: 10.1016/j.asoc.2020.106263_b38 article-title: The utilization of multiple measurements in problems of biological classification publication-title: J. R. Stat. Soc. doi: 10.1111/j.2517-6161.1948.tb00008.x – volume: 65 start-page: 465 year: 2017 ident: 10.1016/j.asoc.2020.106263_b84 article-title: A deep learning approach for credit scoring using credit default swaps publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2016.12.002 – volume: 37 start-page: 3326 issue: 4 year: 2010 ident: 10.1016/j.asoc.2020.106263_b112 article-title: Multiple classifier application to credit risk assessment publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.10.018 – year: 2016 ident: 10.1016/j.asoc.2020.106263_b65 – volume: 6 start-page: 54396 year: 2018 ident: 10.1016/j.asoc.2020.106263_b147 article-title: Heterogeneous ensemble for default prediction of peer-to-peer lending in China publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2810864 – year: 2018 ident: 10.1016/j.asoc.2020.106263_b96 article-title: Synthetic data augmentation using GAN for improved liver lesion classification publication-title: CoRR – volume: 104 start-page: 89 year: 2016 ident: 10.1016/j.asoc.2020.106263_b133 article-title: Classifiers consensus system approach for credit scoring publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.04.013 – volume: 42 start-page: 1789 issue: 4 year: 2015 ident: 10.1016/j.asoc.2020.106263_b67 article-title: Classification restricted Boltzmann machine for comprehensible credit scoring model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.10.016 – year: 2016 ident: 10.1016/j.asoc.2020.106263_b95 article-title: Deep convolutional neural networks and data augmentation for environmental sound classification publication-title: CoRR – volume: 73 start-page: 273 issue: 3 year: 2011 ident: 10.1016/j.asoc.2020.106263_b33 article-title: Regression shrinkage and selection via the lasso: a retrospective publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.1467-9868.2011.00771.x – start-page: 785 year: 2016 ident: 10.1016/j.asoc.2020.106263_b52 article-title: XGBoost: A scalable tree boosting system – ident: 10.1016/j.asoc.2020.106263_b107 doi: 10.1109/ICSIIT.2017.48 – ident: 10.1016/j.asoc.2020.106263_b18 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 10.1016/j.asoc.2020.106263_b41 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 39 start-page: 8071 issue: 9 year: 2012 ident: 10.1016/j.asoc.2020.106263_b123 article-title: On the impact of disproportional samples in credit scoring models: An application to a Brazilian bank data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.01.134 – volume: 23 start-page: 228 issue: 2 year: 2001 ident: 10.1016/j.asoc.2020.106263_b37 article-title: PCA versus LDA publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.908974 – year: 2017 ident: 10.1016/j.asoc.2020.106263_b94 article-title: The effectiveness of data augmentation in image classification using deep learning publication-title: CoRR – year: 2018 ident: 10.1016/j.asoc.2020.106263_b34 – volume: abs/1602.04938 year: 2016 ident: 10.1016/j.asoc.2020.106263_b75 article-title: “Why should I trust you?”: Explaining the predictions of any classifier publication-title: CoRR – volume: 42 start-page: 5737 issue: 13 year: 2015 ident: 10.1016/j.asoc.2020.106263_b131 article-title: Enhancing accuracy and interpretability of ensemble strategies in credit risk assessment. A correlated-adjusted decision forest proposal publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.02.042 – volume: 16 start-page: 149 issue: 2 year: 2000 ident: 10.1016/j.asoc.2020.106263_b2 article-title: A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers publication-title: Int. J. Forecast. doi: 10.1016/S0169-2070(00)00034-0 – start-page: 283 year: 2000 ident: 10.1016/j.asoc.2020.106263_b44 article-title: The kernel trick for distances – volume: 6 start-page: 60 issue: 1 year: 2019 ident: 10.1016/j.asoc.2020.106263_b90 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – volume: 38 start-page: 12717 issue: 10 year: 2011 ident: 10.1016/j.asoc.2020.106263_b119 article-title: Poly-bagging predictors for classification modelling for credit scoring publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.059 – volume: 41 start-page: 2052 issue: 4, Part 2 year: 2014 ident: 10.1016/j.asoc.2020.106263_b22 article-title: Genetic algorithm-based heuristic for feature selection in credit risk assessment publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.09.004 – volume: abs/1705.07874 year: 2017 ident: 10.1016/j.asoc.2020.106263_b82 article-title: A unified approach to interpreting model predictions publication-title: CoRR – start-page: 827 year: 2015 ident: 10.1016/j.asoc.2020.106263_b40 article-title: Gaussian mixture models – volume: 37 start-page: 4902 issue: 7 year: 2010 ident: 10.1016/j.asoc.2020.106263_b17 article-title: Combination of feature selection approaches with SVM in credit scoring publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.12.025 – volume: 38 start-page: 15392 issue: 12 year: 2011 ident: 10.1016/j.asoc.2020.106263_b78 article-title: Credit risk evaluation using a weighted least squares SVM classifier with design of experiment for parameter selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.06.023 – year: 2017 ident: 10.1016/j.asoc.2020.106263_b64 – volume: 28 start-page: 162 year: 2017 ident: 10.1016/j.asoc.2020.106263_b63 article-title: Convolutional neural networks for time series classification publication-title: J. Syst. Eng. Electron. doi: 10.21629/JSEE.2017.01.18 – volume: 1 start-page: 2463 issue: 1 year: 2010 ident: 10.1016/j.asoc.2020.106263_b111 article-title: Credit scorecard based on logistic regression with random coefficients publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2010.04.278 – volume: 33 start-page: 1 year: 2007 ident: 10.1016/j.asoc.2020.106263_b8 article-title: A review of bankruptcy prediction studies: 1930 to present publication-title: J. Financial Educ. – volume: 26 start-page: 848 issue: 2 year: 2013 ident: 10.1016/j.asoc.2020.106263_b103 article-title: Orthogonal support vector machine for credit scoring publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2012.10.005 – volume: 69 start-page: 541 year: 2018 ident: 10.1016/j.asoc.2020.106263_b110 article-title: Information gain directed genetic algorithm wrapper feature selection for credit rating publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.04.033 – year: 2006 ident: 10.1016/j.asoc.2020.106263_b149 article-title: Basel II: International convergence of capital measurement and capital standards: A revised framework - comprehensive version, bank for international settlements publication-title: BIS |
SSID | ssj0016928 |
Score | 2.6332853 |
Snippet | In practice, as a well-known statistical method, the logistic regression model is used to evaluate the credit-worthiness of borrowers due to its simplicity and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106263 |
SubjectTerms | Credit scoring Deep learning Machine learning Statistical learning Systematic literature survey |
Title | Statistical and machine learning models in credit scoring: A systematic literature survey |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106263 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3iW2y283GWymW-qCIWqinkM1uJFJjaVPBi7_dmWRTFaQHDyFkmQlhMjs7A998Q8ipzwOlobRyIigvHK4hh1OxbDs-kyYJBI88XaAthmIw4tfjzrhGelUvDMIqbewvY3oRre1Ky1qzNU3T1gNUHpIHXHjgp3BhEx-y14FPn38uYR6uCIr5qijsoLRtnCkxXhFYAGpEDxeQluXvw-nHgdPfIhs2U6Td8mO2Sc1kO2SzmsJA7abcJU-YLxZ0yyAdZZq-FvhIQ-1AiGdaTLuZ0zSjSA-a5nQeF7C7C9ql30zOdLJkWKbzxezdfOyRUf_ysTdw7MAEJ2btdu4kiUhURyOHF5eQehkJW1brAKokJUXga64jwZjQic8j44mYCeUKP0GsE5OQrOyTevaWmQNCAx5IBe9SyCBoDIs00qZy7caxZMpnDeJWlgpjyyaOQy0mYQUbewnRuiFaNyyt2yBnS51pyaWxUrpT_YDwl0eEEOxX6B3-U--IrONTCQM7JvV8tjAnkHDkqll4VJOsdXv3t3d4v7oZDL8AxwLVjg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH5BOOjF30b82YM3swBr6VpvhEiGIBchwdOyrp2ZwUlgmPjf224damI4eNil61uWb6-v72Vfvwdw4xEupC6tnFCXFw6ROocTEWs6HmYq5pSErszZFiPqT8jDtD2tQLc8C2NolTb2FzE9j9Z2pGHRbMyTpPGkKw9GOKGu9lN98S2oGXUqUoVapz_wR-ufCZTnLVbNfMcY2LMzBc0r1CDoMtE1A0aZ5e_96cee09uHXZssok7xPgdQUekh7JWNGJBdl0fwbFLGXHFZzw5Tid5yiqRCtifEC8ob3ixRkiKjEJpkaBnlzLs71EHfYs5othZZRsvV4kN9HsOkdz_u-o7tmeBEuNnMnDimsWhLI-NFmM6-FNOrVkquCyXBKPckkSHFmMrYI6FyaYSpaFEvNnQnzHS-cgLV9D1Vp4A44UzoZwkjIqgUDqVRTiWyFUUMCw_XoVUiFURWUNz0tZgFJXPsNTDoBgbdoEC3Drdrm3khp7Fxdrv8AMEvpwh0vN9gd_ZPu2vY9sePw2DYHw3OYcfcKVhhF1DNFit1qfOPTFxZ__oCdiHWqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+and+machine+learning+models+in+credit+scoring%3A+A+systematic+literature+survey&rft.jtitle=Applied+soft+computing&rft.au=Dastile%2C+Xolani&rft.au=Celik%2C+Turgay&rft.au=Potsane%2C+Moshe&rft.date=2020-06-01&rft.issn=1568-4946&rft.volume=91&rft.spage=106263&rft_id=info:doi/10.1016%2Fj.asoc.2020.106263&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106263 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |