Statistical and machine learning models in credit scoring: A systematic literature survey

In practice, as a well-known statistical method, the logistic regression model is used to evaluate the credit-worthiness of borrowers due to its simplicity and transparency in predictions. However, in literature, sophisticated machine learning models can be found that can replace the logistic regres...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 91; p. 106263
Main Authors Dastile, Xolani, Celik, Turgay, Potsane, Moshe
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2020
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2020.106263

Cover

Loading…
Abstract In practice, as a well-known statistical method, the logistic regression model is used to evaluate the credit-worthiness of borrowers due to its simplicity and transparency in predictions. However, in literature, sophisticated machine learning models can be found that can replace the logistic regression model. Despite the advances and applications of machine learning models in credit scoring, there are still two major issues: the incapability of some of the machine learning models to explain predictions; and the issue of imbalanced datasets. As such, there is a need for a thorough survey of recent literature in credit scoring. This article employs a systematic literature survey approach to systematically review statistical and machine learning models in credit scoring, to identify limitations in literature, to propose a guiding machine learning framework, and to point to emerging directions. This literature survey is based on 74 primary studies, such as journal and conference articles, that were published between 2010 and 2018. According to the meta-analysis of this literature survey, we found that in general, an ensemble of classifiers performs better than single classifiers. Although deep learning models have not been applied extensively in credit scoring literature, they show promising results. •Ensemble classifiers outperform single classifiers.•Deep Learning models to replace classical models in credit scoring.•Convolutional Neural Nets outperform statistical and classical ML models.•Non-transparency of DL models serves as a bottleneck for them to be used.
AbstractList In practice, as a well-known statistical method, the logistic regression model is used to evaluate the credit-worthiness of borrowers due to its simplicity and transparency in predictions. However, in literature, sophisticated machine learning models can be found that can replace the logistic regression model. Despite the advances and applications of machine learning models in credit scoring, there are still two major issues: the incapability of some of the machine learning models to explain predictions; and the issue of imbalanced datasets. As such, there is a need for a thorough survey of recent literature in credit scoring. This article employs a systematic literature survey approach to systematically review statistical and machine learning models in credit scoring, to identify limitations in literature, to propose a guiding machine learning framework, and to point to emerging directions. This literature survey is based on 74 primary studies, such as journal and conference articles, that were published between 2010 and 2018. According to the meta-analysis of this literature survey, we found that in general, an ensemble of classifiers performs better than single classifiers. Although deep learning models have not been applied extensively in credit scoring literature, they show promising results. •Ensemble classifiers outperform single classifiers.•Deep Learning models to replace classical models in credit scoring.•Convolutional Neural Nets outperform statistical and classical ML models.•Non-transparency of DL models serves as a bottleneck for them to be used.
ArticleNumber 106263
Author Celik, Turgay
Dastile, Xolani
Potsane, Moshe
Author_xml – sequence: 1
  givenname: Xolani
  surname: Dastile
  fullname: Dastile, Xolani
  email: xdastile12@gmail.com
  organization: School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa
– sequence: 2
  givenname: Turgay
  orcidid: 0000-0001-6925-6010
  surname: Celik
  fullname: Celik, Turgay
  email: celikturgay@gmail.com
  organization: School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa
– sequence: 3
  givenname: Moshe
  surname: Potsane
  fullname: Potsane, Moshe
  email: Moshe.Potsane@wesbank.co.za
  organization: School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa
BookMark eNp9kE1LAzEQhoNUsK3-AU_5A1vzsTubFS-l-AUFD-rBU0iTWU3ZZiVJC_337lJPHjzNMC_PC_PMyCT0AQm55mzBGYeb7cKk3i4EE-MBBMgzMuWqFkUDik-GvQJVlE0JF2SW0pYNUCPUlHy8ZpN9yt6ajprg6M7YLx-Qdmhi8OGT7nqHXaI-UBvR-UyT7eMQ3NIlTceUcTcUWNr5jNHkfUSa9vGAx0ty3pou4dXvnJP3h_u31VOxfnl8Xi3XhZWM5aJtod1UjlVVVSqoGComuXONAL5R0NSudAakBNfWpUEBVsKGQ902TCmpGMg5UadeG_uUIrba-vGnPuRofKc506MivdWjIj0q0idFAyr-oN_R70w8_g_dnaDBCh48Rp2sx2AHNxFt1q73_-E_T3yChQ
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106852
crossref_primary_10_3390_math10111790
crossref_primary_10_1007_s40745_023_00464_6
crossref_primary_10_1016_j_pacfin_2024_102550
crossref_primary_10_3233_IDA_216228
crossref_primary_10_3390_math13071045
crossref_primary_10_1007_s10115_023_01943_1
crossref_primary_10_1016_j_procs_2024_04_129
crossref_primary_10_1016_j_ejor_2023_08_031
crossref_primary_10_1007_s10479_025_06528_5
crossref_primary_10_1002_for_2891
crossref_primary_10_1007_s10462_023_10697_9
crossref_primary_10_1016_j_ijforecast_2022_01_006
crossref_primary_10_1007_s11334_022_00522_x
crossref_primary_10_1007_s10489_023_04944_3
crossref_primary_10_1016_j_jeconbus_2022_106069
crossref_primary_10_1016_j_joitmc_2024_100385
crossref_primary_10_1016_j_asoc_2021_107391
crossref_primary_10_1080_01605682_2022_2057819
crossref_primary_10_3390_math12060855
crossref_primary_10_1016_j_dss_2023_114084
crossref_primary_10_1155_2022_6584352
crossref_primary_10_1016_j_engappai_2024_109082
crossref_primary_10_3846_tede_2022_17045
crossref_primary_10_3390_math12050701
crossref_primary_10_3390_systems10050160
crossref_primary_10_3390_en16031512
crossref_primary_10_1016_j_knosys_2023_110646
crossref_primary_10_1016_j_orp_2024_100308
crossref_primary_10_48175_IJARSCT_15452
crossref_primary_10_1007_s12553_021_00551_9
crossref_primary_10_1109_ACCESS_2022_3177783
crossref_primary_10_1016_j_aei_2023_102227
crossref_primary_10_1186_s40854_022_00433_7
crossref_primary_10_1371_journal_pone_0316557
crossref_primary_10_12677_mm_2024_1412364
crossref_primary_10_1007_s10916_024_02085_9
crossref_primary_10_1186_s40854_024_00629_z
crossref_primary_10_1007_s11518_022_5545_5
crossref_primary_10_1016_j_techfore_2024_123491
crossref_primary_10_1016_j_ipm_2024_103703
crossref_primary_10_1016_j_knosys_2024_111761
crossref_primary_10_3390_app12094724
crossref_primary_10_1002_dac_6023
crossref_primary_10_1007_s10845_021_01792_1
crossref_primary_10_1108_APJML_02_2021_0126
crossref_primary_10_1109_TPAMI_2023_3331846
crossref_primary_10_1016_j_ijforecast_2024_07_005
crossref_primary_10_3390_electronics11193181
crossref_primary_10_1007_s10614_024_10808_w
crossref_primary_10_3390_app11198884
crossref_primary_10_1080_03461238_2022_2161413
crossref_primary_10_3390_e23040407
crossref_primary_10_1021_acs_iecr_4c03131
crossref_primary_10_1177_14738716231180803
crossref_primary_10_1016_j_eswa_2023_121418
crossref_primary_10_1016_j_eswa_2022_116624
crossref_primary_10_1016_j_eswa_2023_121138
crossref_primary_10_1007_s12351_024_00864_3
crossref_primary_10_3390_app13021043
crossref_primary_10_7717_peerj_cs_1257
crossref_primary_10_1016_j_comnet_2024_110303
crossref_primary_10_1186_s43093_020_00041_w
crossref_primary_10_1016_j_qref_2025_101960
crossref_primary_10_1155_2021_6655510
crossref_primary_10_1016_j_heliyon_2024_e32092
crossref_primary_10_3390_info14030200
crossref_primary_10_1007_s12599_023_00787_x
crossref_primary_10_1007_s42786_020_00020_3
crossref_primary_10_1080_01605682_2024_2418882
crossref_primary_10_1016_j_seps_2024_101818
crossref_primary_10_1038_s41598_024_78055_5
crossref_primary_10_1111_exsy_13203
crossref_primary_10_1007_s10796_021_10195_9
crossref_primary_10_1016_j_eswa_2021_115513
crossref_primary_10_1038_s41598_024_57548_3
crossref_primary_10_3390_risks9030054
crossref_primary_10_1016_j_aej_2024_09_016
crossref_primary_10_1016_j_eswa_2022_118991
crossref_primary_10_1093_oxrep_grab017
crossref_primary_10_1108_REGE_05_2022_0079
crossref_primary_10_3233_JIFS_233334
crossref_primary_10_1108_K_09_2023_1888
crossref_primary_10_3390_su12187830
crossref_primary_10_1177_21582440211061333
crossref_primary_10_1016_j_eap_2022_02_001
crossref_primary_10_1016_j_engappai_2024_109137
crossref_primary_10_1016_j_eswa_2022_118878
crossref_primary_10_1080_01605682_2024_2416908
crossref_primary_10_7717_peerj_cs_1481
crossref_primary_10_1016_j_jjimei_2025_100323
crossref_primary_10_1007_s10479_024_06299_5
crossref_primary_10_1108_IJAIM_06_2021_0124
crossref_primary_10_47473_2020rmm0141
crossref_primary_10_1016_j_ijforecast_2021_12_011
crossref_primary_10_3390_risks10040071
crossref_primary_10_3390_risks9070136
crossref_primary_10_1016_j_dss_2022_113910
crossref_primary_10_1016_j_eswa_2022_117013
crossref_primary_10_1016_j_socec_2025_102366
crossref_primary_10_1007_s00521_024_10452_3
crossref_primary_10_2478_logi_2024_0008
crossref_primary_10_1016_j_asoc_2021_108160
crossref_primary_10_1016_j_eswa_2023_121876
crossref_primary_10_1111_ajfs_12467
crossref_primary_10_1109_MCI_2021_3129960
crossref_primary_10_1016_j_irfa_2021_101971
crossref_primary_10_3390_e23050582
crossref_primary_10_3390_jrfm14090434
crossref_primary_10_1016_j_ejor_2022_10_032
crossref_primary_10_1002_jsc_2525
crossref_primary_10_1002_jsc_2526
crossref_primary_10_15622_ia_22_1_8
crossref_primary_10_2139_ssrn_4624501
crossref_primary_10_3233_JIFS_211825
crossref_primary_10_1109_ACCESS_2021_3068854
crossref_primary_10_1145_3610100
crossref_primary_10_1016_j_eswa_2022_118732
crossref_primary_10_1142_S0219622023500281
crossref_primary_10_2139_ssrn_4483793
crossref_primary_10_3390_jrfm16120496
crossref_primary_10_1002_aaai_12195
crossref_primary_10_1186_s40537_023_00768_7
crossref_primary_10_1007_s41111_024_00265_z
crossref_primary_10_1016_j_asoc_2021_107485
crossref_primary_10_1080_23737484_2022_2106325
crossref_primary_10_32604_cmc_2023_036365
crossref_primary_10_1016_j_jbusres_2022_01_087
crossref_primary_10_1016_j_kjs_2024_100324
crossref_primary_10_1016_j_eswa_2023_121484
crossref_primary_10_1007_s10614_023_10496_y
crossref_primary_10_1186_s40854_021_00295_5
crossref_primary_10_1007_s11633_023_1425_9
crossref_primary_10_1007_s41060_022_00350_z
crossref_primary_10_1016_j_ejor_2022_10_022
crossref_primary_10_1016_j_eswa_2024_124525
crossref_primary_10_2298_TSCI231111008C
crossref_primary_10_1080_13504851_2023_2275647
crossref_primary_10_3390_machines9120361
crossref_primary_10_1016_j_cej_2022_136013
crossref_primary_10_1109_ACCESS_2024_3441037
crossref_primary_10_1016_j_tre_2024_103445
crossref_primary_10_1016_j_asoc_2024_112355
crossref_primary_10_3390_jrfm14070298
crossref_primary_10_3233_JIFS_233141
crossref_primary_10_3390_app11073227
crossref_primary_10_1016_j_irfa_2024_103474
crossref_primary_10_28989_compiler_v12i2_1911
crossref_primary_10_1109_ACCESS_2023_3284137
crossref_primary_10_1109_ACCESS_2024_3490778
crossref_primary_10_1016_j_ipm_2023_103267
crossref_primary_10_1007_s10115_024_02129_z
crossref_primary_10_1016_j_eswa_2021_114985
crossref_primary_10_1016_j_jfds_2022_07_002
crossref_primary_10_1007_s10479_024_06369_8
crossref_primary_10_1016_j_eswa_2022_118158
crossref_primary_10_3233_JIFS_230825
crossref_primary_10_3390_jrfm18020074
crossref_primary_10_1016_j_asoc_2025_112771
crossref_primary_10_1007_s10614_023_10410_6
crossref_primary_10_1016_j_dss_2020_113366
crossref_primary_10_1080_09540091_2023_2184310
crossref_primary_10_2139_ssrn_4167821
crossref_primary_10_1051_shsconf_202521302005
crossref_primary_10_3390_math10173036
crossref_primary_10_1080_08839514_2021_1982475
crossref_primary_10_1631_FITEE_2200039
crossref_primary_10_1016_j_asoc_2024_111538
crossref_primary_10_3390_math9070746
crossref_primary_10_3233_IDA_216460
Cites_doi 10.1109/CAIPT.2017.8320700
10.1016/j.ejor.2017.02.037
10.3390/jrfm11010012
10.1016/j.asoc.2014.08.047
10.1016/S0925-2312(97)00038-6
10.1016/j.eswa.2017.01.011
10.1145/2783258.2788613
10.1109/TENCON.2017.8228247
10.1016/j.eswa.2014.12.006
10.1016/j.asoc.2018.04.049
10.1111/j.1469-1809.1936.tb02137.x
10.1016/j.eswa.2019.01.083
10.1016/j.eswa.2017.04.006
10.1631/jzus.C1200205
10.1016/j.eswa.2011.08.093
10.1016/j.knosys.2008.08.002
10.1109/CSAE.2012.6272911
10.1109/INISTA.2015.7276736
10.1145/2480741.2480752
10.1016/j.eswa.2010.04.054
10.1016/j.eswa.2012.03.033
10.1016/S0022-2496(02)00028-7
10.1016/j.eswa.2018.11.008
10.1016/j.asoc.2018.04.024
10.1016/j.eswa.2018.02.029
10.1016/j.eswa.2012.02.092
10.1016/j.asoc.2018.09.029
10.1016/j.eswa.2011.04.147
10.1016/j.eswa.2014.08.029
10.1287/mnsc.49.3.312.12739
10.1016/j.eswa.2015.02.042
10.1016/j.eswa.2016.12.020
10.1016/j.eswa.2013.05.051
10.1613/jair.953
10.1214/aos/1013203451
10.1109/WOCC.2015.7346197
10.1016/j.jbankfin.2015.02.006
10.1016/j.eswa.2017.03.073
10.1016/j.eswa.2007.05.019
10.1007/BF00994018
10.1016/j.eswa.2017.02.049
10.1016/j.eswa.2013.12.003
10.1016/j.eswa.2018.09.022
10.1109/CIS.2017.00045
10.1109/ICAIBD.2018.8396195
10.1016/j.eswa.2010.06.048
10.1016/j.eswa.2014.11.028
10.1007/BF00058655
10.1016/j.eswa.2011.06.023
10.1109/CSE.2014.312
10.1016/j.eswa.2011.02.179
10.1109/CSIE.2009.481
10.1109/MedCom.2014.7005973
10.1007/s10696-015-9226-2
10.1109/FTC.2016.7821603
10.1016/j.asoc.2016.02.022
10.1109/2.485895
10.1016/j.eswa.2011.09.033
10.1016/j.trit.2016.11.001
10.1109/CSO.2011.143
10.1109/TSMCC.2011.2170420
10.1016/j.eswa.2011.08.120
10.1162/neco.2006.18.7.1527
10.1016/j.procs.2010.04.273
10.1016/j.eswa.2009.05.059
10.1016/j.eswa.2017.10.040
10.1109/CCWC.2018.8301707
10.1016/j.eswa.2011.11.011
10.1109/IEIS.2017.8078596
10.1109/CSCI.2017.36
10.1016/j.procs.2017.11.423
10.1016/0378-4266(78)90012-2
10.1016/S0377-2217(96)00382-7
10.1006/jcss.1997.1504
10.1016/j.eswa.2017.02.017
10.1016/j.eswa.2017.05.050
10.1002/isaf.325
10.1016/j.knosys.2014.10.010
10.1109/ICIFE.2010.5609428
10.1016/S0957-4174(96)00055-3
10.1109/ICComm.2018.8484751
10.3233/KES-2009-0184
10.1109/IJCNN.1990.137710
10.1023/A:1010933404324
10.3390/risks6020038
10.1016/j.eswa.2017.10.022
10.1162/neco.1989.1.4.541
10.1111/j.2517-6161.1948.tb00008.x
10.1016/j.engappai.2016.12.002
10.1016/j.eswa.2009.10.018
10.1109/ACCESS.2018.2810864
10.1016/j.knosys.2016.04.013
10.1016/j.eswa.2014.10.016
10.1111/j.1467-9868.2011.00771.x
10.1109/ICSIIT.2017.48
10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.eswa.2012.01.134
10.1109/34.908974
10.1016/S0169-2070(00)00034-0
10.1186/s40537-019-0197-0
10.1016/j.eswa.2011.04.059
10.1016/j.eswa.2013.09.004
10.1016/j.eswa.2009.12.025
10.21629/JSEE.2017.01.18
10.1016/j.procs.2010.04.278
10.1016/j.engappai.2012.10.005
10.1016/j.asoc.2018.04.033
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106263
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106263
S1568494620302039
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-ff6fb5d055548650e8031dd9261b8697d4da6336df74ae26c36b167f908838063
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 22:56:22 EDT 2025
Tue Jul 01 01:50:05 EDT 2025
Fri Feb 23 02:47:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Statistical learning
Systematic literature survey
Credit scoring
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-ff6fb5d055548650e8031dd9261b8697d4da6336df74ae26c36b167f908838063
ORCID 0000-0001-6925-6010
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2020_106263
crossref_primary_10_1016_j_asoc_2020_106263
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106263
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Vanderheyden, Priestley (b143) 2018
Marqués, García, Sánchez (b120) 2012; 39
Xia, Liu, Da, Xie (b145) 2018; 93
Breiman (b50) 2001; 45
LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (b58) 1989; 1
Han, Han, Zhao (b103) 2013; 26
Siddiqi (b3) 2005
Bishop (b66) 1995
Gómez-Ríos, Tabik, Luengo, Shihavuddin, Krawczyk, Herrera (b91) 2018; abs/1804.00516
Y. Li, X. Lin, X. Wang, F. Shen, Z. Gong, Credit risk assessment algorithm using deep neural networks with clustering and merging, in: 2017 13th International Conference on Computational Intelligence and Security, CIS, 2017, pp. 173–176.
Q. Li, J. Zhang, Y. Wang, K. Kang, Credit risk classification using discriminative restricted boltzmann machines, in: 2014 IEEE 17th International Conference on Computational Science and Engineering, 2014, pp. 1697–1700.
Setiono, Liu (b73) 1996; 29
Bijak, Thomas (b16) 2012; 39
Saia, Carta (b72) 2016
M.F. Kiani, F. Mahmoudi, A new hybrid method for credit scoring based on clustering and support vector machine (ClsSVM), in: 2010 2nd IEEE International Conference on Information and Financial Engineering, 2010, pp. 585–589.
Louzada, Anacleto-Junior, Candolo, Mazucheli (b119) 2011; 38
Hamori, Kawai, Kume, Murakami, Watanabe (b89) 2018; 11
Mancisidor, Kampffmeyer, Aas, Jenssen (b108) 2018
Cao, He, Chen, Zhang (b148) 2018; 6
Song, Jiang, Liu (b23) 2017; 81
Myung (b4) 2003; 47
Liu, Mernik, Bryant (b31) 2009; 13
S. Sehgal, H. Singh, M. Agarwal, V. Bhasker, . Shantanu, Data analysis using principal component analysis, in: 2014 International Conference on Medical Imaging, M-Health and Emerging Communication Systems, MedCom, 2014, pp. 45–48.
Xiao, Xiao, Wang (b135) 2016; 43
Tomczak, Zieba (b67) 2015; 42
Luo, Wu, Wu (b84) 2017; 65
Oreski, Oreski (b22) 2014; 41
R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, N. Elhadad, Intelligible models for healthCare: Predicting pneumonia risk and hospital 30-day readmission, in: KDD ’15, 2015.
Lundberg, Lee (b82) 2017; abs/1705.07874
Zhang, Zhou, Leung, Zheng (b99) 2010; 37
H. Sutrisno, S. Halim, Credit scoring refinement using optimized logistic regression, in: 2017 International Conference on Soft Computing, Intelligent System and Information Technology, ICSIIT, 2017, pp. 26–31.
Devi, Radhika (b13) 2018
Wang, Hao, Ma, Jiang (b115) 2011; 38
Wang, Xu, Pusatli (b11) 2015
Perez, Wang (b94) 2017
B. Zhu, W. Yang, H. Wang, Y. Yuan, A hybrid deep learning model for consumer credit scoring, in: 2018 International Conference on Artificial Intelligence and Big Data, ICAIBD, 2018, pp. 205–208.
Saia, Carta, Fenu (b70) 2018
Reynolds (b40) 2015
Jones, Johnstone, Wilson (b127) 2015; 56
Rao (b38) 1948
Wang, Hedar, Wang, Ma (b102) 2012; 39
H. Chen, M. Jiang, X. Wang, Bayesian ensemble assessment for credit scoring, in: 2017 4th International Conference on Industrial Economics System and Industrial Security Engineering, IEIS, 2017, pp. 1–5.
Xia, Liu, Li, Liu (b54) 2017; 78
Ribeiro, Lopes (b117) 2011
Henley, Hand (b42) 1996; 45
John, Langley (b77) 1995
Breiman (b55) 1996; 24
Friedman (b83) 2000; 29
Tsai (b27) 2009; 22
Farquad, Ravi, Sriramjee, Praveen (b100) 2011
Basel Committee on Banking Supervision (b149) 2006
Schölkopf (b44) 2000
Salamon, Bello (b95) 2016
Maldonado, Pérez, Bravo (b106) 2017; 261
Setiono, Liu (b80) 1997; 17
Hsieh, Hung (b113) 2010; 37
Yu, Zhou, Tang, Chen (b56) 2018; 69
Kvamme, Sellereite, Aas, Sjursen (b92) 2018; 102
Zheng, Casari (b34) 2018
Abellán, Castellano (b142) 2017; 73
Craven, Shavlik (b74) 1995
Florez-Lopez, Ramon-Jeronimo (b131) 2015; 42
Aláraj, Abbod (b133) 2016; 104
Nobre, Neves (b53) 2019; 125
Liang, Tsai, Wu (b14) 2015; 73
S. Ramasamy, K. Rajaraman, A hybrid meta-cognitive restricted Boltzmann machine classifier for credit scoring, in: TENCON 2017 - 2017 IEEE Region 10 Conference, 2017, pp. 2313–2318.
B. Tang, S. Qiu, A new credit scoring method based on improved fuzzy support vector machine, in: 2012 IEEE International Conference on Computer Science and Automation Engineering, CSAE, Vol. 3, 2012, pp. 73–75.
Wang, Guo, Wang (b25) 2010; 1
Q. Wang, K.K. Lai, D. Niu, Green credit scoring system and its risk assessemt model with support vector machine, in: 2011 Fourth International Joint Conference on Computational Sciences and Optimization, 2011, pp. 284–287.
Fisher (b36) 1936; 7
Krizhevsky, Sutskever, Hinton (b93) 2012; 25
Cortes, Vapnik (b43) 1995; 20
V. Neagoe, A. Ciotec, G. Cucu, Deep convolutional neural networks versus multilayer perceptron for financial prediction, in: 2018 International Conference on Communications, COMM, 2018, pp. 201–206.
Chang, Chang, Wu (b146) 2018; 73
Zhang, Xie, Wang (b26) 2016; 1
Nobre, Neves (b71) 2019; 125
Back, Laitinen, Sere (b21) 1996; 11
Sezer, Ozbayoglu (b62) 2018; 70
Louzada, Ferreira-Silva, Diniz (b123) 2012; 39
Zhao, Lu, Chen, Liu, Wu (b63) 2017; 28
Goodfellow, Bengio, Courville (b65) 2016
Chawla, Bowyer, Hall, Kegelmeyer (b69) 2002; 16
Thomas (b2) 2000; 16
Alaka, Oyedele, Owolabi, Kumar, Ajayi, Akinade, Bilal (b6) 2018; 94
Tibshirani (b33) 2011; 73
Tsai, Wu (b48) 2008; 34
Y. Jiang, Credit scoring model based on the decision tree and the simulated annealing algorithm, in: 2009 WRI World Congress on Computer Science and Information Engineering, Vol. 4, 2009, pp. 18–22.
Twala (b112) 2010; 37
O.J. Okesola, K.O. Okokpujie, A.A. Adewale, S.N. John, O. Omoruyi, An improved bank credit scoring model: A Naïve Bayesian approach, in: 2017 International Conference on Computational Science and Computational Intelligence, CSCI, 2017, pp. 228–233.
K. Tran, T. Duong, Q. Ho, Credit scoring model: A combination of genetic programming and deep learning, in: 2016 Future Technologies Conference, FTC, 2016, pp. 145–149.
Shorten, Khoshgoftaar (b90) 2019; 6
Bellovary, Giacomino, Akers (b8) 2007; 33
Ribeiro, Singh, Guestrin (b75) 2016; abs/1602.04938
M. Aláraj, M. Abbod, A systematic credit scoring model based on heterogeneous classifier ensembles, in: 2015 International Symposium on Innovations in Intelligent SysTems and Applications, INISTA, 2015, pp. 1–7.
Ting, Tan, Sim (b61) 2019; 120
Li, Tian, Li, Zhou, Yang (b139) 2017; 74
Chollet (b64) 2017
Yu, Yao, Wang, Lai (b78) 2011; 38
Zhao, Xu, Kang, Kabir, Liu, Wasinger (b129) 2015; 42
J. Chen, L. Xu, A method of improving credit evaluation with support vector machines, in: 2015 11th International Conference on Natural Computation, ICNC, 2015, pp. 615–619.
Mitchell (b28) 1996
Barboza, Kimura, Altman (b46) 2017; 83
Yu, Yang, Tang (b134) 2016; 28
Duda, Hart, Stork (b39) 2001
Tsai, Hsu, Yen (b47) 2014; 24
Crepinsek, Liu, Mernik (b30) 2013; 45
Ping, Yongheng (b101) 2011; 38
Baesens, Setiono, Mues, Vanthienen (b5) 2003; 49
Yu, Yao, Wang, Lai (b114) 2011; 38
Douzas, Bacao (b68) 2017; 82
W. Chen, L. Shi, Credit scoring with F-score based on support vector machine, in: Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer, MEC, 2013, pp. 1512–1516.
Kozeny (b29) 2015; 42
Lecun, Bengio (b60) 1995
Louzada, Ara, Fernandes (b12) 2016; 21
Chen, Xiang (b19) 2017; 122
Florez-Lopez, Ramon-Jeronimo (b130) 2015; 42
Yap, Ong, Husain (b118) 2011; 38
Thomas, Crook, Edelman (b1) 2002
Dong, Lai, Yen (b111) 2010; 1
Dempster, Laird, Rubin (b41) 1977; 39
Chen, Li (b17) 2010; 37
Bequé, Lessmann (b136) 2017; 86
Harris (b125) 2015; 42
M.D. Odom, R. Sharda, A neural network model for bankruptcy prediction, in: 1990 IJCNN International Joint Conference on Neural Networks, vol. 2, 1990, pp. 163–168.
Schlosser (b7) 2007
Mitchell (b45) 1997
Marqués, García, Sánchez (b121) 2012; 39
Brown, Mues (b15) 2012; 39
Cadenas, Garrido, Martínez (b32) 2013; 40
Martey Addo, Guegan, Hassani (b144) 2018; 6
Pawlak (b24) 1997; 99
Jadhav, He, Jenkins (b110) 2018; 69
Li, Ding, Chen, Yang (b147) 2018; 6
X. Zhang, Y. Yang, Z. Zhou, A novel credit scoring model based on optimized random forest, in: 2018 IEEE 8th Annual Computing and Communication Workshop and Conference, CCWC, 2018, pp. 60–65.
B. Yi, J. Zhu, Credit scoring with an improved fuzzy support vector machine based on grey incidence analysis, in: 2015 IEEE International Conference on Grey Systems and Intelligent Services, GSIS, 2015, pp. 173–178.
Chen, Guestrin (b52) 2016
Hinton, Osindero, Teh (b57) 2006; 18
Shi, Zhang, Qiu (b104) 2013; 14
Chi, Hsu (b20) 2012; 39
Frid-Adar, Klang, Amitai, Goldberger, Greenspan (b96) 2018
Abellán, Mantas (b124) 2014; 41
Martinez, Kak (b37) 2001; 23
Lin, Hu, Tsai (b10) 2012; 42
A. Lawi, F. Aziz, S. Syarif, Ensemble gradientboost for increasing classification accuracy of credit scoring, in: 2017 4th International Conference on Computer Applications and Information Processing Technology, CAIPT, 2017, pp. 1–4.
Freund, Schapire (b51) 1997; 55
Seo, shik Shin (b59) 2019; 116
Eisenbeis (b76) 1978; 2
Abdou, Pointon (b9) 2011; 18
S.H. Yeh, C.J. Wang, M.F. Tsai, Deep belief networks for predicting corporate defaults, in: 2015 24th Wireless and Optical Communication Conference, WOCC, 2015, pp. 159–163.
Xia (10.1016/j.asoc.2020.106263_b54) 2017; 78
Lundberg (10.1016/j.asoc.2020.106263_b82) 2017; abs/1705.07874
Li (10.1016/j.asoc.2020.106263_b139) 2017; 74
Ribeiro (10.1016/j.asoc.2020.106263_b75) 2016; abs/1602.04938
Chi (10.1016/j.asoc.2020.106263_b20) 2012; 39
Zhang (10.1016/j.asoc.2020.106263_b26) 2016; 1
Harris (10.1016/j.asoc.2020.106263_b125) 2015; 42
10.1016/j.asoc.2020.106263_b116
Back (10.1016/j.asoc.2020.106263_b21) 1996; 11
Barboza (10.1016/j.asoc.2020.106263_b46) 2017; 83
Breiman (10.1016/j.asoc.2020.106263_b55) 1996; 24
Thomas (10.1016/j.asoc.2020.106263_b2) 2000; 16
Bijak (10.1016/j.asoc.2020.106263_b16) 2012; 39
Tomczak (10.1016/j.asoc.2020.106263_b67) 2015; 42
Yu (10.1016/j.asoc.2020.106263_b114) 2011; 38
Yap (10.1016/j.asoc.2020.106263_b118) 2011; 38
Bequé (10.1016/j.asoc.2020.106263_b136) 2017; 86
Louzada (10.1016/j.asoc.2020.106263_b12) 2016; 21
Tsai (10.1016/j.asoc.2020.106263_b27) 2009; 22
Saia (10.1016/j.asoc.2020.106263_b72) 2016
10.1016/j.asoc.2020.106263_b122
Lin (10.1016/j.asoc.2020.106263_b10) 2012; 42
Chen (10.1016/j.asoc.2020.106263_b52) 2016
10.1016/j.asoc.2020.106263_b126
Perez (10.1016/j.asoc.2020.106263_b94) 2017
10.1016/j.asoc.2020.106263_b128
Jones (10.1016/j.asoc.2020.106263_b127) 2015; 56
Douzas (10.1016/j.asoc.2020.106263_b68) 2017; 82
Marqués (10.1016/j.asoc.2020.106263_b121) 2012; 39
Dempster (10.1016/j.asoc.2020.106263_b41) 1977; 39
Zhao (10.1016/j.asoc.2020.106263_b129) 2015; 42
Ping (10.1016/j.asoc.2020.106263_b101) 2011; 38
Myung (10.1016/j.asoc.2020.106263_b4) 2003; 47
Mitchell (10.1016/j.asoc.2020.106263_b45) 1997
Chen (10.1016/j.asoc.2020.106263_b17) 2010; 37
Cortes (10.1016/j.asoc.2020.106263_b43) 1995; 20
Friedman (10.1016/j.asoc.2020.106263_b83) 2000; 29
Bishop (10.1016/j.asoc.2020.106263_b66) 1995
Nobre (10.1016/j.asoc.2020.106263_b53) 2019; 125
10.1016/j.asoc.2020.106263_b132
Frid-Adar (10.1016/j.asoc.2020.106263_b96) 2018
Pawlak (10.1016/j.asoc.2020.106263_b24) 1997; 99
10.1016/j.asoc.2020.106263_b137
Mitchell (10.1016/j.asoc.2020.106263_b28) 1996
10.1016/j.asoc.2020.106263_b138
Liang (10.1016/j.asoc.2020.106263_b14) 2015; 73
Martey Addo (10.1016/j.asoc.2020.106263_b144) 2018; 6
10.1016/j.asoc.2020.106263_b35
Setiono (10.1016/j.asoc.2020.106263_b73) 1996; 29
Li (10.1016/j.asoc.2020.106263_b147) 2018; 6
Wang (10.1016/j.asoc.2020.106263_b25) 2010; 1
Chawla (10.1016/j.asoc.2020.106263_b69) 2002; 16
Luo (10.1016/j.asoc.2020.106263_b84) 2017; 65
Marqués (10.1016/j.asoc.2020.106263_b120) 2012; 39
Craven (10.1016/j.asoc.2020.106263_b74) 1995
Sezer (10.1016/j.asoc.2020.106263_b62) 2018; 70
Goodfellow (10.1016/j.asoc.2020.106263_b65) 2016
Florez-Lopez (10.1016/j.asoc.2020.106263_b131) 2015; 42
Xiao (10.1016/j.asoc.2020.106263_b135) 2016; 43
10.1016/j.asoc.2020.106263_b140
10.1016/j.asoc.2020.106263_b141
Louzada (10.1016/j.asoc.2020.106263_b119) 2011; 38
Nobre (10.1016/j.asoc.2020.106263_b71) 2019; 125
Farquad (10.1016/j.asoc.2020.106263_b100) 2011
Cadenas (10.1016/j.asoc.2020.106263_b32) 2013; 40
Hsieh (10.1016/j.asoc.2020.106263_b113) 2010; 37
Tsai (10.1016/j.asoc.2020.106263_b47) 2014; 24
Hamori (10.1016/j.asoc.2020.106263_b89) 2018; 11
Siddiqi (10.1016/j.asoc.2020.106263_b3) 2005
Abdou (10.1016/j.asoc.2020.106263_b9) 2011; 18
Krizhevsky (10.1016/j.asoc.2020.106263_b93) 2012; 25
Oreski (10.1016/j.asoc.2020.106263_b22) 2014; 41
Han (10.1016/j.asoc.2020.106263_b103) 2013; 26
10.1016/j.asoc.2020.106263_b49
Breiman (10.1016/j.asoc.2020.106263_b50) 2001; 45
Jadhav (10.1016/j.asoc.2020.106263_b110) 2018; 69
Gómez-Ríos (10.1016/j.asoc.2020.106263_b91) 2018; abs/1804.00516
Devi (10.1016/j.asoc.2020.106263_b13) 2018
Freund (10.1016/j.asoc.2020.106263_b51) 1997; 55
Abellán (10.1016/j.asoc.2020.106263_b142) 2017; 73
Reynolds (10.1016/j.asoc.2020.106263_b40) 2015
Zhao (10.1016/j.asoc.2020.106263_b63) 2017; 28
Baesens (10.1016/j.asoc.2020.106263_b5) 2003; 49
Alaka (10.1016/j.asoc.2020.106263_b6) 2018; 94
Shi (10.1016/j.asoc.2020.106263_b104) 2013; 14
Schölkopf (10.1016/j.asoc.2020.106263_b44) 2000
Chang (10.1016/j.asoc.2020.106263_b146) 2018; 73
Wang (10.1016/j.asoc.2020.106263_b115) 2011; 38
Zheng (10.1016/j.asoc.2020.106263_b34) 2018
Twala (10.1016/j.asoc.2020.106263_b112) 2010; 37
10.1016/j.asoc.2020.106263_b97
Louzada (10.1016/j.asoc.2020.106263_b123) 2012; 39
Yu (10.1016/j.asoc.2020.106263_b134) 2016; 28
10.1016/j.asoc.2020.106263_b98
Mancisidor (10.1016/j.asoc.2020.106263_b108) 2018
10.1016/j.asoc.2020.106263_b18
Fisher (10.1016/j.asoc.2020.106263_b36) 1936; 7
Song (10.1016/j.asoc.2020.106263_b23) 2017; 81
Salamon (10.1016/j.asoc.2020.106263_b95) 2016
Ting (10.1016/j.asoc.2020.106263_b61) 2019; 120
Eisenbeis (10.1016/j.asoc.2020.106263_b76) 1978; 2
Dong (10.1016/j.asoc.2020.106263_b111) 2010; 1
Xia (10.1016/j.asoc.2020.106263_b145) 2018; 93
Hinton (10.1016/j.asoc.2020.106263_b57) 2006; 18
Kozeny (10.1016/j.asoc.2020.106263_b29) 2015; 42
Kvamme (10.1016/j.asoc.2020.106263_b92) 2018; 102
Thomas (10.1016/j.asoc.2020.106263_b1) 2002
Rao (10.1016/j.asoc.2020.106263_b38) 1948
LeCun (10.1016/j.asoc.2020.106263_b58) 1989; 1
Florez-Lopez (10.1016/j.asoc.2020.106263_b130) 2015; 42
Setiono (10.1016/j.asoc.2020.106263_b80) 1997; 17
Yu (10.1016/j.asoc.2020.106263_b56) 2018; 69
10.1016/j.asoc.2020.106263_b81
Wang (10.1016/j.asoc.2020.106263_b11) 2015
Liu (10.1016/j.asoc.2020.106263_b31) 2009; 13
John (10.1016/j.asoc.2020.106263_b77) 1995
Wang (10.1016/j.asoc.2020.106263_b102) 2012; 39
Bellovary (10.1016/j.asoc.2020.106263_b8) 2007; 33
Tsai (10.1016/j.asoc.2020.106263_b48) 2008; 34
10.1016/j.asoc.2020.106263_b79
Martinez (10.1016/j.asoc.2020.106263_b37) 2001; 23
Saia (10.1016/j.asoc.2020.106263_b70) 2018
Basel Committee on Banking Supervision (10.1016/j.asoc.2020.106263_b149) 2006
Henley (10.1016/j.asoc.2020.106263_b42) 1996; 45
Schlosser (10.1016/j.asoc.2020.106263_b7) 2007
Shorten (10.1016/j.asoc.2020.106263_b90) 2019; 6
Aláraj (10.1016/j.asoc.2020.106263_b133) 2016; 104
Cao (10.1016/j.asoc.2020.106263_b148) 2018; 6
Abellán (10.1016/j.asoc.2020.106263_b124) 2014; 41
Brown (10.1016/j.asoc.2020.106263_b15) 2012; 39
Tibshirani (10.1016/j.asoc.2020.106263_b33) 2011; 73
Ribeiro (10.1016/j.asoc.2020.106263_b117) 2011
Chen (10.1016/j.asoc.2020.106263_b19) 2017; 122
10.1016/j.asoc.2020.106263_b85
10.1016/j.asoc.2020.106263_b86
10.1016/j.asoc.2020.106263_b105
10.1016/j.asoc.2020.106263_b107
10.1016/j.asoc.2020.106263_b109
10.1016/j.asoc.2020.106263_b87
Maldonado (10.1016/j.asoc.2020.106263_b106) 2017; 261
Lecun (10.1016/j.asoc.2020.106263_b60) 1995
Chollet (10.1016/j.asoc.2020.106263_b64) 2017
10.1016/j.asoc.2020.106263_b88
Yu (10.1016/j.asoc.2020.106263_b78) 2011; 38
Seo (10.1016/j.asoc.2020.106263_b59) 2019; 116
Vanderheyden (10.1016/j.asoc.2020.106263_b143) 2018
Crepinsek (10.1016/j.asoc.2020.106263_b30) 2013; 45
Duda (10.1016/j.asoc.2020.106263_b39) 2001
Zhang (10.1016/j.asoc.2020.106263_b99) 2010; 37
References_xml – volume: 42
  start-page: 421
  year: 2012
  end-page: 436
  ident: b10
  article-title: Machine learning in financial crisis prediction: A survey
  publication-title: IEEE Trans. Syst. Man Cybern. C
– volume: 21
  start-page: 117
  year: 2016
  end-page: 134
  ident: b12
  article-title: Classification methods applied to credit scoring: Systematic review and overall comparison
  publication-title: Surv. Oper. Res. Manag. Sci.
– volume: 45
  start-page: 77
  year: 1996
  end-page: 95
  ident: b42
  article-title: A
  publication-title: J. R. Stat. Soc.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b57
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– year: 2018
  ident: b108
  article-title: Segment-based credit scoring using latent clusters in the variational autoencoder
– volume: 29
  start-page: 71
  year: 1996
  end-page: 77
  ident: b73
  article-title: Symbolic representation of neural networks
  publication-title: Computer
– volume: 1
  start-page: 2425
  year: 2010
  end-page: 2432
  ident: b25
  article-title: Rough set and tabu search based feature selection for credit scoring
  publication-title: Procedia Comput. Sci.
– start-page: 249
  year: 2011
  end-page: 253
  ident: b100
  article-title: Credit scoring using PCA-SVM hybrid model
  publication-title: Computer Networks and Information Technologies
– volume: 42
  start-page: 2998
  year: 2015
  end-page: 3004
  ident: b29
  article-title: Genetic algorithms for credit scoring: Alternative fitness function performance comparison
  publication-title: Expert Syst. Appl.
– reference: B. Zhu, W. Yang, H. Wang, Y. Yuan, A hybrid deep learning model for consumer credit scoring, in: 2018 International Conference on Artificial Intelligence and Big Data, ICAIBD, 2018, pp. 205–208.
– volume: 104
  start-page: 89
  year: 2016
  end-page: 105
  ident: b133
  article-title: Classifiers consensus system approach for credit scoring
  publication-title: Knowl.-Based Syst.
– reference: W. Chen, L. Shi, Credit scoring with F-score based on support vector machine, in: Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer, MEC, 2013, pp. 1512–1516.
– year: 1996
  ident: b28
  article-title: An Introduction to Genetic Algorithms
– reference: H. Chen, M. Jiang, X. Wang, Bayesian ensemble assessment for credit scoring, in: 2017 4th International Conference on Industrial Economics System and Industrial Security Engineering, IEIS, 2017, pp. 1–5.
– volume: 14
  start-page: 197
  year: 2013
  end-page: 204
  ident: b104
  article-title: Credit scoring by feature-weighted support vector machines
  publication-title: J. Zhejiang Univ. Sci. C
– volume: 73
  year: 2018
  ident: b146
  article-title: Application of extreme gradient boosting trees in the construction of credit risk assessment models for financial institutions
  publication-title: Appl. Soft Comput.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: b69
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artificial Intelligence Res.
– reference: K. Tran, T. Duong, Q. Ho, Credit scoring model: A combination of genetic programming and deep learning, in: 2016 Future Technologies Conference, FTC, 2016, pp. 145–149.
– volume: 125
  year: 2019
  ident: b71
  article-title: Combining principal component analysis, discrete wavelet transform and xgboost to trade in the financial markets
  publication-title: Expert Syst. Appl.
– volume: 18
  start-page: 59
  year: 2011
  end-page: 88
  ident: b9
  article-title: Credit scoring, statistical techniques and evaluation criteria: A review of the literature
  publication-title: Int. J. Intell. Syst. Account. Financ. Manage.
– volume: 6
  start-page: 38
  year: 2018
  ident: b144
  article-title: Credit risk analysis using machine and deep learning models
  publication-title: Risks
– volume: 29
  start-page: 1189
  year: 2000
  end-page: 1232
  ident: b83
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Statist.
– volume: 39
  start-page: 10244
  year: 2012
  end-page: 10250
  ident: b120
  article-title: Exploring the behaviour of base classifiers in credit scoring ensembles
  publication-title: Expert Syst. Appl.
– volume: 102
  year: 2018
  ident: b92
  article-title: Predicting mortgage default using convolutional neural networks
  publication-title: Expert Syst. Appl.
– reference: Q. Wang, K.K. Lai, D. Niu, Green credit scoring system and its risk assessemt model with support vector machine, in: 2011 Fourth International Joint Conference on Computational Sciences and Optimization, 2011, pp. 284–287.
– volume: 37
  start-page: 7838
  year: 2010
  end-page: 7843
  ident: b99
  article-title: Vertical bagging decision trees model for credit scoring
  publication-title: Expert Syst. Appl.
– year: 2018
  ident: b70
  article-title: A Wavelet-Based Data Analysis to Credit Scoring
– volume: 37
  start-page: 534
  year: 2010
  end-page: 545
  ident: b113
  article-title: A data driven ensemble classifier for credit scoring analysis
  publication-title: Expert Syst. Appl.
– volume: 43
  start-page: 73
  year: 2016
  end-page: 86
  ident: b135
  article-title: Ensemble classification based on supervised clustering for credit scoring
  publication-title: Appl. Soft Comput.
– start-page: 24
  year: 1995
  end-page: 30
  ident: b74
  article-title: Extracting tree-structured representations of trained networks
  publication-title: Proceedings of the 8th International Conference on Neural Information Processing Systems
– reference: V. Neagoe, A. Ciotec, G. Cucu, Deep convolutional neural networks versus multilayer perceptron for financial prediction, in: 2018 International Conference on Communications, COMM, 2018, pp. 201–206.
– year: 2017
  ident: b94
  article-title: The effectiveness of data augmentation in image classification using deep learning
  publication-title: CoRR
– volume: 81
  start-page: 22
  year: 2017
  end-page: 27
  ident: b23
  article-title: Feature selection based on FDA and F-score for multi-class classification
  publication-title: Expert Syst. Appl.
– volume: 41
  start-page: 3825
  year: 2014
  end-page: 3830
  ident: b124
  article-title: Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring
  publication-title: Expert Syst. Appl.
– volume: 2
  start-page: 205
  year: 1978
  end-page: 219
  ident: b76
  article-title: Problems in applying discriminant analysis in credit scoring models
  publication-title: J. Bank. Financ.
– reference: A. Lawi, F. Aziz, S. Syarif, Ensemble gradientboost for increasing classification accuracy of credit scoring, in: 2017 4th International Conference on Computer Applications and Information Processing Technology, CAIPT, 2017, pp. 1–4.
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: b51
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. System Sci.
– volume: 82
  start-page: 40
  year: 2017
  end-page: 52
  ident: b68
  article-title: Self-organizing map oversampling (SOMO) for imbalanced data set learning
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 255
  year: 2018
  end-page: 260
  ident: b148
  article-title: Performance evaluation of machine learning approaches for credit scoring
  publication-title: Int. J. Econ. Finance Manag. Sci.
– volume: 65
  start-page: 465
  year: 2017
  end-page: 470
  ident: b84
  article-title: A deep learning approach for credit scoring using credit default swaps
  publication-title: Eng. Appl. Artif. Intell.
– volume: 261
  start-page: 656
  year: 2017
  end-page: 665
  ident: b106
  article-title: Cost-based feature selection for support vector machines: An application in credit scoring
  publication-title: European J. Oper. Res.
– start-page: 159
  year: 1948
  end-page: 203
  ident: b38
  article-title: The utilization of multiple measurements in problems of biological classification
  publication-title: J. R. Stat. Soc.
– volume: 16
  start-page: 149
  year: 2000
  end-page: 172
  ident: b2
  article-title: A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers
  publication-title: Int. J. Forecast.
– year: 2018
  ident: b34
  article-title: Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists
– year: 2016
  ident: b65
  article-title: Deep Learning
– year: 2016
  ident: b95
  article-title: Deep convolutional neural networks and data augmentation for environmental sound classification
  publication-title: CoRR
– volume: 6
  start-page: 54396
  year: 2018
  end-page: 54406
  ident: b147
  article-title: Heterogeneous ensemble for default prediction of peer-to-peer lending in China
  publication-title: IEEE Access
– reference: S. Ramasamy, K. Rajaraman, A hybrid meta-cognitive restricted Boltzmann machine classifier for credit scoring, in: TENCON 2017 - 2017 IEEE Region 10 Conference, 2017, pp. 2313–2318.
– reference: Y. Li, X. Lin, X. Wang, F. Shen, Z. Gong, Credit risk assessment algorithm using deep neural networks with clustering and merging, in: 2017 13th International Conference on Computational Intelligence and Security, CIS, 2017, pp. 173–176.
– reference: M.F. Kiani, F. Mahmoudi, A new hybrid method for credit scoring based on clustering and support vector machine (ClsSVM), in: 2010 2nd IEEE International Conference on Information and Financial Engineering, 2010, pp. 585–589.
– volume: abs/1804.00516
  year: 2018
  ident: b91
  article-title: Towards highly accurate coral texture images classification using deep convolutional neural networks and data augmentation
  publication-title: CoRR
– volume: 39
  start-page: 3446
  year: 2012
  end-page: 3453
  ident: b15
  article-title: An experimental comparison of classification algorithms for imbalanced credit scoring data sets
  publication-title: Expert Syst. Appl.
– reference: B. Tang, S. Qiu, A new credit scoring method based on improved fuzzy support vector machine, in: 2012 IEEE International Conference on Computer Science and Automation Engineering, CSAE, Vol. 3, 2012, pp. 73–75.
– volume: 42
  start-page: 5737
  year: 2015
  end-page: 5753
  ident: b131
  article-title: Enhancing accuracy and interpretability of ensemble strategies in credit risk assessment. A correlated-adjusted decision forest proposal
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b55
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– reference: S. Sehgal, H. Singh, M. Agarwal, V. Bhasker, . Shantanu, Data analysis using principal component analysis, in: 2014 International Conference on Medical Imaging, M-Health and Emerging Communication Systems, MedCom, 2014, pp. 45–48.
– reference: M. Aláraj, M. Abbod, A systematic credit scoring model based on heterogeneous classifier ensembles, in: 2015 International Symposium on Innovations in Intelligent SysTems and Applications, INISTA, 2015, pp. 1–7.
– volume: 39
  start-page: 2433
  year: 2012
  end-page: 2442
  ident: b16
  article-title: Does segmentation always improve model performance in credit scoring?
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 179
  year: 1936
  end-page: 188
  ident: b36
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
– start-page: 766
  year: 2011
  end-page: 773
  ident: b117
  article-title: Deep belief networks for financial prediction
  publication-title: Neural Information Processing
– volume: 93
  start-page: 182
  year: 2018
  end-page: 199
  ident: b145
  article-title: A novel heterogeneous ensemble credit scoring model based on bstacking approach
  publication-title: Expert Syst. Appl.
– volume: 39
  start-page: 2650
  year: 2012
  end-page: 2661
  ident: b20
  article-title: A hybrid approach to integrate genetic algorithm into dual scoring model in enhancing the performance of credit scoring model
  publication-title: Expert Syst. Appl.
– reference: Y. Jiang, Credit scoring model based on the decision tree and the simulated annealing algorithm, in: 2009 WRI World Congress on Computer Science and Information Engineering, Vol. 4, 2009, pp. 18–22.
– volume: 49
  start-page: 312
  year: 2003
  end-page: 329
  ident: b5
  article-title: Using neural network rule extraction and decision tables for credit-risk evaluation
  publication-title: Manage. Sci.
– reference: R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, N. Elhadad, Intelligible models for healthCare: Predicting pneumonia risk and hospital 30-day readmission, in: KDD ’15, 2015.
– volume: 56
  start-page: 72
  year: 2015
  end-page: 85
  ident: b127
  article-title: An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes
  publication-title: J. Bank. I Finance
– year: 2006
  ident: b149
  article-title: Basel II: International convergence of capital measurement and capital standards: A revised framework - comprehensive version, bank for international settlements
  publication-title: BIS
– start-page: 283
  year: 2000
  end-page: 289
  ident: b44
  article-title: The kernel trick for distances
  publication-title: Proceedings of the 13th International Conference on Neural Information Processing Systems
– volume: 11
  year: 2018
  ident: b89
  article-title: Ensemble learning or deep learning? Application to default risk analysis
  publication-title: J. Risk Financial Manag.
– volume: 94
  start-page: 164
  year: 2018
  end-page: 184
  ident: b6
  article-title: Systematic review of bankruptcy prediction models: Towards a framework for tool selection
  publication-title: Expert Syst. Appl.
– volume: 69
  start-page: 192
  year: 2018
  end-page: 202
  ident: b56
  article-title: A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data
  publication-title: Appl. Soft Comput.
– reference: O.J. Okesola, K.O. Okokpujie, A.A. Adewale, S.N. John, O. Omoruyi, An improved bank credit scoring model: A Naïve Bayesian approach, in: 2017 International Conference on Computational Science and Computational Intelligence, CSCI, 2017, pp. 228–233.
– year: 2018
  ident: b96
  article-title: Synthetic data augmentation using GAN for improved liver lesion classification
  publication-title: CoRR
– year: 1995
  ident: b60
  article-title: The Handbook of Brain Theory and Neural Networks
– volume: 39
  start-page: 8071
  year: 2012
  end-page: 8078
  ident: b123
  article-title: On the impact of disproportional samples in credit scoring models: An application to a Brazilian bank data
  publication-title: Expert Syst. Appl.
– volume: 42
  start-page: 1789
  year: 2015
  end-page: 1796
  ident: b67
  article-title: Classification restricted Boltzmann machine for comprehensible credit scoring model
  publication-title: Expert Syst. Appl.
– volume: 120
  start-page: 103
  year: 2019
  end-page: 115
  ident: b61
  article-title: Convolutional neural network improvement for breast cancer classification
  publication-title: Expert Syst. Appl.
– volume: 38
  start-page: 15392
  year: 2011
  end-page: 15399
  ident: b114
  article-title: Credit risk evaluation using a weighted least squares SVM classifier with design of experiment for parameter selection
  publication-title: Expert Syst. Appl.
– volume: 38
  start-page: 11300
  year: 2011
  end-page: 11304
  ident: b101
  article-title: Neighborhood rough set and SVM based hybrid credit scoring classifier
  publication-title: Expert Syst. Appl.
– volume: 41
  start-page: 2052
  year: 2014
  end-page: 2064
  ident: b22
  article-title: Genetic algorithm-based heuristic for feature selection in credit risk assessment
  publication-title: Expert Syst. Appl.
– volume: 34
  start-page: 2639
  year: 2008
  end-page: 2649
  ident: b48
  article-title: Using neural network ensembles for bankruptcy prediction and credit scoring
  publication-title: Expert Syst. Appl.
– volume: 26
  start-page: 848
  year: 2013
  end-page: 862
  ident: b103
  article-title: Orthogonal support vector machine for credit scoring
  publication-title: Eng. Appl. Artif. Intell.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: b41
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 42
  start-page: 741
  year: 2015
  end-page: 750
  ident: b125
  article-title: Credit scoring using the clustered support vector machine
  publication-title: Expert Syst. Appl.
– volume: 86
  start-page: 42
  year: 2017
  end-page: 53
  ident: b136
  article-title: Extreme learning machines for credit scoring: An empirical evaluation
  publication-title: Expert Syst. Appl.
– start-page: 785
  year: 2016
  end-page: 794
  ident: b52
  article-title: XGBoost: A scalable tree boosting system
  publication-title: Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 83
  start-page: 405
  year: 2017
  end-page: 417
  ident: b46
  article-title: Machine learning models and bankruptcy prediction
  publication-title: Expert Syst. Appl.
– year: 2017
  ident: b64
  article-title: Deep Learning with Python
– year: 1995
  ident: b66
  article-title: Neural Networks for Pattern Recognition
– volume: 39
  start-page: 6123
  year: 2012
  end-page: 6128
  ident: b102
  article-title: Rough set and scatter search metaheuristic based feature selection for credit scoring
  publication-title: Expert Syst. Appl.
– volume: abs/1602.04938
  year: 2016
  ident: b75
  article-title: “Why should I trust you?”: Explaining the predictions of any classifier
  publication-title: CoRR
– volume: 28
  start-page: 576
  year: 2016
  end-page: 592
  ident: b134
  article-title: A novel multistage deep belief network based extreme learning machine ensemble learning paradigm for credit risk assessment
  publication-title: Flex. Serv. Manuf. J.
– volume: 28
  start-page: 162
  year: 2017
  end-page: 169
  ident: b63
  article-title: Convolutional neural networks for time series classification
  publication-title: J. Syst. Eng. Electron.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b50
  article-title: Random forests
  publication-title: Mach. Learn.
– year: 2018
  ident: b143
  article-title: Logistic ensemble models
– start-page: 1
  year: 2007
  end-page: 8
  ident: b7
  article-title: Appraising the Quality of Systematic Reviews
– volume: 6
  start-page: 60
  year: 2019
  ident: b90
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
– volume: 38
  start-page: 13274
  year: 2011
  end-page: 13283
  ident: b118
  article-title: Using data mining to improve assessment of credit worthiness via credit scoring models
  publication-title: Expert Syst. Appl.
– reference: B. Yi, J. Zhu, Credit scoring with an improved fuzzy support vector machine based on grey incidence analysis, in: 2015 IEEE International Conference on Grey Systems and Intelligent Services, GSIS, 2015, pp. 173–178.
– year: 2016
  ident: b72
  article-title: A Linear-Dependence-Based Approach to Design Proactive Credit Scoring Models
– reference: S.H. Yeh, C.J. Wang, M.F. Tsai, Deep belief networks for predicting corporate defaults, in: 2015 24th Wireless and Optical Communication Conference, WOCC, 2015, pp. 159–163.
– volume: 38
  start-page: 223
  year: 2011
  end-page: 230
  ident: b115
  article-title: A comparative assessment of ensemble learning for credit scoring
  publication-title: Expert Syst. Appl.
– start-page: 122
  year: 2015
  end-page: 132
  ident: b11
  article-title: A survey of applying machine learning techniques for credit rating: existing models and open issues
  publication-title: Neural Information Processing
– volume: 25
  year: 2012
  ident: b93
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Neural Inf. Process. Syst.
– volume: 73
  start-page: 1
  year: 2017
  end-page: 10
  ident: b142
  article-title: A comparative study on base classifiers in ensemble methods for credit scoring
  publication-title: Expert Syst. Appl.
– volume: 22
  start-page: 120
  year: 2009
  end-page: 127
  ident: b27
  article-title: Feature selection in bankruptcy prediction
  publication-title: Knowl.-Based Syst.
– year: 2001
  ident: b39
  article-title: Pattern Classification
– volume: 47
  start-page: 90
  year: 2003
  end-page: 100
  ident: b4
  article-title: Tutorial on maximum likelihood estimation
  publication-title: J. Math. Psych.
– volume: 73
  start-page: 289
  year: 2015
  end-page: 297
  ident: b14
  article-title: The effect of feature selection on financial distress prediction
  publication-title: Knowl.-Based Syst.
– volume: 116
  start-page: 328
  year: 2019
  end-page: 339
  ident: b59
  article-title: Hierarchical convolutional neural networks for fashion image classification
  publication-title: Expert Syst. Appl.
– volume: 1
  start-page: 2463
  year: 2010
  end-page: 2468
  ident: b111
  article-title: Credit scorecard based on logistic regression with random coefficients
  publication-title: Procedia Comput. Sci.
– reference: Q. Li, J. Zhang, Y. Wang, K. Kang, Credit risk classification using discriminative restricted boltzmann machines, in: 2014 IEEE 17th International Conference on Computational Science and Engineering, 2014, pp. 1697–1700.
– volume: 17
  start-page: 1
  year: 1997
  end-page: 24
  ident: b80
  article-title: Neurolinear: From neural networks to oblique decision rules
  publication-title: Neurocomputing
– volume: 74
  start-page: 105
  year: 2017
  end-page: 114
  ident: b139
  article-title: Reject inference in credit scoring using semi-supervised support vector machines
  publication-title: Expert Syst. Appl.
– volume: 1
  start-page: 541
  year: 1989
  end-page: 551
  ident: b58
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
– volume: 11
  start-page: 407
  year: 1996
  end-page: 413
  ident: b21
  article-title: Neural networks and genetic algorithms for bankruptcy predictions
  publication-title: Expert Syst. Appl.
– volume: 125
  year: 2019
  ident: b53
  article-title: Combining principal component analysis, discrete wavelet transform and xgboost to trade in the financial markets
  publication-title: Expert Syst. Appl.
– year: 2005
  ident: b3
  article-title: Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scoring
– reference: X. Zhang, Y. Yang, Z. Zhou, A novel credit scoring model based on optimized random forest, in: 2018 IEEE 8th Annual Computing and Communication Workshop and Conference, CCWC, 2018, pp. 60–65.
– volume: 40
  start-page: 6241
  year: 2013
  end-page: 6252
  ident: b32
  article-title: Feature subset selection filter–wrapper based on low quality data
  publication-title: Expert Syst. Appl.
– volume: 37
  start-page: 4902
  year: 2010
  end-page: 4909
  ident: b17
  article-title: Combination of feature selection approaches with SVM in credit scoring
  publication-title: Expert Syst. Appl.
– volume: 69
  start-page: 541
  year: 2018
  end-page: 553
  ident: b110
  article-title: Information gain directed genetic algorithm wrapper feature selection for credit rating
  publication-title: Appl. Soft Comput.
– reference: J. Chen, L. Xu, A method of improving credit evaluation with support vector machines, in: 2015 11th International Conference on Natural Computation, ICNC, 2015, pp. 615–619.
– volume: 42
  start-page: 5737
  year: 2015
  end-page: 5753
  ident: b130
  article-title: Enhancing accuracy and interpretability of ensemble strategies in credit risk assessment. A correlated-adjusted decision forest proposal
  publication-title: Expert Syst. Appl.
– volume: 122
  start-page: 677
  year: 2017
  end-page: 684
  ident: b19
  article-title: The study of credit scoring model based on group lasso
  publication-title: Procedia Comput. Sci.
– start-page: 338
  year: 1995
  end-page: 345
  ident: b77
  article-title: Estimating continuous distributions in Bayesian classifiers
  publication-title: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
– volume: 24
  start-page: 977
  year: 2014
  end-page: 984
  ident: b47
  article-title: A comparative study of classifier ensembles for bankruptcy prediction
  publication-title: Appl. Soft Comput.
– volume: 70
  start-page: 525
  year: 2018
  end-page: 538
  ident: b62
  article-title: Algorithmic financial trading with deep convolutional neural networks: time series to image conversion approach
  publication-title: Appl. Soft Comput.
– reference: H. Sutrisno, S. Halim, Credit scoring refinement using optimized logistic regression, in: 2017 International Conference on Soft Computing, Intelligent System and Information Technology, ICSIIT, 2017, pp. 26–31.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b43
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– year: 1997
  ident: b45
  article-title: Machine Learning
– start-page: 827
  year: 2015
  end-page: 832
  ident: b40
  article-title: Gaussian mixture models
  publication-title: Encyclopedia of Biometrics
– volume: 99
  start-page: 48
  year: 1997
  end-page: 57
  ident: b24
  article-title: Rough set approach to knowledge-based decision support
  publication-title: European J. Oper. Res.
– year: 2018
  ident: b13
  article-title: A Survey on Machine Learning and Statistical Techniques in Bankruptcy Prediction
– volume: 38
  start-page: 15392
  year: 2011
  end-page: 15399
  ident: b78
  article-title: Credit risk evaluation using a weighted least squares SVM classifier with design of experiment for parameter selection
  publication-title: Expert Syst. Appl.
– year: 2002
  ident: b1
  article-title: Credit Scoring and Its Applications
– reference: M.D. Odom, R. Sharda, A neural network model for bankruptcy prediction, in: 1990 IJCNN International Joint Conference on Neural Networks, vol. 2, 1990, pp. 163–168.
– volume: 42
  start-page: 3508
  year: 2015
  end-page: 3516
  ident: b129
  article-title: Investigation and improvement of multi-layer perceptron neural networks for credit scoring
  publication-title: Expert Syst. Appl.
– volume: 33
  start-page: 1
  year: 2007
  end-page: 42
  ident: b8
  article-title: A review of bankruptcy prediction studies: 1930 to present
  publication-title: J. Financial Educ.
– volume: 37
  start-page: 3326
  year: 2010
  end-page: 3336
  ident: b112
  article-title: Multiple classifier application to credit risk assessment
  publication-title: Expert Syst. Appl.
– volume: 45
  start-page: 35:1
  year: 2013
  end-page: 35:33
  ident: b30
  article-title: Exploration and exploitation in evolutionary algorithms: A survey
  publication-title: ACM Comput. Surv.
– volume: abs/1705.07874
  year: 2017
  ident: b82
  article-title: A unified approach to interpreting model predictions
  publication-title: CoRR
– volume: 38
  start-page: 12717
  year: 2011
  end-page: 12720
  ident: b119
  article-title: Poly-bagging predictors for classification modelling for credit scoring
  publication-title: Expert Syst. Appl.
– volume: 1
  start-page: 323
  year: 2016
  end-page: 333
  ident: b26
  article-title: A survey on rough set theory and its applications
  publication-title: CAAI Trans. Intell. Technol.
– volume: 23
  start-page: 228
  year: 2001
  end-page: 233
  ident: b37
  article-title: PCA versus LDA
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 73
  start-page: 273
  year: 2011
  end-page: 282
  ident: b33
  article-title: Regression shrinkage and selection via the lasso: a retrospective
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 39
  start-page: 10916
  year: 2012
  end-page: 10922
  ident: b121
  article-title: Two-level classifier ensembles for credit risk assessment
  publication-title: Expert Syst. Appl.
– volume: 13
  start-page: 185
  year: 2009
  end-page: 206
  ident: b31
  article-title: To explore or to exploit: An entropy-driven approach for evolutionary algorithms
  publication-title: KES J.
– volume: 78
  year: 2017
  ident: b54
  article-title: A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring
  publication-title: Expert Syst. Appl.
– ident: 10.1016/j.asoc.2020.106263_b137
  doi: 10.1109/CAIPT.2017.8320700
– volume: 261
  start-page: 656
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2020.106263_b106
  article-title: Cost-based feature selection for support vector machines: An application in credit scoring
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2017.02.037
– volume: 11
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106263_b89
  article-title: Ensemble learning or deep learning? Application to default risk analysis
  publication-title: J. Risk Financial Manag.
  doi: 10.3390/jrfm11010012
– volume: 24
  start-page: 977
  year: 2014
  ident: 10.1016/j.asoc.2020.106263_b47
  article-title: A comparative study of classifier ensembles for bankruptcy prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.08.047
– volume: 17
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2020.106263_b80
  article-title: Neurolinear: From neural networks to oblique decision rules
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(97)00038-6
– volume: 74
  start-page: 105
  year: 2017
  ident: 10.1016/j.asoc.2020.106263_b139
  article-title: Reject inference in credit scoring using semi-supervised support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.01.011
– ident: 10.1016/j.asoc.2020.106263_b81
  doi: 10.1145/2783258.2788613
– ident: 10.1016/j.asoc.2020.106263_b126
– ident: 10.1016/j.asoc.2020.106263_b85
  doi: 10.1109/TENCON.2017.8228247
– volume: 42
  start-page: 3508
  issue: 7
  year: 2015
  ident: 10.1016/j.asoc.2020.106263_b129
  article-title: Investigation and improvement of multi-layer perceptron neural networks for credit scoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.12.006
– volume: 69
  start-page: 192
  year: 2018
  ident: 10.1016/j.asoc.2020.106263_b56
  article-title: A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.04.049
– volume: 7
  start-page: 179
  issue: 2
  year: 1936
  ident: 10.1016/j.asoc.2020.106263_b36
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 125
  year: 2019
  ident: 10.1016/j.asoc.2020.106263_b53
  article-title: Combining principal component analysis, discrete wavelet transform and xgboost to trade in the financial markets
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.01.083
– volume: 83
  start-page: 405
  year: 2017
  ident: 10.1016/j.asoc.2020.106263_b46
  article-title: Machine learning models and bankruptcy prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.04.006
– volume: 14
  start-page: 197
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2020.106263_b104
  article-title: Credit scoring by feature-weighted support vector machines
  publication-title: J. Zhejiang Univ. Sci. C
  doi: 10.1631/jzus.C1200205
– volume: 39
  start-page: 2433
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2020.106263_b16
  article-title: Does segmentation always improve model performance in credit scoring?
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.08.093
– volume: 22
  start-page: 120
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2020.106263_b27
  article-title: Feature selection in bankruptcy prediction
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2008.08.002
– ident: 10.1016/j.asoc.2020.106263_b122
  doi: 10.1109/CSAE.2012.6272911
– ident: 10.1016/j.asoc.2020.106263_b132
  doi: 10.1109/INISTA.2015.7276736
– volume: 45
  start-page: 35:1
  year: 2013
  ident: 10.1016/j.asoc.2020.106263_b30
  article-title: Exploration and exploitation in evolutionary algorithms: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2480741.2480752
– volume: 37
  start-page: 7838
  issue: 12
  year: 2010
  ident: 10.1016/j.asoc.2020.106263_b99
  article-title: Vertical bagging decision trees model for credit scoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.04.054
– volume: 39
  start-page: 10916
  issue: 12
  year: 2012
  ident: 10.1016/j.asoc.2020.106263_b121
  article-title: Two-level classifier ensembles for credit risk assessment
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.03.033
– volume: 47
  start-page: 90
  issue: 1
  year: 2003
  ident: 10.1016/j.asoc.2020.106263_b4
  article-title: Tutorial on maximum likelihood estimation
  publication-title: J. Math. Psych.
  doi: 10.1016/S0022-2496(02)00028-7
– year: 2018
  ident: 10.1016/j.asoc.2020.106263_b143
– volume: 125
  year: 2019
  ident: 10.1016/j.asoc.2020.106263_b71
  article-title: Combining principal component analysis, discrete wavelet transform and xgboost to trade in the financial markets
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.01.083
– volume: 120
  start-page: 103
  year: 2019
  ident: 10.1016/j.asoc.2020.106263_b61
  article-title: Convolutional neural network improvement for breast cancer classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.11.008
– start-page: 338
  year: 1995
  ident: 10.1016/j.asoc.2020.106263_b77
  article-title: Estimating continuous distributions in Bayesian classifiers
– volume: 70
  start-page: 525
  year: 2018
  ident: 10.1016/j.asoc.2020.106263_b62
  article-title: Algorithmic financial trading with deep convolutional neural networks: time series to image conversion approach
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.04.024
– volume: 102
  year: 2018
  ident: 10.1016/j.asoc.2020.106263_b92
  article-title: Predicting mortgage default using convolutional neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.02.029
– volume: 39
  start-page: 10244
  issue: 11
  year: 2012
  ident: 10.1016/j.asoc.2020.106263_b120
  article-title: Exploring the behaviour of base classifiers in credit scoring ensembles
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.02.092
– volume: 73
  year: 2018
  ident: 10.1016/j.asoc.2020.106263_b146
  article-title: Application of extreme gradient boosting trees in the construction of credit risk assessment models for financial institutions
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.09.029
– volume: 38
  start-page: 13274
  issue: 10
  year: 2011
  ident: 10.1016/j.asoc.2020.106263_b118
  article-title: Using data mining to improve assessment of credit worthiness via credit scoring models
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.147
– volume: 42
  start-page: 741
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2020.106263_b125
  article-title: Credit scoring using the clustered support vector machine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.08.029
– volume: 6
  start-page: 255
  year: 2018
  ident: 10.1016/j.asoc.2020.106263_b148
  article-title: Performance evaluation of machine learning approaches for credit scoring
  publication-title: Int. J. Econ. Finance Manag. Sci.
– start-page: 24
  year: 1995
  ident: 10.1016/j.asoc.2020.106263_b74
  article-title: Extracting tree-structured representations of trained networks
– volume: abs/1804.00516
  year: 2018
  ident: 10.1016/j.asoc.2020.106263_b91
  article-title: Towards highly accurate coral texture images classification using deep convolutional neural networks and data augmentation
  publication-title: CoRR
– volume: 49
  start-page: 312
  issue: 3
  year: 2003
  ident: 10.1016/j.asoc.2020.106263_b5
  article-title: Using neural network rule extraction and decision tables for credit-risk evaluation
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.49.3.312.12739
– volume: 42
  start-page: 5737
  issue: 13
  year: 2015
  ident: 10.1016/j.asoc.2020.106263_b130
  article-title: Enhancing accuracy and interpretability of ensemble strategies in credit risk assessment. A correlated-adjusted decision forest proposal
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.02.042
– volume: 73
  start-page: 1
  year: 2017
  ident: 10.1016/j.asoc.2020.106263_b142
  article-title: A comparative study on base classifiers in ensemble methods for credit scoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.12.020
– volume: 40
  start-page: 6241
  issue: 16
  year: 2013
  ident: 10.1016/j.asoc.2020.106263_b32
  article-title: Feature subset selection filter–wrapper based on low quality data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.05.051
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.asoc.2020.106263_b69
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.953
– volume: 29
  start-page: 1189
  year: 2000
  ident: 10.1016/j.asoc.2020.106263_b83
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1013203451
– ident: 10.1016/j.asoc.2020.106263_b87
  doi: 10.1109/WOCC.2015.7346197
– ident: 10.1016/j.asoc.2020.106263_b128
– volume: 56
  start-page: 72
  year: 2015
  ident: 10.1016/j.asoc.2020.106263_b127
  article-title: An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes
  publication-title: J. Bank. I Finance
  doi: 10.1016/j.jbankfin.2015.02.006
– volume: 25
  year: 2012
  ident: 10.1016/j.asoc.2020.106263_b93
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Neural Inf. Process. Syst.
– volume: 82
  start-page: 40
  year: 2017
  ident: 10.1016/j.asoc.2020.106263_b68
  article-title: Self-organizing map oversampling (SOMO) for imbalanced data set learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.03.073
– volume: 34
  start-page: 2639
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2020.106263_b48
  article-title: Using neural network ensembles for bankruptcy prediction and credit scoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.05.019
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.asoc.2020.106263_b43
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– year: 1997
  ident: 10.1016/j.asoc.2020.106263_b45
– start-page: 1
  year: 2007
  ident: 10.1016/j.asoc.2020.106263_b7
– volume: 81
  start-page: 22
  year: 2017
  ident: 10.1016/j.asoc.2020.106263_b23
  article-title: Feature selection based on FDA and F-score for multi-class classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.02.049
– volume: 41
  start-page: 3825
  issue: 8
  year: 2014
  ident: 10.1016/j.asoc.2020.106263_b124
  article-title: Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.12.003
– volume: 116
  start-page: 328
  year: 2019
  ident: 10.1016/j.asoc.2020.106263_b59
  article-title: Hierarchical convolutional neural networks for fashion image classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.09.022
– year: 1995
  ident: 10.1016/j.asoc.2020.106263_b66
– ident: 10.1016/j.asoc.2020.106263_b138
  doi: 10.1109/CIS.2017.00045
– ident: 10.1016/j.asoc.2020.106263_b97
  doi: 10.1109/ICAIBD.2018.8396195
– volume: 38
  start-page: 223
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2020.106263_b115
  article-title: A comparative assessment of ensemble learning for credit scoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.06.048
– volume: 21
  start-page: 117
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2020.106263_b12
  article-title: Classification methods applied to credit scoring: Systematic review and overall comparison
  publication-title: Surv. Oper. Res. Manag. Sci.
– volume: 42
  start-page: 2998
  issue: 6
  year: 2015
  ident: 10.1016/j.asoc.2020.106263_b29
  article-title: Genetic algorithms for credit scoring: Alternative fitness function performance comparison
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.11.028
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.asoc.2020.106263_b55
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 38
  start-page: 15392
  issue: 12
  year: 2011
  ident: 10.1016/j.asoc.2020.106263_b114
  article-title: Credit risk evaluation using a weighted least squares SVM classifier with design of experiment for parameter selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.06.023
– ident: 10.1016/j.asoc.2020.106263_b105
  doi: 10.1109/CSE.2014.312
– volume: 38
  start-page: 11300
  issue: 9
  year: 2011
  ident: 10.1016/j.asoc.2020.106263_b101
  article-title: Neighborhood rough set and SVM based hybrid credit scoring classifier
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.179
– volume: 45
  start-page: 77
  issue: 1
  year: 1996
  ident: 10.1016/j.asoc.2020.106263_b42
  article-title: A k-nearest-neighbour classifier for assessing consumer credit risk
  publication-title: J. R. Stat. Soc.
– ident: 10.1016/j.asoc.2020.106263_b79
  doi: 10.1109/CSIE.2009.481
– start-page: 766
  year: 2011
  ident: 10.1016/j.asoc.2020.106263_b117
  article-title: Deep belief networks for financial prediction
– year: 2005
  ident: 10.1016/j.asoc.2020.106263_b3
– ident: 10.1016/j.asoc.2020.106263_b35
  doi: 10.1109/MedCom.2014.7005973
– year: 1995
  ident: 10.1016/j.asoc.2020.106263_b60
– volume: 28
  start-page: 576
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2020.106263_b134
  article-title: A novel multistage deep belief network based extreme learning machine ensemble learning paradigm for credit risk assessment
  publication-title: Flex. Serv. Manuf. J.
  doi: 10.1007/s10696-015-9226-2
– ident: 10.1016/j.asoc.2020.106263_b86
  doi: 10.1109/FTC.2016.7821603
– volume: 43
  start-page: 73
  year: 2016
  ident: 10.1016/j.asoc.2020.106263_b135
  article-title: Ensemble classification based on supervised clustering for credit scoring
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.02.022
– volume: 29
  start-page: 71
  issue: 3
  year: 1996
  ident: 10.1016/j.asoc.2020.106263_b73
  article-title: Symbolic representation of neural networks
  publication-title: Computer
  doi: 10.1109/2.485895
– volume: 39
  start-page: 3446
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2020.106263_b15
  article-title: An experimental comparison of classification algorithms for imbalanced credit scoring data sets
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.033
– year: 2018
  ident: 10.1016/j.asoc.2020.106263_b70
– volume: 1
  start-page: 323
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2020.106263_b26
  article-title: A survey on rough set theory and its applications
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1016/j.trit.2016.11.001
– year: 1996
  ident: 10.1016/j.asoc.2020.106263_b28
– ident: 10.1016/j.asoc.2020.106263_b116
  doi: 10.1109/CSO.2011.143
– volume: 42
  start-page: 421
  issue: 4
  year: 2012
  ident: 10.1016/j.asoc.2020.106263_b10
  article-title: Machine learning in financial crisis prediction: A survey
  publication-title: IEEE Trans. Syst. Man Cybern. C
  doi: 10.1109/TSMCC.2011.2170420
– volume: 39
  start-page: 2650
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2020.106263_b20
  article-title: A hybrid approach to integrate genetic algorithm into dual scoring model in enhancing the performance of credit scoring model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.08.120
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.asoc.2020.106263_b57
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 1
  start-page: 2425
  issue: 1
  year: 2010
  ident: 10.1016/j.asoc.2020.106263_b25
  article-title: Rough set and tabu search based feature selection for credit scoring
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2010.04.273
– volume: 37
  start-page: 534
  issue: 1
  year: 2010
  ident: 10.1016/j.asoc.2020.106263_b113
  article-title: A data driven ensemble classifier for credit scoring analysis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.05.059
– volume: 94
  start-page: 164
  year: 2018
  ident: 10.1016/j.asoc.2020.106263_b6
  article-title: Systematic review of bankruptcy prediction models: Towards a framework for tool selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.10.040
– start-page: 122
  year: 2015
  ident: 10.1016/j.asoc.2020.106263_b11
  article-title: A survey of applying machine learning techniques for credit rating: existing models and open issues
– start-page: 249
  year: 2011
  ident: 10.1016/j.asoc.2020.106263_b100
  article-title: Credit scoring using PCA-SVM hybrid model
– ident: 10.1016/j.asoc.2020.106263_b109
  doi: 10.1109/CCWC.2018.8301707
– volume: 39
  start-page: 6123
  issue: 6
  year: 2012
  ident: 10.1016/j.asoc.2020.106263_b102
  article-title: Rough set and scatter search metaheuristic based feature selection for credit scoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.11.011
– ident: 10.1016/j.asoc.2020.106263_b141
  doi: 10.1109/IEIS.2017.8078596
– ident: 10.1016/j.asoc.2020.106263_b140
  doi: 10.1109/CSCI.2017.36
– volume: 122
  start-page: 677
  year: 2017
  ident: 10.1016/j.asoc.2020.106263_b19
  article-title: The study of credit scoring model based on group lasso
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.11.423
– year: 2018
  ident: 10.1016/j.asoc.2020.106263_b108
– volume: 2
  start-page: 205
  issue: 3
  year: 1978
  ident: 10.1016/j.asoc.2020.106263_b76
  article-title: Problems in applying discriminant analysis in credit scoring models
  publication-title: J. Bank. Financ.
  doi: 10.1016/0378-4266(78)90012-2
– year: 2002
  ident: 10.1016/j.asoc.2020.106263_b1
– volume: 99
  start-page: 48
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2020.106263_b24
  article-title: Rough set approach to knowledge-based decision support
  publication-title: European J. Oper. Res.
  doi: 10.1016/S0377-2217(96)00382-7
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2020.106263_b51
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. System Sci.
  doi: 10.1006/jcss.1997.1504
– year: 2016
  ident: 10.1016/j.asoc.2020.106263_b72
– volume: 78
  year: 2017
  ident: 10.1016/j.asoc.2020.106263_b54
  article-title: A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.02.017
– volume: 86
  start-page: 42
  year: 2017
  ident: 10.1016/j.asoc.2020.106263_b136
  article-title: Extreme learning machines for credit scoring: An empirical evaluation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.05.050
– volume: 18
  start-page: 59
  issue: 2–3
  year: 2011
  ident: 10.1016/j.asoc.2020.106263_b9
  article-title: Credit scoring, statistical techniques and evaluation criteria: A review of the literature
  publication-title: Int. J. Intell. Syst. Account. Financ. Manage.
  doi: 10.1002/isaf.325
– volume: 73
  start-page: 289
  year: 2015
  ident: 10.1016/j.asoc.2020.106263_b14
  article-title: The effect of feature selection on financial distress prediction
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.10.010
– ident: 10.1016/j.asoc.2020.106263_b98
  doi: 10.1109/ICIFE.2010.5609428
– volume: 11
  start-page: 407
  issue: 4
  year: 1996
  ident: 10.1016/j.asoc.2020.106263_b21
  article-title: Neural networks and genetic algorithms for bankruptcy predictions
  publication-title: Expert Syst. Appl.
  doi: 10.1016/S0957-4174(96)00055-3
– year: 2001
  ident: 10.1016/j.asoc.2020.106263_b39
– ident: 10.1016/j.asoc.2020.106263_b88
  doi: 10.1109/ICComm.2018.8484751
– volume: 13
  start-page: 185
  year: 2009
  ident: 10.1016/j.asoc.2020.106263_b31
  article-title: To explore or to exploit: An entropy-driven approach for evolutionary algorithms
  publication-title: KES J.
  doi: 10.3233/KES-2009-0184
– ident: 10.1016/j.asoc.2020.106263_b49
  doi: 10.1109/IJCNN.1990.137710
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.asoc.2020.106263_b50
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 6
  start-page: 38
  year: 2018
  ident: 10.1016/j.asoc.2020.106263_b144
  article-title: Credit risk analysis using machine and deep learning models
  publication-title: Risks
  doi: 10.3390/risks6020038
– volume: 93
  start-page: 182
  issue: C
  year: 2018
  ident: 10.1016/j.asoc.2020.106263_b145
  article-title: A novel heterogeneous ensemble credit scoring model based on bstacking approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.10.022
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 10.1016/j.asoc.2020.106263_b58
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– year: 2018
  ident: 10.1016/j.asoc.2020.106263_b13
– start-page: 159
  year: 1948
  ident: 10.1016/j.asoc.2020.106263_b38
  article-title: The utilization of multiple measurements in problems of biological classification
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.2517-6161.1948.tb00008.x
– volume: 65
  start-page: 465
  year: 2017
  ident: 10.1016/j.asoc.2020.106263_b84
  article-title: A deep learning approach for credit scoring using credit default swaps
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.12.002
– volume: 37
  start-page: 3326
  issue: 4
  year: 2010
  ident: 10.1016/j.asoc.2020.106263_b112
  article-title: Multiple classifier application to credit risk assessment
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.10.018
– year: 2016
  ident: 10.1016/j.asoc.2020.106263_b65
– volume: 6
  start-page: 54396
  year: 2018
  ident: 10.1016/j.asoc.2020.106263_b147
  article-title: Heterogeneous ensemble for default prediction of peer-to-peer lending in China
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2810864
– year: 2018
  ident: 10.1016/j.asoc.2020.106263_b96
  article-title: Synthetic data augmentation using GAN for improved liver lesion classification
  publication-title: CoRR
– volume: 104
  start-page: 89
  year: 2016
  ident: 10.1016/j.asoc.2020.106263_b133
  article-title: Classifiers consensus system approach for credit scoring
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.04.013
– volume: 42
  start-page: 1789
  issue: 4
  year: 2015
  ident: 10.1016/j.asoc.2020.106263_b67
  article-title: Classification restricted Boltzmann machine for comprehensible credit scoring model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.10.016
– year: 2016
  ident: 10.1016/j.asoc.2020.106263_b95
  article-title: Deep convolutional neural networks and data augmentation for environmental sound classification
  publication-title: CoRR
– volume: 73
  start-page: 273
  issue: 3
  year: 2011
  ident: 10.1016/j.asoc.2020.106263_b33
  article-title: Regression shrinkage and selection via the lasso: a retrospective
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2011.00771.x
– start-page: 785
  year: 2016
  ident: 10.1016/j.asoc.2020.106263_b52
  article-title: XGBoost: A scalable tree boosting system
– ident: 10.1016/j.asoc.2020.106263_b107
  doi: 10.1109/ICSIIT.2017.48
– ident: 10.1016/j.asoc.2020.106263_b18
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.asoc.2020.106263_b41
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 39
  start-page: 8071
  issue: 9
  year: 2012
  ident: 10.1016/j.asoc.2020.106263_b123
  article-title: On the impact of disproportional samples in credit scoring models: An application to a Brazilian bank data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.134
– volume: 23
  start-page: 228
  issue: 2
  year: 2001
  ident: 10.1016/j.asoc.2020.106263_b37
  article-title: PCA versus LDA
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.908974
– year: 2017
  ident: 10.1016/j.asoc.2020.106263_b94
  article-title: The effectiveness of data augmentation in image classification using deep learning
  publication-title: CoRR
– year: 2018
  ident: 10.1016/j.asoc.2020.106263_b34
– volume: abs/1602.04938
  year: 2016
  ident: 10.1016/j.asoc.2020.106263_b75
  article-title: “Why should I trust you?”: Explaining the predictions of any classifier
  publication-title: CoRR
– volume: 42
  start-page: 5737
  issue: 13
  year: 2015
  ident: 10.1016/j.asoc.2020.106263_b131
  article-title: Enhancing accuracy and interpretability of ensemble strategies in credit risk assessment. A correlated-adjusted decision forest proposal
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.02.042
– volume: 16
  start-page: 149
  issue: 2
  year: 2000
  ident: 10.1016/j.asoc.2020.106263_b2
  article-title: A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers
  publication-title: Int. J. Forecast.
  doi: 10.1016/S0169-2070(00)00034-0
– start-page: 283
  year: 2000
  ident: 10.1016/j.asoc.2020.106263_b44
  article-title: The kernel trick for distances
– volume: 6
  start-page: 60
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2020.106263_b90
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 38
  start-page: 12717
  issue: 10
  year: 2011
  ident: 10.1016/j.asoc.2020.106263_b119
  article-title: Poly-bagging predictors for classification modelling for credit scoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.059
– volume: 41
  start-page: 2052
  issue: 4, Part 2
  year: 2014
  ident: 10.1016/j.asoc.2020.106263_b22
  article-title: Genetic algorithm-based heuristic for feature selection in credit risk assessment
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.09.004
– volume: abs/1705.07874
  year: 2017
  ident: 10.1016/j.asoc.2020.106263_b82
  article-title: A unified approach to interpreting model predictions
  publication-title: CoRR
– start-page: 827
  year: 2015
  ident: 10.1016/j.asoc.2020.106263_b40
  article-title: Gaussian mixture models
– volume: 37
  start-page: 4902
  issue: 7
  year: 2010
  ident: 10.1016/j.asoc.2020.106263_b17
  article-title: Combination of feature selection approaches with SVM in credit scoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.12.025
– volume: 38
  start-page: 15392
  issue: 12
  year: 2011
  ident: 10.1016/j.asoc.2020.106263_b78
  article-title: Credit risk evaluation using a weighted least squares SVM classifier with design of experiment for parameter selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.06.023
– year: 2017
  ident: 10.1016/j.asoc.2020.106263_b64
– volume: 28
  start-page: 162
  year: 2017
  ident: 10.1016/j.asoc.2020.106263_b63
  article-title: Convolutional neural networks for time series classification
  publication-title: J. Syst. Eng. Electron.
  doi: 10.21629/JSEE.2017.01.18
– volume: 1
  start-page: 2463
  issue: 1
  year: 2010
  ident: 10.1016/j.asoc.2020.106263_b111
  article-title: Credit scorecard based on logistic regression with random coefficients
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2010.04.278
– volume: 33
  start-page: 1
  year: 2007
  ident: 10.1016/j.asoc.2020.106263_b8
  article-title: A review of bankruptcy prediction studies: 1930 to present
  publication-title: J. Financial Educ.
– volume: 26
  start-page: 848
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2020.106263_b103
  article-title: Orthogonal support vector machine for credit scoring
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.10.005
– volume: 69
  start-page: 541
  year: 2018
  ident: 10.1016/j.asoc.2020.106263_b110
  article-title: Information gain directed genetic algorithm wrapper feature selection for credit rating
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.04.033
– year: 2006
  ident: 10.1016/j.asoc.2020.106263_b149
  article-title: Basel II: International convergence of capital measurement and capital standards: A revised framework - comprehensive version, bank for international settlements
  publication-title: BIS
SSID ssj0016928
Score 2.6332853
Snippet In practice, as a well-known statistical method, the logistic regression model is used to evaluate the credit-worthiness of borrowers due to its simplicity and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106263
SubjectTerms Credit scoring
Deep learning
Machine learning
Statistical learning
Systematic literature survey
Title Statistical and machine learning models in credit scoring: A systematic literature survey
URI https://dx.doi.org/10.1016/j.asoc.2020.106263
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3iW2y283GWymW-qCIWqinkM1uJFJjaVPBi7_dmWRTFaQHDyFkmQlhMjs7A998Q8ipzwOlobRyIigvHK4hh1OxbDs-kyYJBI88XaAthmIw4tfjzrhGelUvDMIqbewvY3oRre1Ky1qzNU3T1gNUHpIHXHjgp3BhEx-y14FPn38uYR6uCIr5qijsoLRtnCkxXhFYAGpEDxeQluXvw-nHgdPfIhs2U6Td8mO2Sc1kO2SzmsJA7abcJU-YLxZ0yyAdZZq-FvhIQ-1AiGdaTLuZ0zSjSA-a5nQeF7C7C9ql30zOdLJkWKbzxezdfOyRUf_ysTdw7MAEJ2btdu4kiUhURyOHF5eQehkJW1brAKokJUXga64jwZjQic8j44mYCeUKP0GsE5OQrOyTevaWmQNCAx5IBe9SyCBoDIs00qZy7caxZMpnDeJWlgpjyyaOQy0mYQUbewnRuiFaNyyt2yBnS51pyaWxUrpT_YDwl0eEEOxX6B3-U--IrONTCQM7JvV8tjAnkHDkqll4VJOsdXv3t3d4v7oZDL8AxwLVjg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH5BOOjF30b82YM3swBr6VpvhEiGIBchwdOyrp2ZwUlgmPjf224damI4eNil61uWb6-v72Vfvwdw4xEupC6tnFCXFw6ROocTEWs6HmYq5pSErszZFiPqT8jDtD2tQLc8C2NolTb2FzE9j9Z2pGHRbMyTpPGkKw9GOKGu9lN98S2oGXUqUoVapz_wR-ufCZTnLVbNfMcY2LMzBc0r1CDoMtE1A0aZ5e_96cee09uHXZssok7xPgdQUekh7JWNGJBdl0fwbFLGXHFZzw5Tid5yiqRCtifEC8ob3ixRkiKjEJpkaBnlzLs71EHfYs5othZZRsvV4kN9HsOkdz_u-o7tmeBEuNnMnDimsWhLI-NFmM6-FNOrVkquCyXBKPckkSHFmMrYI6FyaYSpaFEvNnQnzHS-cgLV9D1Vp4A44UzoZwkjIqgUDqVRTiWyFUUMCw_XoVUiFURWUNz0tZgFJXPsNTDoBgbdoEC3Drdrm3khp7Fxdrv8AMEvpwh0vN9gd_ZPu2vY9sePw2DYHw3OYcfcKVhhF1DNFit1qfOPTFxZ__oCdiHWqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+and+machine+learning+models+in+credit+scoring%3A+A+systematic+literature+survey&rft.jtitle=Applied+soft+computing&rft.au=Dastile%2C+Xolani&rft.au=Celik%2C+Turgay&rft.au=Potsane%2C+Moshe&rft.date=2020-06-01&rft.issn=1568-4946&rft.volume=91&rft.spage=106263&rft_id=info:doi/10.1016%2Fj.asoc.2020.106263&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106263
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon