Dielectric properties of a monolayer nano-graphyne structure: Monte Carlo simulations

In this paper, the dielectric properties of a monolayer nano-graphyne structure, with mixed spins σ = 7/2 and S = 1, have been studied, using Monte Carlo simulations. Firstly, the ground state phase diagrams for a zero temperature value are reported and discussed. Secondly, the dielectric properties...

Full description

Saved in:
Bibliographic Details
Published inSuperlattices and microstructures Vol. 135; p. 106285
Main Authors Fadil, Z., Mhirech, A., Kabouchi, B., Bahmad, L., Ousi Benomar, W.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, the dielectric properties of a monolayer nano-graphyne structure, with mixed spins σ = 7/2 and S = 1, have been studied, using Monte Carlo simulations. Firstly, the ground state phase diagrams for a zero temperature value are reported and discussed. Secondly, the dielectric properties of the studied system for a non-zero temperature are examined. The effects of the temperature, the external longitudinal electric and crystal fields on polarization, dielectric susceptibility and hysteresis cycles have been investigated. •The thermodynamic and dielectric properties of a monolayer nano-graphyne structure using Monte Carlo simulations are investigated.•The ground state phase diagrams are presented and discussed.•Blocking temperature has been deduced for different physical parameters.•The hysteresis cycles of a monolayer nano-graphyne structure are analyzed.
AbstractList In this paper, the dielectric properties of a monolayer nano-graphyne structure, with mixed spins σ = 7/2 and S = 1, have been studied, using Monte Carlo simulations. Firstly, the ground state phase diagrams for a zero temperature value are reported and discussed. Secondly, the dielectric properties of the studied system for a non-zero temperature are examined. The effects of the temperature, the external longitudinal electric and crystal fields on polarization, dielectric susceptibility and hysteresis cycles have been investigated. •The thermodynamic and dielectric properties of a monolayer nano-graphyne structure using Monte Carlo simulations are investigated.•The ground state phase diagrams are presented and discussed.•Blocking temperature has been deduced for different physical parameters.•The hysteresis cycles of a monolayer nano-graphyne structure are analyzed.
ArticleNumber 106285
Author Ousi Benomar, W.
Kabouchi, B.
Mhirech, A.
Fadil, Z.
Bahmad, L.
Author_xml – sequence: 1
  givenname: Z.
  surname: Fadil
  fullname: Fadil, Z.
  email: fadilzakaria604@gmail.com
– sequence: 2
  givenname: A.
  surname: Mhirech
  fullname: Mhirech, A.
– sequence: 3
  givenname: B.
  surname: Kabouchi
  fullname: Kabouchi, B.
– sequence: 4
  givenname: L.
  surname: Bahmad
  fullname: Bahmad, L.
– sequence: 5
  givenname: W.
  surname: Ousi Benomar
  fullname: Ousi Benomar, W.
BookMark eNp9kMtOwzAQRS1UJNrCD7DyD6TYedgxYoPKUypiQ9eW44zBVWJHtouUvyelrFh0NiONdEb3ngWaOe8AoWtKVpRQdrNbxaG3q5xQMR1YXldnaE6JYFnBOJ-hOeGlyBgp2AVaxLgjhIiS8jnaPljoQKdgNR6CHyAkCxF7gxXuvfOdGiFgp5zPPoMavkYHOKaw12kf4Ba_eZcAr1XoPI6233cqWe_iJTo3qotw9beXaPv0-LF-yTbvz6_r-02mC0JSZgxtqpLVeSlqVnFaKk7MNEzphopGc1O3QpeCVxRqRSphBK2VKjm0hSpEUyxRfvyrg48xgJFDsL0Ko6REHsTInTyIkQcx8ihmgup_kLbpN3cKynan0bsjClOpbwtBRm3BaWhtmCTK1ttT-A8424Lc
CitedBy_id crossref_primary_10_1142_S2010324724500115
crossref_primary_10_1142_S0217984924501380
crossref_primary_10_1080_01411594_2020_1758320
crossref_primary_10_1007_s10853_023_08739_2
crossref_primary_10_1016_j_ssc_2020_114047
crossref_primary_10_1007_s11051_023_05788_1
crossref_primary_10_1016_j_ceramint_2020_06_064
crossref_primary_10_1142_S2010324724500073
crossref_primary_10_1080_10584587_2020_1819041
crossref_primary_10_1007_s13538_020_00803_5
crossref_primary_10_1007_s10904_022_02292_2
crossref_primary_10_1080_14786435_2024_2398570
crossref_primary_10_1007_s10765_021_02802_3
crossref_primary_10_1016_j_physb_2024_415934
crossref_primary_10_1016_j_physleta_2020_126783
crossref_primary_10_1016_j_physb_2023_415084
crossref_primary_10_1016_j_cocom_2022_e00768
crossref_primary_10_1007_s10909_024_03168_0
crossref_primary_10_1103_PhysRevMaterials_6_076001
crossref_primary_10_1142_S2010324724500024
crossref_primary_10_1142_S0217984923501993
crossref_primary_10_1142_S201032472250031X
crossref_primary_10_1007_s10909_022_02926_2
crossref_primary_10_1007_s10909_020_02543_x
crossref_primary_10_1016_j_physb_2024_416436
crossref_primary_10_1016_j_physe_2022_115226
crossref_primary_10_1016_j_cjph_2020_08_028
crossref_primary_10_1016_j_ssc_2020_113944
crossref_primary_10_1080_10584587_2021_1965838
crossref_primary_10_1016_j_cocom_2022_e00643
crossref_primary_10_1007_s12648_022_02504_y
crossref_primary_10_1007_s13538_023_01360_3
crossref_primary_10_1016_j_ssc_2025_115913
crossref_primary_10_1007_s12648_022_02509_7
crossref_primary_10_1142_S0217984924502051
crossref_primary_10_1140_epjp_s13360_023_04762_z
crossref_primary_10_1149_2162_8777_ad0d05
crossref_primary_10_1007_s10948_022_06439_7
crossref_primary_10_1016_j_commatsci_2021_110303
crossref_primary_10_1016_j_jmmm_2021_168774
crossref_primary_10_1016_j_physb_2024_416246
crossref_primary_10_1142_S0217979225500821
crossref_primary_10_1142_S2010324721500132
crossref_primary_10_1142_S2010324723500170
crossref_primary_10_1149_2162_8777_ad5869
crossref_primary_10_1016_j_jmrt_2022_08_043
crossref_primary_10_1088_1572_9494_ad3220
crossref_primary_10_1088_1572_9494_ad3221
crossref_primary_10_1016_j_ssc_2023_115084
crossref_primary_10_1016_j_micrna_2022_207306
crossref_primary_10_1016_j_physe_2021_114920
crossref_primary_10_1007_s13538_024_01494_y
crossref_primary_10_1016_j_jmmm_2021_168967
crossref_primary_10_1016_j_physb_2024_416218
crossref_primary_10_1142_S0217984923502184
crossref_primary_10_1142_S0217984924502567
crossref_primary_10_1016_j_physe_2022_115520
crossref_primary_10_1080_00150193_2021_1890470
crossref_primary_10_1007_s10909_022_02861_2
crossref_primary_10_1007_s11051_023_05861_9
crossref_primary_10_1016_j_ssc_2024_115748
crossref_primary_10_1080_10584587_2020_1859832
crossref_primary_10_1016_j_cjph_2020_06_011
crossref_primary_10_1142_S2010324722500072
Cites_doi 10.1126/science.1102896
10.1021/acsami.8b03338
10.1016/j.jmmm.2019.03.073
10.1021/acsomega.7b00513
10.1016/j.spmi.2014.09.007
10.1038/354056a0
10.1016/j.physb.2019.03.006
10.1016/j.physa.2018.04.080
10.1016/j.physb.2019.05.002
10.1103/PhysRevLett.108.086804
10.1016/j.csda.2018.05.011
10.1039/b922733d
10.1021/nn102472s
10.1103/PhysRevB.85.235436
10.1103/RevModPhys.81.109
10.1016/j.diamond.2013.10.009
10.1016/j.carbon.2018.09.078
10.1186/1556-276X-8-469
10.1039/c3ta00097d
10.1021/acs.jpclett.5b01337
10.1063/1.4812977
10.1038/srep03532
10.1021/acs.chemrev.8b00288
10.1016/j.spmi.2016.08.045
10.1016/j.physe.2019.02.022
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.spmi.2019.106285
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-3677
ExternalDocumentID 10_1016_j_spmi_2019_106285
S0749603619311565
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-ff1b5468249865714a70ffff6acb19bc7f8d9c49751e8a059f918aa47ed3a39b3
IEDL.DBID .~1
ISSN 0749-6036
IngestDate Tue Jul 01 01:35:13 EDT 2025
Thu Apr 24 22:57:40 EDT 2025
Fri Feb 23 02:44:55 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords Polarization
Dielectric susceptibility
Blocking temperature
Phase diagrams
Monte Carlo simulations
Hysteresis cycles
Dielectric properties
Monolayer nano-graphyne structure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-ff1b5468249865714a70ffff6acb19bc7f8d9c49751e8a059f918aa47ed3a39b3
ParticipantIDs crossref_primary_10_1016_j_spmi_2019_106285
crossref_citationtrail_10_1016_j_spmi_2019_106285
elsevier_sciencedirect_doi_10_1016_j_spmi_2019_106285
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationTitle Superlattices and microstructures
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Iijima (bib1) 1991; 354
Wang, Wang, Li, Tian, Gao, Liu (bib24) 2019; 110
Maaouni, Qajjour, Fadil, Mhirech, Kabouchi, Bahmad, OusiBenomar (bib19) 2019; 566
Zhao, Dong, Wang (bib11) 2013; 3
Zhang, Wang, Wang, Du, Gao, Liu (bib12) 2015; 6
Huang, Duan, Liu (bib10) 2013; 15
Kang, Wei, Li (bib17) 2018; 11
Long, Tang, Wang, Li, Shuai (bib4) 2011; 5
Castro Neto, Guinea, Peres, Novoselov, Geim (bib3) 2009; 81
Wang, Liu, Lv, Luo (bib21) 2016; 98
Leenaerts, Partoens, Peeters (bib9) 2013; 103
Huang, Li, Wang, Xue, Zuo, Liu, Li (bib16) 2018; 118
Ouyang T, Chen, Liu, Xie, Wei, Zhong (bib5) 2012; 85
Qajjour, Maaouni, Mhirech, Kabouchi, Bahmad, OusiBenomar (bib20) 2019; 482
Nulakani, Subramanian (bib13) 2017; 2
Malko, Neiss, Vines, Görling (bib8) 2012; 108
Yin, Xie, Liu, Wang, Wei, Lau, Zhong, Chen (bib7) 2013; 1
Chen, Haziza (bib26) 2018; 127
Niu, Mao, Yang, Zhang, Si, Xue (bib15) 2013; 8
Wang, Li, Wang, Bu, Zhao (bib6) 2014; 41
Li, Li, Liu, Guo, Li, Zhu (bib18) 2010; 46
Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (bib2) 2004; 306
Li, Kong, Peeters (bib14) 2018; 141
Fadil, Qajjour, Mhirech, Kabouchi, Bahmad, OusiBenomar (bib22) 2019; 564
Benhouria, Essaoudi, Ainane, Ahuja, Dujardin (bib23) 2018; 506
Benhouria, Essaoudi, Ainane, Ahuja, Dujardin (bib25) 2014; 75
Yin (10.1016/j.spmi.2019.106285_bib7) 2013; 1
Fadil (10.1016/j.spmi.2019.106285_bib22) 2019; 564
Chen (10.1016/j.spmi.2019.106285_bib26) 2018; 127
Wang (10.1016/j.spmi.2019.106285_bib6) 2014; 41
Maaouni (10.1016/j.spmi.2019.106285_bib19) 2019; 566
Benhouria (10.1016/j.spmi.2019.106285_bib25) 2014; 75
Zhang (10.1016/j.spmi.2019.106285_bib12) 2015; 6
Huang (10.1016/j.spmi.2019.106285_bib16) 2018; 118
Ouyang T (10.1016/j.spmi.2019.106285_bib5) 2012; 85
Wang (10.1016/j.spmi.2019.106285_bib24) 2019; 110
Long (10.1016/j.spmi.2019.106285_bib4) 2011; 5
Zhao (10.1016/j.spmi.2019.106285_bib11) 2013; 3
Qajjour (10.1016/j.spmi.2019.106285_bib20) 2019; 482
Benhouria (10.1016/j.spmi.2019.106285_bib23) 2018; 506
Malko (10.1016/j.spmi.2019.106285_bib8) 2012; 108
Li (10.1016/j.spmi.2019.106285_bib18) 2010; 46
Castro Neto (10.1016/j.spmi.2019.106285_bib3) 2009; 81
Nulakani (10.1016/j.spmi.2019.106285_bib13) 2017; 2
Li (10.1016/j.spmi.2019.106285_bib14) 2018; 141
Leenaerts (10.1016/j.spmi.2019.106285_bib9) 2013; 103
Iijima (10.1016/j.spmi.2019.106285_bib1) 1991; 354
Wang (10.1016/j.spmi.2019.106285_bib21) 2016; 98
Novoselov (10.1016/j.spmi.2019.106285_bib2) 2004; 306
Niu (10.1016/j.spmi.2019.106285_bib15) 2013; 8
Huang (10.1016/j.spmi.2019.106285_bib10) 2013; 15
Kang (10.1016/j.spmi.2019.106285_bib17) 2018; 11
References_xml – volume: 506
  start-page: 499
  year: 2018
  ident: bib23
  publication-title: Phys. A Stat. Mech. Appl.
– volume: 15
  year: 2013
  ident: bib10
  publication-title: New J. Phys.
– volume: 81
  start-page: 109
  year: 2009
  ident: bib3
  publication-title: Rev. Mod. Phys.
– volume: 41
  start-page: 65
  year: 2014
  ident: bib6
  publication-title: Diam. Relat. Mater.
– volume: 482
  start-page: 312
  year: 2019
  ident: bib20
  publication-title: J. Magn. Magn. Mater.
– volume: 103
  year: 2013
  ident: bib9
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 2959
  year: 2015
  ident: bib12
  publication-title: J. Phys. Chem. Lett.
– volume: 110
  start-page: 127
  year: 2019
  ident: bib24
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
– volume: 118
  start-page: 7744
  year: 2018
  ident: bib16
  publication-title: Chem. Rev.
– volume: 11
  start-page: 2692
  year: 2018
  ident: bib17
  publication-title: ACS Appl. Mater. Interfaces
– volume: 306
  start-page: 666
  year: 2004
  ident: bib2
  publication-title: Science
– volume: 46
  start-page: 3256
  year: 2010
  ident: bib18
  publication-title: Chem. Commun.
– volume: 564
  start-page: 104
  year: 2019
  ident: bib22
  publication-title: Phys. B Condens. Matter
– volume: 354
  start-page: 56
  year: 1991
  end-page: 58
  ident: bib1
  publication-title: Nature
– volume: 98
  start-page: 458
  year: 2016
  ident: bib21
  publication-title: Superlattice Microstruct.
– volume: 108
  year: 2012
  ident: bib8
  publication-title: Phys. Rev. Lett.
– volume: 85
  start-page: 235436
  year: 2012
  ident: bib5
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 469
  year: 2013
  ident: bib15
  publication-title: Nanoscale research letters
– volume: 3
  start-page: 3532
  year: 2013
  ident: bib11
  publication-title: Sci. Rep.
– volume: 566
  start-page: 63
  year: 2019
  ident: bib19
  publication-title: Phys. B Condens. Matter
– volume: 141
  start-page: 712
  year: 2018
  ident: bib14
  publication-title: Carbon
– volume: 1
  start-page: 5341
  year: 2013
  ident: bib7
  publication-title: J. Mater. Chem.
– volume: 75
  start-page: 761
  year: 2014
  ident: bib25
  publication-title: Superlattice Microstruct.
– volume: 127
  start-page: 258
  year: 2018
  ident: bib26
  publication-title: Comput. Stat. Data Anal.
– volume: 5
  start-page: 2593
  year: 2011
  ident: bib4
  publication-title: ACS Nano
– volume: 2
  start-page: 6822
  year: 2017
  ident: bib13
  publication-title: ACS Omega
– volume: 306
  start-page: 666
  year: 2004
  ident: 10.1016/j.spmi.2019.106285_bib2
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 11
  start-page: 2692
  year: 2018
  ident: 10.1016/j.spmi.2019.106285_bib17
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03338
– volume: 482
  start-page: 312
  year: 2019
  ident: 10.1016/j.spmi.2019.106285_bib20
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.03.073
– volume: 2
  start-page: 6822
  year: 2017
  ident: 10.1016/j.spmi.2019.106285_bib13
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b00513
– volume: 75
  start-page: 761
  year: 2014
  ident: 10.1016/j.spmi.2019.106285_bib25
  publication-title: Superlattice Microstruct.
  doi: 10.1016/j.spmi.2014.09.007
– volume: 354
  start-page: 56
  year: 1991
  ident: 10.1016/j.spmi.2019.106285_bib1
  publication-title: Nature
  doi: 10.1038/354056a0
– volume: 564
  start-page: 104
  year: 2019
  ident: 10.1016/j.spmi.2019.106285_bib22
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/j.physb.2019.03.006
– volume: 506
  start-page: 499
  year: 2018
  ident: 10.1016/j.spmi.2019.106285_bib23
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2018.04.080
– volume: 566
  start-page: 63
  year: 2019
  ident: 10.1016/j.spmi.2019.106285_bib19
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/j.physb.2019.05.002
– volume: 108
  year: 2012
  ident: 10.1016/j.spmi.2019.106285_bib8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.086804
– volume: 127
  start-page: 258
  year: 2018
  ident: 10.1016/j.spmi.2019.106285_bib26
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2018.05.011
– volume: 46
  start-page: 3256
  year: 2010
  ident: 10.1016/j.spmi.2019.106285_bib18
  publication-title: Chem. Commun.
  doi: 10.1039/b922733d
– volume: 5
  start-page: 2593
  year: 2011
  ident: 10.1016/j.spmi.2019.106285_bib4
  publication-title: ACS Nano
  doi: 10.1021/nn102472s
– volume: 85
  start-page: 235436
  year: 2012
  ident: 10.1016/j.spmi.2019.106285_bib5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.235436
– volume: 81
  start-page: 109
  year: 2009
  ident: 10.1016/j.spmi.2019.106285_bib3
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– volume: 15
  year: 2013
  ident: 10.1016/j.spmi.2019.106285_bib10
  publication-title: New J. Phys.
– volume: 41
  start-page: 65
  year: 2014
  ident: 10.1016/j.spmi.2019.106285_bib6
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2013.10.009
– volume: 141
  start-page: 712
  year: 2018
  ident: 10.1016/j.spmi.2019.106285_bib14
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.09.078
– volume: 8
  start-page: 469
  year: 2013
  ident: 10.1016/j.spmi.2019.106285_bib15
  publication-title: Nanoscale research letters
  doi: 10.1186/1556-276X-8-469
– volume: 1
  start-page: 5341
  year: 2013
  ident: 10.1016/j.spmi.2019.106285_bib7
  publication-title: J. Mater. Chem.
  doi: 10.1039/c3ta00097d
– volume: 6
  start-page: 2959
  year: 2015
  ident: 10.1016/j.spmi.2019.106285_bib12
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01337
– volume: 103
  year: 2013
  ident: 10.1016/j.spmi.2019.106285_bib9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4812977
– volume: 3
  start-page: 3532
  year: 2013
  ident: 10.1016/j.spmi.2019.106285_bib11
  publication-title: Sci. Rep.
  doi: 10.1038/srep03532
– volume: 118
  start-page: 7744
  year: 2018
  ident: 10.1016/j.spmi.2019.106285_bib16
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00288
– volume: 98
  start-page: 458
  year: 2016
  ident: 10.1016/j.spmi.2019.106285_bib21
  publication-title: Superlattice Microstruct.
  doi: 10.1016/j.spmi.2016.08.045
– volume: 110
  start-page: 127
  year: 2019
  ident: 10.1016/j.spmi.2019.106285_bib24
  publication-title: Phys. E Low-dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2019.02.022
SSID ssj0009417
Score 2.1384945
Snippet In this paper, the dielectric properties of a monolayer nano-graphyne structure, with mixed spins σ = 7/2 and S = 1, have been studied, using Monte Carlo...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106285
SubjectTerms Blocking temperature
Dielectric properties
Dielectric susceptibility
Hysteresis cycles
Monolayer nano-graphyne structure
Monte Carlo simulations
Phase diagrams
Polarization
Title Dielectric properties of a monolayer nano-graphyne structure: Monte Carlo simulations
URI https://dx.doi.org/10.1016/j.spmi.2019.106285
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jInoRnYrzY-TgTeqWNU0Tb2M6prJddLBbSdIEKltXtnn1b_dlaf0A2cHeGt6D8vr6Psr7_R5C11x2mVWEBJrC10QVVYGk3TiQkJtSRoiMUgdwHo3ZcEKfptG0hvoVFsaNVZax38f0TbQuT9qlNdtFlrVfIPlB-R1CB-AYY5gDmlMaOy-__fge8xB0s3XXCQdOugTO-BmvVTHP3HiXgAOHJfw7Of1IOINDdFBWirjnH-YI1UzeQHv9akFbA-1upjf16hhN7jO_zibTuHB_15eOJhUvLJYY3Ay6VyiscS7zReAJqnODPXHs-9Lc4ZFjqMJ9uZwt8Cqblwu9VidoMnh47Q-Dcl9CoMNOZx1YS1REGYeOirMoJlTGHQsXk1oRoXRseSo0FXFEDJdQV1lBuJQ0NmkoQ6HCU1TPF7k5Q5hYw1ITaculplxE3CoGtVYqILmloZJNRCpDJbokE3c7LWZJNTX2ljjjJs64iTduE9186RSeSmOrdFTZP_nlEAnE-i165__Uu0D77s7DDC9RHV6CuYJ6Y61aG4dqoZ3e4_Nw_Al2w9Wq
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BoopeKqBFQHn4AKcq3fXGcexKHNACWh7LBVbiltqOLaVasqvNoqoX_hR_sON1AlSqOCCRoxNHzufJPKxvZgD2hepypymNDMO_iWmmI8W6aaTQNuWcUpXkPsF5cMX7Q3Z-m9wuwGOTC-NplbXuDzp9rq3rkXaNZntSFO1rNH7ofscYAfiKMbxhVl7YP78xbqsOz45xkw-63dOTm14_qlsLRCbudGaRc1QnjAsMPgRPUspU2nF4cWU0ldqkTuTSMJkm1AqFLoiTVCjFUpvHKpY6xvcuwhJDdeHbJnx_eOaVSDZv8-tXF_nl1Zk6gVRWTe4KzyeTOOCTF_9vDV9YuNMV-FS7puQofP0qLNhyDZZ7TUe4Nfgwp4ua6jMMj4vQP6cwZOKP86e-LisZO6IIyjWGy-jJk1KV4yhUxC4tCZVq76f2Bxn4klikp6ajMamKu7qDWPUFhu-C4jq0ynFpN4BQZ3luE-OEMkzIRDjN0bnLJVrTPNZqE2gDVGbq6uW-icYoa2hqvzIPbubBzQK4m_Dtac4k1O549emkwT_7RwIzNC6vzNt647w9WO7fDC6zy7Ori6_w0d8JOY7b0MINsTvo7Mz07ly4CPx8b2n-C2mHEbc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dielectric+properties+of+a+monolayer+nano-graphyne+structure%3A+Monte+Carlo+simulations&rft.jtitle=Superlattices+and+microstructures&rft.au=Fadil%2C+Z.&rft.au=Mhirech%2C+A.&rft.au=Kabouchi%2C+B.&rft.au=Bahmad%2C+L.&rft.date=2019-11-01&rft.issn=0749-6036&rft.volume=135&rft.spage=106285&rft_id=info:doi/10.1016%2Fj.spmi.2019.106285&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2019_106285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon