Dielectric properties of a monolayer nano-graphyne structure: Monte Carlo simulations
In this paper, the dielectric properties of a monolayer nano-graphyne structure, with mixed spins σ = 7/2 and S = 1, have been studied, using Monte Carlo simulations. Firstly, the ground state phase diagrams for a zero temperature value are reported and discussed. Secondly, the dielectric properties...
Saved in:
Published in | Superlattices and microstructures Vol. 135; p. 106285 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, the dielectric properties of a monolayer nano-graphyne structure, with mixed spins σ = 7/2 and S = 1, have been studied, using Monte Carlo simulations. Firstly, the ground state phase diagrams for a zero temperature value are reported and discussed. Secondly, the dielectric properties of the studied system for a non-zero temperature are examined. The effects of the temperature, the external longitudinal electric and crystal fields on polarization, dielectric susceptibility and hysteresis cycles have been investigated.
•The thermodynamic and dielectric properties of a monolayer nano-graphyne structure using Monte Carlo simulations are investigated.•The ground state phase diagrams are presented and discussed.•Blocking temperature has been deduced for different physical parameters.•The hysteresis cycles of a monolayer nano-graphyne structure are analyzed. |
---|---|
AbstractList | In this paper, the dielectric properties of a monolayer nano-graphyne structure, with mixed spins σ = 7/2 and S = 1, have been studied, using Monte Carlo simulations. Firstly, the ground state phase diagrams for a zero temperature value are reported and discussed. Secondly, the dielectric properties of the studied system for a non-zero temperature are examined. The effects of the temperature, the external longitudinal electric and crystal fields on polarization, dielectric susceptibility and hysteresis cycles have been investigated.
•The thermodynamic and dielectric properties of a monolayer nano-graphyne structure using Monte Carlo simulations are investigated.•The ground state phase diagrams are presented and discussed.•Blocking temperature has been deduced for different physical parameters.•The hysteresis cycles of a monolayer nano-graphyne structure are analyzed. |
ArticleNumber | 106285 |
Author | Ousi Benomar, W. Kabouchi, B. Mhirech, A. Fadil, Z. Bahmad, L. |
Author_xml | – sequence: 1 givenname: Z. surname: Fadil fullname: Fadil, Z. email: fadilzakaria604@gmail.com – sequence: 2 givenname: A. surname: Mhirech fullname: Mhirech, A. – sequence: 3 givenname: B. surname: Kabouchi fullname: Kabouchi, B. – sequence: 4 givenname: L. surname: Bahmad fullname: Bahmad, L. – sequence: 5 givenname: W. surname: Ousi Benomar fullname: Ousi Benomar, W. |
BookMark | eNp9kMtOwzAQRS1UJNrCD7DyD6TYedgxYoPKUypiQ9eW44zBVWJHtouUvyelrFh0NiONdEb3ngWaOe8AoWtKVpRQdrNbxaG3q5xQMR1YXldnaE6JYFnBOJ-hOeGlyBgp2AVaxLgjhIiS8jnaPljoQKdgNR6CHyAkCxF7gxXuvfOdGiFgp5zPPoMavkYHOKaw12kf4Ba_eZcAr1XoPI6233cqWe_iJTo3qotw9beXaPv0-LF-yTbvz6_r-02mC0JSZgxtqpLVeSlqVnFaKk7MNEzphopGc1O3QpeCVxRqRSphBK2VKjm0hSpEUyxRfvyrg48xgJFDsL0Ko6REHsTInTyIkQcx8ihmgup_kLbpN3cKynan0bsjClOpbwtBRm3BaWhtmCTK1ttT-A8424Lc |
CitedBy_id | crossref_primary_10_1142_S2010324724500115 crossref_primary_10_1142_S0217984924501380 crossref_primary_10_1080_01411594_2020_1758320 crossref_primary_10_1007_s10853_023_08739_2 crossref_primary_10_1016_j_ssc_2020_114047 crossref_primary_10_1007_s11051_023_05788_1 crossref_primary_10_1016_j_ceramint_2020_06_064 crossref_primary_10_1142_S2010324724500073 crossref_primary_10_1080_10584587_2020_1819041 crossref_primary_10_1007_s13538_020_00803_5 crossref_primary_10_1007_s10904_022_02292_2 crossref_primary_10_1080_14786435_2024_2398570 crossref_primary_10_1007_s10765_021_02802_3 crossref_primary_10_1016_j_physb_2024_415934 crossref_primary_10_1016_j_physleta_2020_126783 crossref_primary_10_1016_j_physb_2023_415084 crossref_primary_10_1016_j_cocom_2022_e00768 crossref_primary_10_1007_s10909_024_03168_0 crossref_primary_10_1103_PhysRevMaterials_6_076001 crossref_primary_10_1142_S2010324724500024 crossref_primary_10_1142_S0217984923501993 crossref_primary_10_1142_S201032472250031X crossref_primary_10_1007_s10909_022_02926_2 crossref_primary_10_1007_s10909_020_02543_x crossref_primary_10_1016_j_physb_2024_416436 crossref_primary_10_1016_j_physe_2022_115226 crossref_primary_10_1016_j_cjph_2020_08_028 crossref_primary_10_1016_j_ssc_2020_113944 crossref_primary_10_1080_10584587_2021_1965838 crossref_primary_10_1016_j_cocom_2022_e00643 crossref_primary_10_1007_s12648_022_02504_y crossref_primary_10_1007_s13538_023_01360_3 crossref_primary_10_1016_j_ssc_2025_115913 crossref_primary_10_1007_s12648_022_02509_7 crossref_primary_10_1142_S0217984924502051 crossref_primary_10_1140_epjp_s13360_023_04762_z crossref_primary_10_1149_2162_8777_ad0d05 crossref_primary_10_1007_s10948_022_06439_7 crossref_primary_10_1016_j_commatsci_2021_110303 crossref_primary_10_1016_j_jmmm_2021_168774 crossref_primary_10_1016_j_physb_2024_416246 crossref_primary_10_1142_S0217979225500821 crossref_primary_10_1142_S2010324721500132 crossref_primary_10_1142_S2010324723500170 crossref_primary_10_1149_2162_8777_ad5869 crossref_primary_10_1016_j_jmrt_2022_08_043 crossref_primary_10_1088_1572_9494_ad3220 crossref_primary_10_1088_1572_9494_ad3221 crossref_primary_10_1016_j_ssc_2023_115084 crossref_primary_10_1016_j_micrna_2022_207306 crossref_primary_10_1016_j_physe_2021_114920 crossref_primary_10_1007_s13538_024_01494_y crossref_primary_10_1016_j_jmmm_2021_168967 crossref_primary_10_1016_j_physb_2024_416218 crossref_primary_10_1142_S0217984923502184 crossref_primary_10_1142_S0217984924502567 crossref_primary_10_1016_j_physe_2022_115520 crossref_primary_10_1080_00150193_2021_1890470 crossref_primary_10_1007_s10909_022_02861_2 crossref_primary_10_1007_s11051_023_05861_9 crossref_primary_10_1016_j_ssc_2024_115748 crossref_primary_10_1080_10584587_2020_1859832 crossref_primary_10_1016_j_cjph_2020_06_011 crossref_primary_10_1142_S2010324722500072 |
Cites_doi | 10.1126/science.1102896 10.1021/acsami.8b03338 10.1016/j.jmmm.2019.03.073 10.1021/acsomega.7b00513 10.1016/j.spmi.2014.09.007 10.1038/354056a0 10.1016/j.physb.2019.03.006 10.1016/j.physa.2018.04.080 10.1016/j.physb.2019.05.002 10.1103/PhysRevLett.108.086804 10.1016/j.csda.2018.05.011 10.1039/b922733d 10.1021/nn102472s 10.1103/PhysRevB.85.235436 10.1103/RevModPhys.81.109 10.1016/j.diamond.2013.10.009 10.1016/j.carbon.2018.09.078 10.1186/1556-276X-8-469 10.1039/c3ta00097d 10.1021/acs.jpclett.5b01337 10.1063/1.4812977 10.1038/srep03532 10.1021/acs.chemrev.8b00288 10.1016/j.spmi.2016.08.045 10.1016/j.physe.2019.02.022 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2019.106285 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
ExternalDocumentID | 10_1016_j_spmi_2019_106285 S0749603619311565 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-ff1b5468249865714a70ffff6acb19bc7f8d9c49751e8a059f918aa47ed3a39b3 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Tue Jul 01 01:35:13 EDT 2025 Thu Apr 24 22:57:40 EDT 2025 Fri Feb 23 02:44:55 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Polarization Dielectric susceptibility Blocking temperature Phase diagrams Monte Carlo simulations Hysteresis cycles Dielectric properties Monolayer nano-graphyne structure |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-ff1b5468249865714a70ffff6acb19bc7f8d9c49751e8a059f918aa47ed3a39b3 |
ParticipantIDs | crossref_primary_10_1016_j_spmi_2019_106285 crossref_citationtrail_10_1016_j_spmi_2019_106285 elsevier_sciencedirect_doi_10_1016_j_spmi_2019_106285 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2019 2019-11-00 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
PublicationDecade | 2010 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Iijima (bib1) 1991; 354 Wang, Wang, Li, Tian, Gao, Liu (bib24) 2019; 110 Maaouni, Qajjour, Fadil, Mhirech, Kabouchi, Bahmad, OusiBenomar (bib19) 2019; 566 Zhao, Dong, Wang (bib11) 2013; 3 Zhang, Wang, Wang, Du, Gao, Liu (bib12) 2015; 6 Huang, Duan, Liu (bib10) 2013; 15 Kang, Wei, Li (bib17) 2018; 11 Long, Tang, Wang, Li, Shuai (bib4) 2011; 5 Castro Neto, Guinea, Peres, Novoselov, Geim (bib3) 2009; 81 Wang, Liu, Lv, Luo (bib21) 2016; 98 Leenaerts, Partoens, Peeters (bib9) 2013; 103 Huang, Li, Wang, Xue, Zuo, Liu, Li (bib16) 2018; 118 Ouyang T, Chen, Liu, Xie, Wei, Zhong (bib5) 2012; 85 Qajjour, Maaouni, Mhirech, Kabouchi, Bahmad, OusiBenomar (bib20) 2019; 482 Nulakani, Subramanian (bib13) 2017; 2 Malko, Neiss, Vines, Görling (bib8) 2012; 108 Yin, Xie, Liu, Wang, Wei, Lau, Zhong, Chen (bib7) 2013; 1 Chen, Haziza (bib26) 2018; 127 Niu, Mao, Yang, Zhang, Si, Xue (bib15) 2013; 8 Wang, Li, Wang, Bu, Zhao (bib6) 2014; 41 Li, Li, Liu, Guo, Li, Zhu (bib18) 2010; 46 Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (bib2) 2004; 306 Li, Kong, Peeters (bib14) 2018; 141 Fadil, Qajjour, Mhirech, Kabouchi, Bahmad, OusiBenomar (bib22) 2019; 564 Benhouria, Essaoudi, Ainane, Ahuja, Dujardin (bib23) 2018; 506 Benhouria, Essaoudi, Ainane, Ahuja, Dujardin (bib25) 2014; 75 Yin (10.1016/j.spmi.2019.106285_bib7) 2013; 1 Fadil (10.1016/j.spmi.2019.106285_bib22) 2019; 564 Chen (10.1016/j.spmi.2019.106285_bib26) 2018; 127 Wang (10.1016/j.spmi.2019.106285_bib6) 2014; 41 Maaouni (10.1016/j.spmi.2019.106285_bib19) 2019; 566 Benhouria (10.1016/j.spmi.2019.106285_bib25) 2014; 75 Zhang (10.1016/j.spmi.2019.106285_bib12) 2015; 6 Huang (10.1016/j.spmi.2019.106285_bib16) 2018; 118 Ouyang T (10.1016/j.spmi.2019.106285_bib5) 2012; 85 Wang (10.1016/j.spmi.2019.106285_bib24) 2019; 110 Long (10.1016/j.spmi.2019.106285_bib4) 2011; 5 Zhao (10.1016/j.spmi.2019.106285_bib11) 2013; 3 Qajjour (10.1016/j.spmi.2019.106285_bib20) 2019; 482 Benhouria (10.1016/j.spmi.2019.106285_bib23) 2018; 506 Malko (10.1016/j.spmi.2019.106285_bib8) 2012; 108 Li (10.1016/j.spmi.2019.106285_bib18) 2010; 46 Castro Neto (10.1016/j.spmi.2019.106285_bib3) 2009; 81 Nulakani (10.1016/j.spmi.2019.106285_bib13) 2017; 2 Li (10.1016/j.spmi.2019.106285_bib14) 2018; 141 Leenaerts (10.1016/j.spmi.2019.106285_bib9) 2013; 103 Iijima (10.1016/j.spmi.2019.106285_bib1) 1991; 354 Wang (10.1016/j.spmi.2019.106285_bib21) 2016; 98 Novoselov (10.1016/j.spmi.2019.106285_bib2) 2004; 306 Niu (10.1016/j.spmi.2019.106285_bib15) 2013; 8 Huang (10.1016/j.spmi.2019.106285_bib10) 2013; 15 Kang (10.1016/j.spmi.2019.106285_bib17) 2018; 11 |
References_xml | – volume: 506 start-page: 499 year: 2018 ident: bib23 publication-title: Phys. A Stat. Mech. Appl. – volume: 15 year: 2013 ident: bib10 publication-title: New J. Phys. – volume: 81 start-page: 109 year: 2009 ident: bib3 publication-title: Rev. Mod. Phys. – volume: 41 start-page: 65 year: 2014 ident: bib6 publication-title: Diam. Relat. Mater. – volume: 482 start-page: 312 year: 2019 ident: bib20 publication-title: J. Magn. Magn. Mater. – volume: 103 year: 2013 ident: bib9 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 2959 year: 2015 ident: bib12 publication-title: J. Phys. Chem. Lett. – volume: 110 start-page: 127 year: 2019 ident: bib24 publication-title: Phys. E Low-dimens. Syst. Nanostruct. – volume: 118 start-page: 7744 year: 2018 ident: bib16 publication-title: Chem. Rev. – volume: 11 start-page: 2692 year: 2018 ident: bib17 publication-title: ACS Appl. Mater. Interfaces – volume: 306 start-page: 666 year: 2004 ident: bib2 publication-title: Science – volume: 46 start-page: 3256 year: 2010 ident: bib18 publication-title: Chem. Commun. – volume: 564 start-page: 104 year: 2019 ident: bib22 publication-title: Phys. B Condens. Matter – volume: 354 start-page: 56 year: 1991 end-page: 58 ident: bib1 publication-title: Nature – volume: 98 start-page: 458 year: 2016 ident: bib21 publication-title: Superlattice Microstruct. – volume: 108 year: 2012 ident: bib8 publication-title: Phys. Rev. Lett. – volume: 85 start-page: 235436 year: 2012 ident: bib5 publication-title: Phys. Rev. B – volume: 8 start-page: 469 year: 2013 ident: bib15 publication-title: Nanoscale research letters – volume: 3 start-page: 3532 year: 2013 ident: bib11 publication-title: Sci. Rep. – volume: 566 start-page: 63 year: 2019 ident: bib19 publication-title: Phys. B Condens. Matter – volume: 141 start-page: 712 year: 2018 ident: bib14 publication-title: Carbon – volume: 1 start-page: 5341 year: 2013 ident: bib7 publication-title: J. Mater. Chem. – volume: 75 start-page: 761 year: 2014 ident: bib25 publication-title: Superlattice Microstruct. – volume: 127 start-page: 258 year: 2018 ident: bib26 publication-title: Comput. Stat. Data Anal. – volume: 5 start-page: 2593 year: 2011 ident: bib4 publication-title: ACS Nano – volume: 2 start-page: 6822 year: 2017 ident: bib13 publication-title: ACS Omega – volume: 306 start-page: 666 year: 2004 ident: 10.1016/j.spmi.2019.106285_bib2 publication-title: Science doi: 10.1126/science.1102896 – volume: 11 start-page: 2692 year: 2018 ident: 10.1016/j.spmi.2019.106285_bib17 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b03338 – volume: 482 start-page: 312 year: 2019 ident: 10.1016/j.spmi.2019.106285_bib20 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.03.073 – volume: 2 start-page: 6822 year: 2017 ident: 10.1016/j.spmi.2019.106285_bib13 publication-title: ACS Omega doi: 10.1021/acsomega.7b00513 – volume: 75 start-page: 761 year: 2014 ident: 10.1016/j.spmi.2019.106285_bib25 publication-title: Superlattice Microstruct. doi: 10.1016/j.spmi.2014.09.007 – volume: 354 start-page: 56 year: 1991 ident: 10.1016/j.spmi.2019.106285_bib1 publication-title: Nature doi: 10.1038/354056a0 – volume: 564 start-page: 104 year: 2019 ident: 10.1016/j.spmi.2019.106285_bib22 publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2019.03.006 – volume: 506 start-page: 499 year: 2018 ident: 10.1016/j.spmi.2019.106285_bib23 publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2018.04.080 – volume: 566 start-page: 63 year: 2019 ident: 10.1016/j.spmi.2019.106285_bib19 publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2019.05.002 – volume: 108 year: 2012 ident: 10.1016/j.spmi.2019.106285_bib8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.086804 – volume: 127 start-page: 258 year: 2018 ident: 10.1016/j.spmi.2019.106285_bib26 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2018.05.011 – volume: 46 start-page: 3256 year: 2010 ident: 10.1016/j.spmi.2019.106285_bib18 publication-title: Chem. Commun. doi: 10.1039/b922733d – volume: 5 start-page: 2593 year: 2011 ident: 10.1016/j.spmi.2019.106285_bib4 publication-title: ACS Nano doi: 10.1021/nn102472s – volume: 85 start-page: 235436 year: 2012 ident: 10.1016/j.spmi.2019.106285_bib5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.235436 – volume: 81 start-page: 109 year: 2009 ident: 10.1016/j.spmi.2019.106285_bib3 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 15 year: 2013 ident: 10.1016/j.spmi.2019.106285_bib10 publication-title: New J. Phys. – volume: 41 start-page: 65 year: 2014 ident: 10.1016/j.spmi.2019.106285_bib6 publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2013.10.009 – volume: 141 start-page: 712 year: 2018 ident: 10.1016/j.spmi.2019.106285_bib14 publication-title: Carbon doi: 10.1016/j.carbon.2018.09.078 – volume: 8 start-page: 469 year: 2013 ident: 10.1016/j.spmi.2019.106285_bib15 publication-title: Nanoscale research letters doi: 10.1186/1556-276X-8-469 – volume: 1 start-page: 5341 year: 2013 ident: 10.1016/j.spmi.2019.106285_bib7 publication-title: J. Mater. Chem. doi: 10.1039/c3ta00097d – volume: 6 start-page: 2959 year: 2015 ident: 10.1016/j.spmi.2019.106285_bib12 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01337 – volume: 103 year: 2013 ident: 10.1016/j.spmi.2019.106285_bib9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4812977 – volume: 3 start-page: 3532 year: 2013 ident: 10.1016/j.spmi.2019.106285_bib11 publication-title: Sci. Rep. doi: 10.1038/srep03532 – volume: 118 start-page: 7744 year: 2018 ident: 10.1016/j.spmi.2019.106285_bib16 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00288 – volume: 98 start-page: 458 year: 2016 ident: 10.1016/j.spmi.2019.106285_bib21 publication-title: Superlattice Microstruct. doi: 10.1016/j.spmi.2016.08.045 – volume: 110 start-page: 127 year: 2019 ident: 10.1016/j.spmi.2019.106285_bib24 publication-title: Phys. E Low-dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2019.02.022 |
SSID | ssj0009417 |
Score | 2.1384945 |
Snippet | In this paper, the dielectric properties of a monolayer nano-graphyne structure, with mixed spins σ = 7/2 and S = 1, have been studied, using Monte Carlo... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106285 |
SubjectTerms | Blocking temperature Dielectric properties Dielectric susceptibility Hysteresis cycles Monolayer nano-graphyne structure Monte Carlo simulations Phase diagrams Polarization |
Title | Dielectric properties of a monolayer nano-graphyne structure: Monte Carlo simulations |
URI | https://dx.doi.org/10.1016/j.spmi.2019.106285 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jInoRnYrzY-TgTeqWNU0Tb2M6prJddLBbSdIEKltXtnn1b_dlaf0A2cHeGt6D8vr6Psr7_R5C11x2mVWEBJrC10QVVYGk3TiQkJtSRoiMUgdwHo3ZcEKfptG0hvoVFsaNVZax38f0TbQuT9qlNdtFlrVfIPlB-R1CB-AYY5gDmlMaOy-__fge8xB0s3XXCQdOugTO-BmvVTHP3HiXgAOHJfw7Of1IOINDdFBWirjnH-YI1UzeQHv9akFbA-1upjf16hhN7jO_zibTuHB_15eOJhUvLJYY3Ay6VyiscS7zReAJqnODPXHs-9Lc4ZFjqMJ9uZwt8Cqblwu9VidoMnh47Q-Dcl9CoMNOZx1YS1REGYeOirMoJlTGHQsXk1oRoXRseSo0FXFEDJdQV1lBuJQ0NmkoQ6HCU1TPF7k5Q5hYw1ITaculplxE3CoGtVYqILmloZJNRCpDJbokE3c7LWZJNTX2ljjjJs64iTduE9186RSeSmOrdFTZP_nlEAnE-i165__Uu0D77s7DDC9RHV6CuYJ6Y61aG4dqoZ3e4_Nw_Al2w9Wq |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BoopeKqBFQHn4AKcq3fXGcexKHNACWh7LBVbiltqOLaVasqvNoqoX_hR_sON1AlSqOCCRoxNHzufJPKxvZgD2hepypymNDMO_iWmmI8W6aaTQNuWcUpXkPsF5cMX7Q3Z-m9wuwGOTC-NplbXuDzp9rq3rkXaNZntSFO1rNH7ofscYAfiKMbxhVl7YP78xbqsOz45xkw-63dOTm14_qlsLRCbudGaRc1QnjAsMPgRPUspU2nF4cWU0ldqkTuTSMJkm1AqFLoiTVCjFUpvHKpY6xvcuwhJDdeHbJnx_eOaVSDZv8-tXF_nl1Zk6gVRWTe4KzyeTOOCTF_9vDV9YuNMV-FS7puQofP0qLNhyDZZ7TUe4Nfgwp4ua6jMMj4vQP6cwZOKP86e-LisZO6IIyjWGy-jJk1KV4yhUxC4tCZVq76f2Bxn4klikp6ajMamKu7qDWPUFhu-C4jq0ynFpN4BQZ3luE-OEMkzIRDjN0bnLJVrTPNZqE2gDVGbq6uW-icYoa2hqvzIPbubBzQK4m_Dtac4k1O549emkwT_7RwIzNC6vzNt647w9WO7fDC6zy7Ori6_w0d8JOY7b0MINsTvo7Mz07ly4CPx8b2n-C2mHEbc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dielectric+properties+of+a+monolayer+nano-graphyne+structure%3A+Monte+Carlo+simulations&rft.jtitle=Superlattices+and+microstructures&rft.au=Fadil%2C+Z.&rft.au=Mhirech%2C+A.&rft.au=Kabouchi%2C+B.&rft.au=Bahmad%2C+L.&rft.date=2019-11-01&rft.issn=0749-6036&rft.volume=135&rft.spage=106285&rft_id=info:doi/10.1016%2Fj.spmi.2019.106285&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2019_106285 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |