Prediction of fast neutron spectra with a spherical TEPC using a machine-learning algorithm
For many years, new unfolding methods based on machine learning have been studied and developed to improve the prediction capabilities of fluence spectra in neutron fields. These methods are mainly applied to traditional devices used for specific measurements like Bonner spheres, activation detector...
Saved in:
Published in | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Vol. 1050; p. 168139 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For many years, new unfolding methods based on machine learning have been studied and developed to improve the prediction capabilities of fluence spectra in neutron fields. These methods are mainly applied to traditional devices used for specific measurements like Bonner spheres, activation detectors or liquid scintillators. In this paper, we attempt to develop a new method based on the unfolding of the fluence spectrum from the micro-dosimetric spectrum measured by a tissue-equivalent proportional counter (TEPC). This type of counter is commonly used for neutron kerma measurements and quality factor assessments, but has never been employed as a neutron spectrometer. This work focuses on the fast neutron region, which is an extremely relevant subject in various fields of nuclear energy. We have tested different machine-learning models to define an unfolding algorithm that can be used to reconstruct the energy distribution of the fluence for spectra of various origins, ranging between 50 keV and 20 MeV. |
---|---|
AbstractList | For many years, new unfolding methods based on machine learning have been studied and developed to improve the prediction capabilities of fluence spectra in neutron fields. These methods are mainly applied to traditional devices used for specific measurements like Bonner spheres, activation detectors or liquid scintillators. In this paper, we attempt to develop a new method based on the unfolding of the fluence spectrum from the micro-dosimetric spectrum measured by a tissue-equivalent proportional counter (TEPC). This type of counter is commonly used for neutron kerma measurements and quality factor assessments, but has never been employed as a neutron spectrometer. This work focuses on the fast neutron region, which is an extremely relevant subject in various fields of nuclear energy. We have tested different machine-learning models to define an unfolding algorithm that can be used to reconstruct the energy distribution of the fluence for spectra of various origins, ranging between 50 keV and 20 MeV. |
ArticleNumber | 168139 |
Author | Bourgois, Laurent Allinei, Pierre-Guy Antoni, Rodolphe |
Author_xml | – sequence: 1 givenname: Rodolphe surname: Antoni fullname: Antoni, Rodolphe email: rodolphe.antoni@cea.fr organization: DES/IRESNE/DTN/SMTA/Nuclear Measurement Laboratory, CEA Cadarache, Saint-Paul les Durance, France – sequence: 2 givenname: Pierre-Guy orcidid: 0000-0002-3358-0262 surname: Allinei fullname: Allinei, Pierre-Guy organization: DES/IRESNE/DTN/SMTA/Nuclear Measurement Laboratory, CEA Cadarache, Saint-Paul les Durance, France – sequence: 3 givenname: Laurent surname: Bourgois fullname: Bourgois, Laurent organization: DAM/DIF, CEA Bruyères-le-Châtel, France |
BookMark | eNp9kL1uwyAURhlSqUnaF-jEC9i9mMQ2UpcqSn-kSM2QTh0QxpeEyMERkFZ9--KmU4ewoPvBQXxnQkaud0jIHYOcASvv97mzB5UXUPCclTXjYkTG6aDOBEBxTSYh7CEtUdVj8rH22Fodbe9ob6hRIVKHp-jTHI6oo1f0y8YdVWncobdadXSzXC_oKVi3TfFB6Z11mHWovPuNum3vE3K4IVdGdQFv__YpeX9abhYv2ert-XXxuMo0B4iZMcCAl4ZpoVHwsgZesaZOmQEUpsQG2llqNhcF1qrRpoWKCZyrmWpF0wo-JfX5Xe37EDwaqW1UQ6X0e9tJBnIQI_dyECMHMfIsJqHFP_To0x3_fRl6OEOYSn1a9DJoi04nkT4Zk21vL-E_9EKBvA |
CitedBy_id | crossref_primary_10_1088_1748_0221_19_10_P10007 |
Cites_doi | 10.1016/j.nima.2010.08.096 10.1088/0031-9155/37/10/011 10.1016/j.radmeas.2005.10.003 10.1016/j.radphyschem.2018.02.014 10.1093/rpd/nct221 10.1023/A:1012487302797 10.1016/j.radmeas.2019.106189 10.1103/PhysRevC.66.044615 10.1016/j.apradiso.2009.05.020 10.1016/j.nima.2021.165070 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nima.2023.168139 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 10_1016_j_nima_2023_168139 S0168900223001298 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 3O- 4.4 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABMAC ABNEU ABWVN ABXDB ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HVGLF HX~ HZ~ H~9 IHE J1W KOM LZ4 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SHN SPCBC SPD SSH SSQ SSZ T5K TN5 VOH WUQ ~02 ~G- AAYWO AAYXX AGCQF AGQPQ AGRNS AIIUN APXCP CITATION SPC |
ID | FETCH-LOGICAL-c300t-ff01036f1c9ce93680371b8103f0e9f6eb0d4101592e8abcfd0719e5a4ad9bd93 |
IEDL.DBID | .~1 |
ISSN | 0168-9002 |
IngestDate | Tue Jul 01 02:30:59 EDT 2025 Thu Apr 24 22:49:23 EDT 2025 Sun Apr 06 06:53:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fast neutron Microdosimetry Spectrometer Machine-learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-ff01036f1c9ce93680371b8103f0e9f6eb0d4101592e8abcfd0719e5a4ad9bd93 |
ORCID | 0000-0002-3358-0262 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nima_2023_168139 crossref_primary_10_1016_j_nima_2023_168139 elsevier_sciencedirect_doi_10_1016_j_nima_2023_168139 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 2023-05-00 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationTitle | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Antoni, Bourgois (b11) 2019; 128 Vega-Carrillo, Martín Hernández-Dávila, Manzanares-Acuña, Mercado Sánchez, Pilar Iñiguez de la Torre, Barquero, Palacios, Méndez Villafañe, Arteaga Villabate, Manuel Ortiz Rodriguez (b2) 2006; 41 Antoni, Bourgois, Allinei (b5) 2021; 993 Qashua, Waker (b8) 2011; 652 Agency (b15) 1990 Mazrou, Bezoubiri (b3) 2018; 148 Boudard, Cugnon, Leray, Volant (b12) 2002; 66 Levine, Stephan (b14) 2014 (b4) 2023 Coppini, Jiang, Tabti (b21) 2021 ICRP (b19) 1996 Guyon, Weston, Barnhill, Vapnik (b18) 2002; 46 Wang, Trugman, Lin (b20) 2021; 126 Pihet, Guldbakke, Menzel, Schuhmacher (b13) 2000; 37 Sharghi Ido, Bonyadi, Etaati, Shahriari (b1) 2009; 67 Goorley, James, Booth, Brown, Bull, Cox, Durkee, Elson, McKinney, Pelowitz, Prael, Sweezy, Waters, Wilcox, Zukaitis (b6) 2013 Zhang, Wang, Liu, Li, Xiao, Luo, Chen, Li (b10) 2014; 158 Zahradnik, Pomorski, De Marzi, Tromson, Barberet, Skukan, Bergonzo, Devès, Herault, Kada, Pourcher, Saada (b9) 2018; 215 Agency (b16) 2002 (b7) 2023 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b17) 2011; 12 (10.1016/j.nima.2023.168139_b4) 2023 Antoni (10.1016/j.nima.2023.168139_b11) 2019; 128 Pihet (10.1016/j.nima.2023.168139_b13) 2000; 37 Zahradnik (10.1016/j.nima.2023.168139_b9) 2018; 215 Sharghi Ido (10.1016/j.nima.2023.168139_b1) 2009; 67 Agency (10.1016/j.nima.2023.168139_b16) 2002 Antoni (10.1016/j.nima.2023.168139_b5) 2021; 993 Guyon (10.1016/j.nima.2023.168139_b18) 2002; 46 Qashua (10.1016/j.nima.2023.168139_b8) 2011; 652 Levine (10.1016/j.nima.2023.168139_b14) 2014 Boudard (10.1016/j.nima.2023.168139_b12) 2002; 66 Coppini (10.1016/j.nima.2023.168139_b21) 2021 Vega-Carrillo (10.1016/j.nima.2023.168139_b2) 2006; 41 (10.1016/j.nima.2023.168139_b7) 2023 Wang (10.1016/j.nima.2023.168139_b20) 2021; 126 Zhang (10.1016/j.nima.2023.168139_b10) 2014; 158 Agency (10.1016/j.nima.2023.168139_b15) 1990 Mazrou (10.1016/j.nima.2023.168139_b3) 2018; 148 Pedregosa (10.1016/j.nima.2023.168139_b17) 2011; 12 ICRP (10.1016/j.nima.2023.168139_b19) 1996 Goorley (10.1016/j.nima.2023.168139_b6) 2013 |
References_xml | – year: 1996 ident: b19 article-title: Conversion coefficients for use in radiological protection against external radiation – volume: 652 start-page: 854 year: 2011 end-page: 857 ident: b8 article-title: Study of the effect of high dose rate on tissue equivalent proportional counter microdosimetric measurements in mixed photon and neutron fields publication-title: Nucl. Instrum. Methods Phys. Res. A – volume: 148 start-page: 33 year: 2018 end-page: 42 ident: b3 article-title: Evaluation of a neutron spectrum from bonner spheres measurements using a Bayesian parameter estimation combined with the traditional unfolding methods publication-title: Radiat. Phys. Chem. – volume: 41 start-page: 425 year: 2006 end-page: 431 ident: b2 article-title: Neutron spectrometry using artificial neural networks publication-title: Radiat. Meas. – year: 2023 ident: b7 article-title: Rossi Tissue Equivalent Proportional Counter (Ca. 1960) – year: 2013 ident: b6 publication-title: MCNP6 USER’s MANUAL Version 1.0 Manual Rev. 0 Editor la-CP-13-00634, Rev. 0 – year: 2014 ident: b14 article-title: Even You Can Learn Statistics and Analytics: An Easy-to-Understand Guide to Statistics and Analytics – year: 2002 ident: b16 article-title: Compendium of neutron spectra and detector responses for radiation protection purposes – volume: 126 year: 2021 ident: b20 article-title: SeismoGen: seismic waveform synthesis using GAN with application to seismic data augmentation publication-title: J. Geophys. Res.: Solid Earth – year: 2023 ident: b4 article-title: ICRU report 63, nuclear data for neutron and proton radiotherapy and for radiation protection – ICRU – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: b18 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. – volume: 993 year: 2021 ident: b5 article-title: Predictive model for H*(10) derived from micro-dosimetric quantities with a TEPC detector, for neutron spectra with a mean energy from 50 keV to 14 MeV publication-title: Nucl. Instrum. Methods Phys. Res. A – volume: 128 year: 2019 ident: b11 article-title: Microdosimetric spectra simulated with MCNP6.1 with INCL4/ABLA model for kerma and mean quality factor assessment, for neutrons between 100 publication-title: Radiat. Meas. – volume: 67 start-page: 1912 year: 2009 end-page: 1918 ident: b1 article-title: Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks publication-title: Appl Radiat Isot. – volume: 158 start-page: 246 year: 2014 end-page: 250 ident: b10 article-title: TEPC performance for a reference standard publication-title: Radiat. Prot. Dosim. – year: 2021 ident: b21 article-title: Predictive Models on 1D Signals in a Small-Data Environment – volume: 37 start-page: 1957 year: 2000 ident: b13 article-title: Measurement of kerma factors for carbon and A-150 plastic: Neutron energies from 13.9 to 20.0 MeV publication-title: Phys. Med. Biol. – year: 1990 ident: b15 article-title: Compendium of neutron spectra and detector responses for radiation protection purposes – volume: 66 year: 2002 ident: b12 article-title: Intranuclear cascade model for a comprehensive description of spallation reaction data publication-title: Phys. Rev. C – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b17 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 215 year: 2018 ident: b9 article-title: scCVD diamond membrane based microdosimeter for hadron therapy publication-title: Phys. Status Solidi (a) – volume: 652 start-page: 854 year: 2011 ident: 10.1016/j.nima.2023.168139_b8 article-title: Study of the effect of high dose rate on tissue equivalent proportional counter microdosimetric measurements in mixed photon and neutron fields publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2010.08.096 – year: 2002 ident: 10.1016/j.nima.2023.168139_b16 – year: 2013 ident: 10.1016/j.nima.2023.168139_b6 – year: 2023 ident: 10.1016/j.nima.2023.168139_b7 – year: 2014 ident: 10.1016/j.nima.2023.168139_b14 – volume: 37 start-page: 1957 year: 2000 ident: 10.1016/j.nima.2023.168139_b13 article-title: Measurement of kerma factors for carbon and A-150 plastic: Neutron energies from 13.9 to 20.0 MeV publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/37/10/011 – volume: 41 start-page: 425 year: 2006 ident: 10.1016/j.nima.2023.168139_b2 article-title: Neutron spectrometry using artificial neural networks publication-title: Radiat. Meas. doi: 10.1016/j.radmeas.2005.10.003 – year: 1996 ident: 10.1016/j.nima.2023.168139_b19 – volume: 148 start-page: 33 year: 2018 ident: 10.1016/j.nima.2023.168139_b3 article-title: Evaluation of a neutron spectrum from bonner spheres measurements using a Bayesian parameter estimation combined with the traditional unfolding methods publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2018.02.014 – volume: 126 year: 2021 ident: 10.1016/j.nima.2023.168139_b20 article-title: SeismoGen: seismic waveform synthesis using GAN with application to seismic data augmentation publication-title: J. Geophys. Res.: Solid Earth – year: 2021 ident: 10.1016/j.nima.2023.168139_b21 – year: 1990 ident: 10.1016/j.nima.2023.168139_b15 – year: 2023 ident: 10.1016/j.nima.2023.168139_b4 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.nima.2023.168139_b17 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 158 start-page: 246 year: 2014 ident: 10.1016/j.nima.2023.168139_b10 article-title: TEPC performance for a reference standard publication-title: Radiat. Prot. Dosim. doi: 10.1093/rpd/nct221 – volume: 46 start-page: 389 year: 2002 ident: 10.1016/j.nima.2023.168139_b18 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – volume: 128 year: 2019 ident: 10.1016/j.nima.2023.168139_b11 article-title: Microdosimetric spectra simulated with MCNP6.1 with INCL4/ABLA model for kerma and mean quality factor assessment, for neutrons between 100keV to 19MeV publication-title: Radiat. Meas. doi: 10.1016/j.radmeas.2019.106189 – volume: 215 year: 2018 ident: 10.1016/j.nima.2023.168139_b9 article-title: scCVD diamond membrane based microdosimeter for hadron therapy publication-title: Phys. Status Solidi (a) – volume: 66 year: 2002 ident: 10.1016/j.nima.2023.168139_b12 article-title: Intranuclear cascade model for a comprehensive description of spallation reaction data publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.66.044615 – volume: 67 start-page: 1912 year: 2009 ident: 10.1016/j.nima.2023.168139_b1 article-title: Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks publication-title: Appl Radiat Isot. doi: 10.1016/j.apradiso.2009.05.020 – volume: 993 year: 2021 ident: 10.1016/j.nima.2023.168139_b5 article-title: Predictive model for H*(10) derived from micro-dosimetric quantities with a TEPC detector, for neutron spectra with a mean energy from 50 keV to 14 MeV publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2021.165070 |
SSID | ssj0000978 |
Score | 2.4145896 |
Snippet | For many years, new unfolding methods based on machine learning have been studied and developed to improve the prediction capabilities of fluence spectra in... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 168139 |
SubjectTerms | Fast neutron Machine-learning Microdosimetry Spectrometer |
Title | Prediction of fast neutron spectra with a spherical TEPC using a machine-learning algorithm |
URI | https://dx.doi.org/10.1016/j.nima.2023.168139 |
Volume | 1050 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPtGqZQ_eJG0em8ceS2mpiqVgCwUPYbPZrZU2LWl69bc7k4dVkB487iQD2cnszDD7zQwh98LU4Id915ABkwaLhTACWzHDtiPlaS-QUmG-42XoDSbsaepOa6Rb1cIgrLK0_YVNz611SWmX0myv5_P2KwQrAUcf5OTZFCz4ZcxHLW997mAeWKdQ9PeGg20imqexw3gl87z3kO204LGFA8P_ck4_HE7_hByXkSLtFB9zSmoqOSOHOWJTbs7J2yjFOxaUK11pqsUmo4naYmab5uWTqaCYZKUClu_5tcyCjnujLkWo-wzIyxxHqYxycASQFrNVCizLCzLp98bdgVFOSjAkbD4ztMZxDZ62JJeKO16AjfiiAGjaVFx7KjJjBnt2ua0CEUkdQ2TBlSuYiHkUc-eS1JNVoq4I1UxGvnCVox2XaWUJ7Untw7GGnwYeT1wTqxJRKMs24jjNYhFWeLGPEMUaoljDQqzX5OGbZ1000dj7tltJPvylCiFY-T18jX_y3ZAjXBUoxltSz9KtuoNII4uauSo1yUHn8Xkw_AL5QdMN |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgE4IL4ine5MANhW19rTlOE6jANk1ik5A4VGmajKGtQ932_7HbjIeEOHCsE0vN19S2nC82wJWsG_TDTZ-r0FPcS6XkoaM97jiJDkwQKqUp39HtBdHQe3j2n9egvboLQ7RKa_tLm15YayupWTRr7-Nx7QmDlVCQD3KLbEq4DlWqTuVXoNq6f4x6XwZZlAYZ53NSsHdnSppXNi7KDznuDQ43qGf4b_7pm8-524FtGyyyVvk-u7Cmsz3YKEibar4PL_2cjlkIWjYzzMj5gmV6ScltVtygzCWjPCuT-PhanMxM2OC232bEdh-heFpQKTW3vSNQNBnNclSZHsDw7nbQjrhtlsAVrn_BjaGODYFpKKG0cIOQavElIcpMXQsT6KSeerhmXzg6lIkyKQYXQvvSk6lIUuEeQiWbZfoImPFU0pS-do3re0Y3pAmUaeKfjd8NnZ48hsYKoljZSuLU0GISryhjbzHBGhOscQnrMVx_6ryXdTT-nO2vkI9_7IYYDf0feif_1LuEzWjQ7cSd-97jKWzRSElqPIPKIl_qcww8FsmF3VgfRPrVvg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+fast+neutron+spectra+with+a+spherical+TEPC+using+a+machine-learning+algorithm&rft.jtitle=Nuclear+instruments+%26+methods+in+physics+research.+Section+A%2C+Accelerators%2C+spectrometers%2C+detectors+and+associated+equipment&rft.au=Antoni%2C+Rodolphe&rft.au=Allinei%2C+Pierre-Guy&rft.au=Bourgois%2C+Laurent&rft.date=2023-05-01&rft.issn=0168-9002&rft.volume=1050&rft.spage=168139&rft_id=info:doi/10.1016%2Fj.nima.2023.168139&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nima_2023_168139 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9002&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9002&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9002&client=summon |