Prediction of fast neutron spectra with a spherical TEPC using a machine-learning algorithm

For many years, new unfolding methods based on machine learning have been studied and developed to improve the prediction capabilities of fluence spectra in neutron fields. These methods are mainly applied to traditional devices used for specific measurements like Bonner spheres, activation detector...

Full description

Saved in:
Bibliographic Details
Published inNuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Vol. 1050; p. 168139
Main Authors Antoni, Rodolphe, Allinei, Pierre-Guy, Bourgois, Laurent
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For many years, new unfolding methods based on machine learning have been studied and developed to improve the prediction capabilities of fluence spectra in neutron fields. These methods are mainly applied to traditional devices used for specific measurements like Bonner spheres, activation detectors or liquid scintillators. In this paper, we attempt to develop a new method based on the unfolding of the fluence spectrum from the micro-dosimetric spectrum measured by a tissue-equivalent proportional counter (TEPC). This type of counter is commonly used for neutron kerma measurements and quality factor assessments, but has never been employed as a neutron spectrometer. This work focuses on the fast neutron region, which is an extremely relevant subject in various fields of nuclear energy. We have tested different machine-learning models to define an unfolding algorithm that can be used to reconstruct the energy distribution of the fluence for spectra of various origins, ranging between 50 keV and 20 MeV.
AbstractList For many years, new unfolding methods based on machine learning have been studied and developed to improve the prediction capabilities of fluence spectra in neutron fields. These methods are mainly applied to traditional devices used for specific measurements like Bonner spheres, activation detectors or liquid scintillators. In this paper, we attempt to develop a new method based on the unfolding of the fluence spectrum from the micro-dosimetric spectrum measured by a tissue-equivalent proportional counter (TEPC). This type of counter is commonly used for neutron kerma measurements and quality factor assessments, but has never been employed as a neutron spectrometer. This work focuses on the fast neutron region, which is an extremely relevant subject in various fields of nuclear energy. We have tested different machine-learning models to define an unfolding algorithm that can be used to reconstruct the energy distribution of the fluence for spectra of various origins, ranging between 50 keV and 20 MeV.
ArticleNumber 168139
Author Bourgois, Laurent
Allinei, Pierre-Guy
Antoni, Rodolphe
Author_xml – sequence: 1
  givenname: Rodolphe
  surname: Antoni
  fullname: Antoni, Rodolphe
  email: rodolphe.antoni@cea.fr
  organization: DES/IRESNE/DTN/SMTA/Nuclear Measurement Laboratory, CEA Cadarache, Saint-Paul les Durance, France
– sequence: 2
  givenname: Pierre-Guy
  orcidid: 0000-0002-3358-0262
  surname: Allinei
  fullname: Allinei, Pierre-Guy
  organization: DES/IRESNE/DTN/SMTA/Nuclear Measurement Laboratory, CEA Cadarache, Saint-Paul les Durance, France
– sequence: 3
  givenname: Laurent
  surname: Bourgois
  fullname: Bourgois, Laurent
  organization: DAM/DIF, CEA Bruyères-le-Châtel, France
BookMark eNp9kL1uwyAURhlSqUnaF-jEC9i9mMQ2UpcqSn-kSM2QTh0QxpeEyMERkFZ9--KmU4ewoPvBQXxnQkaud0jIHYOcASvv97mzB5UXUPCclTXjYkTG6aDOBEBxTSYh7CEtUdVj8rH22Fodbe9ob6hRIVKHp-jTHI6oo1f0y8YdVWncobdadXSzXC_oKVi3TfFB6Z11mHWovPuNum3vE3K4IVdGdQFv__YpeX9abhYv2ert-XXxuMo0B4iZMcCAl4ZpoVHwsgZesaZOmQEUpsQG2llqNhcF1qrRpoWKCZyrmWpF0wo-JfX5Xe37EDwaqW1UQ6X0e9tJBnIQI_dyECMHMfIsJqHFP_To0x3_fRl6OEOYSn1a9DJoi04nkT4Zk21vL-E_9EKBvA
CitedBy_id crossref_primary_10_1088_1748_0221_19_10_P10007
Cites_doi 10.1016/j.nima.2010.08.096
10.1088/0031-9155/37/10/011
10.1016/j.radmeas.2005.10.003
10.1016/j.radphyschem.2018.02.014
10.1093/rpd/nct221
10.1023/A:1012487302797
10.1016/j.radmeas.2019.106189
10.1103/PhysRevC.66.044615
10.1016/j.apradiso.2009.05.020
10.1016/j.nima.2021.165070
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.nima.2023.168139
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1016_j_nima_2023_168139
S0168900223001298
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
3O-
4.4
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HVGLF
HX~
HZ~
H~9
IHE
J1W
KOM
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SHN
SPCBC
SPD
SSH
SSQ
SSZ
T5K
TN5
VOH
WUQ
~02
~G-
AAYWO
AAYXX
AGCQF
AGQPQ
AGRNS
AIIUN
APXCP
CITATION
SPC
ID FETCH-LOGICAL-c300t-ff01036f1c9ce93680371b8103f0e9f6eb0d4101592e8abcfd0719e5a4ad9bd93
IEDL.DBID .~1
ISSN 0168-9002
IngestDate Tue Jul 01 02:30:59 EDT 2025
Thu Apr 24 22:49:23 EDT 2025
Sun Apr 06 06:53:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Fast neutron
Microdosimetry
Spectrometer
Machine-learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-ff01036f1c9ce93680371b8103f0e9f6eb0d4101592e8abcfd0719e5a4ad9bd93
ORCID 0000-0002-3358-0262
ParticipantIDs crossref_citationtrail_10_1016_j_nima_2023_168139
crossref_primary_10_1016_j_nima_2023_168139
elsevier_sciencedirect_doi_10_1016_j_nima_2023_168139
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Antoni, Bourgois (b11) 2019; 128
Vega-Carrillo, Martín Hernández-Dávila, Manzanares-Acuña, Mercado Sánchez, Pilar Iñiguez de la Torre, Barquero, Palacios, Méndez Villafañe, Arteaga Villabate, Manuel Ortiz Rodriguez (b2) 2006; 41
Antoni, Bourgois, Allinei (b5) 2021; 993
Qashua, Waker (b8) 2011; 652
Agency (b15) 1990
Mazrou, Bezoubiri (b3) 2018; 148
Boudard, Cugnon, Leray, Volant (b12) 2002; 66
Levine, Stephan (b14) 2014
(b4) 2023
Coppini, Jiang, Tabti (b21) 2021
ICRP (b19) 1996
Guyon, Weston, Barnhill, Vapnik (b18) 2002; 46
Wang, Trugman, Lin (b20) 2021; 126
Pihet, Guldbakke, Menzel, Schuhmacher (b13) 2000; 37
Sharghi Ido, Bonyadi, Etaati, Shahriari (b1) 2009; 67
Goorley, James, Booth, Brown, Bull, Cox, Durkee, Elson, McKinney, Pelowitz, Prael, Sweezy, Waters, Wilcox, Zukaitis (b6) 2013
Zhang, Wang, Liu, Li, Xiao, Luo, Chen, Li (b10) 2014; 158
Zahradnik, Pomorski, De Marzi, Tromson, Barberet, Skukan, Bergonzo, Devès, Herault, Kada, Pourcher, Saada (b9) 2018; 215
Agency (b16) 2002
(b7) 2023
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b17) 2011; 12
(10.1016/j.nima.2023.168139_b4) 2023
Antoni (10.1016/j.nima.2023.168139_b11) 2019; 128
Pihet (10.1016/j.nima.2023.168139_b13) 2000; 37
Zahradnik (10.1016/j.nima.2023.168139_b9) 2018; 215
Sharghi Ido (10.1016/j.nima.2023.168139_b1) 2009; 67
Agency (10.1016/j.nima.2023.168139_b16) 2002
Antoni (10.1016/j.nima.2023.168139_b5) 2021; 993
Guyon (10.1016/j.nima.2023.168139_b18) 2002; 46
Qashua (10.1016/j.nima.2023.168139_b8) 2011; 652
Levine (10.1016/j.nima.2023.168139_b14) 2014
Boudard (10.1016/j.nima.2023.168139_b12) 2002; 66
Coppini (10.1016/j.nima.2023.168139_b21) 2021
Vega-Carrillo (10.1016/j.nima.2023.168139_b2) 2006; 41
(10.1016/j.nima.2023.168139_b7) 2023
Wang (10.1016/j.nima.2023.168139_b20) 2021; 126
Zhang (10.1016/j.nima.2023.168139_b10) 2014; 158
Agency (10.1016/j.nima.2023.168139_b15) 1990
Mazrou (10.1016/j.nima.2023.168139_b3) 2018; 148
Pedregosa (10.1016/j.nima.2023.168139_b17) 2011; 12
ICRP (10.1016/j.nima.2023.168139_b19) 1996
Goorley (10.1016/j.nima.2023.168139_b6) 2013
References_xml – year: 1996
  ident: b19
  article-title: Conversion coefficients for use in radiological protection against external radiation
– volume: 652
  start-page: 854
  year: 2011
  end-page: 857
  ident: b8
  article-title: Study of the effect of high dose rate on tissue equivalent proportional counter microdosimetric measurements in mixed photon and neutron fields
  publication-title: Nucl. Instrum. Methods Phys. Res. A
– volume: 148
  start-page: 33
  year: 2018
  end-page: 42
  ident: b3
  article-title: Evaluation of a neutron spectrum from bonner spheres measurements using a Bayesian parameter estimation combined with the traditional unfolding methods
  publication-title: Radiat. Phys. Chem.
– volume: 41
  start-page: 425
  year: 2006
  end-page: 431
  ident: b2
  article-title: Neutron spectrometry using artificial neural networks
  publication-title: Radiat. Meas.
– year: 2023
  ident: b7
  article-title: Rossi Tissue Equivalent Proportional Counter (Ca. 1960)
– year: 2013
  ident: b6
  publication-title: MCNP6 USER’s MANUAL Version 1.0 Manual Rev. 0 Editor la-CP-13-00634, Rev. 0
– year: 2014
  ident: b14
  article-title: Even You Can Learn Statistics and Analytics: An Easy-to-Understand Guide to Statistics and Analytics
– year: 2002
  ident: b16
  article-title: Compendium of neutron spectra and detector responses for radiation protection purposes
– volume: 126
  year: 2021
  ident: b20
  article-title: SeismoGen: seismic waveform synthesis using GAN with application to seismic data augmentation
  publication-title: J. Geophys. Res.: Solid Earth
– year: 2023
  ident: b4
  article-title: ICRU report 63, nuclear data for neutron and proton radiotherapy and for radiation protection – ICRU
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: b18
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– volume: 993
  year: 2021
  ident: b5
  article-title: Predictive model for H*(10) derived from micro-dosimetric quantities with a TEPC detector, for neutron spectra with a mean energy from 50 keV to 14 MeV
  publication-title: Nucl. Instrum. Methods Phys. Res. A
– volume: 128
  year: 2019
  ident: b11
  article-title: Microdosimetric spectra simulated with MCNP6.1 with INCL4/ABLA model for kerma and mean quality factor assessment, for neutrons between 100
  publication-title: Radiat. Meas.
– volume: 67
  start-page: 1912
  year: 2009
  end-page: 1918
  ident: b1
  article-title: Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks
  publication-title: Appl Radiat Isot.
– volume: 158
  start-page: 246
  year: 2014
  end-page: 250
  ident: b10
  article-title: TEPC performance for a reference standard
  publication-title: Radiat. Prot. Dosim.
– year: 2021
  ident: b21
  article-title: Predictive Models on 1D Signals in a Small-Data Environment
– volume: 37
  start-page: 1957
  year: 2000
  ident: b13
  article-title: Measurement of kerma factors for carbon and A-150 plastic: Neutron energies from 13.9 to 20.0 MeV
  publication-title: Phys. Med. Biol.
– year: 1990
  ident: b15
  article-title: Compendium of neutron spectra and detector responses for radiation protection purposes
– volume: 66
  year: 2002
  ident: b12
  article-title: Intranuclear cascade model for a comprehensive description of spallation reaction data
  publication-title: Phys. Rev. C
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b17
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 215
  year: 2018
  ident: b9
  article-title: scCVD diamond membrane based microdosimeter for hadron therapy
  publication-title: Phys. Status Solidi (a)
– volume: 652
  start-page: 854
  year: 2011
  ident: 10.1016/j.nima.2023.168139_b8
  article-title: Study of the effect of high dose rate on tissue equivalent proportional counter microdosimetric measurements in mixed photon and neutron fields
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2010.08.096
– year: 2002
  ident: 10.1016/j.nima.2023.168139_b16
– year: 2013
  ident: 10.1016/j.nima.2023.168139_b6
– year: 2023
  ident: 10.1016/j.nima.2023.168139_b7
– year: 2014
  ident: 10.1016/j.nima.2023.168139_b14
– volume: 37
  start-page: 1957
  year: 2000
  ident: 10.1016/j.nima.2023.168139_b13
  article-title: Measurement of kerma factors for carbon and A-150 plastic: Neutron energies from 13.9 to 20.0 MeV
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/37/10/011
– volume: 41
  start-page: 425
  year: 2006
  ident: 10.1016/j.nima.2023.168139_b2
  article-title: Neutron spectrometry using artificial neural networks
  publication-title: Radiat. Meas.
  doi: 10.1016/j.radmeas.2005.10.003
– year: 1996
  ident: 10.1016/j.nima.2023.168139_b19
– volume: 148
  start-page: 33
  year: 2018
  ident: 10.1016/j.nima.2023.168139_b3
  article-title: Evaluation of a neutron spectrum from bonner spheres measurements using a Bayesian parameter estimation combined with the traditional unfolding methods
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2018.02.014
– volume: 126
  year: 2021
  ident: 10.1016/j.nima.2023.168139_b20
  article-title: SeismoGen: seismic waveform synthesis using GAN with application to seismic data augmentation
  publication-title: J. Geophys. Res.: Solid Earth
– year: 2021
  ident: 10.1016/j.nima.2023.168139_b21
– year: 1990
  ident: 10.1016/j.nima.2023.168139_b15
– year: 2023
  ident: 10.1016/j.nima.2023.168139_b4
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.nima.2023.168139_b17
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 158
  start-page: 246
  year: 2014
  ident: 10.1016/j.nima.2023.168139_b10
  article-title: TEPC performance for a reference standard
  publication-title: Radiat. Prot. Dosim.
  doi: 10.1093/rpd/nct221
– volume: 46
  start-page: 389
  year: 2002
  ident: 10.1016/j.nima.2023.168139_b18
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: 128
  year: 2019
  ident: 10.1016/j.nima.2023.168139_b11
  article-title: Microdosimetric spectra simulated with MCNP6.1 with INCL4/ABLA model for kerma and mean quality factor assessment, for neutrons between 100keV to 19MeV
  publication-title: Radiat. Meas.
  doi: 10.1016/j.radmeas.2019.106189
– volume: 215
  year: 2018
  ident: 10.1016/j.nima.2023.168139_b9
  article-title: scCVD diamond membrane based microdosimeter for hadron therapy
  publication-title: Phys. Status Solidi (a)
– volume: 66
  year: 2002
  ident: 10.1016/j.nima.2023.168139_b12
  article-title: Intranuclear cascade model for a comprehensive description of spallation reaction data
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.66.044615
– volume: 67
  start-page: 1912
  year: 2009
  ident: 10.1016/j.nima.2023.168139_b1
  article-title: Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks
  publication-title: Appl Radiat Isot.
  doi: 10.1016/j.apradiso.2009.05.020
– volume: 993
  year: 2021
  ident: 10.1016/j.nima.2023.168139_b5
  article-title: Predictive model for H*(10) derived from micro-dosimetric quantities with a TEPC detector, for neutron spectra with a mean energy from 50 keV to 14 MeV
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2021.165070
SSID ssj0000978
Score 2.4145896
Snippet For many years, new unfolding methods based on machine learning have been studied and developed to improve the prediction capabilities of fluence spectra in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 168139
SubjectTerms Fast neutron
Machine-learning
Microdosimetry
Spectrometer
Title Prediction of fast neutron spectra with a spherical TEPC using a machine-learning algorithm
URI https://dx.doi.org/10.1016/j.nima.2023.168139
Volume 1050
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPtGqZQ_eJG0em8ceS2mpiqVgCwUPYbPZrZU2LWl69bc7k4dVkB487iQD2cnszDD7zQwh98LU4Id915ABkwaLhTACWzHDtiPlaS-QUmG-42XoDSbsaepOa6Rb1cIgrLK0_YVNz611SWmX0myv5_P2KwQrAUcf5OTZFCz4ZcxHLW997mAeWKdQ9PeGg20imqexw3gl87z3kO204LGFA8P_ck4_HE7_hByXkSLtFB9zSmoqOSOHOWJTbs7J2yjFOxaUK11pqsUmo4naYmab5uWTqaCYZKUClu_5tcyCjnujLkWo-wzIyxxHqYxycASQFrNVCizLCzLp98bdgVFOSjAkbD4ztMZxDZ62JJeKO16AjfiiAGjaVFx7KjJjBnt2ua0CEUkdQ2TBlSuYiHkUc-eS1JNVoq4I1UxGvnCVox2XaWUJ7Untw7GGnwYeT1wTqxJRKMs24jjNYhFWeLGPEMUaoljDQqzX5OGbZ1000dj7tltJPvylCiFY-T18jX_y3ZAjXBUoxltSz9KtuoNII4uauSo1yUHn8Xkw_AL5QdMN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgE4IL4ine5MANhW19rTlOE6jANk1ik5A4VGmajKGtQ932_7HbjIeEOHCsE0vN19S2nC82wJWsG_TDTZ-r0FPcS6XkoaM97jiJDkwQKqUp39HtBdHQe3j2n9egvboLQ7RKa_tLm15YayupWTRr7-Nx7QmDlVCQD3KLbEq4DlWqTuVXoNq6f4x6XwZZlAYZ53NSsHdnSppXNi7KDznuDQ43qGf4b_7pm8-524FtGyyyVvk-u7Cmsz3YKEibar4PL_2cjlkIWjYzzMj5gmV6ScltVtygzCWjPCuT-PhanMxM2OC232bEdh-heFpQKTW3vSNQNBnNclSZHsDw7nbQjrhtlsAVrn_BjaGODYFpKKG0cIOQavElIcpMXQsT6KSeerhmXzg6lIkyKQYXQvvSk6lIUuEeQiWbZfoImPFU0pS-do3re0Y3pAmUaeKfjd8NnZ48hsYKoljZSuLU0GISryhjbzHBGhOscQnrMVx_6ryXdTT-nO2vkI9_7IYYDf0feif_1LuEzWjQ7cSd-97jKWzRSElqPIPKIl_qcww8FsmF3VgfRPrVvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+fast+neutron+spectra+with+a+spherical+TEPC+using+a+machine-learning+algorithm&rft.jtitle=Nuclear+instruments+%26+methods+in+physics+research.+Section+A%2C+Accelerators%2C+spectrometers%2C+detectors+and+associated+equipment&rft.au=Antoni%2C+Rodolphe&rft.au=Allinei%2C+Pierre-Guy&rft.au=Bourgois%2C+Laurent&rft.date=2023-05-01&rft.issn=0168-9002&rft.volume=1050&rft.spage=168139&rft_id=info:doi/10.1016%2Fj.nima.2023.168139&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nima_2023_168139
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9002&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9002&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9002&client=summon