Stacking: A novel data-driven ensemble machine learning strategy for prediction and mapping of Pb-Zn prospectivity in Varcheh district, west Iran

Various ensemble machine learning techniques have been widely studied and implemented to construct the predictive models in different sciences, including bagging, boosting, and stacking. However, bagging and boosting concentrate on minimizing variance or bias, stacking techniques aimed at reducing b...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 237; p. 121668
Main Authors Hajihosseinlou, Mahsa, Maghsoudi, Abbas, Ghezelbash, Reza
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2024
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2023.121668

Cover

Loading…
Abstract Various ensemble machine learning techniques have been widely studied and implemented to construct the predictive models in different sciences, including bagging, boosting, and stacking. However, bagging and boosting concentrate on minimizing variance or bias, stacking techniques aimed at reducing both by identifying the optimal integration of base learners. Moreover, while most ensemble methods simply combine identical machine learning models, stacking utilizes a meta-machine learning model to combine different base learning models, aiming to enhance the overall accuracy of generalization. Therefore, this research showed the utilization of stacking, an ensemble approach, to develop mineral prospectivity models for Pb-Zn mineralization in the Varcheh District, west Iran. To end this, various exploration evidence layers, including geochemical data, remote sensing data, geological and tectonic controls were used to construct the stacking structure. In the following, a set of five base learners were applied, containing support vector regression (SVR) using RBF, linear and polynomial kernels, the K-nearest neighbor (KNN), and linear regression. Ridge, SVR-RBF and XGBoost were used as a meta-learner to integrate the outputs of basic learners. To measure how well each model performed, ROC, F1-score and Precision metrics was carried out. Moreover, compared to the separate algorithms, the stacking-based ensemble model showed a better prediction accuracy. The findings of this study demonstrated that the ensemble model based on stacking achieved a 95% prediction rate for Pb-Zn deposits, covering only 9% of the study area. As a result, this model holds promise as an effective tool for predicting mineral prospectivity in other study areas, regardless of whether they exhibit similar or different types of mineralization.
AbstractList Various ensemble machine learning techniques have been widely studied and implemented to construct the predictive models in different sciences, including bagging, boosting, and stacking. However, bagging and boosting concentrate on minimizing variance or bias, stacking techniques aimed at reducing both by identifying the optimal integration of base learners. Moreover, while most ensemble methods simply combine identical machine learning models, stacking utilizes a meta-machine learning model to combine different base learning models, aiming to enhance the overall accuracy of generalization. Therefore, this research showed the utilization of stacking, an ensemble approach, to develop mineral prospectivity models for Pb-Zn mineralization in the Varcheh District, west Iran. To end this, various exploration evidence layers, including geochemical data, remote sensing data, geological and tectonic controls were used to construct the stacking structure. In the following, a set of five base learners were applied, containing support vector regression (SVR) using RBF, linear and polynomial kernels, the K-nearest neighbor (KNN), and linear regression. Ridge, SVR-RBF and XGBoost were used as a meta-learner to integrate the outputs of basic learners. To measure how well each model performed, ROC, F1-score and Precision metrics was carried out. Moreover, compared to the separate algorithms, the stacking-based ensemble model showed a better prediction accuracy. The findings of this study demonstrated that the ensemble model based on stacking achieved a 95% prediction rate for Pb-Zn deposits, covering only 9% of the study area. As a result, this model holds promise as an effective tool for predicting mineral prospectivity in other study areas, regardless of whether they exhibit similar or different types of mineralization.
ArticleNumber 121668
Author Maghsoudi, Abbas
Hajihosseinlou, Mahsa
Ghezelbash, Reza
Author_xml – sequence: 1
  givenname: Mahsa
  surname: Hajihosseinlou
  fullname: Hajihosseinlou, Mahsa
– sequence: 2
  givenname: Abbas
  orcidid: 0000-0003-1683-9209
  surname: Maghsoudi
  fullname: Maghsoudi, Abbas
  email: a.maghsoudi@aut.ac.ir
– sequence: 3
  givenname: Reza
  surname: Ghezelbash
  fullname: Ghezelbash, Reza
BookMark eNp9kEFu2zAQRYkiBeq4vUBXPEDkDkWLkoJugqBtAgRIgLZZZENQo2FMR6YEknDgY_TGpeCssvBqFvPfYP47Z2d-9MTYVwErAUJ9264ovppVCaVciVIo1XxgC9HUslB1K8_YAtqqLtaiXn9i5zFuAUQNUC_Yv9_J4Ivzz5f8ivtxTwPvTTJFH9yePCcfadcNxHcGN84TH8gEn-M8pmASPR-4HQOfAvUOkxs9N77P4WmaM6PlD13x5PN-jBPlwN6lA3eeP5qAG9rw3uU7mbzgrxQTvw3Gf2YfrRkifXmbS_b3548_1zfF3f2v2-uruwIlQCos9rZE1SprVAWNgh66lpRRtcIKS0RrQVUtyC43x6ZsoZKyKqVQtsPONHLJmuNdzM_FQFajS2bukJu5QQvQs1q91bNaPavVR7UZLd-hU3A7Ew6noe9HiHKpvaOgIzrymM2FrEb3ozuF_wfGfJe0
CitedBy_id crossref_primary_10_1016_j_eswa_2024_125312
crossref_primary_10_1016_j_tust_2024_106027
crossref_primary_10_1038_s41529_025_00573_y
crossref_primary_10_1109_ACCESS_2025_3536479
crossref_primary_10_1007_s40808_024_02176_z
crossref_primary_10_3390_en17225787
crossref_primary_10_1007_s12145_025_01708_0
crossref_primary_10_1016_j_jclepro_2025_144666
crossref_primary_10_11648_j_ajese_20240803_13
crossref_primary_10_1007_s40032_024_01136_x
crossref_primary_10_1007_s00339_024_07395_w
crossref_primary_10_1007_s12145_024_01481_6
crossref_primary_10_1007_s11004_024_10172_3
crossref_primary_10_1007_s12145_025_01843_8
crossref_primary_10_1016_j_compag_2025_109932
crossref_primary_10_1016_j_compgeo_2024_106805
crossref_primary_10_1016_j_inoche_2025_114316
crossref_primary_10_1007_s11053_025_10462_5
crossref_primary_10_1016_j_oreoa_2024_100065
crossref_primary_10_3390_land13121995
crossref_primary_10_1007_s12145_024_01404_5
crossref_primary_10_1007_s40808_024_02157_2
crossref_primary_10_1007_s12145_025_01718_y
crossref_primary_10_3390_min14121209
crossref_primary_10_1007_s10614_024_10566_9
crossref_primary_10_1007_s40031_024_01060_9
crossref_primary_10_1016_j_chemer_2024_126207
crossref_primary_10_1016_j_solener_2024_112784
crossref_primary_10_1016_j_gexplo_2024_107414
crossref_primary_10_1016_j_gexplo_2025_107755
crossref_primary_10_1016_j_oregeorev_2024_106001
crossref_primary_10_1016_j_cageo_2024_105785
crossref_primary_10_1016_j_ecohyd_2024_04_003
crossref_primary_10_1016_j_gexplo_2025_107737
crossref_primary_10_1038_s41529_024_00508_z
crossref_primary_10_3390_s24072210
crossref_primary_10_1007_s11053_024_10386_6
crossref_primary_10_1002_ett_4969
crossref_primary_10_3390_min14101015
crossref_primary_10_1007_s41024_024_00466_8
crossref_primary_10_1016_j_watres_2025_123165
crossref_primary_10_1016_j_heliyon_2024_e39205
crossref_primary_10_1007_s12145_024_01224_7
crossref_primary_10_1016_j_est_2024_114280
crossref_primary_10_1016_j_gexplo_2024_107393
crossref_primary_10_1016_j_rsase_2024_101343
Cites_doi 10.1007/BF00058655
10.1016/j.jag.2020.102154
10.1198/tas.2003.s211
10.1016/j.crte.2018.02.003
10.1016/j.asoc.2019.01.015
10.1016/j.jsg.2010.06.009
10.1016/j.chemer.2019.05.005
10.1016/S0191-8141(00)00023-7
10.1016/j.oregeorev.2021.104316
10.1016/j.oregeorev.2007.07.001
10.2113/gsecongeo.89.6.1262
10.1007/s11053-021-09842-4
10.1007/s11053-005-4678-9
10.1007/s11053-021-09893-7
10.1007/s11004-014-9534-1
10.1007/s13369-022-06857-8
10.1016/j.oregeorev.2014.09.007
10.1155/2022/7963603
10.1007/s11430-015-5178-3
10.1007/BF00994018
10.1016/j.compeleceng.2022.107869
10.1007/s11053-019-09571-9
10.1016/j.gexplo.2021.106875
10.1016/j.lithos.2017.05.009
10.2113/gsecongeo.67.5.551
10.1016/j.mejo.2022.105641
10.1109/ICRERA47325.2019.8996629
10.1016/j.jseaes.2009.08.007
10.1016/j.cageo.2009.02.008
10.1007/s11053-022-10050-x
10.1016/j.asoc.2020.107038
10.1016/j.jappgeo.2012.08.003
10.1007/s12145-013-0128-0
10.3390/app10020635
10.1016/j.gexplo.2019.106346
10.1130/G49812.1
10.1002/env.966
10.1109/DSMP.2018.8478522
10.1080/00031305.1992.10475879
10.1016/j.oregeorev.2021.104555
10.1016/j.cageo.2008.05.003
10.1080/0143116021000031791
10.5194/egusphere-egu21-15874
10.1016/j.oregeorev.2015.04.017
10.1016/j.jafrearsci.2016.12.011
10.1007/BF00116037
10.3233/IFS-151967
10.1016/j.iswa.2023.200204
10.14257/ijmue.2014.9.6.08
10.1109/ICIBA50161.2020.9277150
10.1016/j.jafrearsci.2021.104143
10.3390/pr10020312
10.1016/j.cageo.2019.104335
10.3390/min10020102
10.1109/34.58871
10.1016/j.apgeochem.2021.104894
10.1016/j.jog.2007.11.001
10.1007/BF00117832
10.1007/s11053-014-9261-9
10.1016/j.cageo.2017.10.005
10.1016/j.envsci.2020.07.003
10.5194/gmd-11-2525-2018
10.1007/s11053-020-09789-y
10.1016/j.pacs.2022.100349
10.1007/s40995-021-01181-6
10.1016/j.cageo.2010.09.014
10.1007/s11053-018-9448-6
10.2113/gsecongeo.103.4.783
10.3390/min11020159
10.1109/ICSDM.2011.5969034
10.1016/j.cageo.2021.104688
10.1007/s11053-010-9112-2
10.1016/j.oregeorev.2019.103040
10.1007/978-981-16-7088-6_1
10.1046/j.1440-0952.2000.00807.x
10.1007/s12517-018-3624-1
10.1016/j.oregeorev.2015.01.004
10.1016/j.oregeorev.2020.103968
10.1109/ICMCECS47690.2020.240893
10.1007/s11053-019-09598-y
10.1080/00206814.2012.659110
10.5382/econgeo.4690
10.1007/s11053-021-09918-1
10.1016/j.oregeorev.2014.08.010
10.1016/j.oregeorev.2015.01.001
10.3390/su14095669
10.1046/j.1440-0952.2000.00816.x
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2023.121668
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2023_121668
S095741742302170X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c300t-fcdf2c696fa650860d0b9e6a676c5c2ccff065903b957c829053352316fbcba83
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Thu Apr 24 23:01:13 EDT 2025
Tue Jul 01 04:06:14 EDT 2025
Fri Feb 23 02:35:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords KNN
MPM
Stacking
SVR
Machine learning
MVT Pb-Zn
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-fcdf2c696fa650860d0b9e6a676c5c2ccff065903b957c829053352316fbcba83
ORCID 0000-0003-1683-9209
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2023_121668
crossref_primary_10_1016_j_eswa_2023_121668
elsevier_sciencedirect_doi_10_1016_j_eswa_2023_121668
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jammalamadaka, S. R. (2003). Introduction to linear regression analysis.
Ghazban, McNutt, Schwarcz (b0195) 1994; 89
Deevsalar, Shinjo, Ghaderi, Murata, Hoskin, Oshiro, Neill (b0145) 2017; 284
19.
Shetty, R., Geetha, M., Acharya, D. U., & Shyamala, G. (2022). Data Preprocessing and Finding Optimal Value of K for KNN Model. In
Ghezelbash, Maghsoudi, Carranza (b0215) 2020; 134
Sun, Li, Wu, Chen, Zhu, Hu (b0420) 2020; 10
Azizi, Jahangiri (b0030) 2008; 45
Niroomand, Haghi, Rajabi, Shabani, Song (b0340) 2019; 112
Bonham-Carter, G. F., & Bonham-Carter, G. (1994).
Ehya, Marbouti (b0155) 2021; 139
Qin, Liu, Wu (b0375) 2021; 30
Nykänen, Lahti, Niiranen, Korhonen (b0345) 2015; 71
Krivoruchko (b0280) 2011
Brown, Gedeon, Groves, Barnes (b0065) 2000; 47
Giorno, Barale, Bertok, Frenzel, Looser, Guillong, Martire (b0230) 2022; 50
Xiong, Zuo (b0450) 2018; 111
Breiman (b0050) 1996; 24
,
.
Maepa, Smith, Tessema (b0310) 2021; 130
Zhang, Ren, Hou (b0480) 2018; 11
Lisitsin, Porwal, McCuaig (b0300) 2014; 46
Zhang, Zhou (b0490) 2015; 29
Zhang, Wang, Chen, Yan, Yang, Liu, Fu (b0510) 2022; 10
Rajabi, Mahmoodi, Rastad, Niroomand, Canet, Alfonso, Yarmohammadi (b0380) 2019; 205
Filzmoser, Hron, Reimann (b0175) 2009; 20
Ghezelbash, Maghsoudi (b0205) 2018; 350
Xu, Gao, Jin (b0460) 2014; 9
Al-Hajj, R., Assi, A., & Fouad, M. M. (2019, November). Stacking-based ensemble of support vector regressors for one-day ahead solar irradiance prediction. In
Ghezelbash, Maghsoudi, Carranza (b0210) 2019; 28
Faulkner, Jackson, Lunn, Schlische, Shipton, Wibberley, Withjack (b0165) 2010; 32
477-483.
Olasehinde, O. O., Johnson, O. V., & Olayemi, O. C. (2020, March). Evaluation of selected meta learning algorithms for the prediction improvement of network intrusion detection system. In
Ghezelbash, Maghsoudi, Daviran, Yilmaz (b0225) 2019; 79
Ren, Sun, Zhai (b0390) 2020; 91
Joshi (b0265) 2022
de Oliveira, Leach, Juliani, Monteiro, Johnson (b0140) 2019; 114
Ghezelbash, Maghsoudi (b0200) 2018; 11
Knox-Robinson (b0275) 2000; 47
Mohajjel, Fergusson (b0320) 2000; 22
Brosig, A., Barth, A., Hielscher, P., Legler, C., Schaefer, S., Bock, P., & Knobloch, A. Hybrid mineral predictive mapping with self-organizing maps and a multilayer perceptron.
Carranza (b0075) 2008
Zuo, Carranza (b0520) 2011; 37
(No. 13). Elsevier.
Fazli, Shamanian, Shafiei (b0170) 2012; 20
Chen, He, Zeng (b0105) 2014; 7
Wang, Lam, Song, Li, Guo (b0430) 2020; 112
Wang, Wang, Geng, Wang, Yin, Jin (b0435) 2019; 77
8-21.
Daviran, Maghsoudi, Ghezelbash, Pradhan (b0130) 2021; 148
Chen, C., Dai, H., Liu, Y., & He, B. (2011, June). Mineral prospectivity mapping integrating multi-source geology spatial data sets and logistic regression modelling. In
Abedi, Torabi, Norouzi, Hamzeh (b0005) 2012; 87
Zhang, Zhou, Du (b0495) 2017; 128
Zhang, Carranza, Wei, Xiao, Yang, Xiang, Xu (b0500) 2021; 30
Carranza, Laborte (b0085) 2015; 71
Carranza, Woldai, Chikambwe (b0095) 2005; 14
Ohmoto (b0355) 1972; 67
(pp. 1-7). IEEE.
Han, Y., Du, P., & Yang, K. (2022). Fedgbf: An efficient vertical federated learning framework via gradient boosting and bagging.
Ding, C. S., Haieh, C. T., Wu, Q., & Pedram, M. (1996, November). Stratified random sampling for power estimation. In
Fu, Chen, Yang, Chen, Wang, Liu, Rajesh (b0190) 2021; 176
Cui, Yin, Wang, Li, Wang (b0120) 2021; 101
(pp. 1-9). Singapore: Springer Nature Singapore.
Carranza, Hale, Faassen (b0090) 2008; 33
Hansen, Salamon (b0240) 1990; 12
Porwal, A., & Carranza, E. J. M. (2015). Introduction to the Special Issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration.
Ford (b0185) 2020; 29
Daviran, Parsa, Maghsoudi, Ghezelbash (b0135) 2022
Huang, Song, Jiang (b0250) 2023; 131
Schapire (b0405) 1990; 5
Zhang, Zhu (b0485) 2022; 14
Bai, Cao, Zhang, Zhang, Hou, Wang (b0035) 2021; 126
Menduni, Zifarelli, Sampaolo, Patimisco, Giglio, Amoroso, Spagnolo (b0315) 2022; 26
Zuo, Xu (b0525) 2022
Zhang, Zuo, Xiong (b0515) 2016; 59
(pp. 576-582). IEEE.
Lin, Chen, Liu, Liu (b0295) 2021; 11
(pp. 428-433). IEEE.
Rajabi, Rastad, Canet (b0385) 2012; 54
Alipoor, Hajiloo, Hosseinkhani (b0020) 2021; 13
Leite, de Souza Filho (b0285) 2009; 35
Zuo, Luo, Xiong, Yin (b0530) 2022; 31
Rodriguez-Galiano, Sanchez-Castillo, Chica-Olmo, Chica-Rivas (b0400) 2015; 71
Basuki, Taylor, Spooner (b0040) 2008; 103
Daviran, Maghsoudi, Cohen, Ghezelbash, Yilmaz (b0125) 2020; 29
Li, R., & Li, S. (2022). Multimedia Image Data Analysis Based on KNN Algorithm. Computational Intelligence and Neuroscience, 2022.
Ghezelbash, Maghsoudi, Bigdeli, Carranza (b0220) 2021; 30
Pavlyshenko, B. (2018, August). Using stacking approaches for machine learning models. In 2018 IEEE second international conference on data stream mining & processing (DSMP) (pp. 255-258). IEEE.
Ting, K. M., & Witten, I. H. (1997). Stacked Generalization: when does it work?.
Altman (b0025) 1992; 46
(pp. 214-217). IEEE.
Rigol-Sanchez, Chica-Olmo, Abarca-Hernandez (b0395) 2003; 24
Oh, Lee (b0350) 2010; 19
Carranza (b0080) 2009; 35
Yousefi, Carranza (b0470) 2016; 25
Lv, Le, Bui, Bui, Nguyen, Nguyen-Thoi, Song (b0305) 2020; 10
Ehya, Lotfi, Rasa (b0160) 2010; 37
Xu, Li, Xie, Cai, Niu, Liu (b0455) 2021; 138
Breiman (b0055) 1996; 24
Chen, Zhao, Lu (b0110) 2021; 231
Harris, Grunsky, Behnia, Corrigan (b0245) 2015; 71
Muslim, Nikmah, Pertiwi, Dasril (b0335) 2023
Seber, Lee (b0410) 2012
(Vol. 1, pp. 1150-1154). IEEE.
Buyrukoğlu, Savaş (b0070) 2023; 48
Yao, Jiangnan (b0465) 2021; 40
Momenzadeh, M. (2004). Metallic mineral resources of Iran, mined in ancient times: a brief review.
Zarasvandi, Poursheikhi, Saki (b0475) 2021; 45
Xiao, Chen, Wang, Erten (b0445) 2022; 31
Kilincer, Ertam, Sengur (b0270) 2022; 100
Wu, D., & Wang, S. (2020, November). Comparison of road traffic accident prediction effects based on SVR and BP neural network. In
Cortes, Vapnik (b0115) 1995; 20
Muslim (10.1016/j.eswa.2023.121668_b0335) 2023
10.1016/j.eswa.2023.121668_b0360
Lisitsin (10.1016/j.eswa.2023.121668_b0300) 2014; 46
10.1016/j.eswa.2023.121668_b0365
Carranza (10.1016/j.eswa.2023.121668_b0090) 2008; 33
Chen (10.1016/j.eswa.2023.121668_b0110) 2021; 231
Niroomand (10.1016/j.eswa.2023.121668_b0340) 2019; 112
Carranza (10.1016/j.eswa.2023.121668_b0075) 2008
Zhang (10.1016/j.eswa.2023.121668_b0515) 2016; 59
Ghezelbash (10.1016/j.eswa.2023.121668_b0215) 2020; 134
Seber (10.1016/j.eswa.2023.121668_b0410) 2012
Yousefi (10.1016/j.eswa.2023.121668_b0470) 2016; 25
Rigol-Sanchez (10.1016/j.eswa.2023.121668_b0395) 2003; 24
Ghezelbash (10.1016/j.eswa.2023.121668_b0225) 2019; 79
10.1016/j.eswa.2023.121668_b0235
Zuo (10.1016/j.eswa.2023.121668_b0525) 2022
Abedi (10.1016/j.eswa.2023.121668_b0005) 2012; 87
Rajabi (10.1016/j.eswa.2023.121668_b0385) 2012; 54
Qin (10.1016/j.eswa.2023.121668_b0375) 2021; 30
Harris (10.1016/j.eswa.2023.121668_b0245) 2015; 71
Joshi (10.1016/j.eswa.2023.121668_b0265) 2022
Zarasvandi (10.1016/j.eswa.2023.121668_b0475) 2021; 45
Mohajjel (10.1016/j.eswa.2023.121668_b0320) 2000; 22
10.1016/j.eswa.2023.121668_b0100
Faulkner (10.1016/j.eswa.2023.121668_b0165) 2010; 32
Zuo (10.1016/j.eswa.2023.121668_b0530) 2022; 31
Rodriguez-Galiano (10.1016/j.eswa.2023.121668_b0400) 2015; 71
Zhang (10.1016/j.eswa.2023.121668_b0490) 2015; 29
Bai (10.1016/j.eswa.2023.121668_b0035) 2021; 126
Ohmoto (10.1016/j.eswa.2023.121668_b0355) 1972; 67
Zhang (10.1016/j.eswa.2023.121668_b0510) 2022; 10
Ghezelbash (10.1016/j.eswa.2023.121668_b0205) 2018; 350
Daviran (10.1016/j.eswa.2023.121668_b0135) 2022
Cui (10.1016/j.eswa.2023.121668_b0120) 2021; 101
Cortes (10.1016/j.eswa.2023.121668_b0115) 1995; 20
Ehya (10.1016/j.eswa.2023.121668_b0155) 2021; 139
Knox-Robinson (10.1016/j.eswa.2023.121668_b0275) 2000; 47
Kilincer (10.1016/j.eswa.2023.121668_b0270) 2022; 100
Xiao (10.1016/j.eswa.2023.121668_b0445) 2022; 31
Wang (10.1016/j.eswa.2023.121668_b0430) 2020; 112
10.1016/j.eswa.2023.121668_b0060
Azizi (10.1016/j.eswa.2023.121668_b0030) 2008; 45
10.1016/j.eswa.2023.121668_b0440
10.1016/j.eswa.2023.121668_b0045
Hansen (10.1016/j.eswa.2023.121668_b0240) 1990; 12
Huang (10.1016/j.eswa.2023.121668_b0250) 2023; 131
10.1016/j.eswa.2023.121668_b0325
Basuki (10.1016/j.eswa.2023.121668_b0040) 2008; 103
Xu (10.1016/j.eswa.2023.121668_b0460) 2014; 9
Giorno (10.1016/j.eswa.2023.121668_b0230) 2022; 50
Fazli (10.1016/j.eswa.2023.121668_b0170) 2012; 20
Yao (10.1016/j.eswa.2023.121668_b0465) 2021; 40
Leite (10.1016/j.eswa.2023.121668_b0285) 2009; 35
Menduni (10.1016/j.eswa.2023.121668_b0315) 2022; 26
10.1016/j.eswa.2023.121668_b0290
10.1016/j.eswa.2023.121668_b0150
Rajabi (10.1016/j.eswa.2023.121668_b0380) 2019; 205
Ren (10.1016/j.eswa.2023.121668_b0390) 2020; 91
Ghazban (10.1016/j.eswa.2023.121668_b0195) 1994; 89
Ghezelbash (10.1016/j.eswa.2023.121668_b0220) 2021; 30
Buyrukoğlu (10.1016/j.eswa.2023.121668_b0070) 2023; 48
de Oliveira (10.1016/j.eswa.2023.121668_b0140) 2019; 114
Ghezelbash (10.1016/j.eswa.2023.121668_b0210) 2019; 28
Xu (10.1016/j.eswa.2023.121668_b0455) 2021; 138
Breiman (10.1016/j.eswa.2023.121668_b0055) 1996; 24
Zuo (10.1016/j.eswa.2023.121668_b0520) 2011; 37
Carranza (10.1016/j.eswa.2023.121668_b0095) 2005; 14
Ehya (10.1016/j.eswa.2023.121668_b0160) 2010; 37
Deevsalar (10.1016/j.eswa.2023.121668_b0145) 2017; 284
Fu (10.1016/j.eswa.2023.121668_b0190) 2021; 176
Zhang (10.1016/j.eswa.2023.121668_b0495) 2017; 128
10.1016/j.eswa.2023.121668_b0425
Chen (10.1016/j.eswa.2023.121668_b0105) 2014; 7
Daviran (10.1016/j.eswa.2023.121668_b0125) 2020; 29
Oh (10.1016/j.eswa.2023.121668_b0350) 2010; 19
Filzmoser (10.1016/j.eswa.2023.121668_b0175) 2009; 20
Nykänen (10.1016/j.eswa.2023.121668_b0345) 2015; 71
Krivoruchko (10.1016/j.eswa.2023.121668_b0280) 2011
Zhang (10.1016/j.eswa.2023.121668_b0480) 2018; 11
Carranza (10.1016/j.eswa.2023.121668_b0080) 2009; 35
Lv (10.1016/j.eswa.2023.121668_b0305) 2020; 10
Lin (10.1016/j.eswa.2023.121668_b0295) 2021; 11
10.1016/j.eswa.2023.121668_b0370
Breiman (10.1016/j.eswa.2023.121668_b0050) 1996; 24
Altman (10.1016/j.eswa.2023.121668_b0025) 1992; 46
Maepa (10.1016/j.eswa.2023.121668_b0310) 2021; 130
10.1016/j.eswa.2023.121668_b0255
10.1016/j.eswa.2023.121668_b0015
Wang (10.1016/j.eswa.2023.121668_b0435) 2019; 77
Zhang (10.1016/j.eswa.2023.121668_b0485) 2022; 14
Brown (10.1016/j.eswa.2023.121668_b0065) 2000; 47
10.1016/j.eswa.2023.121668_b0415
Schapire (10.1016/j.eswa.2023.121668_b0405) 1990; 5
Carranza (10.1016/j.eswa.2023.121668_b0085) 2015; 71
Daviran (10.1016/j.eswa.2023.121668_b0130) 2021; 148
Sun (10.1016/j.eswa.2023.121668_b0420) 2020; 10
Ford (10.1016/j.eswa.2023.121668_b0185) 2020; 29
Zhang (10.1016/j.eswa.2023.121668_b0500) 2021; 30
Ghezelbash (10.1016/j.eswa.2023.121668_b0200) 2018; 11
Alipoor (10.1016/j.eswa.2023.121668_b0020) 2021; 13
Xiong (10.1016/j.eswa.2023.121668_b0450) 2018; 111
References_xml – volume: 47
  start-page: 929
  year: 2000
  end-page: 941
  ident: b0275
  article-title: Vectorial fuzzy logic: A novel technique for enhanced mineral prospectivity mapping, with reference to the orogenic gold mineralisation potential of the Kalgoorlie Terrane, Western Australia
  publication-title: Australian Journal of Earth Sciences
– volume: 79
  start-page: 323
  year: 2019
  end-page: 336
  ident: b0225
  article-title: Incorporation of principal component analysis, geostatistical interpolation approaches and frequency-space-based models for portraying the Cu-Au geochemical prospects in the Feizabad district, NW Iran
– volume: 22
  start-page: 1125
  year: 2000
  end-page: 1139
  ident: b0320
  article-title: Dextral transpression in Late Cretaceous continental collision, Sanandaj-Sirjan zone, western Iran
  publication-title: Journal of Structural geology
– volume: 48
  start-page: 1371
  year: 2023
  end-page: 1383
  ident: b0070
  article-title: Stacked-based ensemble machine learning model for positioning footballer
  publication-title: Arabian Journal for Science and Engineering
– volume: 54
  start-page: 1649
  year: 2012
  end-page: 1672
  ident: b0385
  article-title: Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: Geotectonic setting and data integration for future mineral exploration
  publication-title: International Geology Review
– volume: 33
  start-page: 536
  year: 2008
  end-page: 558
  ident: b0090
  article-title: Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping
  publication-title: Ore Geology Reviews
– volume: 87
  start-page: 9
  year: 2012
  end-page: 18
  ident: b0005
  article-title: ELECTRE III: A knowledge-driven method for integration of geophysical data with geological and geochemical data in mineral prospectivity mapping
  publication-title: Journal of Applied Geophysics
– reference: Olasehinde, O. O., Johnson, O. V., & Olayemi, O. C. (2020, March). Evaluation of selected meta learning algorithms for the prediction improvement of network intrusion detection system. In
– volume: 30
  start-page: 1977
  year: 2021
  end-page: 2005
  ident: b0220
  article-title: Regional-scale mineral prospectivity mapping: Support vector machines and an improved data-driven multi-criteria decision-making technique
  publication-title: Natural Resources Research
– volume: 128
  start-page: 84
  year: 2017
  end-page: 96
  ident: b0495
  article-title: Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang, NW China
  publication-title: Journal of African Earth Sciences
– volume: 37
  start-page: 1967
  year: 2011
  end-page: 1975
  ident: b0520
  article-title: Support vector machine: A tool for mapping mineral prospectivity
  publication-title: Computers & Geosciences
– volume: 24
  start-page: 49
  year: 1996
  end-page: 64
  ident: b0055
  article-title: Stacked regressions
– reference: Shetty, R., Geetha, M., Acharya, D. U., & Shyamala, G. (2022). Data Preprocessing and Finding Optimal Value of K for KNN Model. In
– volume: 14
  start-page: 47
  year: 2005
  end-page: 63
  ident: b0095
  article-title: Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi district, Zambia
– volume: 284
  start-page: 588
  year: 2017
  end-page: 607
  ident: b0145
  article-title: Mesozoic-Cenozoic mafic magmatism in Sanandaj-Sirjan zone, Zagros Orogen (Western Iran): Geochemical and isotopic inferences from middle Jurassic and late Eocene gabbros
  publication-title: Lithos
– volume: 31
  start-page: 2041
  year: 2022
  end-page: 2064
  ident: b0445
  article-title: A hybrid logistic regression: Gene expression programming model and its application to mineral prospectivity mapping
  publication-title: Natural Resources Research
– volume: 20
  start-page: 621
  year: 2009
  end-page: 632
  ident: b0175
  article-title: Principal component analysis for compositional data with outliers
  publication-title: Environmetrics: The Official Journal of the International Environmetrics Society
– reference: (pp. 576-582). IEEE.
– volume: 45
  start-page: 178
  year: 2008
  end-page: 190
  ident: b0030
  article-title: Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran
– volume: 67
  start-page: 551
  year: 1972
  end-page: 578
  ident: b0355
  article-title: Systematics of sulfur and carbon isotopes in hydrothermal ore deposits
  publication-title: Economic Geology
– volume: 130
  year: 2021
  ident: b0310
  article-title: Support vector machine and artificial neural network modelling of orogenic gold prospectivity mapping in the Swayze greenstone belt, Ontario, Canada
– reference: (pp. 1-7). IEEE.
– volume: 101
  year: 2021
  ident: b0120
  article-title: A stacking-based ensemble learning method for earthquake casualty prediction
  publication-title: Applied Soft Computing
– volume: 31
  start-page: 1121
  year: 2022
  end-page: 1133
  ident: b0530
  article-title: A geologically constrained variational autoencoder for mineral prospectivity mapping
  publication-title: Natural Resources Research
– start-page: 928
  year: 2011
  ident: b0280
  article-title: Spatial statistical data analysis for GIS users
– volume: 139
  year: 2021
  ident: b0155
  article-title: The Shamsabad Fe-Mn deposit, Markazi province, Iran: LA-ICP-MS and sulfur isotopic geochemistry
  publication-title: Ore Geology Reviews
– volume: 112
  year: 2019
  ident: b0340
  article-title: Geology, isotope geochemistry, and fluid inclusion investigation of the Robat Zn-Pb-Ba deposit, Malayer-Esfahan metallogenic belt, southwestern Iran
  publication-title: Ore Geology Reviews
– reference: Brosig, A., Barth, A., Hielscher, P., Legler, C., Schaefer, S., Bock, P., & Knobloch, A. Hybrid mineral predictive mapping with self-organizing maps and a multilayer perceptron.
– volume: 103
  start-page: 783
  year: 2008
  end-page: 799
  ident: b0040
  article-title: Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi Valley-type zinc-lead mineralization, Bongara area, northern Peru
  publication-title: Economic Geology
– volume: 59
  start-page: 556
  year: 2016
  end-page: 572
  ident: b0515
  article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China
– volume: 28
  start-page: 1299
  year: 2019
  end-page: 1316
  ident: b0210
  article-title: An improved data-driven multiple criteria decision-making procedure for spatial modeling of mineral prospectivity: Adaption of prediction–area plot and logistic functions
  publication-title: Natural Resources Research
– volume: 13
  start-page: 627
  year: 2021
  end-page: 643
  ident: b0020
  article-title: Structural analysis of the Takiyeh Zn-Pb mine in the Malayer-Esfahan metallogenic belt, west Iran
  publication-title: Journal of Economic Geology
– reference: Jammalamadaka, S. R. (2003). Introduction to linear regression analysis.
– reference: ,
– volume: 111
  start-page: 18
  year: 2018
  end-page: 25
  ident: b0450
  article-title: GIS-based rare events logistic regression for mineral prospectivity mapping
  publication-title: Computers & Geosciences
– reference: (pp. 1-9). Singapore: Springer Nature Singapore.
– volume: 29
  start-page: 2639
  year: 2015
  end-page: 2651
  ident: b0490
  article-title: Mineral prospectivity mapping with weights of evidence and fuzzy logic methods
  publication-title: Journal of Intelligent & Fuzzy Systems
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0115
  article-title: Support-vector networks
– start-page: 1
  year: 2022
  end-page: 21
  ident: b0525
  article-title: Graph deep learning model for mapping mineral prospectivity
  publication-title: Mathematical Geosciences
– reference: (Vol. 1, pp. 1150-1154). IEEE.
– volume: 10
  start-page: 312
  year: 2022
  ident: b0510
  article-title: The prediction of spark-ignition engine performance and emissions based on the svr algorithm
  publication-title: Processes
– reference: Ting, K. M., & Witten, I. H. (1997). Stacked Generalization: when does it work?.
– reference: Han, Y., Du, P., & Yang, K. (2022). Fedgbf: An efficient vertical federated learning framework via gradient boosting and bagging.
– volume: 7
  start-page: 13
  year: 2014
  end-page: 24
  ident: b0105
  article-title: A method for mineral prospectivity mapping integrating C4. 5 decision tree, weights-of-evidence and m-branch smoothing techniques: A case study in the eastern Kunlun Mountains, China
  publication-title: Earth Science Informatics
– volume: 35
  start-page: 675
  year: 2009
  end-page: 687
  ident: b0285
  article-title: Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil
– volume: 11
  start-page: 2525
  year: 2018
  end-page: 2539
  ident: b0480
  article-title: An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1. 0) and its application to mineral prospectivity mapping
  publication-title: Geoscientific Model Development
– volume: 71
  start-page: 853
  year: 2015
  end-page: 860
  ident: b0345
  article-title: Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland
  publication-title: Ore Geology Reviews
– volume: 14
  start-page: 5669
  year: 2022
  ident: b0485
  article-title: Stacking model for photovoltaic-power-generation prediction
  publication-title: Sustainability
– volume: 40
  start-page: 132
  year: 2021
  end-page: 141
  ident: b0465
  article-title: Advances in the application of machine learning methods in mineral prospectivity mapping
  publication-title: 地质科技通报
– reference: , 8-21.
– volume: 35
  start-page: 2032
  year: 2009
  end-page: 2046
  ident: b0080
  article-title: Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity
  publication-title: Computers & Geosciences
– volume: 112
  start-page: 381
  year: 2020
  end-page: 393
  ident: b0430
  article-title: Can smart energy information interventions help householders save electricity? a svr machine learning approach
  publication-title: Environmental Science & Policy
– volume: 12
  start-page: 993
  year: 1990
  end-page: 1001
  ident: b0240
  article-title: Neural network ensembles
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: Li, R., & Li, S. (2022). Multimedia Image Data Analysis Based on KNN Algorithm. Computational Intelligence and Neuroscience, 2022.
– volume: 29
  start-page: 229
  year: 2020
  end-page: 246
  ident: b0125
  article-title: Assessment of various fuzzy c-mean clustering validation indices for mapping mineral prospectivity: Combination of multifractal geochemical model and mineralization processes
  publication-title: Natural Resources Research
– volume: 138
  year: 2021
  ident: b0455
  article-title: Mineral prospectivity mapping by deep learning method in Yawan-Daqiao area, Gansu
– reference: (pp. 428-433). IEEE.
– volume: 176
  year: 2021
  ident: b0190
  article-title: Mapping gold mineral prospectivity based on weights of evidence method in southeast Asmara, Eritrea
– volume: 45
  start-page: 2001
  year: 2021
  end-page: 2020
  ident: b0475
  article-title: Sulfide Minerals and Fluid Chemistry of Zn–Pb Deposits in Central Sanandaj-Sirjan Zone, Iran
– reference: Al-Hajj, R., Assi, A., & Fouad, M. M. (2019, November). Stacking-based ensemble of support vector regressors for one-day ahead solar irradiance prediction. In
– volume: 25
  start-page: 3
  year: 2016
  end-page: 18
  ident: b0470
  article-title: Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration
  publication-title: Natural Resources Research
– volume: 10
  start-page: 635
  year: 2020
  ident: b0305
  article-title: A comparative study of different machine learning algorithms in predicting the content of ilmenite in titanium placer
  publication-title: Applied Sciences
– reference: (No. 13). Elsevier.
– volume: 148
  year: 2021
  ident: b0130
  article-title: A new strategy for spatial predictive mapping of mineral prospectivity: Automated hyperparameter tuning of random forest approach
  publication-title: Computers & Geosciences
– reference: Chen, C., Dai, H., Liu, Y., & He, B. (2011, June). Mineral prospectivity mapping integrating multi-source geology spatial data sets and logistic regression modelling. In
– volume: 91
  year: 2020
  ident: b0390
  article-title: Improved k-means and spectral matching for hyperspectral mineral mapping
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 24
  start-page: 1151
  year: 2003
  end-page: 1156
  ident: b0395
  article-title: Artificial neural networks as a tool for mineral potential mapping with GIS
  publication-title: International Journal of Remote Sensing
– volume: 46
  start-page: 747
  year: 2014
  end-page: 769
  ident: b0300
  article-title: Probabilistic fuzzy logic modeling: Quantifying uncertainty of mineral prospectivity models using Monte Carlo simulations
  publication-title: Mathematical Geosciences
– volume: 71
  start-page: 804
  year: 2015
  end-page: 818
  ident: b0400
  article-title: Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines
  publication-title: Ore Geology Reviews
– volume: 37
  start-page: 186
  year: 2010
  end-page: 194
  ident: b0160
  article-title: Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: A geological, mineralogical and isotopic (S, Pb) study
  publication-title: Journal of Asian Earth Sciences
– volume: 100
  year: 2022
  ident: b0270
  article-title: A comprehensive intrusion detection framework using boosting algorithms
  publication-title: Computers and Electrical Engineering
– volume: 29
  start-page: 267
  year: 2020
  end-page: 283
  ident: b0185
  article-title: Practical implementation of random forest-based mineral potential mapping for porphyry Cu–Au mineralization in the Eastern Lachlan Orogen, NSW, Australia
– reference: Momenzadeh, M. (2004). Metallic mineral resources of Iran, mined in ancient times: a brief review.
– volume: 71
  start-page: 788
  year: 2015
  end-page: 803
  ident: b0245
  article-title: Data-and knowledge-driven mineral prospectivity maps for Canada's North
  publication-title: Ore Geology Reviews
– start-page: 89
  year: 2022
  end-page: 99
  ident: b0265
  article-title: Support vector machines
  publication-title: Machine learning and artificial intelligence
– reference: Porwal, A., & Carranza, E. J. M. (2015). Introduction to the Special Issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration.
– reference: Bonham-Carter, G. F., & Bonham-Carter, G. (1994).
– volume: 26
  year: 2022
  ident: b0315
  article-title: High-concentration methane and ethane QEPAS detection employing partial least squares regression to filter out energy relaxation dependence on gas matrix composition
  publication-title: Photoacoustics
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b0050
  article-title: Bagging predictors
– volume: 131
  year: 2023
  ident: b0250
  article-title: Linear regression combined KNN algorithm to identify latent defects for imbalance data of ICs
  publication-title: Microelectronics Journal
– volume: 30
  start-page: 3099
  year: 2021
  end-page: 3120
  ident: b0375
  article-title: Machine learning-based 3D modeling of mineral prospectivity mapping in the Anqing Orefield, Eastern China
– volume: 5
  start-page: 197
  year: 1990
  end-page: 227
  ident: b0405
  article-title: The strength of weak learnability
  publication-title: Machine Learning
– start-page: 1
  year: 2022
  end-page: 17
  ident: b0135
  article-title: Quantifying uncertainties linked to the diversity of mathematical frameworks in knowledge-driven mineral prospectivity mapping
  publication-title: Natural Resources Research
– year: 2008
  ident: b0075
  article-title: Geochemical anomaly and mineral prospectivity mapping in GIS
– reference: Wu, D., & Wang, S. (2020, November). Comparison of road traffic accident prediction effects based on SVR and BP neural network. In
– volume: 114
  start-page: 1621
  year: 2019
  end-page: 1647
  ident: b0140
  article-title: The Zn-Pb mineralization of Florida canyon, an evaporite-related Mississippi valley-type deposit in the Bongará district, northern Peru
  publication-title: Economic Geology
– volume: 205
  year: 2019
  ident: b0380
  article-title: Comments on “Dehydration of hot oceanic slab at depth 30–50 km: Key to formation of Irankuh-Emarat Pb-Zn MVT belt, Central Iran” by Mohammad Hassan Karimpour and Martiya Sadeghi
  publication-title: Journal of geochemical exploration
– volume: 10
  start-page: 102
  year: 2020
  ident: b0420
  article-title: Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from southern Jiangxi Province, China
– volume: 231
  year: 2021
  ident: b0110
  article-title: Combining the outputs of various k-nearest neighbor anomaly detectors to form a robust ensemble model for high-dimensional geochemical anomaly detection
  publication-title: Journal of Geochemical Exploration
– volume: 89
  start-page: 1262
  year: 1994
  end-page: 1278
  ident: b0195
  article-title: Genesis of sediment-hosted Zn-Pb-Ba deposits in the Irankuh district, Esfahan area, west-central Iran
  publication-title: Economic Geology
– year: 2023
  ident: b0335
  article-title: New model combination meta-learner to improve accuracy prediction P2P lending with stacking ensemble learning
  publication-title: Intelligent Systems with Applications
– volume: 11
  start-page: 159
  year: 2021
  ident: b0295
  article-title: A comparative study of machine learning models with hyperparameter optimization algorithm for mapping mineral prospectivity
  publication-title: Minerals
– volume: 71
  start-page: 777
  year: 2015
  end-page: 787
  ident: b0085
  article-title: Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm
  publication-title: Ore Geology Reviews
– reference: (pp. 214-217). IEEE.
– volume: 350
  start-page: 180
  year: 2018
  end-page: 191
  ident: b0205
  article-title: Comparison of U-spatial statistics and C-A fractal models for delineating anomaly patterns of porphyry-type Cu geochemical signatures in the Varzaghan district, NW Iran
– reference: Pavlyshenko, B. (2018, August). Using stacking approaches for machine learning models. In 2018 IEEE second international conference on data stream mining & processing (DSMP) (pp. 255-258). IEEE.
– volume: 9
  start-page: 67
  year: 2014
  end-page: 80
  ident: b0460
  article-title: Application of an optimized SVR model of machine learning
  publication-title: International Journal of Multimedia and Ubiquitous Engineering
– volume: 46
  start-page: 175
  year: 1992
  end-page: 185
  ident: b0025
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: The American Statistician
– volume: 20
  start-page: 67
  year: 2012
  end-page: 80
  ident: b0170
  article-title: The Emarat and Muchan sedimentary rock-hosted stratabound Zn-Pb deposits: New data and genetic implications
  publication-title: Journal of Crystallography and Mineralogy
– volume: 134
  year: 2020
  ident: b0215
  article-title: Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm
  publication-title: Computers & Geosciences
– volume: 30
  start-page: 1011
  year: 2021
  end-page: 1031
  ident: b0500
  article-title: Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional auto-encoder network and supervised convolutional neural network
  publication-title: Natural Resources Research
– volume: 77
  start-page: 188
  year: 2019
  end-page: 204
  ident: b0435
  article-title: Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection
  publication-title: Applied Soft Computing
– volume: 47
  start-page: 757
  year: 2000
  end-page: 770
  ident: b0065
  article-title: Artificial neural networks: A new method for mineral prospectivity mapping
  publication-title: Australian Journal of Earth Sciences
– reference: , 477-483.
– volume: 11
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0200
  article-title: A hybrid AHP-VIKOR approach for prospectivity modeling of porphyry Cu deposits in the Varzaghan District, NW Iran
– reference: Ding, C. S., Haieh, C. T., Wu, Q., & Pedram, M. (1996, November). Stratified random sampling for power estimation. In
– volume: 50
  start-page: 853
  year: 2022
  end-page: 858
  ident: b0230
  article-title: Sulfide-associated hydrothermal dolomite and calcite reveal a shallow burial depth for Alpine-type Zn-(Pb) deposits
  publication-title: Geology
– reference: .
– year: 2012
  ident: b0410
  article-title: Linear regression analysis
– volume: 19
  start-page: 103
  year: 2010
  end-page: 124
  ident: b0350
  article-title: Application of artificial neural network for gold–silver deposits potential mapping: A case study of Korea
  publication-title: Natural Resources Research
– volume: 126
  year: 2021
  ident: b0035
  article-title: Combining fuzzy analytic hierarchy process with concentration–area fractal for mineral prospectivity mapping: A case study involving Qinling orogenic belt in central China
  publication-title: Applied Geochemistry
– reference: , 19.
– volume: 32
  start-page: 1557
  year: 2010
  end-page: 1575
  ident: b0165
  article-title: A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones
  publication-title: Journal of Structural Geology
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.eswa.2023.121668_b0050
  article-title: Bagging predictors
  publication-title: Machine Learning
  doi: 10.1007/BF00058655
– volume: 91
  year: 2020
  ident: 10.1016/j.eswa.2023.121668_b0390
  article-title: Improved k-means and spectral matching for hyperspectral mineral mapping
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2020.102154
– ident: 10.1016/j.eswa.2023.121668_b0255
  doi: 10.1198/tas.2003.s211
– volume: 350
  start-page: 180
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2023.121668_b0205
  article-title: Comparison of U-spatial statistics and C-A fractal models for delineating anomaly patterns of porphyry-type Cu geochemical signatures in the Varzaghan district, NW Iran
  publication-title: Comptes Rendus Geoscience
  doi: 10.1016/j.crte.2018.02.003
– volume: 77
  start-page: 188
  year: 2019
  ident: 10.1016/j.eswa.2023.121668_b0435
  article-title: Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.01.015
– volume: 32
  start-page: 1557
  issue: 11
  year: 2010
  ident: 10.1016/j.eswa.2023.121668_b0165
  article-title: A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones
  publication-title: Journal of Structural Geology
  doi: 10.1016/j.jsg.2010.06.009
– volume: 79
  start-page: 323
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2023.121668_b0225
  article-title: Incorporation of principal component analysis, geostatistical interpolation approaches and frequency-space-based models for portraying the Cu-Au geochemical prospects in the Feizabad district, NW Iran
  publication-title: Geochemistry
  doi: 10.1016/j.chemer.2019.05.005
– volume: 22
  start-page: 1125
  issue: 8
  year: 2000
  ident: 10.1016/j.eswa.2023.121668_b0320
  article-title: Dextral transpression in Late Cretaceous continental collision, Sanandaj-Sirjan zone, western Iran
  publication-title: Journal of Structural geology
  doi: 10.1016/S0191-8141(00)00023-7
– volume: 138
  year: 2021
  ident: 10.1016/j.eswa.2023.121668_b0455
  article-title: Mineral prospectivity mapping by deep learning method in Yawan-Daqiao area, Gansu
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2021.104316
– volume: 33
  start-page: 536
  issue: 3–4
  year: 2008
  ident: 10.1016/j.eswa.2023.121668_b0090
  article-title: Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2007.07.001
– volume: 89
  start-page: 1262
  issue: 6
  year: 1994
  ident: 10.1016/j.eswa.2023.121668_b0195
  article-title: Genesis of sediment-hosted Zn-Pb-Ba deposits in the Irankuh district, Esfahan area, west-central Iran
  publication-title: Economic Geology
  doi: 10.2113/gsecongeo.89.6.1262
– volume: 30
  start-page: 1977
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2023.121668_b0220
  article-title: Regional-scale mineral prospectivity mapping: Support vector machines and an improved data-driven multi-criteria decision-making technique
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-021-09842-4
– volume: 14
  start-page: 47
  issue: 1
  year: 2005
  ident: 10.1016/j.eswa.2023.121668_b0095
  article-title: Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi district, Zambia
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-005-4678-9
– volume: 30
  start-page: 3099
  issue: 5
  year: 2021
  ident: 10.1016/j.eswa.2023.121668_b0375
  article-title: Machine learning-based 3D modeling of mineral prospectivity mapping in the Anqing Orefield, Eastern China
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-021-09893-7
– start-page: 928
  year: 2011
  ident: 10.1016/j.eswa.2023.121668_b0280
– volume: 46
  start-page: 747
  issue: 6
  year: 2014
  ident: 10.1016/j.eswa.2023.121668_b0300
  article-title: Probabilistic fuzzy logic modeling: Quantifying uncertainty of mineral prospectivity models using Monte Carlo simulations
  publication-title: Mathematical Geosciences
  doi: 10.1007/s11004-014-9534-1
– volume: 48
  start-page: 1371
  issue: 2
  year: 2023
  ident: 10.1016/j.eswa.2023.121668_b0070
  article-title: Stacked-based ensemble machine learning model for positioning footballer
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-022-06857-8
– volume: 71
  start-page: 853
  year: 2015
  ident: 10.1016/j.eswa.2023.121668_b0345
  article-title: Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2014.09.007
– ident: 10.1016/j.eswa.2023.121668_b0290
  doi: 10.1155/2022/7963603
– volume: 59
  start-page: 556
  issue: 3
  year: 2016
  ident: 10.1016/j.eswa.2023.121668_b0515
  article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China
  publication-title: Science China Earth Sciences
  doi: 10.1007/s11430-015-5178-3
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.eswa.2023.121668_b0115
  article-title: Support-vector networks
  publication-title: Machine learning
  doi: 10.1007/BF00994018
– volume: 100
  year: 2022
  ident: 10.1016/j.eswa.2023.121668_b0270
  article-title: A comprehensive intrusion detection framework using boosting algorithms
  publication-title: Computers and Electrical Engineering
  doi: 10.1016/j.compeleceng.2022.107869
– volume: 29
  start-page: 229
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.121668_b0125
  article-title: Assessment of various fuzzy c-mean clustering validation indices for mapping mineral prospectivity: Combination of multifractal geochemical model and mineralization processes
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09571-9
– volume: 231
  year: 2021
  ident: 10.1016/j.eswa.2023.121668_b0110
  article-title: Combining the outputs of various k-nearest neighbor anomaly detectors to form a robust ensemble model for high-dimensional geochemical anomaly detection
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2021.106875
– volume: 284
  start-page: 588
  year: 2017
  ident: 10.1016/j.eswa.2023.121668_b0145
  article-title: Mesozoic-Cenozoic mafic magmatism in Sanandaj-Sirjan zone, Zagros Orogen (Western Iran): Geochemical and isotopic inferences from middle Jurassic and late Eocene gabbros
  publication-title: Lithos
  doi: 10.1016/j.lithos.2017.05.009
– start-page: 1
  year: 2022
  ident: 10.1016/j.eswa.2023.121668_b0525
  article-title: Graph deep learning model for mapping mineral prospectivity
  publication-title: Mathematical Geosciences
– volume: 67
  start-page: 551
  issue: 5
  year: 1972
  ident: 10.1016/j.eswa.2023.121668_b0355
  article-title: Systematics of sulfur and carbon isotopes in hydrothermal ore deposits
  publication-title: Economic Geology
  doi: 10.2113/gsecongeo.67.5.551
– volume: 131
  year: 2023
  ident: 10.1016/j.eswa.2023.121668_b0250
  article-title: Linear regression combined KNN algorithm to identify latent defects for imbalance data of ICs
  publication-title: Microelectronics Journal
  doi: 10.1016/j.mejo.2022.105641
– ident: 10.1016/j.eswa.2023.121668_b0015
  doi: 10.1109/ICRERA47325.2019.8996629
– volume: 37
  start-page: 186
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2023.121668_b0160
  article-title: Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: A geological, mineralogical and isotopic (S, Pb) study
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2009.08.007
– volume: 35
  start-page: 2032
  issue: 10
  year: 2009
  ident: 10.1016/j.eswa.2023.121668_b0080
  article-title: Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2009.02.008
– volume: 31
  start-page: 1121
  issue: 3
  year: 2022
  ident: 10.1016/j.eswa.2023.121668_b0530
  article-title: A geologically constrained variational autoencoder for mineral prospectivity mapping
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-022-10050-x
– volume: 101
  year: 2021
  ident: 10.1016/j.eswa.2023.121668_b0120
  article-title: A stacking-based ensemble learning method for earthquake casualty prediction
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.107038
– ident: 10.1016/j.eswa.2023.121668_b0045
– volume: 87
  start-page: 9
  year: 2012
  ident: 10.1016/j.eswa.2023.121668_b0005
  article-title: ELECTRE III: A knowledge-driven method for integration of geophysical data with geological and geochemical data in mineral prospectivity mapping
  publication-title: Journal of Applied Geophysics
  doi: 10.1016/j.jappgeo.2012.08.003
– volume: 7
  start-page: 13
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2023.121668_b0105
  article-title: A method for mineral prospectivity mapping integrating C4. 5 decision tree, weights-of-evidence and m-branch smoothing techniques: A case study in the eastern Kunlun Mountains, China
  publication-title: Earth Science Informatics
  doi: 10.1007/s12145-013-0128-0
– ident: 10.1016/j.eswa.2023.121668_b0150
– volume: 10
  start-page: 635
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2023.121668_b0305
  article-title: A comparative study of different machine learning algorithms in predicting the content of ilmenite in titanium placer
  publication-title: Applied Sciences
  doi: 10.3390/app10020635
– ident: 10.1016/j.eswa.2023.121668_b0235
– volume: 205
  year: 2019
  ident: 10.1016/j.eswa.2023.121668_b0380
  article-title: Comments on “Dehydration of hot oceanic slab at depth 30–50 km: Key to formation of Irankuh-Emarat Pb-Zn MVT belt, Central Iran” by Mohammad Hassan Karimpour and Martiya Sadeghi
  publication-title: Journal of geochemical exploration
  doi: 10.1016/j.gexplo.2019.106346
– volume: 50
  start-page: 853
  issue: 7
  year: 2022
  ident: 10.1016/j.eswa.2023.121668_b0230
  article-title: Sulfide-associated hydrothermal dolomite and calcite reveal a shallow burial depth for Alpine-type Zn-(Pb) deposits
  publication-title: Geology
  doi: 10.1130/G49812.1
– volume: 13
  start-page: 627
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2023.121668_b0020
  article-title: Structural analysis of the Takiyeh Zn-Pb mine in the Malayer-Esfahan metallogenic belt, west Iran
  publication-title: Journal of Economic Geology
– volume: 20
  start-page: 621
  issue: 6
  year: 2009
  ident: 10.1016/j.eswa.2023.121668_b0175
  article-title: Principal component analysis for compositional data with outliers
  publication-title: Environmetrics: The Official Journal of the International Environmetrics Society
  doi: 10.1002/env.966
– ident: 10.1016/j.eswa.2023.121668_b0325
– ident: 10.1016/j.eswa.2023.121668_b0365
  doi: 10.1109/DSMP.2018.8478522
– volume: 46
  start-page: 175
  issue: 3
  year: 1992
  ident: 10.1016/j.eswa.2023.121668_b0025
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: The American Statistician
  doi: 10.1080/00031305.1992.10475879
– year: 2012
  ident: 10.1016/j.eswa.2023.121668_b0410
– volume: 139
  year: 2021
  ident: 10.1016/j.eswa.2023.121668_b0155
  article-title: The Shamsabad Fe-Mn deposit, Markazi province, Iran: LA-ICP-MS and sulfur isotopic geochemistry
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2021.104555
– volume: 35
  start-page: 675
  issue: 3
  year: 2009
  ident: 10.1016/j.eswa.2023.121668_b0285
  article-title: Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2008.05.003
– volume: 24
  start-page: 1151
  issue: 5
  year: 2003
  ident: 10.1016/j.eswa.2023.121668_b0395
  article-title: Artificial neural networks as a tool for mineral potential mapping with GIS
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/0143116021000031791
– ident: 10.1016/j.eswa.2023.121668_b0060
  doi: 10.5194/egusphere-egu21-15874
– volume: 20
  start-page: 67
  year: 2012
  ident: 10.1016/j.eswa.2023.121668_b0170
  article-title: The Emarat and Muchan sedimentary rock-hosted stratabound Zn-Pb deposits: New data and genetic implications
  publication-title: Journal of Crystallography and Mineralogy
– ident: 10.1016/j.eswa.2023.121668_b0370
  doi: 10.1016/j.oregeorev.2015.04.017
– volume: 128
  start-page: 84
  year: 2017
  ident: 10.1016/j.eswa.2023.121668_b0495
  article-title: Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang, NW China
  publication-title: Journal of African Earth Sciences
  doi: 10.1016/j.jafrearsci.2016.12.011
– volume: 5
  start-page: 197
  issue: 2
  year: 1990
  ident: 10.1016/j.eswa.2023.121668_b0405
  article-title: The strength of weak learnability
  publication-title: Machine Learning
  doi: 10.1007/BF00116037
– volume: 29
  start-page: 2639
  issue: 6
  year: 2015
  ident: 10.1016/j.eswa.2023.121668_b0490
  article-title: Mineral prospectivity mapping with weights of evidence and fuzzy logic methods
  publication-title: Journal of Intelligent & Fuzzy Systems
  doi: 10.3233/IFS-151967
– year: 2023
  ident: 10.1016/j.eswa.2023.121668_b0335
  article-title: New model combination meta-learner to improve accuracy prediction P2P lending with stacking ensemble learning
  publication-title: Intelligent Systems with Applications
  doi: 10.1016/j.iswa.2023.200204
– volume: 9
  start-page: 67
  issue: 6
  year: 2014
  ident: 10.1016/j.eswa.2023.121668_b0460
  article-title: Application of an optimized SVR model of machine learning
  publication-title: International Journal of Multimedia and Ubiquitous Engineering
  doi: 10.14257/ijmue.2014.9.6.08
– ident: 10.1016/j.eswa.2023.121668_b0440
  doi: 10.1109/ICIBA50161.2020.9277150
– volume: 176
  year: 2021
  ident: 10.1016/j.eswa.2023.121668_b0190
  article-title: Mapping gold mineral prospectivity based on weights of evidence method in southeast Asmara, Eritrea
  publication-title: Journal of African Earth Sciences
  doi: 10.1016/j.jafrearsci.2021.104143
– volume: 10
  start-page: 312
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2023.121668_b0510
  article-title: The prediction of spark-ignition engine performance and emissions based on the svr algorithm
  publication-title: Processes
  doi: 10.3390/pr10020312
– volume: 134
  year: 2020
  ident: 10.1016/j.eswa.2023.121668_b0215
  article-title: Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2019.104335
– volume: 10
  start-page: 102
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2023.121668_b0420
  article-title: Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from southern Jiangxi Province, China
  publication-title: Minerals
  doi: 10.3390/min10020102
– volume: 12
  start-page: 993
  issue: 10
  year: 1990
  ident: 10.1016/j.eswa.2023.121668_b0240
  article-title: Neural network ensembles
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.58871
– volume: 126
  year: 2021
  ident: 10.1016/j.eswa.2023.121668_b0035
  article-title: Combining fuzzy analytic hierarchy process with concentration–area fractal for mineral prospectivity mapping: A case study involving Qinling orogenic belt in central China
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2021.104894
– volume: 45
  start-page: 178
  issue: 4–5
  year: 2008
  ident: 10.1016/j.eswa.2023.121668_b0030
  article-title: Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran
  publication-title: Journal of Geodynamics
  doi: 10.1016/j.jog.2007.11.001
– volume: 24
  start-page: 49
  issue: 1
  year: 1996
  ident: 10.1016/j.eswa.2023.121668_b0055
  article-title: Stacked regressions
  publication-title: Machine Learning
  doi: 10.1007/BF00117832
– volume: 25
  start-page: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2023.121668_b0470
  article-title: Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-014-9261-9
– volume: 111
  start-page: 18
  year: 2018
  ident: 10.1016/j.eswa.2023.121668_b0450
  article-title: GIS-based rare events logistic regression for mineral prospectivity mapping
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2017.10.005
– start-page: 89
  year: 2022
  ident: 10.1016/j.eswa.2023.121668_b0265
  article-title: Support vector machines
– ident: 10.1016/j.eswa.2023.121668_b0425
– volume: 112
  start-page: 381
  year: 2020
  ident: 10.1016/j.eswa.2023.121668_b0430
  article-title: Can smart energy information interventions help householders save electricity? a svr machine learning approach
  publication-title: Environmental Science & Policy
  doi: 10.1016/j.envsci.2020.07.003
– volume: 11
  start-page: 2525
  issue: 6
  year: 2018
  ident: 10.1016/j.eswa.2023.121668_b0480
  article-title: An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1. 0) and its application to mineral prospectivity mapping
  publication-title: Geoscientific Model Development
  doi: 10.5194/gmd-11-2525-2018
– volume: 30
  start-page: 1011
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2023.121668_b0500
  article-title: Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional auto-encoder network and supervised convolutional neural network
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-020-09789-y
– volume: 26
  year: 2022
  ident: 10.1016/j.eswa.2023.121668_b0315
  article-title: High-concentration methane and ethane QEPAS detection employing partial least squares regression to filter out energy relaxation dependence on gas matrix composition
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2022.100349
– volume: 45
  start-page: 2001
  issue: 6
  year: 2021
  ident: 10.1016/j.eswa.2023.121668_b0475
  article-title: Sulfide Minerals and Fluid Chemistry of Zn–Pb Deposits in Central Sanandaj-Sirjan Zone, Iran
  publication-title: Iranian Journal of Science and Technology, Transactions A: Science
  doi: 10.1007/s40995-021-01181-6
– volume: 37
  start-page: 1967
  issue: 12
  year: 2011
  ident: 10.1016/j.eswa.2023.121668_b0520
  article-title: Support vector machine: A tool for mapping mineral prospectivity
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2010.09.014
– volume: 28
  start-page: 1299
  issue: 4
  year: 2019
  ident: 10.1016/j.eswa.2023.121668_b0210
  article-title: An improved data-driven multiple criteria decision-making procedure for spatial modeling of mineral prospectivity: Adaption of prediction–area plot and logistic functions
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-018-9448-6
– volume: 103
  start-page: 783
  issue: 4
  year: 2008
  ident: 10.1016/j.eswa.2023.121668_b0040
  article-title: Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi Valley-type zinc-lead mineralization, Bongara area, northern Peru
  publication-title: Economic Geology
  doi: 10.2113/gsecongeo.103.4.783
– volume: 11
  start-page: 159
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2023.121668_b0295
  article-title: A comparative study of machine learning models with hyperparameter optimization algorithm for mapping mineral prospectivity
  publication-title: Minerals
  doi: 10.3390/min11020159
– ident: 10.1016/j.eswa.2023.121668_b0100
  doi: 10.1109/ICSDM.2011.5969034
– volume: 148
  year: 2021
  ident: 10.1016/j.eswa.2023.121668_b0130
  article-title: A new strategy for spatial predictive mapping of mineral prospectivity: Automated hyperparameter tuning of random forest approach
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2021.104688
– volume: 19
  start-page: 103
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2023.121668_b0350
  article-title: Application of artificial neural network for gold–silver deposits potential mapping: A case study of Korea
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-010-9112-2
– volume: 112
  year: 2019
  ident: 10.1016/j.eswa.2023.121668_b0340
  article-title: Geology, isotope geochemistry, and fluid inclusion investigation of the Robat Zn-Pb-Ba deposit, Malayer-Esfahan metallogenic belt, southwestern Iran
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2019.103040
– year: 2008
  ident: 10.1016/j.eswa.2023.121668_b0075
– ident: 10.1016/j.eswa.2023.121668_b0415
  doi: 10.1007/978-981-16-7088-6_1
– start-page: 1
  year: 2022
  ident: 10.1016/j.eswa.2023.121668_b0135
  article-title: Quantifying uncertainties linked to the diversity of mathematical frameworks in knowledge-driven mineral prospectivity mapping
  publication-title: Natural Resources Research
– volume: 47
  start-page: 757
  issue: 4
  year: 2000
  ident: 10.1016/j.eswa.2023.121668_b0065
  article-title: Artificial neural networks: A new method for mineral prospectivity mapping
  publication-title: Australian Journal of Earth Sciences
  doi: 10.1046/j.1440-0952.2000.00807.x
– volume: 11
  start-page: 1
  issue: 11
  year: 2018
  ident: 10.1016/j.eswa.2023.121668_b0200
  article-title: A hybrid AHP-VIKOR approach for prospectivity modeling of porphyry Cu deposits in the Varzaghan District, NW Iran
  publication-title: Arabian Journal of Geosciences
  doi: 10.1007/s12517-018-3624-1
– volume: 71
  start-page: 788
  year: 2015
  ident: 10.1016/j.eswa.2023.121668_b0245
  article-title: Data-and knowledge-driven mineral prospectivity maps for Canada's North
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2015.01.004
– volume: 130
  year: 2021
  ident: 10.1016/j.eswa.2023.121668_b0310
  article-title: Support vector machine and artificial neural network modelling of orogenic gold prospectivity mapping in the Swayze greenstone belt, Ontario, Canada
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2020.103968
– ident: 10.1016/j.eswa.2023.121668_b0360
  doi: 10.1109/ICMCECS47690.2020.240893
– volume: 29
  start-page: 267
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2023.121668_b0185
  article-title: Practical implementation of random forest-based mineral potential mapping for porphyry Cu–Au mineralization in the Eastern Lachlan Orogen, NSW, Australia
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09598-y
– volume: 54
  start-page: 1649
  issue: 14
  year: 2012
  ident: 10.1016/j.eswa.2023.121668_b0385
  article-title: Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: Geotectonic setting and data integration for future mineral exploration
  publication-title: International Geology Review
  doi: 10.1080/00206814.2012.659110
– volume: 114
  start-page: 1621
  issue: 8
  year: 2019
  ident: 10.1016/j.eswa.2023.121668_b0140
  article-title: The Zn-Pb mineralization of Florida canyon, an evaporite-related Mississippi valley-type deposit in the Bongará district, northern Peru
  publication-title: Economic Geology
  doi: 10.5382/econgeo.4690
– volume: 31
  start-page: 2041
  issue: 4
  year: 2022
  ident: 10.1016/j.eswa.2023.121668_b0445
  article-title: A hybrid logistic regression: Gene expression programming model and its application to mineral prospectivity mapping
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-021-09918-1
– volume: 71
  start-page: 777
  year: 2015
  ident: 10.1016/j.eswa.2023.121668_b0085
  article-title: Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2014.08.010
– volume: 71
  start-page: 804
  year: 2015
  ident: 10.1016/j.eswa.2023.121668_b0400
  article-title: Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2015.01.001
– volume: 14
  start-page: 5669
  issue: 9
  year: 2022
  ident: 10.1016/j.eswa.2023.121668_b0485
  article-title: Stacking model for photovoltaic-power-generation prediction
  publication-title: Sustainability
  doi: 10.3390/su14095669
– volume: 47
  start-page: 929
  issue: 5
  year: 2000
  ident: 10.1016/j.eswa.2023.121668_b0275
  article-title: Vectorial fuzzy logic: A novel technique for enhanced mineral prospectivity mapping, with reference to the orogenic gold mineralisation potential of the Kalgoorlie Terrane, Western Australia
  publication-title: Australian Journal of Earth Sciences
  doi: 10.1046/j.1440-0952.2000.00816.x
– volume: 40
  start-page: 132
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2023.121668_b0465
  article-title: Advances in the application of machine learning methods in mineral prospectivity mapping
  publication-title: 地质科技通报
SSID ssj0017007
Score 2.6212275
Snippet Various ensemble machine learning techniques have been widely studied and implemented to construct the predictive models in different sciences, including...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121668
SubjectTerms KNN
Machine learning
MPM
MVT Pb-Zn
Stacking
SVR
Title Stacking: A novel data-driven ensemble machine learning strategy for prediction and mapping of Pb-Zn prospectivity in Varcheh district, west Iran
URI https://dx.doi.org/10.1016/j.eswa.2023.121668
Volume 237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEF0huPRCoYD4jObAjS5Z7PU67i2KiAKVokolVcTF2l3v0qDgRCFQ9dL_wD9mxl5HrYQ49OaPHcnaWc88e9-8YexUOuO10Rn3WSy4jGXKdWwirkynULqjcRFVap9DNRjJ63EyXmO9phaGaJUh9tcxvYrW4Uo7zGZ7Ppm0vyM4wHRIO42Eq8WYKthlSrS-8z8rmgfJz6W13l7KaXQonKk5Xu7xF2kPRTGJLCiSW30rOf2VcPpbbDMgRejWD7PN1lz5iX1sujBAeCl32AviRUs_vL9AF8rZs5sC0T55saBABviZ6h7M1MFDRZt0EPpE3MFjLUz7GxC3wnxBOzbkJdBlgYNJt-EOZh6-GX5b4v1ZKMpE2A6TEn5UKiA_oSDlXbT8DCS6AFeY-3bZqH950xvw0GiB21iIJfe28JFVmfKaAJsShTCZU1qlyiY2stZ72n4VscFZtLT1mlCpVnyhvLEG_bnH1stZ6fYZOJ2JwmgrkwKRmOzgkXEd4aVLjEii9IBdNDOc26BCTs0wpnlDN7vPySs5eSWvvXLAzlY281qD493RSeO4_J-VlGOSeMfu8D_tjtgHPJM1L-2YrS8XT-4EgcrStKqV2GIb3auvg-Er8PrqIw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5BOMClTxC0lM6hN7rKYq83cW8RKkoKjSrxUMTF2l3vQlBwopC26s_oP2YmXqMiIQ69Wd4dydoZz3z2zHwD8El5G4w1uQh5KoVKVUeY1CZC226pTdeQES3ZPoe6f66-jbLRChw2vTBcVhl9f-3Tl9463mnH02zPxuP2KYEDCoecaWRcLUersMbsVKoFa73BcX_4kEzoyLprmvYLFoi9M3WZl7_7zfRDSco8C5oZV5-KT__EnKNX8CKCRezVz_MaVnz1Bl42gxgwvpdv4S9BRsf_vL9gD6vpLz9BrvwU5Zx9GdKXqr-1E4-3y8pJj3FUxBXe1dy0f5CgK87mnLRhRaGpStrM1A1XOA34w4rLitansS-TkDuOK7xYEoFcY8nkuyT5GZl3AQcU_jbh_Ojr2WFfxFkLwqVSLkRwZUicznUwjNm0LKXNvTa6o13mEudC4AysTC2douPsa8bdWumBDtZZUukWtKpp5bcBvcllaY1TWUlgTHXpyvquDMpnVmZJZwcOmhMuXCQi53kYk6KpOLspWCsFa6WotbID-w8ys5qG49ndWaO44pExFRQnnpF7959yH2G9f_b9pDgZDI_fwwatqLpMbRdai_lP_4Fwy8LuRbu8B_ee7NQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacking%3A+A+novel+data-driven+ensemble+machine+learning+strategy+for+prediction+and+mapping+of+Pb-Zn+prospectivity+in+Varcheh+district%2C+west+Iran&rft.jtitle=Expert+systems+with+applications&rft.au=Hajihosseinlou%2C+Mahsa&rft.au=Maghsoudi%2C+Abbas&rft.au=Ghezelbash%2C+Reza&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=237&rft_id=info:doi/10.1016%2Fj.eswa.2023.121668&rft.externalDocID=S095741742302170X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon