Stacking: A novel data-driven ensemble machine learning strategy for prediction and mapping of Pb-Zn prospectivity in Varcheh district, west Iran
Various ensemble machine learning techniques have been widely studied and implemented to construct the predictive models in different sciences, including bagging, boosting, and stacking. However, bagging and boosting concentrate on minimizing variance or bias, stacking techniques aimed at reducing b...
Saved in:
Published in | Expert systems with applications Vol. 237; p. 121668 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/j.eswa.2023.121668 |
Cover
Loading…
Abstract | Various ensemble machine learning techniques have been widely studied and implemented to construct the predictive models in different sciences, including bagging, boosting, and stacking. However, bagging and boosting concentrate on minimizing variance or bias, stacking techniques aimed at reducing both by identifying the optimal integration of base learners. Moreover, while most ensemble methods simply combine identical machine learning models, stacking utilizes a meta-machine learning model to combine different base learning models, aiming to enhance the overall accuracy of generalization. Therefore, this research showed the utilization of stacking, an ensemble approach, to develop mineral prospectivity models for Pb-Zn mineralization in the Varcheh District, west Iran. To end this, various exploration evidence layers, including geochemical data, remote sensing data, geological and tectonic controls were used to construct the stacking structure. In the following, a set of five base learners were applied, containing support vector regression (SVR) using RBF, linear and polynomial kernels, the K-nearest neighbor (KNN), and linear regression. Ridge, SVR-RBF and XGBoost were used as a meta-learner to integrate the outputs of basic learners. To measure how well each model performed, ROC, F1-score and Precision metrics was carried out. Moreover, compared to the separate algorithms, the stacking-based ensemble model showed a better prediction accuracy. The findings of this study demonstrated that the ensemble model based on stacking achieved a 95% prediction rate for Pb-Zn deposits, covering only 9% of the study area. As a result, this model holds promise as an effective tool for predicting mineral prospectivity in other study areas, regardless of whether they exhibit similar or different types of mineralization. |
---|---|
AbstractList | Various ensemble machine learning techniques have been widely studied and implemented to construct the predictive models in different sciences, including bagging, boosting, and stacking. However, bagging and boosting concentrate on minimizing variance or bias, stacking techniques aimed at reducing both by identifying the optimal integration of base learners. Moreover, while most ensemble methods simply combine identical machine learning models, stacking utilizes a meta-machine learning model to combine different base learning models, aiming to enhance the overall accuracy of generalization. Therefore, this research showed the utilization of stacking, an ensemble approach, to develop mineral prospectivity models for Pb-Zn mineralization in the Varcheh District, west Iran. To end this, various exploration evidence layers, including geochemical data, remote sensing data, geological and tectonic controls were used to construct the stacking structure. In the following, a set of five base learners were applied, containing support vector regression (SVR) using RBF, linear and polynomial kernels, the K-nearest neighbor (KNN), and linear regression. Ridge, SVR-RBF and XGBoost were used as a meta-learner to integrate the outputs of basic learners. To measure how well each model performed, ROC, F1-score and Precision metrics was carried out. Moreover, compared to the separate algorithms, the stacking-based ensemble model showed a better prediction accuracy. The findings of this study demonstrated that the ensemble model based on stacking achieved a 95% prediction rate for Pb-Zn deposits, covering only 9% of the study area. As a result, this model holds promise as an effective tool for predicting mineral prospectivity in other study areas, regardless of whether they exhibit similar or different types of mineralization. |
ArticleNumber | 121668 |
Author | Maghsoudi, Abbas Hajihosseinlou, Mahsa Ghezelbash, Reza |
Author_xml | – sequence: 1 givenname: Mahsa surname: Hajihosseinlou fullname: Hajihosseinlou, Mahsa – sequence: 2 givenname: Abbas orcidid: 0000-0003-1683-9209 surname: Maghsoudi fullname: Maghsoudi, Abbas email: a.maghsoudi@aut.ac.ir – sequence: 3 givenname: Reza surname: Ghezelbash fullname: Ghezelbash, Reza |
BookMark | eNp9kEFu2zAQRYkiBeq4vUBXPEDkDkWLkoJugqBtAgRIgLZZZENQo2FMR6YEknDgY_TGpeCssvBqFvPfYP47Z2d-9MTYVwErAUJ9264ovppVCaVciVIo1XxgC9HUslB1K8_YAtqqLtaiXn9i5zFuAUQNUC_Yv9_J4Ivzz5f8ivtxTwPvTTJFH9yePCcfadcNxHcGN84TH8gEn-M8pmASPR-4HQOfAvUOkxs9N77P4WmaM6PlD13x5PN-jBPlwN6lA3eeP5qAG9rw3uU7mbzgrxQTvw3Gf2YfrRkifXmbS_b3548_1zfF3f2v2-uruwIlQCos9rZE1SprVAWNgh66lpRRtcIKS0RrQVUtyC43x6ZsoZKyKqVQtsPONHLJmuNdzM_FQFajS2bukJu5QQvQs1q91bNaPavVR7UZLd-hU3A7Ew6noe9HiHKpvaOgIzrymM2FrEb3ozuF_wfGfJe0 |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_125312 crossref_primary_10_1016_j_tust_2024_106027 crossref_primary_10_1038_s41529_025_00573_y crossref_primary_10_1109_ACCESS_2025_3536479 crossref_primary_10_1007_s40808_024_02176_z crossref_primary_10_3390_en17225787 crossref_primary_10_1007_s12145_025_01708_0 crossref_primary_10_1016_j_jclepro_2025_144666 crossref_primary_10_11648_j_ajese_20240803_13 crossref_primary_10_1007_s40032_024_01136_x crossref_primary_10_1007_s00339_024_07395_w crossref_primary_10_1007_s12145_024_01481_6 crossref_primary_10_1007_s11004_024_10172_3 crossref_primary_10_1007_s12145_025_01843_8 crossref_primary_10_1016_j_compag_2025_109932 crossref_primary_10_1016_j_compgeo_2024_106805 crossref_primary_10_1016_j_inoche_2025_114316 crossref_primary_10_1007_s11053_025_10462_5 crossref_primary_10_1016_j_oreoa_2024_100065 crossref_primary_10_3390_land13121995 crossref_primary_10_1007_s12145_024_01404_5 crossref_primary_10_1007_s40808_024_02157_2 crossref_primary_10_1007_s12145_025_01718_y crossref_primary_10_3390_min14121209 crossref_primary_10_1007_s10614_024_10566_9 crossref_primary_10_1007_s40031_024_01060_9 crossref_primary_10_1016_j_chemer_2024_126207 crossref_primary_10_1016_j_solener_2024_112784 crossref_primary_10_1016_j_gexplo_2024_107414 crossref_primary_10_1016_j_gexplo_2025_107755 crossref_primary_10_1016_j_oregeorev_2024_106001 crossref_primary_10_1016_j_cageo_2024_105785 crossref_primary_10_1016_j_ecohyd_2024_04_003 crossref_primary_10_1016_j_gexplo_2025_107737 crossref_primary_10_1038_s41529_024_00508_z crossref_primary_10_3390_s24072210 crossref_primary_10_1007_s11053_024_10386_6 crossref_primary_10_1002_ett_4969 crossref_primary_10_3390_min14101015 crossref_primary_10_1007_s41024_024_00466_8 crossref_primary_10_1016_j_watres_2025_123165 crossref_primary_10_1016_j_heliyon_2024_e39205 crossref_primary_10_1007_s12145_024_01224_7 crossref_primary_10_1016_j_est_2024_114280 crossref_primary_10_1016_j_gexplo_2024_107393 crossref_primary_10_1016_j_rsase_2024_101343 |
Cites_doi | 10.1007/BF00058655 10.1016/j.jag.2020.102154 10.1198/tas.2003.s211 10.1016/j.crte.2018.02.003 10.1016/j.asoc.2019.01.015 10.1016/j.jsg.2010.06.009 10.1016/j.chemer.2019.05.005 10.1016/S0191-8141(00)00023-7 10.1016/j.oregeorev.2021.104316 10.1016/j.oregeorev.2007.07.001 10.2113/gsecongeo.89.6.1262 10.1007/s11053-021-09842-4 10.1007/s11053-005-4678-9 10.1007/s11053-021-09893-7 10.1007/s11004-014-9534-1 10.1007/s13369-022-06857-8 10.1016/j.oregeorev.2014.09.007 10.1155/2022/7963603 10.1007/s11430-015-5178-3 10.1007/BF00994018 10.1016/j.compeleceng.2022.107869 10.1007/s11053-019-09571-9 10.1016/j.gexplo.2021.106875 10.1016/j.lithos.2017.05.009 10.2113/gsecongeo.67.5.551 10.1016/j.mejo.2022.105641 10.1109/ICRERA47325.2019.8996629 10.1016/j.jseaes.2009.08.007 10.1016/j.cageo.2009.02.008 10.1007/s11053-022-10050-x 10.1016/j.asoc.2020.107038 10.1016/j.jappgeo.2012.08.003 10.1007/s12145-013-0128-0 10.3390/app10020635 10.1016/j.gexplo.2019.106346 10.1130/G49812.1 10.1002/env.966 10.1109/DSMP.2018.8478522 10.1080/00031305.1992.10475879 10.1016/j.oregeorev.2021.104555 10.1016/j.cageo.2008.05.003 10.1080/0143116021000031791 10.5194/egusphere-egu21-15874 10.1016/j.oregeorev.2015.04.017 10.1016/j.jafrearsci.2016.12.011 10.1007/BF00116037 10.3233/IFS-151967 10.1016/j.iswa.2023.200204 10.14257/ijmue.2014.9.6.08 10.1109/ICIBA50161.2020.9277150 10.1016/j.jafrearsci.2021.104143 10.3390/pr10020312 10.1016/j.cageo.2019.104335 10.3390/min10020102 10.1109/34.58871 10.1016/j.apgeochem.2021.104894 10.1016/j.jog.2007.11.001 10.1007/BF00117832 10.1007/s11053-014-9261-9 10.1016/j.cageo.2017.10.005 10.1016/j.envsci.2020.07.003 10.5194/gmd-11-2525-2018 10.1007/s11053-020-09789-y 10.1016/j.pacs.2022.100349 10.1007/s40995-021-01181-6 10.1016/j.cageo.2010.09.014 10.1007/s11053-018-9448-6 10.2113/gsecongeo.103.4.783 10.3390/min11020159 10.1109/ICSDM.2011.5969034 10.1016/j.cageo.2021.104688 10.1007/s11053-010-9112-2 10.1016/j.oregeorev.2019.103040 10.1007/978-981-16-7088-6_1 10.1046/j.1440-0952.2000.00807.x 10.1007/s12517-018-3624-1 10.1016/j.oregeorev.2015.01.004 10.1016/j.oregeorev.2020.103968 10.1109/ICMCECS47690.2020.240893 10.1007/s11053-019-09598-y 10.1080/00206814.2012.659110 10.5382/econgeo.4690 10.1007/s11053-021-09918-1 10.1016/j.oregeorev.2014.08.010 10.1016/j.oregeorev.2015.01.001 10.3390/su14095669 10.1046/j.1440-0952.2000.00816.x |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2023.121668 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2023_121668 S095741742302170X |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c300t-fcdf2c696fa650860d0b9e6a676c5c2ccff065903b957c829053352316fbcba83 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Thu Apr 24 23:01:13 EDT 2025 Tue Jul 01 04:06:14 EDT 2025 Fri Feb 23 02:35:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | KNN MPM Stacking SVR Machine learning MVT Pb-Zn |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-fcdf2c696fa650860d0b9e6a676c5c2ccff065903b957c829053352316fbcba83 |
ORCID | 0000-0003-1683-9209 |
ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2023_121668 crossref_primary_10_1016_j_eswa_2023_121668 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_121668 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 2024-03-00 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jammalamadaka, S. R. (2003). Introduction to linear regression analysis. Ghazban, McNutt, Schwarcz (b0195) 1994; 89 Deevsalar, Shinjo, Ghaderi, Murata, Hoskin, Oshiro, Neill (b0145) 2017; 284 19. Shetty, R., Geetha, M., Acharya, D. U., & Shyamala, G. (2022). Data Preprocessing and Finding Optimal Value of K for KNN Model. In Ghezelbash, Maghsoudi, Carranza (b0215) 2020; 134 Sun, Li, Wu, Chen, Zhu, Hu (b0420) 2020; 10 Azizi, Jahangiri (b0030) 2008; 45 Niroomand, Haghi, Rajabi, Shabani, Song (b0340) 2019; 112 Bonham-Carter, G. F., & Bonham-Carter, G. (1994). Ehya, Marbouti (b0155) 2021; 139 Qin, Liu, Wu (b0375) 2021; 30 Nykänen, Lahti, Niiranen, Korhonen (b0345) 2015; 71 Krivoruchko (b0280) 2011 Brown, Gedeon, Groves, Barnes (b0065) 2000; 47 Giorno, Barale, Bertok, Frenzel, Looser, Guillong, Martire (b0230) 2022; 50 Xiong, Zuo (b0450) 2018; 111 Breiman (b0050) 1996; 24 , . Maepa, Smith, Tessema (b0310) 2021; 130 Zhang, Ren, Hou (b0480) 2018; 11 Lisitsin, Porwal, McCuaig (b0300) 2014; 46 Zhang, Zhou (b0490) 2015; 29 Zhang, Wang, Chen, Yan, Yang, Liu, Fu (b0510) 2022; 10 Rajabi, Mahmoodi, Rastad, Niroomand, Canet, Alfonso, Yarmohammadi (b0380) 2019; 205 Filzmoser, Hron, Reimann (b0175) 2009; 20 Ghezelbash, Maghsoudi (b0205) 2018; 350 Xu, Gao, Jin (b0460) 2014; 9 Al-Hajj, R., Assi, A., & Fouad, M. M. (2019, November). Stacking-based ensemble of support vector regressors for one-day ahead solar irradiance prediction. In Ghezelbash, Maghsoudi, Carranza (b0210) 2019; 28 Faulkner, Jackson, Lunn, Schlische, Shipton, Wibberley, Withjack (b0165) 2010; 32 477-483. Olasehinde, O. O., Johnson, O. V., & Olayemi, O. C. (2020, March). Evaluation of selected meta learning algorithms for the prediction improvement of network intrusion detection system. In Ghezelbash, Maghsoudi, Daviran, Yilmaz (b0225) 2019; 79 Ren, Sun, Zhai (b0390) 2020; 91 Joshi (b0265) 2022 de Oliveira, Leach, Juliani, Monteiro, Johnson (b0140) 2019; 114 Ghezelbash, Maghsoudi (b0200) 2018; 11 Knox-Robinson (b0275) 2000; 47 Mohajjel, Fergusson (b0320) 2000; 22 Brosig, A., Barth, A., Hielscher, P., Legler, C., Schaefer, S., Bock, P., & Knobloch, A. Hybrid mineral predictive mapping with self-organizing maps and a multilayer perceptron. Carranza (b0075) 2008 Zuo, Carranza (b0520) 2011; 37 (No. 13). Elsevier. Fazli, Shamanian, Shafiei (b0170) 2012; 20 Chen, He, Zeng (b0105) 2014; 7 Wang, Lam, Song, Li, Guo (b0430) 2020; 112 Wang, Wang, Geng, Wang, Yin, Jin (b0435) 2019; 77 8-21. Daviran, Maghsoudi, Ghezelbash, Pradhan (b0130) 2021; 148 Chen, C., Dai, H., Liu, Y., & He, B. (2011, June). Mineral prospectivity mapping integrating multi-source geology spatial data sets and logistic regression modelling. In Abedi, Torabi, Norouzi, Hamzeh (b0005) 2012; 87 Zhang, Zhou, Du (b0495) 2017; 128 Zhang, Carranza, Wei, Xiao, Yang, Xiang, Xu (b0500) 2021; 30 Carranza, Laborte (b0085) 2015; 71 Carranza, Woldai, Chikambwe (b0095) 2005; 14 Ohmoto (b0355) 1972; 67 (pp. 1-7). IEEE. Han, Y., Du, P., & Yang, K. (2022). Fedgbf: An efficient vertical federated learning framework via gradient boosting and bagging. Ding, C. S., Haieh, C. T., Wu, Q., & Pedram, M. (1996, November). Stratified random sampling for power estimation. In Fu, Chen, Yang, Chen, Wang, Liu, Rajesh (b0190) 2021; 176 Cui, Yin, Wang, Li, Wang (b0120) 2021; 101 (pp. 1-9). Singapore: Springer Nature Singapore. Carranza, Hale, Faassen (b0090) 2008; 33 Hansen, Salamon (b0240) 1990; 12 Porwal, A., & Carranza, E. J. M. (2015). Introduction to the Special Issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration. Ford (b0185) 2020; 29 Daviran, Parsa, Maghsoudi, Ghezelbash (b0135) 2022 Huang, Song, Jiang (b0250) 2023; 131 Schapire (b0405) 1990; 5 Zhang, Zhu (b0485) 2022; 14 Bai, Cao, Zhang, Zhang, Hou, Wang (b0035) 2021; 126 Menduni, Zifarelli, Sampaolo, Patimisco, Giglio, Amoroso, Spagnolo (b0315) 2022; 26 Zuo, Xu (b0525) 2022 Zhang, Zuo, Xiong (b0515) 2016; 59 (pp. 576-582). IEEE. Lin, Chen, Liu, Liu (b0295) 2021; 11 (pp. 428-433). IEEE. Rajabi, Rastad, Canet (b0385) 2012; 54 Alipoor, Hajiloo, Hosseinkhani (b0020) 2021; 13 Leite, de Souza Filho (b0285) 2009; 35 Zuo, Luo, Xiong, Yin (b0530) 2022; 31 Rodriguez-Galiano, Sanchez-Castillo, Chica-Olmo, Chica-Rivas (b0400) 2015; 71 Basuki, Taylor, Spooner (b0040) 2008; 103 Daviran, Maghsoudi, Cohen, Ghezelbash, Yilmaz (b0125) 2020; 29 Li, R., & Li, S. (2022). Multimedia Image Data Analysis Based on KNN Algorithm. Computational Intelligence and Neuroscience, 2022. Ghezelbash, Maghsoudi, Bigdeli, Carranza (b0220) 2021; 30 Pavlyshenko, B. (2018, August). Using stacking approaches for machine learning models. In 2018 IEEE second international conference on data stream mining & processing (DSMP) (pp. 255-258). IEEE. Ting, K. M., & Witten, I. H. (1997). Stacked Generalization: when does it work?. Altman (b0025) 1992; 46 (pp. 214-217). IEEE. Rigol-Sanchez, Chica-Olmo, Abarca-Hernandez (b0395) 2003; 24 Oh, Lee (b0350) 2010; 19 Carranza (b0080) 2009; 35 Yousefi, Carranza (b0470) 2016; 25 Lv, Le, Bui, Bui, Nguyen, Nguyen-Thoi, Song (b0305) 2020; 10 Ehya, Lotfi, Rasa (b0160) 2010; 37 Xu, Li, Xie, Cai, Niu, Liu (b0455) 2021; 138 Breiman (b0055) 1996; 24 Chen, Zhao, Lu (b0110) 2021; 231 Harris, Grunsky, Behnia, Corrigan (b0245) 2015; 71 Muslim, Nikmah, Pertiwi, Dasril (b0335) 2023 Seber, Lee (b0410) 2012 (Vol. 1, pp. 1150-1154). IEEE. Buyrukoğlu, Savaş (b0070) 2023; 48 Yao, Jiangnan (b0465) 2021; 40 Momenzadeh, M. (2004). Metallic mineral resources of Iran, mined in ancient times: a brief review. Zarasvandi, Poursheikhi, Saki (b0475) 2021; 45 Xiao, Chen, Wang, Erten (b0445) 2022; 31 Kilincer, Ertam, Sengur (b0270) 2022; 100 Wu, D., & Wang, S. (2020, November). Comparison of road traffic accident prediction effects based on SVR and BP neural network. In Cortes, Vapnik (b0115) 1995; 20 Muslim (10.1016/j.eswa.2023.121668_b0335) 2023 10.1016/j.eswa.2023.121668_b0360 Lisitsin (10.1016/j.eswa.2023.121668_b0300) 2014; 46 10.1016/j.eswa.2023.121668_b0365 Carranza (10.1016/j.eswa.2023.121668_b0090) 2008; 33 Chen (10.1016/j.eswa.2023.121668_b0110) 2021; 231 Niroomand (10.1016/j.eswa.2023.121668_b0340) 2019; 112 Carranza (10.1016/j.eswa.2023.121668_b0075) 2008 Zhang (10.1016/j.eswa.2023.121668_b0515) 2016; 59 Ghezelbash (10.1016/j.eswa.2023.121668_b0215) 2020; 134 Seber (10.1016/j.eswa.2023.121668_b0410) 2012 Yousefi (10.1016/j.eswa.2023.121668_b0470) 2016; 25 Rigol-Sanchez (10.1016/j.eswa.2023.121668_b0395) 2003; 24 Ghezelbash (10.1016/j.eswa.2023.121668_b0225) 2019; 79 10.1016/j.eswa.2023.121668_b0235 Zuo (10.1016/j.eswa.2023.121668_b0525) 2022 Abedi (10.1016/j.eswa.2023.121668_b0005) 2012; 87 Rajabi (10.1016/j.eswa.2023.121668_b0385) 2012; 54 Qin (10.1016/j.eswa.2023.121668_b0375) 2021; 30 Harris (10.1016/j.eswa.2023.121668_b0245) 2015; 71 Joshi (10.1016/j.eswa.2023.121668_b0265) 2022 Zarasvandi (10.1016/j.eswa.2023.121668_b0475) 2021; 45 Mohajjel (10.1016/j.eswa.2023.121668_b0320) 2000; 22 10.1016/j.eswa.2023.121668_b0100 Faulkner (10.1016/j.eswa.2023.121668_b0165) 2010; 32 Zuo (10.1016/j.eswa.2023.121668_b0530) 2022; 31 Rodriguez-Galiano (10.1016/j.eswa.2023.121668_b0400) 2015; 71 Zhang (10.1016/j.eswa.2023.121668_b0490) 2015; 29 Bai (10.1016/j.eswa.2023.121668_b0035) 2021; 126 Ohmoto (10.1016/j.eswa.2023.121668_b0355) 1972; 67 Zhang (10.1016/j.eswa.2023.121668_b0510) 2022; 10 Ghezelbash (10.1016/j.eswa.2023.121668_b0205) 2018; 350 Daviran (10.1016/j.eswa.2023.121668_b0135) 2022 Cui (10.1016/j.eswa.2023.121668_b0120) 2021; 101 Cortes (10.1016/j.eswa.2023.121668_b0115) 1995; 20 Ehya (10.1016/j.eswa.2023.121668_b0155) 2021; 139 Knox-Robinson (10.1016/j.eswa.2023.121668_b0275) 2000; 47 Kilincer (10.1016/j.eswa.2023.121668_b0270) 2022; 100 Xiao (10.1016/j.eswa.2023.121668_b0445) 2022; 31 Wang (10.1016/j.eswa.2023.121668_b0430) 2020; 112 10.1016/j.eswa.2023.121668_b0060 Azizi (10.1016/j.eswa.2023.121668_b0030) 2008; 45 10.1016/j.eswa.2023.121668_b0440 10.1016/j.eswa.2023.121668_b0045 Hansen (10.1016/j.eswa.2023.121668_b0240) 1990; 12 Huang (10.1016/j.eswa.2023.121668_b0250) 2023; 131 10.1016/j.eswa.2023.121668_b0325 Basuki (10.1016/j.eswa.2023.121668_b0040) 2008; 103 Xu (10.1016/j.eswa.2023.121668_b0460) 2014; 9 Giorno (10.1016/j.eswa.2023.121668_b0230) 2022; 50 Fazli (10.1016/j.eswa.2023.121668_b0170) 2012; 20 Yao (10.1016/j.eswa.2023.121668_b0465) 2021; 40 Leite (10.1016/j.eswa.2023.121668_b0285) 2009; 35 Menduni (10.1016/j.eswa.2023.121668_b0315) 2022; 26 10.1016/j.eswa.2023.121668_b0290 10.1016/j.eswa.2023.121668_b0150 Rajabi (10.1016/j.eswa.2023.121668_b0380) 2019; 205 Ren (10.1016/j.eswa.2023.121668_b0390) 2020; 91 Ghazban (10.1016/j.eswa.2023.121668_b0195) 1994; 89 Ghezelbash (10.1016/j.eswa.2023.121668_b0220) 2021; 30 Buyrukoğlu (10.1016/j.eswa.2023.121668_b0070) 2023; 48 de Oliveira (10.1016/j.eswa.2023.121668_b0140) 2019; 114 Ghezelbash (10.1016/j.eswa.2023.121668_b0210) 2019; 28 Xu (10.1016/j.eswa.2023.121668_b0455) 2021; 138 Breiman (10.1016/j.eswa.2023.121668_b0055) 1996; 24 Zuo (10.1016/j.eswa.2023.121668_b0520) 2011; 37 Carranza (10.1016/j.eswa.2023.121668_b0095) 2005; 14 Ehya (10.1016/j.eswa.2023.121668_b0160) 2010; 37 Deevsalar (10.1016/j.eswa.2023.121668_b0145) 2017; 284 Fu (10.1016/j.eswa.2023.121668_b0190) 2021; 176 Zhang (10.1016/j.eswa.2023.121668_b0495) 2017; 128 10.1016/j.eswa.2023.121668_b0425 Chen (10.1016/j.eswa.2023.121668_b0105) 2014; 7 Daviran (10.1016/j.eswa.2023.121668_b0125) 2020; 29 Oh (10.1016/j.eswa.2023.121668_b0350) 2010; 19 Filzmoser (10.1016/j.eswa.2023.121668_b0175) 2009; 20 Nykänen (10.1016/j.eswa.2023.121668_b0345) 2015; 71 Krivoruchko (10.1016/j.eswa.2023.121668_b0280) 2011 Zhang (10.1016/j.eswa.2023.121668_b0480) 2018; 11 Carranza (10.1016/j.eswa.2023.121668_b0080) 2009; 35 Lv (10.1016/j.eswa.2023.121668_b0305) 2020; 10 Lin (10.1016/j.eswa.2023.121668_b0295) 2021; 11 10.1016/j.eswa.2023.121668_b0370 Breiman (10.1016/j.eswa.2023.121668_b0050) 1996; 24 Altman (10.1016/j.eswa.2023.121668_b0025) 1992; 46 Maepa (10.1016/j.eswa.2023.121668_b0310) 2021; 130 10.1016/j.eswa.2023.121668_b0255 10.1016/j.eswa.2023.121668_b0015 Wang (10.1016/j.eswa.2023.121668_b0435) 2019; 77 Zhang (10.1016/j.eswa.2023.121668_b0485) 2022; 14 Brown (10.1016/j.eswa.2023.121668_b0065) 2000; 47 10.1016/j.eswa.2023.121668_b0415 Schapire (10.1016/j.eswa.2023.121668_b0405) 1990; 5 Carranza (10.1016/j.eswa.2023.121668_b0085) 2015; 71 Daviran (10.1016/j.eswa.2023.121668_b0130) 2021; 148 Sun (10.1016/j.eswa.2023.121668_b0420) 2020; 10 Ford (10.1016/j.eswa.2023.121668_b0185) 2020; 29 Zhang (10.1016/j.eswa.2023.121668_b0500) 2021; 30 Ghezelbash (10.1016/j.eswa.2023.121668_b0200) 2018; 11 Alipoor (10.1016/j.eswa.2023.121668_b0020) 2021; 13 Xiong (10.1016/j.eswa.2023.121668_b0450) 2018; 111 |
References_xml | – volume: 47 start-page: 929 year: 2000 end-page: 941 ident: b0275 article-title: Vectorial fuzzy logic: A novel technique for enhanced mineral prospectivity mapping, with reference to the orogenic gold mineralisation potential of the Kalgoorlie Terrane, Western Australia publication-title: Australian Journal of Earth Sciences – volume: 79 start-page: 323 year: 2019 end-page: 336 ident: b0225 article-title: Incorporation of principal component analysis, geostatistical interpolation approaches and frequency-space-based models for portraying the Cu-Au geochemical prospects in the Feizabad district, NW Iran – volume: 22 start-page: 1125 year: 2000 end-page: 1139 ident: b0320 article-title: Dextral transpression in Late Cretaceous continental collision, Sanandaj-Sirjan zone, western Iran publication-title: Journal of Structural geology – volume: 48 start-page: 1371 year: 2023 end-page: 1383 ident: b0070 article-title: Stacked-based ensemble machine learning model for positioning footballer publication-title: Arabian Journal for Science and Engineering – volume: 54 start-page: 1649 year: 2012 end-page: 1672 ident: b0385 article-title: Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: Geotectonic setting and data integration for future mineral exploration publication-title: International Geology Review – volume: 33 start-page: 536 year: 2008 end-page: 558 ident: b0090 article-title: Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping publication-title: Ore Geology Reviews – volume: 87 start-page: 9 year: 2012 end-page: 18 ident: b0005 article-title: ELECTRE III: A knowledge-driven method for integration of geophysical data with geological and geochemical data in mineral prospectivity mapping publication-title: Journal of Applied Geophysics – reference: Olasehinde, O. O., Johnson, O. V., & Olayemi, O. C. (2020, March). Evaluation of selected meta learning algorithms for the prediction improvement of network intrusion detection system. In – volume: 30 start-page: 1977 year: 2021 end-page: 2005 ident: b0220 article-title: Regional-scale mineral prospectivity mapping: Support vector machines and an improved data-driven multi-criteria decision-making technique publication-title: Natural Resources Research – volume: 128 start-page: 84 year: 2017 end-page: 96 ident: b0495 article-title: Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang, NW China publication-title: Journal of African Earth Sciences – volume: 37 start-page: 1967 year: 2011 end-page: 1975 ident: b0520 article-title: Support vector machine: A tool for mapping mineral prospectivity publication-title: Computers & Geosciences – volume: 24 start-page: 49 year: 1996 end-page: 64 ident: b0055 article-title: Stacked regressions – reference: Shetty, R., Geetha, M., Acharya, D. U., & Shyamala, G. (2022). Data Preprocessing and Finding Optimal Value of K for KNN Model. In – volume: 14 start-page: 47 year: 2005 end-page: 63 ident: b0095 article-title: Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi district, Zambia – volume: 284 start-page: 588 year: 2017 end-page: 607 ident: b0145 article-title: Mesozoic-Cenozoic mafic magmatism in Sanandaj-Sirjan zone, Zagros Orogen (Western Iran): Geochemical and isotopic inferences from middle Jurassic and late Eocene gabbros publication-title: Lithos – volume: 31 start-page: 2041 year: 2022 end-page: 2064 ident: b0445 article-title: A hybrid logistic regression: Gene expression programming model and its application to mineral prospectivity mapping publication-title: Natural Resources Research – volume: 20 start-page: 621 year: 2009 end-page: 632 ident: b0175 article-title: Principal component analysis for compositional data with outliers publication-title: Environmetrics: The Official Journal of the International Environmetrics Society – reference: (pp. 576-582). IEEE. – volume: 45 start-page: 178 year: 2008 end-page: 190 ident: b0030 article-title: Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran – volume: 67 start-page: 551 year: 1972 end-page: 578 ident: b0355 article-title: Systematics of sulfur and carbon isotopes in hydrothermal ore deposits publication-title: Economic Geology – volume: 130 year: 2021 ident: b0310 article-title: Support vector machine and artificial neural network modelling of orogenic gold prospectivity mapping in the Swayze greenstone belt, Ontario, Canada – reference: (pp. 1-7). IEEE. – volume: 101 year: 2021 ident: b0120 article-title: A stacking-based ensemble learning method for earthquake casualty prediction publication-title: Applied Soft Computing – volume: 31 start-page: 1121 year: 2022 end-page: 1133 ident: b0530 article-title: A geologically constrained variational autoencoder for mineral prospectivity mapping publication-title: Natural Resources Research – start-page: 928 year: 2011 ident: b0280 article-title: Spatial statistical data analysis for GIS users – volume: 139 year: 2021 ident: b0155 article-title: The Shamsabad Fe-Mn deposit, Markazi province, Iran: LA-ICP-MS and sulfur isotopic geochemistry publication-title: Ore Geology Reviews – volume: 112 year: 2019 ident: b0340 article-title: Geology, isotope geochemistry, and fluid inclusion investigation of the Robat Zn-Pb-Ba deposit, Malayer-Esfahan metallogenic belt, southwestern Iran publication-title: Ore Geology Reviews – reference: Brosig, A., Barth, A., Hielscher, P., Legler, C., Schaefer, S., Bock, P., & Knobloch, A. Hybrid mineral predictive mapping with self-organizing maps and a multilayer perceptron. – volume: 103 start-page: 783 year: 2008 end-page: 799 ident: b0040 article-title: Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi Valley-type zinc-lead mineralization, Bongara area, northern Peru publication-title: Economic Geology – volume: 59 start-page: 556 year: 2016 end-page: 572 ident: b0515 article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China – volume: 28 start-page: 1299 year: 2019 end-page: 1316 ident: b0210 article-title: An improved data-driven multiple criteria decision-making procedure for spatial modeling of mineral prospectivity: Adaption of prediction–area plot and logistic functions publication-title: Natural Resources Research – volume: 13 start-page: 627 year: 2021 end-page: 643 ident: b0020 article-title: Structural analysis of the Takiyeh Zn-Pb mine in the Malayer-Esfahan metallogenic belt, west Iran publication-title: Journal of Economic Geology – reference: Jammalamadaka, S. R. (2003). Introduction to linear regression analysis. – reference: , – volume: 111 start-page: 18 year: 2018 end-page: 25 ident: b0450 article-title: GIS-based rare events logistic regression for mineral prospectivity mapping publication-title: Computers & Geosciences – reference: (pp. 1-9). Singapore: Springer Nature Singapore. – volume: 29 start-page: 2639 year: 2015 end-page: 2651 ident: b0490 article-title: Mineral prospectivity mapping with weights of evidence and fuzzy logic methods publication-title: Journal of Intelligent & Fuzzy Systems – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b0115 article-title: Support-vector networks – start-page: 1 year: 2022 end-page: 21 ident: b0525 article-title: Graph deep learning model for mapping mineral prospectivity publication-title: Mathematical Geosciences – reference: (Vol. 1, pp. 1150-1154). IEEE. – volume: 10 start-page: 312 year: 2022 ident: b0510 article-title: The prediction of spark-ignition engine performance and emissions based on the svr algorithm publication-title: Processes – reference: Ting, K. M., & Witten, I. H. (1997). Stacked Generalization: when does it work?. – reference: Han, Y., Du, P., & Yang, K. (2022). Fedgbf: An efficient vertical federated learning framework via gradient boosting and bagging. – volume: 7 start-page: 13 year: 2014 end-page: 24 ident: b0105 article-title: A method for mineral prospectivity mapping integrating C4. 5 decision tree, weights-of-evidence and m-branch smoothing techniques: A case study in the eastern Kunlun Mountains, China publication-title: Earth Science Informatics – volume: 35 start-page: 675 year: 2009 end-page: 687 ident: b0285 article-title: Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil – volume: 11 start-page: 2525 year: 2018 end-page: 2539 ident: b0480 article-title: An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1. 0) and its application to mineral prospectivity mapping publication-title: Geoscientific Model Development – volume: 71 start-page: 853 year: 2015 end-page: 860 ident: b0345 article-title: Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland publication-title: Ore Geology Reviews – volume: 14 start-page: 5669 year: 2022 ident: b0485 article-title: Stacking model for photovoltaic-power-generation prediction publication-title: Sustainability – volume: 40 start-page: 132 year: 2021 end-page: 141 ident: b0465 article-title: Advances in the application of machine learning methods in mineral prospectivity mapping publication-title: 地质科技通报 – reference: , 8-21. – volume: 35 start-page: 2032 year: 2009 end-page: 2046 ident: b0080 article-title: Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity publication-title: Computers & Geosciences – volume: 112 start-page: 381 year: 2020 end-page: 393 ident: b0430 article-title: Can smart energy information interventions help householders save electricity? a svr machine learning approach publication-title: Environmental Science & Policy – volume: 12 start-page: 993 year: 1990 end-page: 1001 ident: b0240 article-title: Neural network ensembles publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: Li, R., & Li, S. (2022). Multimedia Image Data Analysis Based on KNN Algorithm. Computational Intelligence and Neuroscience, 2022. – volume: 29 start-page: 229 year: 2020 end-page: 246 ident: b0125 article-title: Assessment of various fuzzy c-mean clustering validation indices for mapping mineral prospectivity: Combination of multifractal geochemical model and mineralization processes publication-title: Natural Resources Research – volume: 138 year: 2021 ident: b0455 article-title: Mineral prospectivity mapping by deep learning method in Yawan-Daqiao area, Gansu – reference: (pp. 428-433). IEEE. – volume: 176 year: 2021 ident: b0190 article-title: Mapping gold mineral prospectivity based on weights of evidence method in southeast Asmara, Eritrea – volume: 45 start-page: 2001 year: 2021 end-page: 2020 ident: b0475 article-title: Sulfide Minerals and Fluid Chemistry of Zn–Pb Deposits in Central Sanandaj-Sirjan Zone, Iran – reference: Al-Hajj, R., Assi, A., & Fouad, M. M. (2019, November). Stacking-based ensemble of support vector regressors for one-day ahead solar irradiance prediction. In – volume: 25 start-page: 3 year: 2016 end-page: 18 ident: b0470 article-title: Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration publication-title: Natural Resources Research – volume: 10 start-page: 635 year: 2020 ident: b0305 article-title: A comparative study of different machine learning algorithms in predicting the content of ilmenite in titanium placer publication-title: Applied Sciences – reference: (No. 13). Elsevier. – volume: 148 year: 2021 ident: b0130 article-title: A new strategy for spatial predictive mapping of mineral prospectivity: Automated hyperparameter tuning of random forest approach publication-title: Computers & Geosciences – reference: Chen, C., Dai, H., Liu, Y., & He, B. (2011, June). Mineral prospectivity mapping integrating multi-source geology spatial data sets and logistic regression modelling. In – volume: 91 year: 2020 ident: b0390 article-title: Improved k-means and spectral matching for hyperspectral mineral mapping publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 24 start-page: 1151 year: 2003 end-page: 1156 ident: b0395 article-title: Artificial neural networks as a tool for mineral potential mapping with GIS publication-title: International Journal of Remote Sensing – volume: 46 start-page: 747 year: 2014 end-page: 769 ident: b0300 article-title: Probabilistic fuzzy logic modeling: Quantifying uncertainty of mineral prospectivity models using Monte Carlo simulations publication-title: Mathematical Geosciences – volume: 71 start-page: 804 year: 2015 end-page: 818 ident: b0400 article-title: Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines publication-title: Ore Geology Reviews – volume: 37 start-page: 186 year: 2010 end-page: 194 ident: b0160 article-title: Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: A geological, mineralogical and isotopic (S, Pb) study publication-title: Journal of Asian Earth Sciences – volume: 100 year: 2022 ident: b0270 article-title: A comprehensive intrusion detection framework using boosting algorithms publication-title: Computers and Electrical Engineering – volume: 29 start-page: 267 year: 2020 end-page: 283 ident: b0185 article-title: Practical implementation of random forest-based mineral potential mapping for porphyry Cu–Au mineralization in the Eastern Lachlan Orogen, NSW, Australia – reference: Momenzadeh, M. (2004). Metallic mineral resources of Iran, mined in ancient times: a brief review. – volume: 71 start-page: 788 year: 2015 end-page: 803 ident: b0245 article-title: Data-and knowledge-driven mineral prospectivity maps for Canada's North publication-title: Ore Geology Reviews – start-page: 89 year: 2022 end-page: 99 ident: b0265 article-title: Support vector machines publication-title: Machine learning and artificial intelligence – reference: Porwal, A., & Carranza, E. J. M. (2015). Introduction to the Special Issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration. – reference: Bonham-Carter, G. F., & Bonham-Carter, G. (1994). – volume: 26 year: 2022 ident: b0315 article-title: High-concentration methane and ethane QEPAS detection employing partial least squares regression to filter out energy relaxation dependence on gas matrix composition publication-title: Photoacoustics – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b0050 article-title: Bagging predictors – volume: 131 year: 2023 ident: b0250 article-title: Linear regression combined KNN algorithm to identify latent defects for imbalance data of ICs publication-title: Microelectronics Journal – volume: 30 start-page: 3099 year: 2021 end-page: 3120 ident: b0375 article-title: Machine learning-based 3D modeling of mineral prospectivity mapping in the Anqing Orefield, Eastern China – volume: 5 start-page: 197 year: 1990 end-page: 227 ident: b0405 article-title: The strength of weak learnability publication-title: Machine Learning – start-page: 1 year: 2022 end-page: 17 ident: b0135 article-title: Quantifying uncertainties linked to the diversity of mathematical frameworks in knowledge-driven mineral prospectivity mapping publication-title: Natural Resources Research – year: 2008 ident: b0075 article-title: Geochemical anomaly and mineral prospectivity mapping in GIS – reference: Wu, D., & Wang, S. (2020, November). Comparison of road traffic accident prediction effects based on SVR and BP neural network. In – volume: 114 start-page: 1621 year: 2019 end-page: 1647 ident: b0140 article-title: The Zn-Pb mineralization of Florida canyon, an evaporite-related Mississippi valley-type deposit in the Bongará district, northern Peru publication-title: Economic Geology – volume: 205 year: 2019 ident: b0380 article-title: Comments on “Dehydration of hot oceanic slab at depth 30–50 km: Key to formation of Irankuh-Emarat Pb-Zn MVT belt, Central Iran” by Mohammad Hassan Karimpour and Martiya Sadeghi publication-title: Journal of geochemical exploration – volume: 10 start-page: 102 year: 2020 ident: b0420 article-title: Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from southern Jiangxi Province, China – volume: 231 year: 2021 ident: b0110 article-title: Combining the outputs of various k-nearest neighbor anomaly detectors to form a robust ensemble model for high-dimensional geochemical anomaly detection publication-title: Journal of Geochemical Exploration – volume: 89 start-page: 1262 year: 1994 end-page: 1278 ident: b0195 article-title: Genesis of sediment-hosted Zn-Pb-Ba deposits in the Irankuh district, Esfahan area, west-central Iran publication-title: Economic Geology – year: 2023 ident: b0335 article-title: New model combination meta-learner to improve accuracy prediction P2P lending with stacking ensemble learning publication-title: Intelligent Systems with Applications – volume: 11 start-page: 159 year: 2021 ident: b0295 article-title: A comparative study of machine learning models with hyperparameter optimization algorithm for mapping mineral prospectivity publication-title: Minerals – volume: 71 start-page: 777 year: 2015 end-page: 787 ident: b0085 article-title: Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm publication-title: Ore Geology Reviews – reference: (pp. 214-217). IEEE. – volume: 350 start-page: 180 year: 2018 end-page: 191 ident: b0205 article-title: Comparison of U-spatial statistics and C-A fractal models for delineating anomaly patterns of porphyry-type Cu geochemical signatures in the Varzaghan district, NW Iran – reference: Pavlyshenko, B. (2018, August). Using stacking approaches for machine learning models. In 2018 IEEE second international conference on data stream mining & processing (DSMP) (pp. 255-258). IEEE. – volume: 9 start-page: 67 year: 2014 end-page: 80 ident: b0460 article-title: Application of an optimized SVR model of machine learning publication-title: International Journal of Multimedia and Ubiquitous Engineering – volume: 46 start-page: 175 year: 1992 end-page: 185 ident: b0025 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: The American Statistician – volume: 20 start-page: 67 year: 2012 end-page: 80 ident: b0170 article-title: The Emarat and Muchan sedimentary rock-hosted stratabound Zn-Pb deposits: New data and genetic implications publication-title: Journal of Crystallography and Mineralogy – volume: 134 year: 2020 ident: b0215 article-title: Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm publication-title: Computers & Geosciences – volume: 30 start-page: 1011 year: 2021 end-page: 1031 ident: b0500 article-title: Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional auto-encoder network and supervised convolutional neural network publication-title: Natural Resources Research – volume: 77 start-page: 188 year: 2019 end-page: 204 ident: b0435 article-title: Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection publication-title: Applied Soft Computing – volume: 47 start-page: 757 year: 2000 end-page: 770 ident: b0065 article-title: Artificial neural networks: A new method for mineral prospectivity mapping publication-title: Australian Journal of Earth Sciences – reference: , 477-483. – volume: 11 start-page: 1 year: 2018 end-page: 15 ident: b0200 article-title: A hybrid AHP-VIKOR approach for prospectivity modeling of porphyry Cu deposits in the Varzaghan District, NW Iran – reference: Ding, C. S., Haieh, C. T., Wu, Q., & Pedram, M. (1996, November). Stratified random sampling for power estimation. In – volume: 50 start-page: 853 year: 2022 end-page: 858 ident: b0230 article-title: Sulfide-associated hydrothermal dolomite and calcite reveal a shallow burial depth for Alpine-type Zn-(Pb) deposits publication-title: Geology – reference: . – year: 2012 ident: b0410 article-title: Linear regression analysis – volume: 19 start-page: 103 year: 2010 end-page: 124 ident: b0350 article-title: Application of artificial neural network for gold–silver deposits potential mapping: A case study of Korea publication-title: Natural Resources Research – volume: 126 year: 2021 ident: b0035 article-title: Combining fuzzy analytic hierarchy process with concentration–area fractal for mineral prospectivity mapping: A case study involving Qinling orogenic belt in central China publication-title: Applied Geochemistry – reference: , 19. – volume: 32 start-page: 1557 year: 2010 end-page: 1575 ident: b0165 article-title: A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones publication-title: Journal of Structural Geology – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.eswa.2023.121668_b0050 article-title: Bagging predictors publication-title: Machine Learning doi: 10.1007/BF00058655 – volume: 91 year: 2020 ident: 10.1016/j.eswa.2023.121668_b0390 article-title: Improved k-means and spectral matching for hyperspectral mineral mapping publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2020.102154 – ident: 10.1016/j.eswa.2023.121668_b0255 doi: 10.1198/tas.2003.s211 – volume: 350 start-page: 180 issue: 4 year: 2018 ident: 10.1016/j.eswa.2023.121668_b0205 article-title: Comparison of U-spatial statistics and C-A fractal models for delineating anomaly patterns of porphyry-type Cu geochemical signatures in the Varzaghan district, NW Iran publication-title: Comptes Rendus Geoscience doi: 10.1016/j.crte.2018.02.003 – volume: 77 start-page: 188 year: 2019 ident: 10.1016/j.eswa.2023.121668_b0435 article-title: Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.01.015 – volume: 32 start-page: 1557 issue: 11 year: 2010 ident: 10.1016/j.eswa.2023.121668_b0165 article-title: A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones publication-title: Journal of Structural Geology doi: 10.1016/j.jsg.2010.06.009 – volume: 79 start-page: 323 issue: 2 year: 2019 ident: 10.1016/j.eswa.2023.121668_b0225 article-title: Incorporation of principal component analysis, geostatistical interpolation approaches and frequency-space-based models for portraying the Cu-Au geochemical prospects in the Feizabad district, NW Iran publication-title: Geochemistry doi: 10.1016/j.chemer.2019.05.005 – volume: 22 start-page: 1125 issue: 8 year: 2000 ident: 10.1016/j.eswa.2023.121668_b0320 article-title: Dextral transpression in Late Cretaceous continental collision, Sanandaj-Sirjan zone, western Iran publication-title: Journal of Structural geology doi: 10.1016/S0191-8141(00)00023-7 – volume: 138 year: 2021 ident: 10.1016/j.eswa.2023.121668_b0455 article-title: Mineral prospectivity mapping by deep learning method in Yawan-Daqiao area, Gansu publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2021.104316 – volume: 33 start-page: 536 issue: 3–4 year: 2008 ident: 10.1016/j.eswa.2023.121668_b0090 article-title: Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2007.07.001 – volume: 89 start-page: 1262 issue: 6 year: 1994 ident: 10.1016/j.eswa.2023.121668_b0195 article-title: Genesis of sediment-hosted Zn-Pb-Ba deposits in the Irankuh district, Esfahan area, west-central Iran publication-title: Economic Geology doi: 10.2113/gsecongeo.89.6.1262 – volume: 30 start-page: 1977 issue: 3 year: 2021 ident: 10.1016/j.eswa.2023.121668_b0220 article-title: Regional-scale mineral prospectivity mapping: Support vector machines and an improved data-driven multi-criteria decision-making technique publication-title: Natural Resources Research doi: 10.1007/s11053-021-09842-4 – volume: 14 start-page: 47 issue: 1 year: 2005 ident: 10.1016/j.eswa.2023.121668_b0095 article-title: Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi district, Zambia publication-title: Natural Resources Research doi: 10.1007/s11053-005-4678-9 – volume: 30 start-page: 3099 issue: 5 year: 2021 ident: 10.1016/j.eswa.2023.121668_b0375 article-title: Machine learning-based 3D modeling of mineral prospectivity mapping in the Anqing Orefield, Eastern China publication-title: Natural Resources Research doi: 10.1007/s11053-021-09893-7 – start-page: 928 year: 2011 ident: 10.1016/j.eswa.2023.121668_b0280 – volume: 46 start-page: 747 issue: 6 year: 2014 ident: 10.1016/j.eswa.2023.121668_b0300 article-title: Probabilistic fuzzy logic modeling: Quantifying uncertainty of mineral prospectivity models using Monte Carlo simulations publication-title: Mathematical Geosciences doi: 10.1007/s11004-014-9534-1 – volume: 48 start-page: 1371 issue: 2 year: 2023 ident: 10.1016/j.eswa.2023.121668_b0070 article-title: Stacked-based ensemble machine learning model for positioning footballer publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-022-06857-8 – volume: 71 start-page: 853 year: 2015 ident: 10.1016/j.eswa.2023.121668_b0345 article-title: Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2014.09.007 – ident: 10.1016/j.eswa.2023.121668_b0290 doi: 10.1155/2022/7963603 – volume: 59 start-page: 556 issue: 3 year: 2016 ident: 10.1016/j.eswa.2023.121668_b0515 article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China publication-title: Science China Earth Sciences doi: 10.1007/s11430-015-5178-3 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.eswa.2023.121668_b0115 article-title: Support-vector networks publication-title: Machine learning doi: 10.1007/BF00994018 – volume: 100 year: 2022 ident: 10.1016/j.eswa.2023.121668_b0270 article-title: A comprehensive intrusion detection framework using boosting algorithms publication-title: Computers and Electrical Engineering doi: 10.1016/j.compeleceng.2022.107869 – volume: 29 start-page: 229 issue: 1 year: 2020 ident: 10.1016/j.eswa.2023.121668_b0125 article-title: Assessment of various fuzzy c-mean clustering validation indices for mapping mineral prospectivity: Combination of multifractal geochemical model and mineralization processes publication-title: Natural Resources Research doi: 10.1007/s11053-019-09571-9 – volume: 231 year: 2021 ident: 10.1016/j.eswa.2023.121668_b0110 article-title: Combining the outputs of various k-nearest neighbor anomaly detectors to form a robust ensemble model for high-dimensional geochemical anomaly detection publication-title: Journal of Geochemical Exploration doi: 10.1016/j.gexplo.2021.106875 – volume: 284 start-page: 588 year: 2017 ident: 10.1016/j.eswa.2023.121668_b0145 article-title: Mesozoic-Cenozoic mafic magmatism in Sanandaj-Sirjan zone, Zagros Orogen (Western Iran): Geochemical and isotopic inferences from middle Jurassic and late Eocene gabbros publication-title: Lithos doi: 10.1016/j.lithos.2017.05.009 – start-page: 1 year: 2022 ident: 10.1016/j.eswa.2023.121668_b0525 article-title: Graph deep learning model for mapping mineral prospectivity publication-title: Mathematical Geosciences – volume: 67 start-page: 551 issue: 5 year: 1972 ident: 10.1016/j.eswa.2023.121668_b0355 article-title: Systematics of sulfur and carbon isotopes in hydrothermal ore deposits publication-title: Economic Geology doi: 10.2113/gsecongeo.67.5.551 – volume: 131 year: 2023 ident: 10.1016/j.eswa.2023.121668_b0250 article-title: Linear regression combined KNN algorithm to identify latent defects for imbalance data of ICs publication-title: Microelectronics Journal doi: 10.1016/j.mejo.2022.105641 – ident: 10.1016/j.eswa.2023.121668_b0015 doi: 10.1109/ICRERA47325.2019.8996629 – volume: 37 start-page: 186 issue: 2 year: 2010 ident: 10.1016/j.eswa.2023.121668_b0160 article-title: Emarat carbonate-hosted Zn–Pb deposit, Markazi Province, Iran: A geological, mineralogical and isotopic (S, Pb) study publication-title: Journal of Asian Earth Sciences doi: 10.1016/j.jseaes.2009.08.007 – volume: 35 start-page: 2032 issue: 10 year: 2009 ident: 10.1016/j.eswa.2023.121668_b0080 article-title: Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2009.02.008 – volume: 31 start-page: 1121 issue: 3 year: 2022 ident: 10.1016/j.eswa.2023.121668_b0530 article-title: A geologically constrained variational autoencoder for mineral prospectivity mapping publication-title: Natural Resources Research doi: 10.1007/s11053-022-10050-x – volume: 101 year: 2021 ident: 10.1016/j.eswa.2023.121668_b0120 article-title: A stacking-based ensemble learning method for earthquake casualty prediction publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.107038 – ident: 10.1016/j.eswa.2023.121668_b0045 – volume: 87 start-page: 9 year: 2012 ident: 10.1016/j.eswa.2023.121668_b0005 article-title: ELECTRE III: A knowledge-driven method for integration of geophysical data with geological and geochemical data in mineral prospectivity mapping publication-title: Journal of Applied Geophysics doi: 10.1016/j.jappgeo.2012.08.003 – volume: 7 start-page: 13 issue: 1 year: 2014 ident: 10.1016/j.eswa.2023.121668_b0105 article-title: A method for mineral prospectivity mapping integrating C4. 5 decision tree, weights-of-evidence and m-branch smoothing techniques: A case study in the eastern Kunlun Mountains, China publication-title: Earth Science Informatics doi: 10.1007/s12145-013-0128-0 – ident: 10.1016/j.eswa.2023.121668_b0150 – volume: 10 start-page: 635 issue: 2 year: 2020 ident: 10.1016/j.eswa.2023.121668_b0305 article-title: A comparative study of different machine learning algorithms in predicting the content of ilmenite in titanium placer publication-title: Applied Sciences doi: 10.3390/app10020635 – ident: 10.1016/j.eswa.2023.121668_b0235 – volume: 205 year: 2019 ident: 10.1016/j.eswa.2023.121668_b0380 article-title: Comments on “Dehydration of hot oceanic slab at depth 30–50 km: Key to formation of Irankuh-Emarat Pb-Zn MVT belt, Central Iran” by Mohammad Hassan Karimpour and Martiya Sadeghi publication-title: Journal of geochemical exploration doi: 10.1016/j.gexplo.2019.106346 – volume: 50 start-page: 853 issue: 7 year: 2022 ident: 10.1016/j.eswa.2023.121668_b0230 article-title: Sulfide-associated hydrothermal dolomite and calcite reveal a shallow burial depth for Alpine-type Zn-(Pb) deposits publication-title: Geology doi: 10.1130/G49812.1 – volume: 13 start-page: 627 issue: 3 year: 2021 ident: 10.1016/j.eswa.2023.121668_b0020 article-title: Structural analysis of the Takiyeh Zn-Pb mine in the Malayer-Esfahan metallogenic belt, west Iran publication-title: Journal of Economic Geology – volume: 20 start-page: 621 issue: 6 year: 2009 ident: 10.1016/j.eswa.2023.121668_b0175 article-title: Principal component analysis for compositional data with outliers publication-title: Environmetrics: The Official Journal of the International Environmetrics Society doi: 10.1002/env.966 – ident: 10.1016/j.eswa.2023.121668_b0325 – ident: 10.1016/j.eswa.2023.121668_b0365 doi: 10.1109/DSMP.2018.8478522 – volume: 46 start-page: 175 issue: 3 year: 1992 ident: 10.1016/j.eswa.2023.121668_b0025 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: The American Statistician doi: 10.1080/00031305.1992.10475879 – year: 2012 ident: 10.1016/j.eswa.2023.121668_b0410 – volume: 139 year: 2021 ident: 10.1016/j.eswa.2023.121668_b0155 article-title: The Shamsabad Fe-Mn deposit, Markazi province, Iran: LA-ICP-MS and sulfur isotopic geochemistry publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2021.104555 – volume: 35 start-page: 675 issue: 3 year: 2009 ident: 10.1016/j.eswa.2023.121668_b0285 article-title: Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2008.05.003 – volume: 24 start-page: 1151 issue: 5 year: 2003 ident: 10.1016/j.eswa.2023.121668_b0395 article-title: Artificial neural networks as a tool for mineral potential mapping with GIS publication-title: International Journal of Remote Sensing doi: 10.1080/0143116021000031791 – ident: 10.1016/j.eswa.2023.121668_b0060 doi: 10.5194/egusphere-egu21-15874 – volume: 20 start-page: 67 year: 2012 ident: 10.1016/j.eswa.2023.121668_b0170 article-title: The Emarat and Muchan sedimentary rock-hosted stratabound Zn-Pb deposits: New data and genetic implications publication-title: Journal of Crystallography and Mineralogy – ident: 10.1016/j.eswa.2023.121668_b0370 doi: 10.1016/j.oregeorev.2015.04.017 – volume: 128 start-page: 84 year: 2017 ident: 10.1016/j.eswa.2023.121668_b0495 article-title: Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang, NW China publication-title: Journal of African Earth Sciences doi: 10.1016/j.jafrearsci.2016.12.011 – volume: 5 start-page: 197 issue: 2 year: 1990 ident: 10.1016/j.eswa.2023.121668_b0405 article-title: The strength of weak learnability publication-title: Machine Learning doi: 10.1007/BF00116037 – volume: 29 start-page: 2639 issue: 6 year: 2015 ident: 10.1016/j.eswa.2023.121668_b0490 article-title: Mineral prospectivity mapping with weights of evidence and fuzzy logic methods publication-title: Journal of Intelligent & Fuzzy Systems doi: 10.3233/IFS-151967 – year: 2023 ident: 10.1016/j.eswa.2023.121668_b0335 article-title: New model combination meta-learner to improve accuracy prediction P2P lending with stacking ensemble learning publication-title: Intelligent Systems with Applications doi: 10.1016/j.iswa.2023.200204 – volume: 9 start-page: 67 issue: 6 year: 2014 ident: 10.1016/j.eswa.2023.121668_b0460 article-title: Application of an optimized SVR model of machine learning publication-title: International Journal of Multimedia and Ubiquitous Engineering doi: 10.14257/ijmue.2014.9.6.08 – ident: 10.1016/j.eswa.2023.121668_b0440 doi: 10.1109/ICIBA50161.2020.9277150 – volume: 176 year: 2021 ident: 10.1016/j.eswa.2023.121668_b0190 article-title: Mapping gold mineral prospectivity based on weights of evidence method in southeast Asmara, Eritrea publication-title: Journal of African Earth Sciences doi: 10.1016/j.jafrearsci.2021.104143 – volume: 10 start-page: 312 issue: 2 year: 2022 ident: 10.1016/j.eswa.2023.121668_b0510 article-title: The prediction of spark-ignition engine performance and emissions based on the svr algorithm publication-title: Processes doi: 10.3390/pr10020312 – volume: 134 year: 2020 ident: 10.1016/j.eswa.2023.121668_b0215 article-title: Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2019.104335 – volume: 10 start-page: 102 issue: 2 year: 2020 ident: 10.1016/j.eswa.2023.121668_b0420 article-title: Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from southern Jiangxi Province, China publication-title: Minerals doi: 10.3390/min10020102 – volume: 12 start-page: 993 issue: 10 year: 1990 ident: 10.1016/j.eswa.2023.121668_b0240 article-title: Neural network ensembles publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.58871 – volume: 126 year: 2021 ident: 10.1016/j.eswa.2023.121668_b0035 article-title: Combining fuzzy analytic hierarchy process with concentration–area fractal for mineral prospectivity mapping: A case study involving Qinling orogenic belt in central China publication-title: Applied Geochemistry doi: 10.1016/j.apgeochem.2021.104894 – volume: 45 start-page: 178 issue: 4–5 year: 2008 ident: 10.1016/j.eswa.2023.121668_b0030 article-title: Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran publication-title: Journal of Geodynamics doi: 10.1016/j.jog.2007.11.001 – volume: 24 start-page: 49 issue: 1 year: 1996 ident: 10.1016/j.eswa.2023.121668_b0055 article-title: Stacked regressions publication-title: Machine Learning doi: 10.1007/BF00117832 – volume: 25 start-page: 3 issue: 1 year: 2016 ident: 10.1016/j.eswa.2023.121668_b0470 article-title: Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration publication-title: Natural Resources Research doi: 10.1007/s11053-014-9261-9 – volume: 111 start-page: 18 year: 2018 ident: 10.1016/j.eswa.2023.121668_b0450 article-title: GIS-based rare events logistic regression for mineral prospectivity mapping publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2017.10.005 – start-page: 89 year: 2022 ident: 10.1016/j.eswa.2023.121668_b0265 article-title: Support vector machines – ident: 10.1016/j.eswa.2023.121668_b0425 – volume: 112 start-page: 381 year: 2020 ident: 10.1016/j.eswa.2023.121668_b0430 article-title: Can smart energy information interventions help householders save electricity? a svr machine learning approach publication-title: Environmental Science & Policy doi: 10.1016/j.envsci.2020.07.003 – volume: 11 start-page: 2525 issue: 6 year: 2018 ident: 10.1016/j.eswa.2023.121668_b0480 article-title: An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1. 0) and its application to mineral prospectivity mapping publication-title: Geoscientific Model Development doi: 10.5194/gmd-11-2525-2018 – volume: 30 start-page: 1011 issue: 2 year: 2021 ident: 10.1016/j.eswa.2023.121668_b0500 article-title: Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional auto-encoder network and supervised convolutional neural network publication-title: Natural Resources Research doi: 10.1007/s11053-020-09789-y – volume: 26 year: 2022 ident: 10.1016/j.eswa.2023.121668_b0315 article-title: High-concentration methane and ethane QEPAS detection employing partial least squares regression to filter out energy relaxation dependence on gas matrix composition publication-title: Photoacoustics doi: 10.1016/j.pacs.2022.100349 – volume: 45 start-page: 2001 issue: 6 year: 2021 ident: 10.1016/j.eswa.2023.121668_b0475 article-title: Sulfide Minerals and Fluid Chemistry of Zn–Pb Deposits in Central Sanandaj-Sirjan Zone, Iran publication-title: Iranian Journal of Science and Technology, Transactions A: Science doi: 10.1007/s40995-021-01181-6 – volume: 37 start-page: 1967 issue: 12 year: 2011 ident: 10.1016/j.eswa.2023.121668_b0520 article-title: Support vector machine: A tool for mapping mineral prospectivity publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2010.09.014 – volume: 28 start-page: 1299 issue: 4 year: 2019 ident: 10.1016/j.eswa.2023.121668_b0210 article-title: An improved data-driven multiple criteria decision-making procedure for spatial modeling of mineral prospectivity: Adaption of prediction–area plot and logistic functions publication-title: Natural Resources Research doi: 10.1007/s11053-018-9448-6 – volume: 103 start-page: 783 issue: 4 year: 2008 ident: 10.1016/j.eswa.2023.121668_b0040 article-title: Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi Valley-type zinc-lead mineralization, Bongara area, northern Peru publication-title: Economic Geology doi: 10.2113/gsecongeo.103.4.783 – volume: 11 start-page: 159 issue: 2 year: 2021 ident: 10.1016/j.eswa.2023.121668_b0295 article-title: A comparative study of machine learning models with hyperparameter optimization algorithm for mapping mineral prospectivity publication-title: Minerals doi: 10.3390/min11020159 – ident: 10.1016/j.eswa.2023.121668_b0100 doi: 10.1109/ICSDM.2011.5969034 – volume: 148 year: 2021 ident: 10.1016/j.eswa.2023.121668_b0130 article-title: A new strategy for spatial predictive mapping of mineral prospectivity: Automated hyperparameter tuning of random forest approach publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2021.104688 – volume: 19 start-page: 103 issue: 2 year: 2010 ident: 10.1016/j.eswa.2023.121668_b0350 article-title: Application of artificial neural network for gold–silver deposits potential mapping: A case study of Korea publication-title: Natural Resources Research doi: 10.1007/s11053-010-9112-2 – volume: 112 year: 2019 ident: 10.1016/j.eswa.2023.121668_b0340 article-title: Geology, isotope geochemistry, and fluid inclusion investigation of the Robat Zn-Pb-Ba deposit, Malayer-Esfahan metallogenic belt, southwestern Iran publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2019.103040 – year: 2008 ident: 10.1016/j.eswa.2023.121668_b0075 – ident: 10.1016/j.eswa.2023.121668_b0415 doi: 10.1007/978-981-16-7088-6_1 – start-page: 1 year: 2022 ident: 10.1016/j.eswa.2023.121668_b0135 article-title: Quantifying uncertainties linked to the diversity of mathematical frameworks in knowledge-driven mineral prospectivity mapping publication-title: Natural Resources Research – volume: 47 start-page: 757 issue: 4 year: 2000 ident: 10.1016/j.eswa.2023.121668_b0065 article-title: Artificial neural networks: A new method for mineral prospectivity mapping publication-title: Australian Journal of Earth Sciences doi: 10.1046/j.1440-0952.2000.00807.x – volume: 11 start-page: 1 issue: 11 year: 2018 ident: 10.1016/j.eswa.2023.121668_b0200 article-title: A hybrid AHP-VIKOR approach for prospectivity modeling of porphyry Cu deposits in the Varzaghan District, NW Iran publication-title: Arabian Journal of Geosciences doi: 10.1007/s12517-018-3624-1 – volume: 71 start-page: 788 year: 2015 ident: 10.1016/j.eswa.2023.121668_b0245 article-title: Data-and knowledge-driven mineral prospectivity maps for Canada's North publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2015.01.004 – volume: 130 year: 2021 ident: 10.1016/j.eswa.2023.121668_b0310 article-title: Support vector machine and artificial neural network modelling of orogenic gold prospectivity mapping in the Swayze greenstone belt, Ontario, Canada publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2020.103968 – ident: 10.1016/j.eswa.2023.121668_b0360 doi: 10.1109/ICMCECS47690.2020.240893 – volume: 29 start-page: 267 issue: 1 year: 2020 ident: 10.1016/j.eswa.2023.121668_b0185 article-title: Practical implementation of random forest-based mineral potential mapping for porphyry Cu–Au mineralization in the Eastern Lachlan Orogen, NSW, Australia publication-title: Natural Resources Research doi: 10.1007/s11053-019-09598-y – volume: 54 start-page: 1649 issue: 14 year: 2012 ident: 10.1016/j.eswa.2023.121668_b0385 article-title: Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: Geotectonic setting and data integration for future mineral exploration publication-title: International Geology Review doi: 10.1080/00206814.2012.659110 – volume: 114 start-page: 1621 issue: 8 year: 2019 ident: 10.1016/j.eswa.2023.121668_b0140 article-title: The Zn-Pb mineralization of Florida canyon, an evaporite-related Mississippi valley-type deposit in the Bongará district, northern Peru publication-title: Economic Geology doi: 10.5382/econgeo.4690 – volume: 31 start-page: 2041 issue: 4 year: 2022 ident: 10.1016/j.eswa.2023.121668_b0445 article-title: A hybrid logistic regression: Gene expression programming model and its application to mineral prospectivity mapping publication-title: Natural Resources Research doi: 10.1007/s11053-021-09918-1 – volume: 71 start-page: 777 year: 2015 ident: 10.1016/j.eswa.2023.121668_b0085 article-title: Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2014.08.010 – volume: 71 start-page: 804 year: 2015 ident: 10.1016/j.eswa.2023.121668_b0400 article-title: Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2015.01.001 – volume: 14 start-page: 5669 issue: 9 year: 2022 ident: 10.1016/j.eswa.2023.121668_b0485 article-title: Stacking model for photovoltaic-power-generation prediction publication-title: Sustainability doi: 10.3390/su14095669 – volume: 47 start-page: 929 issue: 5 year: 2000 ident: 10.1016/j.eswa.2023.121668_b0275 article-title: Vectorial fuzzy logic: A novel technique for enhanced mineral prospectivity mapping, with reference to the orogenic gold mineralisation potential of the Kalgoorlie Terrane, Western Australia publication-title: Australian Journal of Earth Sciences doi: 10.1046/j.1440-0952.2000.00816.x – volume: 40 start-page: 132 issue: 1 year: 2021 ident: 10.1016/j.eswa.2023.121668_b0465 article-title: Advances in the application of machine learning methods in mineral prospectivity mapping publication-title: 地质科技通报 |
SSID | ssj0017007 |
Score | 2.6212275 |
Snippet | Various ensemble machine learning techniques have been widely studied and implemented to construct the predictive models in different sciences, including... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 121668 |
SubjectTerms | KNN Machine learning MPM MVT Pb-Zn Stacking SVR |
Title | Stacking: A novel data-driven ensemble machine learning strategy for prediction and mapping of Pb-Zn prospectivity in Varcheh district, west Iran |
URI | https://dx.doi.org/10.1016/j.eswa.2023.121668 |
Volume | 237 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEF0huPRCoYD4jObAjS5Z7PU67i2KiAKVokolVcTF2l3v0qDgRCFQ9dL_wD9mxl5HrYQ49OaPHcnaWc88e9-8YexUOuO10Rn3WSy4jGXKdWwirkynULqjcRFVap9DNRjJ63EyXmO9phaGaJUh9tcxvYrW4Uo7zGZ7Ppm0vyM4wHRIO42Eq8WYKthlSrS-8z8rmgfJz6W13l7KaXQonKk5Xu7xF2kPRTGJLCiSW30rOf2VcPpbbDMgRejWD7PN1lz5iX1sujBAeCl32AviRUs_vL9AF8rZs5sC0T55saBABviZ6h7M1MFDRZt0EPpE3MFjLUz7GxC3wnxBOzbkJdBlgYNJt-EOZh6-GX5b4v1ZKMpE2A6TEn5UKiA_oSDlXbT8DCS6AFeY-3bZqH950xvw0GiB21iIJfe28JFVmfKaAJsShTCZU1qlyiY2stZ72n4VscFZtLT1mlCpVnyhvLEG_bnH1stZ6fYZOJ2JwmgrkwKRmOzgkXEd4aVLjEii9IBdNDOc26BCTs0wpnlDN7vPySs5eSWvvXLAzlY281qD493RSeO4_J-VlGOSeMfu8D_tjtgHPJM1L-2YrS8XT-4EgcrStKqV2GIb3auvg-Er8PrqIw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5BOMClTxC0lM6hN7rKYq83cW8RKkoKjSrxUMTF2l3vQlBwopC26s_oP2YmXqMiIQ69Wd4dydoZz3z2zHwD8El5G4w1uQh5KoVKVUeY1CZC226pTdeQES3ZPoe6f66-jbLRChw2vTBcVhl9f-3Tl9463mnH02zPxuP2KYEDCoecaWRcLUersMbsVKoFa73BcX_4kEzoyLprmvYLFoi9M3WZl7_7zfRDSco8C5oZV5-KT__EnKNX8CKCRezVz_MaVnz1Bl42gxgwvpdv4S9BRsf_vL9gD6vpLz9BrvwU5Zx9GdKXqr-1E4-3y8pJj3FUxBXe1dy0f5CgK87mnLRhRaGpStrM1A1XOA34w4rLitansS-TkDuOK7xYEoFcY8nkuyT5GZl3AQcU_jbh_Ojr2WFfxFkLwqVSLkRwZUicznUwjNm0LKXNvTa6o13mEudC4AysTC2douPsa8bdWumBDtZZUukWtKpp5bcBvcllaY1TWUlgTHXpyvquDMpnVmZJZwcOmhMuXCQi53kYk6KpOLspWCsFa6WotbID-w8ys5qG49ndWaO44pExFRQnnpF7959yH2G9f_b9pDgZDI_fwwatqLpMbRdai_lP_4Fwy8LuRbu8B_ee7NQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacking%3A+A+novel+data-driven+ensemble+machine+learning+strategy+for+prediction+and+mapping+of+Pb-Zn+prospectivity+in+Varcheh+district%2C+west+Iran&rft.jtitle=Expert+systems+with+applications&rft.au=Hajihosseinlou%2C+Mahsa&rft.au=Maghsoudi%2C+Abbas&rft.au=Ghezelbash%2C+Reza&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=237&rft_id=info:doi/10.1016%2Fj.eswa.2023.121668&rft.externalDocID=S095741742302170X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |