Distributed parameter system identification using finite element differential neural networks

[Display omitted] •We proposed a method to solve the identification of uncertain distributed parameter systems.•We developed a novel DNN structure based on the finite element method.•We derived adaptive learning laws using Lyapunov's second method.•The identification algorithm is developed in N...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 43; pp. 633 - 642
Main Authors Aguilar-Leal, O., Fuentes-Aguilar, R.Q., Chairez, I., García-González, A., Huegel, J.C.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2016
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2016.01.004

Cover

Abstract [Display omitted] •We proposed a method to solve the identification of uncertain distributed parameter systems.•We developed a novel DNN structure based on the finite element method.•We derived adaptive learning laws using Lyapunov's second method.•The identification algorithm is developed in Nvidia's CUDA/C to reduce the execution time.•The FEM-DNN algorithm that we present was compared with a neural network trained using group search optimization or GPO-NN, and showed a superior performance.•The algorithm was validated with a 3D simulated DPS and tested on a physical 2D experiment. Most of the previous work on identification involves systems described by ordinary differential equations (ODEs). Many industrial processes and physical phenomena, however, should be modeled using partial differential equations (PDEs) which offer both spatial and temporal distributions that are simply not available with ODE models. Systems described by a PDE belong to a class of system called distributed parameter system (DPS). This article presents a method for solving the problem of identification of uncertain DPSs using a differential neural network (DNN). The DPS, assumed to be described by a PDE, is approximated using the finite element method (FEM). The FEM discretizes the domain into a set of distributed and connected nodes, thereby, allowing a representation of the DPS in a finite number of ODEs. The proposed DNN follows the same interconnection structure of the FEM, thus allowing the DNN to identify the FEM approximation of the DPS in both 2D and 3D domains. Lyapunov's second method was used to derive adaptive learning laws for the proposed DNN structure. The identification algorithm, here developed in Nvidia's CUDA/C to reduce the execution time, runs mostly on the graphics processing unit (GPU). A physical experiment served to validate the 2D case. In the experiment, the DNN followed the trajectory of 57 markers that were placed on an undulating square piece of silk. The proposed DNN is compared against a method based on principal component analysis and an artificial neural network trained with group search optimization. In addition to the 2D case, a simulation validated the 3D case, where input data for the DNN was generated by solving a PDE with appropriate initial and boundary conditions over an unitary domain. Results show that the proposed FEM-based DNN approximates the dynamic behavior of both a real 2D and a simulated 3D system.
AbstractList [Display omitted] •We proposed a method to solve the identification of uncertain distributed parameter systems.•We developed a novel DNN structure based on the finite element method.•We derived adaptive learning laws using Lyapunov's second method.•The identification algorithm is developed in Nvidia's CUDA/C to reduce the execution time.•The FEM-DNN algorithm that we present was compared with a neural network trained using group search optimization or GPO-NN, and showed a superior performance.•The algorithm was validated with a 3D simulated DPS and tested on a physical 2D experiment. Most of the previous work on identification involves systems described by ordinary differential equations (ODEs). Many industrial processes and physical phenomena, however, should be modeled using partial differential equations (PDEs) which offer both spatial and temporal distributions that are simply not available with ODE models. Systems described by a PDE belong to a class of system called distributed parameter system (DPS). This article presents a method for solving the problem of identification of uncertain DPSs using a differential neural network (DNN). The DPS, assumed to be described by a PDE, is approximated using the finite element method (FEM). The FEM discretizes the domain into a set of distributed and connected nodes, thereby, allowing a representation of the DPS in a finite number of ODEs. The proposed DNN follows the same interconnection structure of the FEM, thus allowing the DNN to identify the FEM approximation of the DPS in both 2D and 3D domains. Lyapunov's second method was used to derive adaptive learning laws for the proposed DNN structure. The identification algorithm, here developed in Nvidia's CUDA/C to reduce the execution time, runs mostly on the graphics processing unit (GPU). A physical experiment served to validate the 2D case. In the experiment, the DNN followed the trajectory of 57 markers that were placed on an undulating square piece of silk. The proposed DNN is compared against a method based on principal component analysis and an artificial neural network trained with group search optimization. In addition to the 2D case, a simulation validated the 3D case, where input data for the DNN was generated by solving a PDE with appropriate initial and boundary conditions over an unitary domain. Results show that the proposed FEM-based DNN approximates the dynamic behavior of both a real 2D and a simulated 3D system.
Author Fuentes-Aguilar, R.Q.
Huegel, J.C.
García-González, A.
Aguilar-Leal, O.
Chairez, I.
Author_xml – sequence: 1
  givenname: O.
  surname: Aguilar-Leal
  fullname: Aguilar-Leal, O.
  organization: Tecnológico de Monterrey, Mexico
– sequence: 2
  givenname: R.Q.
  surname: Fuentes-Aguilar
  fullname: Fuentes-Aguilar, R.Q.
  email: rita.fuentes@itesm.mx
  organization: Tecnológico de Monterrey, Mexico
– sequence: 3
  givenname: I.
  surname: Chairez
  fullname: Chairez, I.
  organization: Bioprocess Department, UPIBI-Instituto Politécnico Nacional, Mexico
– sequence: 4
  givenname: A.
  surname: García-González
  fullname: García-González, A.
  organization: Tecnológico de Monterrey, Mexico
– sequence: 5
  givenname: J.C.
  surname: Huegel
  fullname: Huegel, J.C.
  organization: Tecnológico de Monterrey, Mexico
BookMark eNp9kM1KAzEUhYNUsK2-gKu8wIzJ_GQy4EbqLxTc6FJCmtzIrdNMSVKlb-9M68pFV-fAPd-Fc2Zk4nsPhFxzlnPGxc0617E3eTH4nPGcseqMTLlsiqwVkk8GXwuZVW0lLsgsxjUbgm0hp-TjHmMKuNolsHSrg95AgkDjPibYULTgEzo0OmHv6S6i_6QOPSag0MFmuFKLzkEYc7qjHnbhIOmnD1_xkpw73UW4-tM5eX98eFs8Z8vXp5fF3TIzJWMpc3rlLG-hBdk4xkoQBaudaCyUupaycpWVVlvN9IpXxhphCy1co8HWpgQD5ZwUx78m9DEGcGobcKPDXnGmxoHUWo0DqXEgxbgaBhog-Q8ymA5FU9DYnUZvjygMpb4RgooGwRuwGMAkZXs8hf8COVCIRA
CitedBy_id crossref_primary_10_1007_s00202_016_0430_1
crossref_primary_10_1016_j_applthermaleng_2022_119765
crossref_primary_10_1109_ACCESS_2019_2942084
crossref_primary_10_1016_j_camwa_2020_10_021
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124597
crossref_primary_10_1016_j_ijleo_2016_05_145
crossref_primary_10_3390_app9235122
crossref_primary_10_1016_j_ifacol_2023_10_1704
crossref_primary_10_1007_s12555_020_0070_0
crossref_primary_10_1007_s11071_021_06987_y
crossref_primary_10_1007_s00500_017_2500_3
crossref_primary_10_1049_cth2_12512
crossref_primary_10_1080_00207721_2019_1691281
crossref_primary_10_1016_j_eswa_2024_125003
crossref_primary_10_1109_TNNLS_2020_2966914
crossref_primary_10_3390_s22197460
crossref_primary_10_1002_acs_3319
crossref_primary_10_1109_ACCESS_2020_2984558
crossref_primary_10_1080_00207721_2020_1737261
crossref_primary_10_1016_j_neunet_2019_01_003
crossref_primary_10_1109_TII_2017_2666841
crossref_primary_10_1016_j_ifacol_2018_07_325
crossref_primary_10_1016_j_ifacol_2020_12_1968
crossref_primary_10_2139_ssrn_4057311
crossref_primary_10_1016_j_asoc_2021_107300
Cites_doi 10.1073/pnas.79.8.2554
10.1109/72.712178
10.1016/S0098-1354(98)00191-4
10.1109/72.809085
10.1016/j.compchemeng.2007.05.002
10.1109/9.486648
10.1109/21.278990
10.1016/0888-613X(92)90014-Q
10.1016/j.neucom.2013.11.030
10.1016/j.asoc.2014.01.039
10.1016/0893-6080(89)90003-8
10.1109/TNN.2005.857945
10.1016/j.asoc.2014.02.015
10.1109/72.80202
10.1016/S0020-0255(02)00207-4
10.1155/2012/618403
10.1007/BF02551274
10.1016/j.neucom.2011.06.007
10.1109/72.914535
10.1016/j.neucom.2013.01.037
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2016.01.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 642
ExternalDocumentID 10_1016_j_asoc_2016_01_004
S1568494616000119
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-fabfd19e9e87f003e6205f67de3a5884f4d8dada0ab14cdc6d2a6f7aed5c3ece3
IEDL.DBID AIKHN
ISSN 1568-4946
IngestDate Tue Jul 01 01:49:56 EDT 2025
Thu Apr 24 22:52:26 EDT 2025
Fri Feb 23 02:24:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
CUDA/C
Parallel numerical solutions
Differential neural network
Distributed parameter systems
Non-parametric identification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-fabfd19e9e87f003e6205f67de3a5884f4d8dada0ab14cdc6d2a6f7aed5c3ece3
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_asoc_2016_01_004
crossref_citationtrail_10_1016_j_asoc_2016_01_004
elsevier_sciencedirect_doi_10_1016_j_asoc_2016_01_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2016
2016-06-00
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: June 2016
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Funahashi (bib0020) 1989; 2
Narendra, Parthasarathy (bib0055) 1992; 6
Yu, Li (bib0070) 2001; 12
Bathe (bib0015) 1996; vol. 2
Poznyak, Yu, Sanchez, Perez (bib0065) 1999; 10
Fuentes, Chairez, Poznyak, Poznyak (bib0100) 2012
Kwon, Bang (bib0135) 1997
Hopfield (bib0030) 1982; 79
Poznyak, Yu, Sanchez (bib0035) 2001
Wang, Shi (bib0125) 2014; 133
Han, Xie, Fu, Luo (bib0080) 2011; 74
Wang, Yan, Shi (bib0130) 2013; 113
Bisoi, Dash (bib0115) 2014; 19
Polycarpou (bib0085) 1996; 41
Fuentes, Poznyak, Figueroa, Garcia, Chairez (bib0105) 2012
Finlayson, Scriven (bib0010) 1966; 19
Aggelogiannaki, Sarimveis (bib0110) 2008; 32
Si (bib0140) 2006
Rovithakis, Christodoulou (bib0060) 1994; 24
Cybenko (bib0025) 1989; 2
Li, Yu (bib0075) 2002; 147
Lagaris, Likas, Fotiadis (bib0040) 1998; 9
Narendra, Parthasarathy (bib0050) 1990; 1
Polycarpou, Ioannou (bib0090) 1991
Smith (bib0005) 1985
Ramuhalli, Udpa, Udpa (bib0045) 2005; 16
González-García, Rico-Martínez, Kevrekidis (bib0095) 1998; 22
Singh, Padmanabhan, Agarwal (bib0120) 2014; 19
Weinberger (bib0145) 1986
Fuentes (10.1016/j.asoc.2016.01.004_bib0105) 2012
Aggelogiannaki (10.1016/j.asoc.2016.01.004_bib0110) 2008; 32
Polycarpou (10.1016/j.asoc.2016.01.004_bib0085) 1996; 41
Polycarpou (10.1016/j.asoc.2016.01.004_bib0090) 1991
Yu (10.1016/j.asoc.2016.01.004_bib0070) 2001; 12
Si (10.1016/j.asoc.2016.01.004_bib0140) 2006
Fuentes (10.1016/j.asoc.2016.01.004_bib0100) 2012
Smith (10.1016/j.asoc.2016.01.004_bib0005) 1985
González-García (10.1016/j.asoc.2016.01.004_bib0095) 1998; 22
Weinberger (10.1016/j.asoc.2016.01.004_bib0145) 1986
Bathe (10.1016/j.asoc.2016.01.004_bib0015) 1996; vol. 2
Hopfield (10.1016/j.asoc.2016.01.004_bib0030) 1982; 79
Narendra (10.1016/j.asoc.2016.01.004_bib0050) 1990; 1
Poznyak (10.1016/j.asoc.2016.01.004_bib0065) 1999; 10
Wang (10.1016/j.asoc.2016.01.004_bib0125) 2014; 133
Finlayson (10.1016/j.asoc.2016.01.004_bib0010) 1966; 19
Cybenko (10.1016/j.asoc.2016.01.004_bib0025) 1989; 2
Singh (10.1016/j.asoc.2016.01.004_bib0120) 2014; 19
Narendra (10.1016/j.asoc.2016.01.004_bib0055) 1992; 6
Bisoi (10.1016/j.asoc.2016.01.004_bib0115) 2014; 19
Han (10.1016/j.asoc.2016.01.004_bib0080) 2011; 74
Kwon (10.1016/j.asoc.2016.01.004_bib0135) 1997
Li (10.1016/j.asoc.2016.01.004_bib0075) 2002; 147
Ramuhalli (10.1016/j.asoc.2016.01.004_bib0045) 2005; 16
Poznyak (10.1016/j.asoc.2016.01.004_bib0035) 2001
Wang (10.1016/j.asoc.2016.01.004_bib0130) 2013; 113
Rovithakis (10.1016/j.asoc.2016.01.004_bib0060) 1994; 24
Lagaris (10.1016/j.asoc.2016.01.004_bib0040) 1998; 9
Funahashi (10.1016/j.asoc.2016.01.004_bib0020) 1989; 2
References_xml – volume: 24
  start-page: 400
  year: 1994
  end-page: 412
  ident: bib0060
  article-title: Adaptive control of unknown plants using dynamical neural networks
  publication-title: IEEE Trans. Syst. Man Cybern.
– year: 1985
  ident: bib0005
  article-title: Numerical Solution of Partial Differential Equations: Finite Difference Methods
– volume: 16
  start-page: 1381
  year: 2005
  end-page: 1392
  ident: bib0045
  article-title: Finite-element neural networks for solving differential equations
  publication-title: IEEE Trans. Neural Netw.
– volume: 2
  start-page: 303
  year: 1989
  end-page: 314
  ident: bib0025
  article-title: Approximation by superpositions of a sigmoidal, function
  publication-title: Math. Control Signals Syst.
– volume: 74
  start-page: 3428
  year: 2011
  end-page: 3439
  ident: bib0080
  article-title: Nonlinear systems identification using dynamic multi-time scale neural networks
  publication-title: Neurocomputing
– year: 1991
  ident: bib0090
  article-title: Identification and Control of Nonlinear Systems Using Neural Network Models: Design and Stability Analysis
– year: 1997
  ident: bib0135
  article-title: The Finite Element Method Using MATLAB. Advanced Topics in Mechanical Engineering Series
– volume: 6
  start-page: 109
  year: 1992
  end-page: 131
  ident: bib0055
  article-title: Neural networks and dynamical systems
  publication-title: Int. J. Approx. Reason.
– volume: 32
  start-page: 1225
  year: 2008
  end-page: 1237
  ident: bib0110
  article-title: Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models
  publication-title: Comput. Chem. Eng.
– volume: 19
  start-page: 41
  year: 2014
  end-page: 56
  ident: bib0115
  article-title: A hybrid evolutionary dynamic neural network for stock market trend analysis and prediction using unscented Kalman filter
  publication-title: Appl. Soft Comput.
– volume: 10
  start-page: 1402
  year: 1999
  end-page: 1411
  ident: bib0065
  article-title: Nonlinear adaptive trajectory tracking using dynamic neural networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 1
  start-page: 4
  year: 1990
  end-page: 27
  ident: bib0050
  article-title: Identification and control of dynamical systems using neural networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 22
  start-page: S965
  year: 1998
  end-page: S968
  ident: bib0095
  article-title: Identification of distributed parameter systems: a neural net based approach
  publication-title: Comput. Chem. Eng.
– volume: 2
  start-page: 183
  year: 1989
  end-page: 192
  ident: bib0020
  article-title: On the approximate realization of continuous mappings by neural networks
  publication-title: Neural Netw.
– volume: 147
  start-page: 45
  year: 2002
  end-page: 63
  ident: bib0075
  article-title: Dynamic system identification via recurrent multilayer perceptrons
  publication-title: Inf. Sci.
– volume: 19
  start-page: 280
  year: 2014
  end-page: 289
  ident: bib0120
  article-title: Dynamic classification of ballistic missiles using neural networks and hidden Markov models
  publication-title: Appl. Soft Comput.
– volume: 19
  start-page: 735
  year: 1966
  end-page: 748
  ident: bib0010
  article-title: The method of weighted residuals: a review
  publication-title: Appl. Mech. Rev.
– year: 2001
  ident: bib0035
  article-title: Differential Neural Networks for Robust Nonlinear Control: Identification, State Estimation and Trajectory Tracking
– year: 1986
  ident: bib0145
  article-title: Ecuaciones diferenciales en derivadas parciales con métodos de variable compleja y de transformaciones integrales
– volume: vol. 2
  year: 1996
  ident: bib0015
  article-title: Finite Element Procedures
– year: 2012
  ident: bib0100
  article-title: 3D nonparametric neural identification
  publication-title: J. Control Sci. Eng.
– volume: 9
  start-page: 987
  year: 1998
  end-page: 1000
  ident: bib0040
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
– volume: 41
  start-page: 447
  year: 1996
  end-page: 451
  ident: bib0085
  article-title: Stable adaptive neural control scheme for nonlinear systems
  publication-title: IEEE Trans. Autom. Control
– volume: 133
  start-page: 47
  year: 2014
  end-page: 73
  ident: bib0125
  article-title: An adaptive neural network prediction for nonlinear parabolic distributed parameter system based on block-wise moving window technique
  publication-title: Neurocomputing
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  ident: bib0030
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– start-page: 157
  year: 2012
  end-page: 160
  ident: bib0105
  article-title: Continuous neural networks and finite element application for the tissue deformation reconstruction dynamic
  publication-title: Andean Region International Conference (ANDESCON), 2012 VI
– volume: 113
  start-page: 234
  year: 2013
  end-page: 240
  ident: bib0130
  article-title: Spatiotemporal prediction for nonlinear parabolic distributed parameter system using an artificial neural network trained by group search optimization
  publication-title: Neurocomputing
– volume: 12
  start-page: 412
  year: 2001
  end-page: 417
  ident: bib0070
  article-title: Some new results on system identification with dynamic neural networks
  publication-title: IEEE Trans. Neural Netw.
– year: 2006
  ident: bib0140
  article-title: TetGen: A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator
– volume: 79
  start-page: 2554
  issue: 8
  year: 1982
  ident: 10.1016/j.asoc.2016.01.004_bib0030
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.79.8.2554
– volume: 9
  start-page: 987
  issue: 5
  year: 1998
  ident: 10.1016/j.asoc.2016.01.004_bib0040
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.712178
– volume: 22
  start-page: S965
  issue: Suppl. 1
  year: 1998
  ident: 10.1016/j.asoc.2016.01.004_bib0095
  article-title: Identification of distributed parameter systems: a neural net based approach
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(98)00191-4
– volume: vol. 2
  year: 1996
  ident: 10.1016/j.asoc.2016.01.004_bib0015
– year: 1991
  ident: 10.1016/j.asoc.2016.01.004_bib0090
– volume: 10
  start-page: 1402
  issue: 6
  year: 1999
  ident: 10.1016/j.asoc.2016.01.004_bib0065
  article-title: Nonlinear adaptive trajectory tracking using dynamic neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.809085
– volume: 32
  start-page: 1225
  issue: 6
  year: 2008
  ident: 10.1016/j.asoc.2016.01.004_bib0110
  article-title: Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2007.05.002
– year: 2006
  ident: 10.1016/j.asoc.2016.01.004_bib0140
– volume: 19
  start-page: 735
  issue: 9
  year: 1966
  ident: 10.1016/j.asoc.2016.01.004_bib0010
  article-title: The method of weighted residuals: a review
  publication-title: Appl. Mech. Rev.
– volume: 41
  start-page: 447
  issue: 3
  year: 1996
  ident: 10.1016/j.asoc.2016.01.004_bib0085
  article-title: Stable adaptive neural control scheme for nonlinear systems
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.486648
– volume: 24
  start-page: 400
  issue: 3
  year: 1994
  ident: 10.1016/j.asoc.2016.01.004_bib0060
  article-title: Adaptive control of unknown plants using dynamical neural networks
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.278990
– start-page: 157
  year: 2012
  ident: 10.1016/j.asoc.2016.01.004_bib0105
  article-title: Continuous neural networks and finite element application for the tissue deformation reconstruction dynamic
– volume: 6
  start-page: 109
  issue: 2
  year: 1992
  ident: 10.1016/j.asoc.2016.01.004_bib0055
  article-title: Neural networks and dynamical systems
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/0888-613X(92)90014-Q
– year: 1985
  ident: 10.1016/j.asoc.2016.01.004_bib0005
– volume: 133
  start-page: 47
  year: 2014
  ident: 10.1016/j.asoc.2016.01.004_bib0125
  article-title: An adaptive neural network prediction for nonlinear parabolic distributed parameter system based on block-wise moving window technique
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.11.030
– volume: 19
  start-page: 41
  year: 2014
  ident: 10.1016/j.asoc.2016.01.004_bib0115
  article-title: A hybrid evolutionary dynamic neural network for stock market trend analysis and prediction using unscented Kalman filter
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.01.039
– volume: 2
  start-page: 183
  issue: 3
  year: 1989
  ident: 10.1016/j.asoc.2016.01.004_bib0020
  article-title: On the approximate realization of continuous mappings by neural networks
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90003-8
– volume: 16
  start-page: 1381
  issue: 6
  year: 2005
  ident: 10.1016/j.asoc.2016.01.004_bib0045
  article-title: Finite-element neural networks for solving differential equations
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.857945
– volume: 19
  start-page: 280
  year: 2014
  ident: 10.1016/j.asoc.2016.01.004_bib0120
  article-title: Dynamic classification of ballistic missiles using neural networks and hidden Markov models
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.02.015
– year: 1986
  ident: 10.1016/j.asoc.2016.01.004_bib0145
– year: 2001
  ident: 10.1016/j.asoc.2016.01.004_bib0035
– volume: 1
  start-page: 4
  issue: 1
  year: 1990
  ident: 10.1016/j.asoc.2016.01.004_bib0050
  article-title: Identification and control of dynamical systems using neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.80202
– volume: 147
  start-page: 45
  issue: 1
  year: 2002
  ident: 10.1016/j.asoc.2016.01.004_bib0075
  article-title: Dynamic system identification via recurrent multilayer perceptrons
  publication-title: Inf. Sci.
  doi: 10.1016/S0020-0255(02)00207-4
– year: 2012
  ident: 10.1016/j.asoc.2016.01.004_bib0100
  article-title: 3D nonparametric neural identification
  publication-title: J. Control Sci. Eng.
  doi: 10.1155/2012/618403
– volume: 2
  start-page: 303
  issue: 4
  year: 1989
  ident: 10.1016/j.asoc.2016.01.004_bib0025
  article-title: Approximation by superpositions of a sigmoidal, function
  publication-title: Math. Control Signals Syst.
  doi: 10.1007/BF02551274
– volume: 74
  start-page: 3428
  issue: 17
  year: 2011
  ident: 10.1016/j.asoc.2016.01.004_bib0080
  article-title: Nonlinear systems identification using dynamic multi-time scale neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.06.007
– volume: 12
  start-page: 412
  issue: 2
  year: 2001
  ident: 10.1016/j.asoc.2016.01.004_bib0070
  article-title: Some new results on system identification with dynamic neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.914535
– year: 1997
  ident: 10.1016/j.asoc.2016.01.004_bib0135
– volume: 113
  start-page: 234
  year: 2013
  ident: 10.1016/j.asoc.2016.01.004_bib0130
  article-title: Spatiotemporal prediction for nonlinear parabolic distributed parameter system using an artificial neural network trained by group search optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.037
SSID ssj0016928
Score 2.3319383
Snippet [Display omitted] •We proposed a method to solve the identification of uncertain distributed parameter systems.•We developed a novel DNN structure based on the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 633
SubjectTerms CUDA/C
Differential neural network
Distributed parameter systems
Finite element method
Non-parametric identification
Parallel numerical solutions
Title Distributed parameter system identification using finite element differential neural networks
URI https://dx.doi.org/10.1016/j.asoc.2016.01.004
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB11uXBhR5Sl8oEbCnUax0mOVaEqW4WASr2gyPGCgkqpoFz5djyJU4GQeuAUJfJE0bM9HivP7wGccFuyioBqLxQoqp3o2Iu5Vh63a10so0xyhRvF2xEfjtnVJJzUoF-dhUFapcv9ZU4vsrV70nFoduZ53nmwO4-YJYz7vChskjo0u0HCwwY0e5fXw9HyZwJPCotVbO9hgDs7U9K8hAUBGV68UO90fm1_1qcfa85gE9ZdsUh65fdsQU3PtmGjMmIgbl7uwNM5yt-ic5VWBMW8X5HkQkqVZpIrxwgqOoEg0_2ZmByLTaJL9jipfFLsfJ8S1LgsLgVD_GMXxoOLx_7Qc74JngwoXXhGZEb5ibbAR8bOWs27NDQ8UjoQeC7VMBUroQQVmc-kst3RFdxEQqtQBlrqYA8as7eZ3gfCbAHANA0ybbrM-DKTAVOG2zexLKQmboFfoZVKJyqO3hbTtGKPvaSIcIoIp9RPLcItOF3GzEtJjZWtw6oT0l8DI7U5f0XcwT_jDmEN70o22BE0Fu-f-tjWHYusDfWzL79tR1f__uau7UbZN_wK3Jg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVKGWDhjShPD2wo1KkdJxlRoSrQdqGVuiDL8QMVlVJBWfl2fB2nAiExMEVy7Cg6tu-9lo7PQeicu5JVUmKiRIKodm6yKONGR9zlukylheIaDor9Ae-O2N04GddQu7oLA7TKEPvLmO6jdWhpBjSb88mk-eBOHhnLGY-5L2zyFbTKEpoCr-_yc8nziHnuDVahdwTdw82ZkuQlHQTA7-JeuzO4tf3KTt8yTmcLbYRSEV-Vf7ONama2gzYrGwYcduUuerwG8VvwrTIag5T3C1BccKnRjCc68IH8FGDguT9hO4FSE5uSO44rlxS326cYFC79w_PD3_fQqHMzbHej4JoQKUrIIrKysDrOjYM9tW7PGt4iieWpNlTCrVTLdKallkQWMVPaTUZLcptKoxNFjTJ0H9VnrzNzgDBz6Z8ZQgtjW8zGqlCUacvdl1iREJs1UFyhJVSQFAdni6mouGPPAhAWgLAgsXAIN9DFcsy8FNT4s3dSTYL4sSyEi_h_jDv857gztNYd9nuidzu4P0Lr8KbkhR2j-uLtw5y4CmRRnPoV9gX7ndvO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+parameter+system+identification+using+finite+element+differential+neural+networks&rft.jtitle=Applied+soft+computing&rft.au=Aguilar-Leal%2C+O.&rft.au=Fuentes-Aguilar%2C+R.Q.&rft.au=Chairez%2C+I.&rft.au=Garc%C3%ADa-Gonz%C3%A1lez%2C+A.&rft.date=2016-06-01&rft.issn=1568-4946&rft.volume=43&rft.spage=633&rft.epage=642&rft_id=info:doi/10.1016%2Fj.asoc.2016.01.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2016_01_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon