Distributed parameter system identification using finite element differential neural networks
[Display omitted] •We proposed a method to solve the identification of uncertain distributed parameter systems.•We developed a novel DNN structure based on the finite element method.•We derived adaptive learning laws using Lyapunov's second method.•The identification algorithm is developed in N...
Saved in:
Published in | Applied soft computing Vol. 43; pp. 633 - 642 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2016.01.004 |
Cover
Abstract | [Display omitted]
•We proposed a method to solve the identification of uncertain distributed parameter systems.•We developed a novel DNN structure based on the finite element method.•We derived adaptive learning laws using Lyapunov's second method.•The identification algorithm is developed in Nvidia's CUDA/C to reduce the execution time.•The FEM-DNN algorithm that we present was compared with a neural network trained using group search optimization or GPO-NN, and showed a superior performance.•The algorithm was validated with a 3D simulated DPS and tested on a physical 2D experiment.
Most of the previous work on identification involves systems described by ordinary differential equations (ODEs). Many industrial processes and physical phenomena, however, should be modeled using partial differential equations (PDEs) which offer both spatial and temporal distributions that are simply not available with ODE models. Systems described by a PDE belong to a class of system called distributed parameter system (DPS). This article presents a method for solving the problem of identification of uncertain DPSs using a differential neural network (DNN). The DPS, assumed to be described by a PDE, is approximated using the finite element method (FEM). The FEM discretizes the domain into a set of distributed and connected nodes, thereby, allowing a representation of the DPS in a finite number of ODEs. The proposed DNN follows the same interconnection structure of the FEM, thus allowing the DNN to identify the FEM approximation of the DPS in both 2D and 3D domains. Lyapunov's second method was used to derive adaptive learning laws for the proposed DNN structure. The identification algorithm, here developed in Nvidia's CUDA/C to reduce the execution time, runs mostly on the graphics processing unit (GPU). A physical experiment served to validate the 2D case. In the experiment, the DNN followed the trajectory of 57 markers that were placed on an undulating square piece of silk. The proposed DNN is compared against a method based on principal component analysis and an artificial neural network trained with group search optimization. In addition to the 2D case, a simulation validated the 3D case, where input data for the DNN was generated by solving a PDE with appropriate initial and boundary conditions over an unitary domain. Results show that the proposed FEM-based DNN approximates the dynamic behavior of both a real 2D and a simulated 3D system. |
---|---|
AbstractList | [Display omitted]
•We proposed a method to solve the identification of uncertain distributed parameter systems.•We developed a novel DNN structure based on the finite element method.•We derived adaptive learning laws using Lyapunov's second method.•The identification algorithm is developed in Nvidia's CUDA/C to reduce the execution time.•The FEM-DNN algorithm that we present was compared with a neural network trained using group search optimization or GPO-NN, and showed a superior performance.•The algorithm was validated with a 3D simulated DPS and tested on a physical 2D experiment.
Most of the previous work on identification involves systems described by ordinary differential equations (ODEs). Many industrial processes and physical phenomena, however, should be modeled using partial differential equations (PDEs) which offer both spatial and temporal distributions that are simply not available with ODE models. Systems described by a PDE belong to a class of system called distributed parameter system (DPS). This article presents a method for solving the problem of identification of uncertain DPSs using a differential neural network (DNN). The DPS, assumed to be described by a PDE, is approximated using the finite element method (FEM). The FEM discretizes the domain into a set of distributed and connected nodes, thereby, allowing a representation of the DPS in a finite number of ODEs. The proposed DNN follows the same interconnection structure of the FEM, thus allowing the DNN to identify the FEM approximation of the DPS in both 2D and 3D domains. Lyapunov's second method was used to derive adaptive learning laws for the proposed DNN structure. The identification algorithm, here developed in Nvidia's CUDA/C to reduce the execution time, runs mostly on the graphics processing unit (GPU). A physical experiment served to validate the 2D case. In the experiment, the DNN followed the trajectory of 57 markers that were placed on an undulating square piece of silk. The proposed DNN is compared against a method based on principal component analysis and an artificial neural network trained with group search optimization. In addition to the 2D case, a simulation validated the 3D case, where input data for the DNN was generated by solving a PDE with appropriate initial and boundary conditions over an unitary domain. Results show that the proposed FEM-based DNN approximates the dynamic behavior of both a real 2D and a simulated 3D system. |
Author | Fuentes-Aguilar, R.Q. Huegel, J.C. García-González, A. Aguilar-Leal, O. Chairez, I. |
Author_xml | – sequence: 1 givenname: O. surname: Aguilar-Leal fullname: Aguilar-Leal, O. organization: Tecnológico de Monterrey, Mexico – sequence: 2 givenname: R.Q. surname: Fuentes-Aguilar fullname: Fuentes-Aguilar, R.Q. email: rita.fuentes@itesm.mx organization: Tecnológico de Monterrey, Mexico – sequence: 3 givenname: I. surname: Chairez fullname: Chairez, I. organization: Bioprocess Department, UPIBI-Instituto Politécnico Nacional, Mexico – sequence: 4 givenname: A. surname: García-González fullname: García-González, A. organization: Tecnológico de Monterrey, Mexico – sequence: 5 givenname: J.C. surname: Huegel fullname: Huegel, J.C. organization: Tecnológico de Monterrey, Mexico |
BookMark | eNp9kM1KAzEUhYNUsK2-gKu8wIzJ_GQy4EbqLxTc6FJCmtzIrdNMSVKlb-9M68pFV-fAPd-Fc2Zk4nsPhFxzlnPGxc0617E3eTH4nPGcseqMTLlsiqwVkk8GXwuZVW0lLsgsxjUbgm0hp-TjHmMKuNolsHSrg95AgkDjPibYULTgEzo0OmHv6S6i_6QOPSag0MFmuFKLzkEYc7qjHnbhIOmnD1_xkpw73UW4-tM5eX98eFs8Z8vXp5fF3TIzJWMpc3rlLG-hBdk4xkoQBaudaCyUupaycpWVVlvN9IpXxhphCy1co8HWpgQD5ZwUx78m9DEGcGobcKPDXnGmxoHUWo0DqXEgxbgaBhog-Q8ymA5FU9DYnUZvjygMpb4RgooGwRuwGMAkZXs8hf8COVCIRA |
CitedBy_id | crossref_primary_10_1007_s00202_016_0430_1 crossref_primary_10_1016_j_applthermaleng_2022_119765 crossref_primary_10_1109_ACCESS_2019_2942084 crossref_primary_10_1016_j_camwa_2020_10_021 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124597 crossref_primary_10_1016_j_ijleo_2016_05_145 crossref_primary_10_3390_app9235122 crossref_primary_10_1016_j_ifacol_2023_10_1704 crossref_primary_10_1007_s12555_020_0070_0 crossref_primary_10_1007_s11071_021_06987_y crossref_primary_10_1007_s00500_017_2500_3 crossref_primary_10_1049_cth2_12512 crossref_primary_10_1080_00207721_2019_1691281 crossref_primary_10_1016_j_eswa_2024_125003 crossref_primary_10_1109_TNNLS_2020_2966914 crossref_primary_10_3390_s22197460 crossref_primary_10_1002_acs_3319 crossref_primary_10_1109_ACCESS_2020_2984558 crossref_primary_10_1080_00207721_2020_1737261 crossref_primary_10_1016_j_neunet_2019_01_003 crossref_primary_10_1109_TII_2017_2666841 crossref_primary_10_1016_j_ifacol_2018_07_325 crossref_primary_10_1016_j_ifacol_2020_12_1968 crossref_primary_10_2139_ssrn_4057311 crossref_primary_10_1016_j_asoc_2021_107300 |
Cites_doi | 10.1073/pnas.79.8.2554 10.1109/72.712178 10.1016/S0098-1354(98)00191-4 10.1109/72.809085 10.1016/j.compchemeng.2007.05.002 10.1109/9.486648 10.1109/21.278990 10.1016/0888-613X(92)90014-Q 10.1016/j.neucom.2013.11.030 10.1016/j.asoc.2014.01.039 10.1016/0893-6080(89)90003-8 10.1109/TNN.2005.857945 10.1016/j.asoc.2014.02.015 10.1109/72.80202 10.1016/S0020-0255(02)00207-4 10.1155/2012/618403 10.1007/BF02551274 10.1016/j.neucom.2011.06.007 10.1109/72.914535 10.1016/j.neucom.2013.01.037 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2016.01.004 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 642 |
ExternalDocumentID | 10_1016_j_asoc_2016_01_004 S1568494616000119 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-fabfd19e9e87f003e6205f67de3a5884f4d8dada0ab14cdc6d2a6f7aed5c3ece3 |
IEDL.DBID | AIKHN |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:49:56 EDT 2025 Thu Apr 24 22:52:26 EDT 2025 Fri Feb 23 02:24:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Finite element method CUDA/C Parallel numerical solutions Differential neural network Distributed parameter systems Non-parametric identification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-fabfd19e9e87f003e6205f67de3a5884f4d8dada0ab14cdc6d2a6f7aed5c3ece3 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2016_01_004 crossref_citationtrail_10_1016_j_asoc_2016_01_004 elsevier_sciencedirect_doi_10_1016_j_asoc_2016_01_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2016 2016-06-00 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: June 2016 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Funahashi (bib0020) 1989; 2 Narendra, Parthasarathy (bib0055) 1992; 6 Yu, Li (bib0070) 2001; 12 Bathe (bib0015) 1996; vol. 2 Poznyak, Yu, Sanchez, Perez (bib0065) 1999; 10 Fuentes, Chairez, Poznyak, Poznyak (bib0100) 2012 Kwon, Bang (bib0135) 1997 Hopfield (bib0030) 1982; 79 Poznyak, Yu, Sanchez (bib0035) 2001 Wang, Shi (bib0125) 2014; 133 Han, Xie, Fu, Luo (bib0080) 2011; 74 Wang, Yan, Shi (bib0130) 2013; 113 Bisoi, Dash (bib0115) 2014; 19 Polycarpou (bib0085) 1996; 41 Fuentes, Poznyak, Figueroa, Garcia, Chairez (bib0105) 2012 Finlayson, Scriven (bib0010) 1966; 19 Aggelogiannaki, Sarimveis (bib0110) 2008; 32 Si (bib0140) 2006 Rovithakis, Christodoulou (bib0060) 1994; 24 Cybenko (bib0025) 1989; 2 Li, Yu (bib0075) 2002; 147 Lagaris, Likas, Fotiadis (bib0040) 1998; 9 Narendra, Parthasarathy (bib0050) 1990; 1 Polycarpou, Ioannou (bib0090) 1991 Smith (bib0005) 1985 Ramuhalli, Udpa, Udpa (bib0045) 2005; 16 González-García, Rico-Martínez, Kevrekidis (bib0095) 1998; 22 Singh, Padmanabhan, Agarwal (bib0120) 2014; 19 Weinberger (bib0145) 1986 Fuentes (10.1016/j.asoc.2016.01.004_bib0105) 2012 Aggelogiannaki (10.1016/j.asoc.2016.01.004_bib0110) 2008; 32 Polycarpou (10.1016/j.asoc.2016.01.004_bib0085) 1996; 41 Polycarpou (10.1016/j.asoc.2016.01.004_bib0090) 1991 Yu (10.1016/j.asoc.2016.01.004_bib0070) 2001; 12 Si (10.1016/j.asoc.2016.01.004_bib0140) 2006 Fuentes (10.1016/j.asoc.2016.01.004_bib0100) 2012 Smith (10.1016/j.asoc.2016.01.004_bib0005) 1985 González-García (10.1016/j.asoc.2016.01.004_bib0095) 1998; 22 Weinberger (10.1016/j.asoc.2016.01.004_bib0145) 1986 Bathe (10.1016/j.asoc.2016.01.004_bib0015) 1996; vol. 2 Hopfield (10.1016/j.asoc.2016.01.004_bib0030) 1982; 79 Narendra (10.1016/j.asoc.2016.01.004_bib0050) 1990; 1 Poznyak (10.1016/j.asoc.2016.01.004_bib0065) 1999; 10 Wang (10.1016/j.asoc.2016.01.004_bib0125) 2014; 133 Finlayson (10.1016/j.asoc.2016.01.004_bib0010) 1966; 19 Cybenko (10.1016/j.asoc.2016.01.004_bib0025) 1989; 2 Singh (10.1016/j.asoc.2016.01.004_bib0120) 2014; 19 Narendra (10.1016/j.asoc.2016.01.004_bib0055) 1992; 6 Bisoi (10.1016/j.asoc.2016.01.004_bib0115) 2014; 19 Han (10.1016/j.asoc.2016.01.004_bib0080) 2011; 74 Kwon (10.1016/j.asoc.2016.01.004_bib0135) 1997 Li (10.1016/j.asoc.2016.01.004_bib0075) 2002; 147 Ramuhalli (10.1016/j.asoc.2016.01.004_bib0045) 2005; 16 Poznyak (10.1016/j.asoc.2016.01.004_bib0035) 2001 Wang (10.1016/j.asoc.2016.01.004_bib0130) 2013; 113 Rovithakis (10.1016/j.asoc.2016.01.004_bib0060) 1994; 24 Lagaris (10.1016/j.asoc.2016.01.004_bib0040) 1998; 9 Funahashi (10.1016/j.asoc.2016.01.004_bib0020) 1989; 2 |
References_xml | – volume: 24 start-page: 400 year: 1994 end-page: 412 ident: bib0060 article-title: Adaptive control of unknown plants using dynamical neural networks publication-title: IEEE Trans. Syst. Man Cybern. – year: 1985 ident: bib0005 article-title: Numerical Solution of Partial Differential Equations: Finite Difference Methods – volume: 16 start-page: 1381 year: 2005 end-page: 1392 ident: bib0045 article-title: Finite-element neural networks for solving differential equations publication-title: IEEE Trans. Neural Netw. – volume: 2 start-page: 303 year: 1989 end-page: 314 ident: bib0025 article-title: Approximation by superpositions of a sigmoidal, function publication-title: Math. Control Signals Syst. – volume: 74 start-page: 3428 year: 2011 end-page: 3439 ident: bib0080 article-title: Nonlinear systems identification using dynamic multi-time scale neural networks publication-title: Neurocomputing – year: 1991 ident: bib0090 article-title: Identification and Control of Nonlinear Systems Using Neural Network Models: Design and Stability Analysis – year: 1997 ident: bib0135 article-title: The Finite Element Method Using MATLAB. Advanced Topics in Mechanical Engineering Series – volume: 6 start-page: 109 year: 1992 end-page: 131 ident: bib0055 article-title: Neural networks and dynamical systems publication-title: Int. J. Approx. Reason. – volume: 32 start-page: 1225 year: 2008 end-page: 1237 ident: bib0110 article-title: Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models publication-title: Comput. Chem. Eng. – volume: 19 start-page: 41 year: 2014 end-page: 56 ident: bib0115 article-title: A hybrid evolutionary dynamic neural network for stock market trend analysis and prediction using unscented Kalman filter publication-title: Appl. Soft Comput. – volume: 10 start-page: 1402 year: 1999 end-page: 1411 ident: bib0065 article-title: Nonlinear adaptive trajectory tracking using dynamic neural networks publication-title: IEEE Trans. Neural Netw. – volume: 1 start-page: 4 year: 1990 end-page: 27 ident: bib0050 article-title: Identification and control of dynamical systems using neural networks publication-title: IEEE Trans. Neural Netw. – volume: 22 start-page: S965 year: 1998 end-page: S968 ident: bib0095 article-title: Identification of distributed parameter systems: a neural net based approach publication-title: Comput. Chem. Eng. – volume: 2 start-page: 183 year: 1989 end-page: 192 ident: bib0020 article-title: On the approximate realization of continuous mappings by neural networks publication-title: Neural Netw. – volume: 147 start-page: 45 year: 2002 end-page: 63 ident: bib0075 article-title: Dynamic system identification via recurrent multilayer perceptrons publication-title: Inf. Sci. – volume: 19 start-page: 280 year: 2014 end-page: 289 ident: bib0120 article-title: Dynamic classification of ballistic missiles using neural networks and hidden Markov models publication-title: Appl. Soft Comput. – volume: 19 start-page: 735 year: 1966 end-page: 748 ident: bib0010 article-title: The method of weighted residuals: a review publication-title: Appl. Mech. Rev. – year: 2001 ident: bib0035 article-title: Differential Neural Networks for Robust Nonlinear Control: Identification, State Estimation and Trajectory Tracking – year: 1986 ident: bib0145 article-title: Ecuaciones diferenciales en derivadas parciales con métodos de variable compleja y de transformaciones integrales – volume: vol. 2 year: 1996 ident: bib0015 article-title: Finite Element Procedures – year: 2012 ident: bib0100 article-title: 3D nonparametric neural identification publication-title: J. Control Sci. Eng. – volume: 9 start-page: 987 year: 1998 end-page: 1000 ident: bib0040 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans. Neural Netw. – volume: 41 start-page: 447 year: 1996 end-page: 451 ident: bib0085 article-title: Stable adaptive neural control scheme for nonlinear systems publication-title: IEEE Trans. Autom. Control – volume: 133 start-page: 47 year: 2014 end-page: 73 ident: bib0125 article-title: An adaptive neural network prediction for nonlinear parabolic distributed parameter system based on block-wise moving window technique publication-title: Neurocomputing – volume: 79 start-page: 2554 year: 1982 end-page: 2558 ident: bib0030 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl. Acad. Sci. U. S. A. – start-page: 157 year: 2012 end-page: 160 ident: bib0105 article-title: Continuous neural networks and finite element application for the tissue deformation reconstruction dynamic publication-title: Andean Region International Conference (ANDESCON), 2012 VI – volume: 113 start-page: 234 year: 2013 end-page: 240 ident: bib0130 article-title: Spatiotemporal prediction for nonlinear parabolic distributed parameter system using an artificial neural network trained by group search optimization publication-title: Neurocomputing – volume: 12 start-page: 412 year: 2001 end-page: 417 ident: bib0070 article-title: Some new results on system identification with dynamic neural networks publication-title: IEEE Trans. Neural Netw. – year: 2006 ident: bib0140 article-title: TetGen: A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator – volume: 79 start-page: 2554 issue: 8 year: 1982 ident: 10.1016/j.asoc.2016.01.004_bib0030 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.79.8.2554 – volume: 9 start-page: 987 issue: 5 year: 1998 ident: 10.1016/j.asoc.2016.01.004_bib0040 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.712178 – volume: 22 start-page: S965 issue: Suppl. 1 year: 1998 ident: 10.1016/j.asoc.2016.01.004_bib0095 article-title: Identification of distributed parameter systems: a neural net based approach publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(98)00191-4 – volume: vol. 2 year: 1996 ident: 10.1016/j.asoc.2016.01.004_bib0015 – year: 1991 ident: 10.1016/j.asoc.2016.01.004_bib0090 – volume: 10 start-page: 1402 issue: 6 year: 1999 ident: 10.1016/j.asoc.2016.01.004_bib0065 article-title: Nonlinear adaptive trajectory tracking using dynamic neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.809085 – volume: 32 start-page: 1225 issue: 6 year: 2008 ident: 10.1016/j.asoc.2016.01.004_bib0110 article-title: Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2007.05.002 – year: 2006 ident: 10.1016/j.asoc.2016.01.004_bib0140 – volume: 19 start-page: 735 issue: 9 year: 1966 ident: 10.1016/j.asoc.2016.01.004_bib0010 article-title: The method of weighted residuals: a review publication-title: Appl. Mech. Rev. – volume: 41 start-page: 447 issue: 3 year: 1996 ident: 10.1016/j.asoc.2016.01.004_bib0085 article-title: Stable adaptive neural control scheme for nonlinear systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/9.486648 – volume: 24 start-page: 400 issue: 3 year: 1994 ident: 10.1016/j.asoc.2016.01.004_bib0060 article-title: Adaptive control of unknown plants using dynamical neural networks publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.278990 – start-page: 157 year: 2012 ident: 10.1016/j.asoc.2016.01.004_bib0105 article-title: Continuous neural networks and finite element application for the tissue deformation reconstruction dynamic – volume: 6 start-page: 109 issue: 2 year: 1992 ident: 10.1016/j.asoc.2016.01.004_bib0055 article-title: Neural networks and dynamical systems publication-title: Int. J. Approx. Reason. doi: 10.1016/0888-613X(92)90014-Q – year: 1985 ident: 10.1016/j.asoc.2016.01.004_bib0005 – volume: 133 start-page: 47 year: 2014 ident: 10.1016/j.asoc.2016.01.004_bib0125 article-title: An adaptive neural network prediction for nonlinear parabolic distributed parameter system based on block-wise moving window technique publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.11.030 – volume: 19 start-page: 41 year: 2014 ident: 10.1016/j.asoc.2016.01.004_bib0115 article-title: A hybrid evolutionary dynamic neural network for stock market trend analysis and prediction using unscented Kalman filter publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.01.039 – volume: 2 start-page: 183 issue: 3 year: 1989 ident: 10.1016/j.asoc.2016.01.004_bib0020 article-title: On the approximate realization of continuous mappings by neural networks publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90003-8 – volume: 16 start-page: 1381 issue: 6 year: 2005 ident: 10.1016/j.asoc.2016.01.004_bib0045 article-title: Finite-element neural networks for solving differential equations publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2005.857945 – volume: 19 start-page: 280 year: 2014 ident: 10.1016/j.asoc.2016.01.004_bib0120 article-title: Dynamic classification of ballistic missiles using neural networks and hidden Markov models publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.02.015 – year: 1986 ident: 10.1016/j.asoc.2016.01.004_bib0145 – year: 2001 ident: 10.1016/j.asoc.2016.01.004_bib0035 – volume: 1 start-page: 4 issue: 1 year: 1990 ident: 10.1016/j.asoc.2016.01.004_bib0050 article-title: Identification and control of dynamical systems using neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.80202 – volume: 147 start-page: 45 issue: 1 year: 2002 ident: 10.1016/j.asoc.2016.01.004_bib0075 article-title: Dynamic system identification via recurrent multilayer perceptrons publication-title: Inf. Sci. doi: 10.1016/S0020-0255(02)00207-4 – year: 2012 ident: 10.1016/j.asoc.2016.01.004_bib0100 article-title: 3D nonparametric neural identification publication-title: J. Control Sci. Eng. doi: 10.1155/2012/618403 – volume: 2 start-page: 303 issue: 4 year: 1989 ident: 10.1016/j.asoc.2016.01.004_bib0025 article-title: Approximation by superpositions of a sigmoidal, function publication-title: Math. Control Signals Syst. doi: 10.1007/BF02551274 – volume: 74 start-page: 3428 issue: 17 year: 2011 ident: 10.1016/j.asoc.2016.01.004_bib0080 article-title: Nonlinear systems identification using dynamic multi-time scale neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.06.007 – volume: 12 start-page: 412 issue: 2 year: 2001 ident: 10.1016/j.asoc.2016.01.004_bib0070 article-title: Some new results on system identification with dynamic neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.914535 – year: 1997 ident: 10.1016/j.asoc.2016.01.004_bib0135 – volume: 113 start-page: 234 year: 2013 ident: 10.1016/j.asoc.2016.01.004_bib0130 article-title: Spatiotemporal prediction for nonlinear parabolic distributed parameter system using an artificial neural network trained by group search optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.01.037 |
SSID | ssj0016928 |
Score | 2.3319383 |
Snippet | [Display omitted]
•We proposed a method to solve the identification of uncertain distributed parameter systems.•We developed a novel DNN structure based on the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 633 |
SubjectTerms | CUDA/C Differential neural network Distributed parameter systems Finite element method Non-parametric identification Parallel numerical solutions |
Title | Distributed parameter system identification using finite element differential neural networks |
URI | https://dx.doi.org/10.1016/j.asoc.2016.01.004 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB11uXBhR5Sl8oEbCnUax0mOVaEqW4WASr2gyPGCgkqpoFz5djyJU4GQeuAUJfJE0bM9HivP7wGccFuyioBqLxQoqp3o2Iu5Vh63a10so0xyhRvF2xEfjtnVJJzUoF-dhUFapcv9ZU4vsrV70nFoduZ53nmwO4-YJYz7vChskjo0u0HCwwY0e5fXw9HyZwJPCotVbO9hgDs7U9K8hAUBGV68UO90fm1_1qcfa85gE9ZdsUh65fdsQU3PtmGjMmIgbl7uwNM5yt-ic5VWBMW8X5HkQkqVZpIrxwgqOoEg0_2ZmByLTaJL9jipfFLsfJ8S1LgsLgVD_GMXxoOLx_7Qc74JngwoXXhGZEb5ibbAR8bOWs27NDQ8UjoQeC7VMBUroQQVmc-kst3RFdxEQqtQBlrqYA8as7eZ3gfCbAHANA0ybbrM-DKTAVOG2zexLKQmboFfoZVKJyqO3hbTtGKPvaSIcIoIp9RPLcItOF3GzEtJjZWtw6oT0l8DI7U5f0XcwT_jDmEN70o22BE0Fu-f-tjWHYusDfWzL79tR1f__uau7UbZN_wK3Jg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVKGWDhjShPD2wo1KkdJxlRoSrQdqGVuiDL8QMVlVJBWfl2fB2nAiExMEVy7Cg6tu-9lo7PQeicu5JVUmKiRIKodm6yKONGR9zlukylheIaDor9Ae-O2N04GddQu7oLA7TKEPvLmO6jdWhpBjSb88mk-eBOHhnLGY-5L2zyFbTKEpoCr-_yc8nziHnuDVahdwTdw82ZkuQlHQTA7-JeuzO4tf3KTt8yTmcLbYRSEV-Vf7ONama2gzYrGwYcduUuerwG8VvwrTIag5T3C1BccKnRjCc68IH8FGDguT9hO4FSE5uSO44rlxS326cYFC79w_PD3_fQqHMzbHej4JoQKUrIIrKysDrOjYM9tW7PGt4iieWpNlTCrVTLdKallkQWMVPaTUZLcptKoxNFjTJ0H9VnrzNzgDBz6Z8ZQgtjW8zGqlCUacvdl1iREJs1UFyhJVSQFAdni6mouGPPAhAWgLAgsXAIN9DFcsy8FNT4s3dSTYL4sSyEi_h_jDv857gztNYd9nuidzu4P0Lr8KbkhR2j-uLtw5y4CmRRnPoV9gX7ndvO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+parameter+system+identification+using+finite+element+differential+neural+networks&rft.jtitle=Applied+soft+computing&rft.au=Aguilar-Leal%2C+O.&rft.au=Fuentes-Aguilar%2C+R.Q.&rft.au=Chairez%2C+I.&rft.au=Garc%C3%ADa-Gonz%C3%A1lez%2C+A.&rft.date=2016-06-01&rft.issn=1568-4946&rft.volume=43&rft.spage=633&rft.epage=642&rft_id=info:doi/10.1016%2Fj.asoc.2016.01.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2016_01_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |