An ensemble-based hotel recommender system using sentiment analysis and aspect categorization of hotel reviews

Finding a suitable hotel based on user’s need and affordability is a complex decision-making process. Nowadays, the availability of an ample amount of online reviews made by the customers helps us in this regard. This very fact gives us a promising research direction in the field of tourism called h...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 98; p. 106935
Main Authors Ray, Biswarup, Garain, Avishek, Sarkar, Ram
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Finding a suitable hotel based on user’s need and affordability is a complex decision-making process. Nowadays, the availability of an ample amount of online reviews made by the customers helps us in this regard. This very fact gives us a promising research direction in the field of tourism called hotel recommendation system which also helps in improving the information processing of consumers. Real-world reviews may showcase different sentiments of the customers towards a hotel and each review can be categorized based on different aspects such as cleanliness, value, service, etc. Keeping these facts in mind, in the present work, we have proposed a hotel recommendation system using Sentiment Analysis of the hotel reviews, and aspect-based review categorization which works on the queries given by a user. Furthermore, we have provided a new rich and diverse dataset of online hotel reviews crawled from Tripadvisor.com. We have followed a systematic approach which first uses an ensemble of a binary classification called Bidirectional Encoder Representations from Transformers (BERT) model with three phases for positive–negative, neutral–negative, neutral–positive sentiments merged using a weight assigning protocol. We have then fed these pre-trained word embeddings generated by the BERT models along with other different textual features such as word vectors generated by Word2vec, TF–IDF of frequent words, subjectivity score, etc. to a Random Forest classifier. After that, we have also grouped the reviews into different categories using an approach that involves fuzzy logic and cosine similarity. Finally, we have created a recommender system by the aforementioned frameworks. Our model has achieved a Macro F1-score of 84% and test accuracy of 92.36% in the classification of sentiment polarities. Also, the results of the categorized reviews have formed compact clusters. The results are quite promising and much better compared to state-of-the-art models. The relevant codes and notebooks can be found here. •Designed a Hotel Recommendation System based on online review in English language.•Ensemble of BERT and Random Forest models for classifying sentiments on reviews.•Used textual features like Word2Vec embeddings and TF–IDF scores.•Categorized the reviews based on aspects using Fuzzy logic and Cosine similarity.•Prepared a sentiment tagged dataset from Tripadvisor consisting of hotel reviews.
AbstractList Finding a suitable hotel based on user’s need and affordability is a complex decision-making process. Nowadays, the availability of an ample amount of online reviews made by the customers helps us in this regard. This very fact gives us a promising research direction in the field of tourism called hotel recommendation system which also helps in improving the information processing of consumers. Real-world reviews may showcase different sentiments of the customers towards a hotel and each review can be categorized based on different aspects such as cleanliness, value, service, etc. Keeping these facts in mind, in the present work, we have proposed a hotel recommendation system using Sentiment Analysis of the hotel reviews, and aspect-based review categorization which works on the queries given by a user. Furthermore, we have provided a new rich and diverse dataset of online hotel reviews crawled from Tripadvisor.com. We have followed a systematic approach which first uses an ensemble of a binary classification called Bidirectional Encoder Representations from Transformers (BERT) model with three phases for positive–negative, neutral–negative, neutral–positive sentiments merged using a weight assigning protocol. We have then fed these pre-trained word embeddings generated by the BERT models along with other different textual features such as word vectors generated by Word2vec, TF–IDF of frequent words, subjectivity score, etc. to a Random Forest classifier. After that, we have also grouped the reviews into different categories using an approach that involves fuzzy logic and cosine similarity. Finally, we have created a recommender system by the aforementioned frameworks. Our model has achieved a Macro F1-score of 84% and test accuracy of 92.36% in the classification of sentiment polarities. Also, the results of the categorized reviews have formed compact clusters. The results are quite promising and much better compared to state-of-the-art models. The relevant codes and notebooks can be found here. •Designed a Hotel Recommendation System based on online review in English language.•Ensemble of BERT and Random Forest models for classifying sentiments on reviews.•Used textual features like Word2Vec embeddings and TF–IDF scores.•Categorized the reviews based on aspects using Fuzzy logic and Cosine similarity.•Prepared a sentiment tagged dataset from Tripadvisor consisting of hotel reviews.
ArticleNumber 106935
Author Ray, Biswarup
Garain, Avishek
Sarkar, Ram
Author_xml – sequence: 1
  givenname: Biswarup
  surname: Ray
  fullname: Ray, Biswarup
  email: raybiswarup9@gmail.com
– sequence: 2
  givenname: Avishek
  orcidid: 0000-0001-6225-3343
  surname: Garain
  fullname: Garain, Avishek
  email: avishekgarain@gmail.com
– sequence: 3
  givenname: Ram
  orcidid: 0000-0001-8813-4086
  surname: Sarkar
  fullname: Sarkar, Ram
  email: ramjucse@gmail.com
BookMark eNp9kM9KxDAQh4Os4K76Ap7yAl3TtGlT8CKL_0Dwoucwm0w1S5tIJirr09t1xYMHT_Njhm-Y-RZsFmJAxs5KsSxF2ZxvlkDRLqWQu0bTVeqAzUvdyqJrdDmbsmp0UXd1c8QWRBsxQZ3UcxYuA8dAOK4HLNZA6PhLzDjwhDaOIwaHidOWMo78jXx45oQh-2mQOQQYtuRpCo4DvaLN3ELG55j8J2QfA4_977p3jx90wg57GAhPf-oxe7q-elzdFvcPN3ery_vCVkLkoodaq87Kpq2UqlwrlQLV9mB1CbpGqcDVWjvXlmsra9eidp2rFQhRgZNWV8dM7_faFIkS9sb6_H1STuAHUwqz82Y2ZufN7LyZvbcJlX_Q1-RHSNv_oYs9hNNT06fJkPUYLDo_iczGRf8f_gWF2ovc
CitedBy_id crossref_primary_10_4236_jcc_2023_113009
crossref_primary_10_1109_ACCESS_2023_3270260
crossref_primary_10_1007_s10489_024_05313_4
crossref_primary_10_1108_K_10_2023_2132
crossref_primary_10_3390_su17052328
crossref_primary_10_3390_app14146254
crossref_primary_10_1109_TAFFC_2022_3225238
crossref_primary_10_3390_app122110881
crossref_primary_10_3390_electronics11030374
crossref_primary_10_1007_s00521_022_07690_8
crossref_primary_10_1016_j_asoc_2021_108246
crossref_primary_10_1371_journal_pone_0295248
crossref_primary_10_2298_CSIS231120034M
crossref_primary_10_1007_s13042_024_02184_6
crossref_primary_10_1016_j_ijhm_2024_104009
crossref_primary_10_1080_21681015_2022_2070933
crossref_primary_10_1155_2022_5259305
crossref_primary_10_1016_j_knosys_2021_107134
crossref_primary_10_1016_j_asoc_2023_110562
crossref_primary_10_1016_j_techfore_2024_123775
crossref_primary_10_1007_s12559_024_10331_y
crossref_primary_10_1016_j_eswa_2024_125533
crossref_primary_10_1016_j_eswa_2022_119294
crossref_primary_10_3390_su16135566
crossref_primary_10_32604_cmes_2023_026812
crossref_primary_10_3390_app11209381
crossref_primary_10_1016_j_eswa_2022_118246
crossref_primary_10_3390_electronics13010057
crossref_primary_10_1016_j_datak_2024_102314
crossref_primary_10_1016_j_eswa_2022_118922
crossref_primary_10_3390_electronics14061090
crossref_primary_10_1016_j_tourman_2025_105134
crossref_primary_10_1016_j_tourman_2024_105113
crossref_primary_10_3390_su15010617
crossref_primary_10_1080_13683500_2021_1940107
crossref_primary_10_1108_IJCHM_07_2022_0913
crossref_primary_10_7717_peerj_cs_660
crossref_primary_10_1016_j_eswa_2022_116574
crossref_primary_10_1007_s00500_021_06590_8
crossref_primary_10_1016_j_eswa_2022_118875
crossref_primary_10_7717_peerj_cs_1525
crossref_primary_10_1186_s40537_021_00534_7
crossref_primary_10_1007_s10462_022_10215_3
crossref_primary_10_1007_s40747_022_00958_5
crossref_primary_10_1145_3589131
crossref_primary_10_1007_s11042_024_18522_3
crossref_primary_10_1186_s40537_023_00782_9
crossref_primary_10_1002_cpe_6452
crossref_primary_10_1142_S0219622022500626
crossref_primary_10_3390_app12178823
crossref_primary_10_1108_DTA_03_2023_0101
crossref_primary_10_1016_j_asoc_2024_112259
crossref_primary_10_1016_j_eswa_2022_118503
crossref_primary_10_1109_TAFFC_2022_3204972
crossref_primary_10_1007_s11277_024_11690_3
crossref_primary_10_1080_10941665_2025_2474017
crossref_primary_10_1016_j_im_2024_103970
crossref_primary_10_18778_0867_5856_33_1_03
crossref_primary_10_1007_s42979_024_02812_6
crossref_primary_10_3233_JIFS_223871
crossref_primary_10_1016_j_eswa_2024_123648
crossref_primary_10_1007_s13278_024_01288_9
crossref_primary_10_1007_s40747_023_01191_4
crossref_primary_10_1002_cpe_7374
crossref_primary_10_1016_j_elerap_2021_101094
crossref_primary_10_1016_j_tourman_2022_104524
crossref_primary_10_1007_s13278_023_01076_x
crossref_primary_10_1016_j_eswa_2022_119420
crossref_primary_10_1371_journal_pone_0275382
crossref_primary_10_32604_cmc_2022_025858
crossref_primary_10_1007_s11227_021_04047_1
crossref_primary_10_1007_s11760_024_03014_6
crossref_primary_10_1016_j_ecoinf_2022_101585
crossref_primary_10_1038_s41598_024_61598_y
crossref_primary_10_2478_ejthr_2024_0022
crossref_primary_10_1109_TAFFC_2022_3186015
crossref_primary_10_1002_int_22634
crossref_primary_10_1016_j_inffus_2024_102712
crossref_primary_10_1007_s10660_024_09897_4
crossref_primary_10_1109_TCBB_2022_3225234
crossref_primary_10_3390_su16041640
crossref_primary_10_1007_s40815_021_01141_7
crossref_primary_10_1016_j_eswa_2022_117079
crossref_primary_10_1016_j_asoc_2023_110137
crossref_primary_10_1016_j_inffus_2022_10_004
crossref_primary_10_1111_coin_12596
crossref_primary_10_1007_s00500_023_08876_5
crossref_primary_10_1016_j_eswa_2024_123151
crossref_primary_10_3390_jtaer19040145
crossref_primary_10_1002_pts_2798
crossref_primary_10_1007_s00521_022_07186_5
crossref_primary_10_1109_ACCESS_2024_3390675
crossref_primary_10_1371_journal_pone_0305095
crossref_primary_10_3390_info15100660
crossref_primary_10_1016_j_engappai_2024_108485
crossref_primary_10_1016_j_tourman_2022_104707
crossref_primary_10_1016_j_neucom_2025_129886
crossref_primary_10_1007_s10660_022_09652_7
crossref_primary_10_24857_rgsa_v18n12_039
crossref_primary_10_1057_s41599_024_04226_4
Cites_doi 10.24017/covid.8
10.1016/j.eswa.2018.05.010
10.1016/j.procs.2020.03.188
10.1016/j.knosys.2014.04.022
10.1109/78.650093
10.1016/j.datak.2017.03.009
10.1016/j.bbi.2020.05.006
10.1016/j.ipm.2016.12.002
10.1016/j.dss.2011.11.002
10.1007/BF02289588
10.1016/j.knosys.2009.11.004
10.1016/j.eswa.2014.05.045
10.1109/JCSSE.2011.5930137
10.1016/j.future.2020.01.005
10.1016/j.ijinfomgt.2016.06.003
10.1016/j.tourman.2020.104122
10.1016/j.procs.2017.09.115
10.1016/j.tele.2018.01.001
10.1038/323533a0
10.1162/neco.1997.9.8.1735
10.1016/j.eswa.2007.12.039
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106935
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106935
S1568494620308735
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-fa4859c2673553d7255a57fac81a84e25ad488dd71bc24d7e8d9d45a003ad2c83
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:04:34 EDT 2025
Tue Jul 01 01:50:08 EDT 2025
Tue Jul 16 04:30:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Hotel reviews
Random Forest classifier
Sentiment analysis
Bidirectional Encoder Representations from Transformers
Ensemble
Fuzzy
Categorization
Recommender system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-fa4859c2673553d7255a57fac81a84e25ad488dd71bc24d7e8d9d45a003ad2c83
ORCID 0000-0001-8813-4086
0000-0001-6225-3343
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2020_106935
crossref_primary_10_1016_j_asoc_2020_106935
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106935
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Abdi, Shamsuddin, Hasan (b10) 2018; 109
Garain, Mahata (b30) 2019
Rumelhart, Hinton, Williams (b37) 1986; 323
Hu, Chen (b23) 2016; 36
Palakvangsa-Na-Ayudhya, Sriarunrungreung, Thongprasan, Porcharoen (b18) 2011
Carrillo-de Albornoz, Plaza, Gervás, Díaz (b19) 2011
Hartigan, Wong (b42) 1979; 28
Zhao, Li, Zheng (b5) 2020
Ghosh (b11) 2020
fuzzywuzzy,URL
Lee, Hu, Lu (b21) 2018; 35
Devlin, Chang, Lee, Toutanova (b25) 2018
Amplayo, Song (b9) 2017; 110
Kasper, Vela (b13) 2011
Zhan, Loh, Liu (b33) 2009; 36
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, Chintala (b35) 2019
Ng, Jordan, Weiss (b44) 2002
Wu, Schuster, Chen, Le, Norouzi, Macherey, Krikun, Cao, Gao, Macherey (b31) 2016
Garain (b27) 2020
Bhat, Qadri, Kundroo, Ahanger, Agarwal (b6) 2020
Hochreiter, Schmidhuber (b39) 1997; 9
Ruz, Henríquez, Mascareño (b8) 2020; 106
Akhtar, Zubair, Kumar, Ahmad (b15) 2017; 115
Garain, Mahata, Dutta (b28) 2020
Garain, Das (b41) 2020; 167
Li, Xie, Chen, Wang, Deng (b3) 2014; 69
Manguri, Ramadhan, Mohammed Amin (b7) 2020
Day, Lee (b1) 2016
Hu, Chen, Chou (b20) 2017; 53
Hiew, Huang, Mou, Li, Wu, Xu (b4) 2019
Cho, van Merrienboer, Gülçehre, Bougares, Schwenk, Bengio (b38) 2014
.
Garain, Basu (b29) 2019
Schuster, Paliwal (b40) 1997; 45
Marrese-Taylor, Velasquez, Bravo-Marquez (b17) 2014; 41
Hu, Bose, Koh, Liu (b24) 2012; 52
Johnson (b43) 1967; 32
Ř.ehůřek, Sojka (b34) 2010
O’Mahony, Smyth (b22) 2010; 23
Tensor processing units (TPUs) documentation, URL
Mostafa (b12) 2020
Devitt, Ahmad (b2) 2007
Dey, Chakraborty, Biswas, Bose, Tiwari (b14) 2016; 8
Tsai, Chen, Hu, Chen (b16) 2020; 80
XLA: optimizing compiler for machine learning: TensorFlow, URL
Hochreiter (10.1016/j.asoc.2020.106935_b39) 1997; 9
Ruz (10.1016/j.asoc.2020.106935_b8) 2020; 106
Hartigan (10.1016/j.asoc.2020.106935_b42) 1979; 28
Akhtar (10.1016/j.asoc.2020.106935_b15) 2017; 115
Garain (10.1016/j.asoc.2020.106935_b30) 2019
Li (10.1016/j.asoc.2020.106935_b3) 2014; 69
O’Mahony (10.1016/j.asoc.2020.106935_b22) 2010; 23
Ghosh (10.1016/j.asoc.2020.106935_b11) 2020
Kasper (10.1016/j.asoc.2020.106935_b13) 2011
Devlin (10.1016/j.asoc.2020.106935_b25) 2018
10.1016/j.asoc.2020.106935_b26
Ř.ehůřek (10.1016/j.asoc.2020.106935_b34) 2010
Garain (10.1016/j.asoc.2020.106935_b27) 2020
Garain (10.1016/j.asoc.2020.106935_b29) 2019
Garain (10.1016/j.asoc.2020.106935_b28) 2020
Wu (10.1016/j.asoc.2020.106935_b31) 2016
Hu (10.1016/j.asoc.2020.106935_b20) 2017; 53
Paszke (10.1016/j.asoc.2020.106935_b35) 2019
Devitt (10.1016/j.asoc.2020.106935_b2) 2007
Palakvangsa-Na-Ayudhya (10.1016/j.asoc.2020.106935_b18) 2011
Zhan (10.1016/j.asoc.2020.106935_b33) 2009; 36
Johnson (10.1016/j.asoc.2020.106935_b43) 1967; 32
Carrillo-de Albornoz (10.1016/j.asoc.2020.106935_b19) 2011
Garain (10.1016/j.asoc.2020.106935_b41) 2020; 167
Cho (10.1016/j.asoc.2020.106935_b38) 2014
Abdi (10.1016/j.asoc.2020.106935_b10) 2018; 109
Amplayo (10.1016/j.asoc.2020.106935_b9) 2017; 110
Hu (10.1016/j.asoc.2020.106935_b24) 2012; 52
Schuster (10.1016/j.asoc.2020.106935_b40) 1997; 45
10.1016/j.asoc.2020.106935_b32
10.1016/j.asoc.2020.106935_b36
Mostafa (10.1016/j.asoc.2020.106935_b12) 2020
Hu (10.1016/j.asoc.2020.106935_b23) 2016; 36
Manguri (10.1016/j.asoc.2020.106935_b7) 2020
Ng (10.1016/j.asoc.2020.106935_b44) 2002
Hiew (10.1016/j.asoc.2020.106935_b4) 2019
Bhat (10.1016/j.asoc.2020.106935_b6) 2020
Tsai (10.1016/j.asoc.2020.106935_b16) 2020; 80
Zhao (10.1016/j.asoc.2020.106935_b5) 2020
Rumelhart (10.1016/j.asoc.2020.106935_b37) 1986; 323
Day (10.1016/j.asoc.2020.106935_b1) 2016
Dey (10.1016/j.asoc.2020.106935_b14) 2016; 8
Marrese-Taylor (10.1016/j.asoc.2020.106935_b17) 2014; 41
Lee (10.1016/j.asoc.2020.106935_b21) 2018; 35
References_xml – year: 2019
  ident: b30
  article-title: Sentiment analysis at sepln (tass)-2019: Sentiment analysis at tweet level using deep learning
– volume: 115
  start-page: 563
  year: 2017
  end-page: 571
  ident: b15
  article-title: Aspect based sentiment oriented summarization of hotel reviews
  publication-title: Procedia Comput. Sci.
– volume: 80
  year: 2020
  ident: b16
  article-title: Improving text summarization of online hotel reviews with review helpfulness and sentiment
  publication-title: Tour. Manag.
– reference: XLA: optimizing compiler for machine learning: TensorFlow, URL:
– volume: 35
  year: 2018
  ident: b21
  article-title: Assessing the helpfulness of online hotel reviews: A classification-based approach
  publication-title: Telemat. Inform.
– volume: 45
  start-page: 2673
  year: 1997
  end-page: 2681
  ident: b40
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b39
  article-title: Long short-term memory
  publication-title: Neural Comput.
– year: 2011
  ident: b13
  article-title: Sentiment analysis for hotel reviews
– volume: 23
  start-page: 323
  year: 2010
  end-page: 329
  ident: b22
  article-title: A classification-based review recommender
  publication-title: Knowl. Based Syst.
– year: 2007
  ident: b2
  article-title: Sentiment polarity identification in financial news: A cohesion-based approach
– volume: 69
  year: 2014
  ident: b3
  article-title: News impact on stock price return via sentiment analysis
  publication-title: Knowl.-Based Syst.
– year: 2011
  ident: b18
  article-title: Nebular: A sentiment classification system for the tourism business
– volume: 53
  start-page: 436
  year: 2017
  end-page: 449
  ident: b20
  article-title: Opinion mining from online hotel reviews – a text summarization approach
  publication-title: Inf. Process. Manage.
– year: 2016
  ident: b31
  article-title: Google’s neural machine translation system: Bridging the gap between human and machine translation
– volume: 32
  start-page: 241
  year: 1967
  end-page: 254
  ident: b43
  article-title: Hierarchical clustering schemes
  publication-title: Psychometrika
– start-page: 405
  year: 2020
  end-page: 413
  ident: b12
  article-title: Machine learning-based sentiment analysis for analyzing the travelers reviews on Egyptian hotels
– volume: 8
  start-page: 54
  year: 2016
  end-page: 62
  ident: b14
  article-title: Sentiment analysis of review datasets using Naïve Bayes‘ and K-nn classifier
  publication-title: Int. J. Inform. Eng. Electron. Bus.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b37
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– start-page: 494
  year: 2019
  end-page: 497
  ident: b29
  article-title: The titans at semeval-2019 task 5: Detection of hate speech against immigrants and women in Twitter
  publication-title: Proceedings of the 13th International Workshop on Semantic Evaluation
– year: 2019
  ident: b4
  article-title: Bert-based financial sentiment index and LSTM-based stock return predictability
– year: 2020
  ident: b5
  article-title: A bert based sentiment analysis and key entity detection approach for online financial texts
– volume: 109
  year: 2018
  ident: b10
  article-title: Machine learning-based multi-documents sentiment-oriented summarization using linguistic treatment
  publication-title: Expert Syst. Appl.
– volume: 167
  start-page: 113
  year: 2020
  end-page: 120
  ident: b41
  article-title: K-RMS algorithm
  publication-title: Procedia Comput. Sci.
– volume: 106
  year: 2020
  ident: b8
  article-title: Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers
  publication-title: Future Gener. Comput. Syst.
– start-page: 1127
  year: 2016
  end-page: 1134
  ident: b1
  article-title: Deep learning for financial sentiment analysis on finance news providers
  publication-title: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)
– reference: Tensor processing units (TPUs) documentation, URL:
– volume: 36
  start-page: 2107
  year: 2009
  end-page: 2115
  ident: b33
  article-title: Gather customer concerns from online product reviews - a text summarization approach
  publication-title: Expert Syst. Appl.
– volume: 36
  start-page: 929
  year: 2016
  end-page: 944
  ident: b23
  article-title: Predicting hotel review helpfulness: The impact of review visibility, and interaction between hotel stars and review ratings
  publication-title: Int. J. Inf. Manage.
– year: 2018
  ident: b25
  article-title: Bert: Pre-training of deep bidirectional transformers for language understanding
– volume: 28
  start-page: 100
  year: 1979
  end-page: 108
  ident: b42
  article-title: Algorithm AS 136: A k-means clustering algorithm
  publication-title: J. R. Statist. Soc. Ser. C
– year: 2020
  ident: b6
  article-title: Sentiment analysis of social media response on the covid19 outbreak
  publication-title: Brain Behav. Immun.
– volume: 41
  start-page: 7764
  year: 2014
  end-page: 7775
  ident: b17
  article-title: A novel deterministic approach for aspect-based opinion mining in tourism products reviews
  publication-title: Expert Syst. Appl.
– volume: 110
  year: 2017
  ident: b9
  article-title: An adaptable fine-grained sentiment analysis for summarization of multiple short online reviews
  publication-title: Data Knowl. Eng.
– start-page: 39
  year: 2020
  end-page: 44
  ident: b11
  article-title: A sentiment-based hotel review summarization
– start-page: 54
  year: 2020
  end-page: 65
  ident: b7
  article-title: Twitter sentiment analysis on worldwide COVID-19 outbreaks
  publication-title: Kurdistan J. Appl. Res.
– start-page: 7
  year: 2020
  end-page: 9
  ident: b28
  article-title: Normalization of numeronyms using NLP techniques
  publication-title: 2020 IEEE Calcutta Conference (CALCON)
– reference: fuzzywuzzy,URL:
– year: 2020
  ident: b27
  article-title: Hotel reviews from around the world with sentiment values and review ratings in different categories for natural language processing
– reference: .
– start-page: 8024
  year: 2019
  end-page: 8035
  ident: b35
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Advances in Neural Information Processing Systems 32
– start-page: 55
  year: 2011
  end-page: 66
  ident: b19
  article-title: A joint model of feature mining and sentiment analysis for product review rating
– volume: 52
  start-page: 674
  year: 2012
  end-page: 684
  ident: b24
  article-title: Manipulation of online reviews: An analysis of ratings, readability, and sentiments
  publication-title: Decis. Support Syst.
– year: 2014
  ident: b38
  article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation
– start-page: 849
  year: 2002
  end-page: 856
  ident: b44
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Advances in Neural Information Processing Systems
– start-page: 45
  year: 2010
  end-page: 50
  ident: b34
  article-title: Software framework for topic modelling with large corpora
  publication-title: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks
– start-page: 54
  year: 2020
  ident: 10.1016/j.asoc.2020.106935_b7
  article-title: Twitter sentiment analysis on worldwide COVID-19 outbreaks
  publication-title: Kurdistan J. Appl. Res.
  doi: 10.24017/covid.8
– start-page: 7
  year: 2020
  ident: 10.1016/j.asoc.2020.106935_b28
  article-title: Normalization of numeronyms using NLP techniques
– volume: 109
  year: 2018
  ident: 10.1016/j.asoc.2020.106935_b10
  article-title: Machine learning-based multi-documents sentiment-oriented summarization using linguistic treatment
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.05.010
– ident: 10.1016/j.asoc.2020.106935_b32
– year: 2019
  ident: 10.1016/j.asoc.2020.106935_b4
– volume: 167
  start-page: 113
  year: 2020
  ident: 10.1016/j.asoc.2020.106935_b41
  article-title: K-RMS algorithm
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.188
– ident: 10.1016/j.asoc.2020.106935_b26
– year: 2007
  ident: 10.1016/j.asoc.2020.106935_b2
– start-page: 494
  year: 2019
  ident: 10.1016/j.asoc.2020.106935_b29
  article-title: The titans at semeval-2019 task 5: Detection of hate speech against immigrants and women in Twitter
– volume: 69
  year: 2014
  ident: 10.1016/j.asoc.2020.106935_b3
  article-title: News impact on stock price return via sentiment analysis
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.04.022
– volume: 8
  start-page: 54
  year: 2016
  ident: 10.1016/j.asoc.2020.106935_b14
  article-title: Sentiment analysis of review datasets using Naïve Bayes‘ and K-nn classifier
  publication-title: Int. J. Inform. Eng. Electron. Bus.
– volume: 45
  start-page: 2673
  issue: 11
  year: 1997
  ident: 10.1016/j.asoc.2020.106935_b40
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– start-page: 55
  year: 2011
  ident: 10.1016/j.asoc.2020.106935_b19
  article-title: A joint model of feature mining and sentiment analysis for product review rating
– year: 2016
  ident: 10.1016/j.asoc.2020.106935_b31
– volume: 110
  year: 2017
  ident: 10.1016/j.asoc.2020.106935_b9
  article-title: An adaptable fine-grained sentiment analysis for summarization of multiple short online reviews
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2017.03.009
– year: 2020
  ident: 10.1016/j.asoc.2020.106935_b6
  article-title: Sentiment analysis of social media response on the covid19 outbreak
  publication-title: Brain Behav. Immun.
  doi: 10.1016/j.bbi.2020.05.006
– volume: 53
  start-page: 436
  year: 2017
  ident: 10.1016/j.asoc.2020.106935_b20
  article-title: Opinion mining from online hotel reviews – a text summarization approach
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2016.12.002
– start-page: 405
  year: 2020
  ident: 10.1016/j.asoc.2020.106935_b12
– year: 2020
  ident: 10.1016/j.asoc.2020.106935_b5
– volume: 52
  start-page: 674
  year: 2012
  ident: 10.1016/j.asoc.2020.106935_b24
  article-title: Manipulation of online reviews: An analysis of ratings, readability, and sentiments
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2011.11.002
– year: 2018
  ident: 10.1016/j.asoc.2020.106935_b25
– volume: 32
  start-page: 241
  issue: 3
  year: 1967
  ident: 10.1016/j.asoc.2020.106935_b43
  article-title: Hierarchical clustering schemes
  publication-title: Psychometrika
  doi: 10.1007/BF02289588
– volume: 23
  start-page: 323
  year: 2010
  ident: 10.1016/j.asoc.2020.106935_b22
  article-title: A classification-based review recommender
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2009.11.004
– start-page: 39
  year: 2020
  ident: 10.1016/j.asoc.2020.106935_b11
– year: 2014
  ident: 10.1016/j.asoc.2020.106935_b38
– start-page: 1127
  year: 2016
  ident: 10.1016/j.asoc.2020.106935_b1
  article-title: Deep learning for financial sentiment analysis on finance news providers
– start-page: 849
  year: 2002
  ident: 10.1016/j.asoc.2020.106935_b44
  article-title: On spectral clustering: Analysis and an algorithm
– volume: 41
  start-page: 7764
  year: 2014
  ident: 10.1016/j.asoc.2020.106935_b17
  article-title: A novel deterministic approach for aspect-based opinion mining in tourism products reviews
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.05.045
– year: 2011
  ident: 10.1016/j.asoc.2020.106935_b18
  article-title: Nebular: A sentiment classification system for the tourism business
  doi: 10.1109/JCSSE.2011.5930137
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: 10.1016/j.asoc.2020.106935_b42
  article-title: Algorithm AS 136: A k-means clustering algorithm
  publication-title: J. R. Statist. Soc. Ser. C
– volume: 106
  year: 2020
  ident: 10.1016/j.asoc.2020.106935_b8
  article-title: Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.01.005
– volume: 36
  start-page: 929
  year: 2016
  ident: 10.1016/j.asoc.2020.106935_b23
  article-title: Predicting hotel review helpfulness: The impact of review visibility, and interaction between hotel stars and review ratings
  publication-title: Int. J. Inf. Manage.
  doi: 10.1016/j.ijinfomgt.2016.06.003
– year: 2011
  ident: 10.1016/j.asoc.2020.106935_b13
– volume: 80
  year: 2020
  ident: 10.1016/j.asoc.2020.106935_b16
  article-title: Improving text summarization of online hotel reviews with review helpfulness and sentiment
  publication-title: Tour. Manag.
  doi: 10.1016/j.tourman.2020.104122
– volume: 115
  start-page: 563
  year: 2017
  ident: 10.1016/j.asoc.2020.106935_b15
  article-title: Aspect based sentiment oriented summarization of hotel reviews
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.09.115
– volume: 35
  year: 2018
  ident: 10.1016/j.asoc.2020.106935_b21
  article-title: Assessing the helpfulness of online hotel reviews: A classification-based approach
  publication-title: Telemat. Inform.
  doi: 10.1016/j.tele.2018.01.001
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.asoc.2020.106935_b37
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.asoc.2020.106935_b39
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– year: 2019
  ident: 10.1016/j.asoc.2020.106935_b30
– ident: 10.1016/j.asoc.2020.106935_b36
– year: 2020
  ident: 10.1016/j.asoc.2020.106935_b27
– volume: 36
  start-page: 2107
  year: 2009
  ident: 10.1016/j.asoc.2020.106935_b33
  article-title: Gather customer concerns from online product reviews - a text summarization approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.12.039
– start-page: 8024
  year: 2019
  ident: 10.1016/j.asoc.2020.106935_b35
  article-title: Pytorch: An imperative style, high-performance deep learning library
– start-page: 45
  year: 2010
  ident: 10.1016/j.asoc.2020.106935_b34
  article-title: Software framework for topic modelling with large corpora
SSID ssj0016928
Score 2.6081433
Snippet Finding a suitable hotel based on user’s need and affordability is a complex decision-making process. Nowadays, the availability of an ample amount of online...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106935
SubjectTerms Bidirectional Encoder Representations from Transformers
Categorization
Ensemble
Fuzzy
Hotel reviews
Random Forest classifier
Recommender system
Sentiment analysis
Title An ensemble-based hotel recommender system using sentiment analysis and aspect categorization of hotel reviews
URI https://dx.doi.org/10.1016/j.asoc.2020.106935
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5DL178FufHyMGbxLVpmqbHMRzza4g62K2kTTonWztGvfrbzZumQ0F28NRSklCeJnnzlud5XoSuUurJKNSMKE-mxEQITYTSAaFBEKc8V8JLQSj8NOLDMbufhJMW6jdaGKBVur2_3tPtbu2edB2a3eVs1n01mYdgMePUutoFIDRnLIJZfvO1pnn4PLb1VaExgdZOOFNzvKRBwOSIFB7w2JZ8-yM4_Qg4g320606KuFe_zAFq6eIQ7TVVGLBblEeo6BXY5KJ6kc41gaCk8HtZ6TmGXHexsKXicG3YjIHlPsWgN7Km_lg6SxJzo7C0qksMFKlpuXL6TFzm6-Gsb-kxGg9u3_pD4qookCzwvIrkkokwzig3EIWBikwOIcMol5nwpWCahlKZRaxU5KcZZSrSQsWKhdIsd6loJoITtFWUhT5F2OciAwl6lHPKJKjRpTQD5KAy0blM28hv4EsyZzEOlS7mScMl-0gA8gQgT2rI2-h63WdZG2xsbB02XyX5NU0SEwE29Dv7Z79ztEOBxGL_uVygrWr1qS_NKaRKO3aaddB2r__y-AzXu4fh6Bsjit9f
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7B9gCX0vIQFNr6UE7IbOI4iXPggHhotwtcChK34MQOD-1m0bIIcemf6h9kxnFWRao4VOIWWRkrGTsznuj75gP4UYhAp7GV3AS64JghLFfGRlxEUVYklVFBQUTh07OkdyF_XsaXc_Cn5cIQrNLH_iamu2jtR7rem93729vuL6w8lMxkIlxXu6hFVg7s8xPWbQ97_UNc5G0hjo_OD3rcSwvwMgqCKa-0VHFWigTt4sikeLDWcVrpUoVaSStibXBnG5OGRSmkSa0ymZGxxm9AG1GqCOedhw8SwwXJJuz-nuFKwiRzgq70dJwezzN1GlCZRpdjUSpoIMmcxtw_suFfGe74E3z0R1O237z9Z5iz9TIstbIPzEeBFaj3a4bFrx0VQ8spCxp2M57aIaPiejRy2nSs6RDNCFZ_zYjg5FQEmPY9UPDCMO1onowwWdfjiSeEsnE1m841Sl2Fi3fx7Rp06nFt14GFiSqJ855WiZCa6O9a4wQV0VpspYsNCFv35aXvaU7SGsO8Ba_d5eTynFyeNy7fgJ2ZzX3T0ePNu-N2VfJX-zLHlPOG3Zf_tPsOC73z05P8pH822IRFQQga98NnCzrTyaP9ikegafHNbTkGV--9x18AbdgZQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble-based+hotel+recommender+system+using+sentiment+analysis+and+aspect+categorization+of+hotel+reviews&rft.jtitle=Applied+soft+computing&rft.au=Ray%2C+Biswarup&rft.au=Garain%2C+Avishek&rft.au=Sarkar%2C+Ram&rft.date=2021-01-01&rft.issn=1568-4946&rft.volume=98&rft.spage=106935&rft_id=info:doi/10.1016%2Fj.asoc.2020.106935&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon