An ensemble-based hotel recommender system using sentiment analysis and aspect categorization of hotel reviews
Finding a suitable hotel based on user’s need and affordability is a complex decision-making process. Nowadays, the availability of an ample amount of online reviews made by the customers helps us in this regard. This very fact gives us a promising research direction in the field of tourism called h...
Saved in:
Published in | Applied soft computing Vol. 98; p. 106935 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Finding a suitable hotel based on user’s need and affordability is a complex decision-making process. Nowadays, the availability of an ample amount of online reviews made by the customers helps us in this regard. This very fact gives us a promising research direction in the field of tourism called hotel recommendation system which also helps in improving the information processing of consumers. Real-world reviews may showcase different sentiments of the customers towards a hotel and each review can be categorized based on different aspects such as cleanliness, value, service, etc. Keeping these facts in mind, in the present work, we have proposed a hotel recommendation system using Sentiment Analysis of the hotel reviews, and aspect-based review categorization which works on the queries given by a user. Furthermore, we have provided a new rich and diverse dataset of online hotel reviews crawled from Tripadvisor.com. We have followed a systematic approach which first uses an ensemble of a binary classification called Bidirectional Encoder Representations from Transformers (BERT) model with three phases for positive–negative, neutral–negative, neutral–positive sentiments merged using a weight assigning protocol. We have then fed these pre-trained word embeddings generated by the BERT models along with other different textual features such as word vectors generated by Word2vec, TF–IDF of frequent words, subjectivity score, etc. to a Random Forest classifier. After that, we have also grouped the reviews into different categories using an approach that involves fuzzy logic and cosine similarity. Finally, we have created a recommender system by the aforementioned frameworks. Our model has achieved a Macro F1-score of 84% and test accuracy of 92.36% in the classification of sentiment polarities. Also, the results of the categorized reviews have formed compact clusters. The results are quite promising and much better compared to state-of-the-art models. The relevant codes and notebooks can be found here.
•Designed a Hotel Recommendation System based on online review in English language.•Ensemble of BERT and Random Forest models for classifying sentiments on reviews.•Used textual features like Word2Vec embeddings and TF–IDF scores.•Categorized the reviews based on aspects using Fuzzy logic and Cosine similarity.•Prepared a sentiment tagged dataset from Tripadvisor consisting of hotel reviews. |
---|---|
AbstractList | Finding a suitable hotel based on user’s need and affordability is a complex decision-making process. Nowadays, the availability of an ample amount of online reviews made by the customers helps us in this regard. This very fact gives us a promising research direction in the field of tourism called hotel recommendation system which also helps in improving the information processing of consumers. Real-world reviews may showcase different sentiments of the customers towards a hotel and each review can be categorized based on different aspects such as cleanliness, value, service, etc. Keeping these facts in mind, in the present work, we have proposed a hotel recommendation system using Sentiment Analysis of the hotel reviews, and aspect-based review categorization which works on the queries given by a user. Furthermore, we have provided a new rich and diverse dataset of online hotel reviews crawled from Tripadvisor.com. We have followed a systematic approach which first uses an ensemble of a binary classification called Bidirectional Encoder Representations from Transformers (BERT) model with three phases for positive–negative, neutral–negative, neutral–positive sentiments merged using a weight assigning protocol. We have then fed these pre-trained word embeddings generated by the BERT models along with other different textual features such as word vectors generated by Word2vec, TF–IDF of frequent words, subjectivity score, etc. to a Random Forest classifier. After that, we have also grouped the reviews into different categories using an approach that involves fuzzy logic and cosine similarity. Finally, we have created a recommender system by the aforementioned frameworks. Our model has achieved a Macro F1-score of 84% and test accuracy of 92.36% in the classification of sentiment polarities. Also, the results of the categorized reviews have formed compact clusters. The results are quite promising and much better compared to state-of-the-art models. The relevant codes and notebooks can be found here.
•Designed a Hotel Recommendation System based on online review in English language.•Ensemble of BERT and Random Forest models for classifying sentiments on reviews.•Used textual features like Word2Vec embeddings and TF–IDF scores.•Categorized the reviews based on aspects using Fuzzy logic and Cosine similarity.•Prepared a sentiment tagged dataset from Tripadvisor consisting of hotel reviews. |
ArticleNumber | 106935 |
Author | Ray, Biswarup Garain, Avishek Sarkar, Ram |
Author_xml | – sequence: 1 givenname: Biswarup surname: Ray fullname: Ray, Biswarup email: raybiswarup9@gmail.com – sequence: 2 givenname: Avishek orcidid: 0000-0001-6225-3343 surname: Garain fullname: Garain, Avishek email: avishekgarain@gmail.com – sequence: 3 givenname: Ram orcidid: 0000-0001-8813-4086 surname: Sarkar fullname: Sarkar, Ram email: ramjucse@gmail.com |
BookMark | eNp9kM9KxDAQh4Os4K76Ap7yAl3TtGlT8CKL_0Dwoucwm0w1S5tIJirr09t1xYMHT_Njhm-Y-RZsFmJAxs5KsSxF2ZxvlkDRLqWQu0bTVeqAzUvdyqJrdDmbsmp0UXd1c8QWRBsxQZ3UcxYuA8dAOK4HLNZA6PhLzDjwhDaOIwaHidOWMo78jXx45oQh-2mQOQQYtuRpCo4DvaLN3ELG55j8J2QfA4_977p3jx90wg57GAhPf-oxe7q-elzdFvcPN3ery_vCVkLkoodaq87Kpq2UqlwrlQLV9mB1CbpGqcDVWjvXlmsra9eidp2rFQhRgZNWV8dM7_faFIkS9sb6_H1STuAHUwqz82Y2ZufN7LyZvbcJlX_Q1-RHSNv_oYs9hNNT06fJkPUYLDo_iczGRf8f_gWF2ovc |
CitedBy_id | crossref_primary_10_4236_jcc_2023_113009 crossref_primary_10_1109_ACCESS_2023_3270260 crossref_primary_10_1007_s10489_024_05313_4 crossref_primary_10_1108_K_10_2023_2132 crossref_primary_10_3390_su17052328 crossref_primary_10_3390_app14146254 crossref_primary_10_1109_TAFFC_2022_3225238 crossref_primary_10_3390_app122110881 crossref_primary_10_3390_electronics11030374 crossref_primary_10_1007_s00521_022_07690_8 crossref_primary_10_1016_j_asoc_2021_108246 crossref_primary_10_1371_journal_pone_0295248 crossref_primary_10_2298_CSIS231120034M crossref_primary_10_1007_s13042_024_02184_6 crossref_primary_10_1016_j_ijhm_2024_104009 crossref_primary_10_1080_21681015_2022_2070933 crossref_primary_10_1155_2022_5259305 crossref_primary_10_1016_j_knosys_2021_107134 crossref_primary_10_1016_j_asoc_2023_110562 crossref_primary_10_1016_j_techfore_2024_123775 crossref_primary_10_1007_s12559_024_10331_y crossref_primary_10_1016_j_eswa_2024_125533 crossref_primary_10_1016_j_eswa_2022_119294 crossref_primary_10_3390_su16135566 crossref_primary_10_32604_cmes_2023_026812 crossref_primary_10_3390_app11209381 crossref_primary_10_1016_j_eswa_2022_118246 crossref_primary_10_3390_electronics13010057 crossref_primary_10_1016_j_datak_2024_102314 crossref_primary_10_1016_j_eswa_2022_118922 crossref_primary_10_3390_electronics14061090 crossref_primary_10_1016_j_tourman_2025_105134 crossref_primary_10_1016_j_tourman_2024_105113 crossref_primary_10_3390_su15010617 crossref_primary_10_1080_13683500_2021_1940107 crossref_primary_10_1108_IJCHM_07_2022_0913 crossref_primary_10_7717_peerj_cs_660 crossref_primary_10_1016_j_eswa_2022_116574 crossref_primary_10_1007_s00500_021_06590_8 crossref_primary_10_1016_j_eswa_2022_118875 crossref_primary_10_7717_peerj_cs_1525 crossref_primary_10_1186_s40537_021_00534_7 crossref_primary_10_1007_s10462_022_10215_3 crossref_primary_10_1007_s40747_022_00958_5 crossref_primary_10_1145_3589131 crossref_primary_10_1007_s11042_024_18522_3 crossref_primary_10_1186_s40537_023_00782_9 crossref_primary_10_1002_cpe_6452 crossref_primary_10_1142_S0219622022500626 crossref_primary_10_3390_app12178823 crossref_primary_10_1108_DTA_03_2023_0101 crossref_primary_10_1016_j_asoc_2024_112259 crossref_primary_10_1016_j_eswa_2022_118503 crossref_primary_10_1109_TAFFC_2022_3204972 crossref_primary_10_1007_s11277_024_11690_3 crossref_primary_10_1080_10941665_2025_2474017 crossref_primary_10_1016_j_im_2024_103970 crossref_primary_10_18778_0867_5856_33_1_03 crossref_primary_10_1007_s42979_024_02812_6 crossref_primary_10_3233_JIFS_223871 crossref_primary_10_1016_j_eswa_2024_123648 crossref_primary_10_1007_s13278_024_01288_9 crossref_primary_10_1007_s40747_023_01191_4 crossref_primary_10_1002_cpe_7374 crossref_primary_10_1016_j_elerap_2021_101094 crossref_primary_10_1016_j_tourman_2022_104524 crossref_primary_10_1007_s13278_023_01076_x crossref_primary_10_1016_j_eswa_2022_119420 crossref_primary_10_1371_journal_pone_0275382 crossref_primary_10_32604_cmc_2022_025858 crossref_primary_10_1007_s11227_021_04047_1 crossref_primary_10_1007_s11760_024_03014_6 crossref_primary_10_1016_j_ecoinf_2022_101585 crossref_primary_10_1038_s41598_024_61598_y crossref_primary_10_2478_ejthr_2024_0022 crossref_primary_10_1109_TAFFC_2022_3186015 crossref_primary_10_1002_int_22634 crossref_primary_10_1016_j_inffus_2024_102712 crossref_primary_10_1007_s10660_024_09897_4 crossref_primary_10_1109_TCBB_2022_3225234 crossref_primary_10_3390_su16041640 crossref_primary_10_1007_s40815_021_01141_7 crossref_primary_10_1016_j_eswa_2022_117079 crossref_primary_10_1016_j_asoc_2023_110137 crossref_primary_10_1016_j_inffus_2022_10_004 crossref_primary_10_1111_coin_12596 crossref_primary_10_1007_s00500_023_08876_5 crossref_primary_10_1016_j_eswa_2024_123151 crossref_primary_10_3390_jtaer19040145 crossref_primary_10_1002_pts_2798 crossref_primary_10_1007_s00521_022_07186_5 crossref_primary_10_1109_ACCESS_2024_3390675 crossref_primary_10_1371_journal_pone_0305095 crossref_primary_10_3390_info15100660 crossref_primary_10_1016_j_engappai_2024_108485 crossref_primary_10_1016_j_tourman_2022_104707 crossref_primary_10_1016_j_neucom_2025_129886 crossref_primary_10_1007_s10660_022_09652_7 crossref_primary_10_24857_rgsa_v18n12_039 crossref_primary_10_1057_s41599_024_04226_4 |
Cites_doi | 10.24017/covid.8 10.1016/j.eswa.2018.05.010 10.1016/j.procs.2020.03.188 10.1016/j.knosys.2014.04.022 10.1109/78.650093 10.1016/j.datak.2017.03.009 10.1016/j.bbi.2020.05.006 10.1016/j.ipm.2016.12.002 10.1016/j.dss.2011.11.002 10.1007/BF02289588 10.1016/j.knosys.2009.11.004 10.1016/j.eswa.2014.05.045 10.1109/JCSSE.2011.5930137 10.1016/j.future.2020.01.005 10.1016/j.ijinfomgt.2016.06.003 10.1016/j.tourman.2020.104122 10.1016/j.procs.2017.09.115 10.1016/j.tele.2018.01.001 10.1038/323533a0 10.1162/neco.1997.9.8.1735 10.1016/j.eswa.2007.12.039 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2020.106935 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2020_106935 S1568494620308735 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-fa4859c2673553d7255a57fac81a84e25ad488dd71bc24d7e8d9d45a003ad2c83 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:04:34 EDT 2025 Tue Jul 01 01:50:08 EDT 2025 Tue Jul 16 04:30:46 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hotel reviews Random Forest classifier Sentiment analysis Bidirectional Encoder Representations from Transformers Ensemble Fuzzy Categorization Recommender system |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-fa4859c2673553d7255a57fac81a84e25ad488dd71bc24d7e8d9d45a003ad2c83 |
ORCID | 0000-0001-8813-4086 0000-0001-6225-3343 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2020_106935 crossref_primary_10_1016_j_asoc_2020_106935 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106935 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Abdi, Shamsuddin, Hasan (b10) 2018; 109 Garain, Mahata (b30) 2019 Rumelhart, Hinton, Williams (b37) 1986; 323 Hu, Chen (b23) 2016; 36 Palakvangsa-Na-Ayudhya, Sriarunrungreung, Thongprasan, Porcharoen (b18) 2011 Carrillo-de Albornoz, Plaza, Gervás, Díaz (b19) 2011 Hartigan, Wong (b42) 1979; 28 Zhao, Li, Zheng (b5) 2020 Ghosh (b11) 2020 fuzzywuzzy,URL Lee, Hu, Lu (b21) 2018; 35 Devlin, Chang, Lee, Toutanova (b25) 2018 Amplayo, Song (b9) 2017; 110 Kasper, Vela (b13) 2011 Zhan, Loh, Liu (b33) 2009; 36 Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, Chintala (b35) 2019 Ng, Jordan, Weiss (b44) 2002 Wu, Schuster, Chen, Le, Norouzi, Macherey, Krikun, Cao, Gao, Macherey (b31) 2016 Garain (b27) 2020 Bhat, Qadri, Kundroo, Ahanger, Agarwal (b6) 2020 Hochreiter, Schmidhuber (b39) 1997; 9 Ruz, Henríquez, Mascareño (b8) 2020; 106 Akhtar, Zubair, Kumar, Ahmad (b15) 2017; 115 Garain, Mahata, Dutta (b28) 2020 Garain, Das (b41) 2020; 167 Li, Xie, Chen, Wang, Deng (b3) 2014; 69 Manguri, Ramadhan, Mohammed Amin (b7) 2020 Day, Lee (b1) 2016 Hu, Chen, Chou (b20) 2017; 53 Hiew, Huang, Mou, Li, Wu, Xu (b4) 2019 Cho, van Merrienboer, Gülçehre, Bougares, Schwenk, Bengio (b38) 2014 . Garain, Basu (b29) 2019 Schuster, Paliwal (b40) 1997; 45 Marrese-Taylor, Velasquez, Bravo-Marquez (b17) 2014; 41 Hu, Bose, Koh, Liu (b24) 2012; 52 Johnson (b43) 1967; 32 Ř.ehůřek, Sojka (b34) 2010 O’Mahony, Smyth (b22) 2010; 23 Tensor processing units (TPUs) documentation, URL Mostafa (b12) 2020 Devitt, Ahmad (b2) 2007 Dey, Chakraborty, Biswas, Bose, Tiwari (b14) 2016; 8 Tsai, Chen, Hu, Chen (b16) 2020; 80 XLA: optimizing compiler for machine learning: TensorFlow, URL Hochreiter (10.1016/j.asoc.2020.106935_b39) 1997; 9 Ruz (10.1016/j.asoc.2020.106935_b8) 2020; 106 Hartigan (10.1016/j.asoc.2020.106935_b42) 1979; 28 Akhtar (10.1016/j.asoc.2020.106935_b15) 2017; 115 Garain (10.1016/j.asoc.2020.106935_b30) 2019 Li (10.1016/j.asoc.2020.106935_b3) 2014; 69 O’Mahony (10.1016/j.asoc.2020.106935_b22) 2010; 23 Ghosh (10.1016/j.asoc.2020.106935_b11) 2020 Kasper (10.1016/j.asoc.2020.106935_b13) 2011 Devlin (10.1016/j.asoc.2020.106935_b25) 2018 10.1016/j.asoc.2020.106935_b26 Ř.ehůřek (10.1016/j.asoc.2020.106935_b34) 2010 Garain (10.1016/j.asoc.2020.106935_b27) 2020 Garain (10.1016/j.asoc.2020.106935_b29) 2019 Garain (10.1016/j.asoc.2020.106935_b28) 2020 Wu (10.1016/j.asoc.2020.106935_b31) 2016 Hu (10.1016/j.asoc.2020.106935_b20) 2017; 53 Paszke (10.1016/j.asoc.2020.106935_b35) 2019 Devitt (10.1016/j.asoc.2020.106935_b2) 2007 Palakvangsa-Na-Ayudhya (10.1016/j.asoc.2020.106935_b18) 2011 Zhan (10.1016/j.asoc.2020.106935_b33) 2009; 36 Johnson (10.1016/j.asoc.2020.106935_b43) 1967; 32 Carrillo-de Albornoz (10.1016/j.asoc.2020.106935_b19) 2011 Garain (10.1016/j.asoc.2020.106935_b41) 2020; 167 Cho (10.1016/j.asoc.2020.106935_b38) 2014 Abdi (10.1016/j.asoc.2020.106935_b10) 2018; 109 Amplayo (10.1016/j.asoc.2020.106935_b9) 2017; 110 Hu (10.1016/j.asoc.2020.106935_b24) 2012; 52 Schuster (10.1016/j.asoc.2020.106935_b40) 1997; 45 10.1016/j.asoc.2020.106935_b32 10.1016/j.asoc.2020.106935_b36 Mostafa (10.1016/j.asoc.2020.106935_b12) 2020 Hu (10.1016/j.asoc.2020.106935_b23) 2016; 36 Manguri (10.1016/j.asoc.2020.106935_b7) 2020 Ng (10.1016/j.asoc.2020.106935_b44) 2002 Hiew (10.1016/j.asoc.2020.106935_b4) 2019 Bhat (10.1016/j.asoc.2020.106935_b6) 2020 Tsai (10.1016/j.asoc.2020.106935_b16) 2020; 80 Zhao (10.1016/j.asoc.2020.106935_b5) 2020 Rumelhart (10.1016/j.asoc.2020.106935_b37) 1986; 323 Day (10.1016/j.asoc.2020.106935_b1) 2016 Dey (10.1016/j.asoc.2020.106935_b14) 2016; 8 Marrese-Taylor (10.1016/j.asoc.2020.106935_b17) 2014; 41 Lee (10.1016/j.asoc.2020.106935_b21) 2018; 35 |
References_xml | – year: 2019 ident: b30 article-title: Sentiment analysis at sepln (tass)-2019: Sentiment analysis at tweet level using deep learning – volume: 115 start-page: 563 year: 2017 end-page: 571 ident: b15 article-title: Aspect based sentiment oriented summarization of hotel reviews publication-title: Procedia Comput. Sci. – volume: 80 year: 2020 ident: b16 article-title: Improving text summarization of online hotel reviews with review helpfulness and sentiment publication-title: Tour. Manag. – reference: XLA: optimizing compiler for machine learning: TensorFlow, URL: – volume: 35 year: 2018 ident: b21 article-title: Assessing the helpfulness of online hotel reviews: A classification-based approach publication-title: Telemat. Inform. – volume: 45 start-page: 2673 year: 1997 end-page: 2681 ident: b40 article-title: Bidirectional recurrent neural networks publication-title: IEEE Trans. Signal Process. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b39 article-title: Long short-term memory publication-title: Neural Comput. – year: 2011 ident: b13 article-title: Sentiment analysis for hotel reviews – volume: 23 start-page: 323 year: 2010 end-page: 329 ident: b22 article-title: A classification-based review recommender publication-title: Knowl. Based Syst. – year: 2007 ident: b2 article-title: Sentiment polarity identification in financial news: A cohesion-based approach – volume: 69 year: 2014 ident: b3 article-title: News impact on stock price return via sentiment analysis publication-title: Knowl.-Based Syst. – year: 2011 ident: b18 article-title: Nebular: A sentiment classification system for the tourism business – volume: 53 start-page: 436 year: 2017 end-page: 449 ident: b20 article-title: Opinion mining from online hotel reviews – a text summarization approach publication-title: Inf. Process. Manage. – year: 2016 ident: b31 article-title: Google’s neural machine translation system: Bridging the gap between human and machine translation – volume: 32 start-page: 241 year: 1967 end-page: 254 ident: b43 article-title: Hierarchical clustering schemes publication-title: Psychometrika – start-page: 405 year: 2020 end-page: 413 ident: b12 article-title: Machine learning-based sentiment analysis for analyzing the travelers reviews on Egyptian hotels – volume: 8 start-page: 54 year: 2016 end-page: 62 ident: b14 article-title: Sentiment analysis of review datasets using Naïve Bayes‘ and K-nn classifier publication-title: Int. J. Inform. Eng. Electron. Bus. – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: b37 article-title: Learning representations by back-propagating errors publication-title: Nature – start-page: 494 year: 2019 end-page: 497 ident: b29 article-title: The titans at semeval-2019 task 5: Detection of hate speech against immigrants and women in Twitter publication-title: Proceedings of the 13th International Workshop on Semantic Evaluation – year: 2019 ident: b4 article-title: Bert-based financial sentiment index and LSTM-based stock return predictability – year: 2020 ident: b5 article-title: A bert based sentiment analysis and key entity detection approach for online financial texts – volume: 109 year: 2018 ident: b10 article-title: Machine learning-based multi-documents sentiment-oriented summarization using linguistic treatment publication-title: Expert Syst. Appl. – volume: 167 start-page: 113 year: 2020 end-page: 120 ident: b41 article-title: K-RMS algorithm publication-title: Procedia Comput. Sci. – volume: 106 year: 2020 ident: b8 article-title: Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers publication-title: Future Gener. Comput. Syst. – start-page: 1127 year: 2016 end-page: 1134 ident: b1 article-title: Deep learning for financial sentiment analysis on finance news providers publication-title: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) – reference: Tensor processing units (TPUs) documentation, URL: – volume: 36 start-page: 2107 year: 2009 end-page: 2115 ident: b33 article-title: Gather customer concerns from online product reviews - a text summarization approach publication-title: Expert Syst. Appl. – volume: 36 start-page: 929 year: 2016 end-page: 944 ident: b23 article-title: Predicting hotel review helpfulness: The impact of review visibility, and interaction between hotel stars and review ratings publication-title: Int. J. Inf. Manage. – year: 2018 ident: b25 article-title: Bert: Pre-training of deep bidirectional transformers for language understanding – volume: 28 start-page: 100 year: 1979 end-page: 108 ident: b42 article-title: Algorithm AS 136: A k-means clustering algorithm publication-title: J. R. Statist. Soc. Ser. C – year: 2020 ident: b6 article-title: Sentiment analysis of social media response on the covid19 outbreak publication-title: Brain Behav. Immun. – volume: 41 start-page: 7764 year: 2014 end-page: 7775 ident: b17 article-title: A novel deterministic approach for aspect-based opinion mining in tourism products reviews publication-title: Expert Syst. Appl. – volume: 110 year: 2017 ident: b9 article-title: An adaptable fine-grained sentiment analysis for summarization of multiple short online reviews publication-title: Data Knowl. Eng. – start-page: 39 year: 2020 end-page: 44 ident: b11 article-title: A sentiment-based hotel review summarization – start-page: 54 year: 2020 end-page: 65 ident: b7 article-title: Twitter sentiment analysis on worldwide COVID-19 outbreaks publication-title: Kurdistan J. Appl. Res. – start-page: 7 year: 2020 end-page: 9 ident: b28 article-title: Normalization of numeronyms using NLP techniques publication-title: 2020 IEEE Calcutta Conference (CALCON) – reference: fuzzywuzzy,URL: – year: 2020 ident: b27 article-title: Hotel reviews from around the world with sentiment values and review ratings in different categories for natural language processing – reference: . – start-page: 8024 year: 2019 end-page: 8035 ident: b35 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Advances in Neural Information Processing Systems 32 – start-page: 55 year: 2011 end-page: 66 ident: b19 article-title: A joint model of feature mining and sentiment analysis for product review rating – volume: 52 start-page: 674 year: 2012 end-page: 684 ident: b24 article-title: Manipulation of online reviews: An analysis of ratings, readability, and sentiments publication-title: Decis. Support Syst. – year: 2014 ident: b38 article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation – start-page: 849 year: 2002 end-page: 856 ident: b44 article-title: On spectral clustering: Analysis and an algorithm publication-title: Advances in Neural Information Processing Systems – start-page: 45 year: 2010 end-page: 50 ident: b34 article-title: Software framework for topic modelling with large corpora publication-title: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks – start-page: 54 year: 2020 ident: 10.1016/j.asoc.2020.106935_b7 article-title: Twitter sentiment analysis on worldwide COVID-19 outbreaks publication-title: Kurdistan J. Appl. Res. doi: 10.24017/covid.8 – start-page: 7 year: 2020 ident: 10.1016/j.asoc.2020.106935_b28 article-title: Normalization of numeronyms using NLP techniques – volume: 109 year: 2018 ident: 10.1016/j.asoc.2020.106935_b10 article-title: Machine learning-based multi-documents sentiment-oriented summarization using linguistic treatment publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.05.010 – ident: 10.1016/j.asoc.2020.106935_b32 – year: 2019 ident: 10.1016/j.asoc.2020.106935_b4 – volume: 167 start-page: 113 year: 2020 ident: 10.1016/j.asoc.2020.106935_b41 article-title: K-RMS algorithm publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.188 – ident: 10.1016/j.asoc.2020.106935_b26 – year: 2007 ident: 10.1016/j.asoc.2020.106935_b2 – start-page: 494 year: 2019 ident: 10.1016/j.asoc.2020.106935_b29 article-title: The titans at semeval-2019 task 5: Detection of hate speech against immigrants and women in Twitter – volume: 69 year: 2014 ident: 10.1016/j.asoc.2020.106935_b3 article-title: News impact on stock price return via sentiment analysis publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.04.022 – volume: 8 start-page: 54 year: 2016 ident: 10.1016/j.asoc.2020.106935_b14 article-title: Sentiment analysis of review datasets using Naïve Bayes‘ and K-nn classifier publication-title: Int. J. Inform. Eng. Electron. Bus. – volume: 45 start-page: 2673 issue: 11 year: 1997 ident: 10.1016/j.asoc.2020.106935_b40 article-title: Bidirectional recurrent neural networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.650093 – start-page: 55 year: 2011 ident: 10.1016/j.asoc.2020.106935_b19 article-title: A joint model of feature mining and sentiment analysis for product review rating – year: 2016 ident: 10.1016/j.asoc.2020.106935_b31 – volume: 110 year: 2017 ident: 10.1016/j.asoc.2020.106935_b9 article-title: An adaptable fine-grained sentiment analysis for summarization of multiple short online reviews publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2017.03.009 – year: 2020 ident: 10.1016/j.asoc.2020.106935_b6 article-title: Sentiment analysis of social media response on the covid19 outbreak publication-title: Brain Behav. Immun. doi: 10.1016/j.bbi.2020.05.006 – volume: 53 start-page: 436 year: 2017 ident: 10.1016/j.asoc.2020.106935_b20 article-title: Opinion mining from online hotel reviews – a text summarization approach publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2016.12.002 – start-page: 405 year: 2020 ident: 10.1016/j.asoc.2020.106935_b12 – year: 2020 ident: 10.1016/j.asoc.2020.106935_b5 – volume: 52 start-page: 674 year: 2012 ident: 10.1016/j.asoc.2020.106935_b24 article-title: Manipulation of online reviews: An analysis of ratings, readability, and sentiments publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2011.11.002 – year: 2018 ident: 10.1016/j.asoc.2020.106935_b25 – volume: 32 start-page: 241 issue: 3 year: 1967 ident: 10.1016/j.asoc.2020.106935_b43 article-title: Hierarchical clustering schemes publication-title: Psychometrika doi: 10.1007/BF02289588 – volume: 23 start-page: 323 year: 2010 ident: 10.1016/j.asoc.2020.106935_b22 article-title: A classification-based review recommender publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2009.11.004 – start-page: 39 year: 2020 ident: 10.1016/j.asoc.2020.106935_b11 – year: 2014 ident: 10.1016/j.asoc.2020.106935_b38 – start-page: 1127 year: 2016 ident: 10.1016/j.asoc.2020.106935_b1 article-title: Deep learning for financial sentiment analysis on finance news providers – start-page: 849 year: 2002 ident: 10.1016/j.asoc.2020.106935_b44 article-title: On spectral clustering: Analysis and an algorithm – volume: 41 start-page: 7764 year: 2014 ident: 10.1016/j.asoc.2020.106935_b17 article-title: A novel deterministic approach for aspect-based opinion mining in tourism products reviews publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.05.045 – year: 2011 ident: 10.1016/j.asoc.2020.106935_b18 article-title: Nebular: A sentiment classification system for the tourism business doi: 10.1109/JCSSE.2011.5930137 – volume: 28 start-page: 100 issue: 1 year: 1979 ident: 10.1016/j.asoc.2020.106935_b42 article-title: Algorithm AS 136: A k-means clustering algorithm publication-title: J. R. Statist. Soc. Ser. C – volume: 106 year: 2020 ident: 10.1016/j.asoc.2020.106935_b8 article-title: Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.01.005 – volume: 36 start-page: 929 year: 2016 ident: 10.1016/j.asoc.2020.106935_b23 article-title: Predicting hotel review helpfulness: The impact of review visibility, and interaction between hotel stars and review ratings publication-title: Int. J. Inf. Manage. doi: 10.1016/j.ijinfomgt.2016.06.003 – year: 2011 ident: 10.1016/j.asoc.2020.106935_b13 – volume: 80 year: 2020 ident: 10.1016/j.asoc.2020.106935_b16 article-title: Improving text summarization of online hotel reviews with review helpfulness and sentiment publication-title: Tour. Manag. doi: 10.1016/j.tourman.2020.104122 – volume: 115 start-page: 563 year: 2017 ident: 10.1016/j.asoc.2020.106935_b15 article-title: Aspect based sentiment oriented summarization of hotel reviews publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.09.115 – volume: 35 year: 2018 ident: 10.1016/j.asoc.2020.106935_b21 article-title: Assessing the helpfulness of online hotel reviews: A classification-based approach publication-title: Telemat. Inform. doi: 10.1016/j.tele.2018.01.001 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.asoc.2020.106935_b37 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.asoc.2020.106935_b39 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – year: 2019 ident: 10.1016/j.asoc.2020.106935_b30 – ident: 10.1016/j.asoc.2020.106935_b36 – year: 2020 ident: 10.1016/j.asoc.2020.106935_b27 – volume: 36 start-page: 2107 year: 2009 ident: 10.1016/j.asoc.2020.106935_b33 article-title: Gather customer concerns from online product reviews - a text summarization approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.12.039 – start-page: 8024 year: 2019 ident: 10.1016/j.asoc.2020.106935_b35 article-title: Pytorch: An imperative style, high-performance deep learning library – start-page: 45 year: 2010 ident: 10.1016/j.asoc.2020.106935_b34 article-title: Software framework for topic modelling with large corpora |
SSID | ssj0016928 |
Score | 2.6081433 |
Snippet | Finding a suitable hotel based on user’s need and affordability is a complex decision-making process. Nowadays, the availability of an ample amount of online... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106935 |
SubjectTerms | Bidirectional Encoder Representations from Transformers Categorization Ensemble Fuzzy Hotel reviews Random Forest classifier Recommender system Sentiment analysis |
Title | An ensemble-based hotel recommender system using sentiment analysis and aspect categorization of hotel reviews |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106935 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5DL178FufHyMGbxLVpmqbHMRzza4g62K2kTTonWztGvfrbzZumQ0F28NRSklCeJnnzlud5XoSuUurJKNSMKE-mxEQITYTSAaFBEKc8V8JLQSj8NOLDMbufhJMW6jdaGKBVur2_3tPtbu2edB2a3eVs1n01mYdgMePUutoFIDRnLIJZfvO1pnn4PLb1VaExgdZOOFNzvKRBwOSIFB7w2JZ8-yM4_Qg4g320606KuFe_zAFq6eIQ7TVVGLBblEeo6BXY5KJ6kc41gaCk8HtZ6TmGXHexsKXicG3YjIHlPsWgN7Km_lg6SxJzo7C0qksMFKlpuXL6TFzm6-Gsb-kxGg9u3_pD4qookCzwvIrkkokwzig3EIWBikwOIcMol5nwpWCahlKZRaxU5KcZZSrSQsWKhdIsd6loJoITtFWUhT5F2OciAwl6lHPKJKjRpTQD5KAy0blM28hv4EsyZzEOlS7mScMl-0gA8gQgT2rI2-h63WdZG2xsbB02XyX5NU0SEwE29Dv7Z79ztEOBxGL_uVygrWr1qS_NKaRKO3aaddB2r__y-AzXu4fh6Bsjit9f |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7B9gCX0vIQFNr6UE7IbOI4iXPggHhotwtcChK34MQOD-1m0bIIcemf6h9kxnFWRao4VOIWWRkrGTsznuj75gP4UYhAp7GV3AS64JghLFfGRlxEUVYklVFBQUTh07OkdyF_XsaXc_Cn5cIQrNLH_iamu2jtR7rem93729vuL6w8lMxkIlxXu6hFVg7s8xPWbQ97_UNc5G0hjo_OD3rcSwvwMgqCKa-0VHFWigTt4sikeLDWcVrpUoVaSStibXBnG5OGRSmkSa0ymZGxxm9AG1GqCOedhw8SwwXJJuz-nuFKwiRzgq70dJwezzN1GlCZRpdjUSpoIMmcxtw_suFfGe74E3z0R1O237z9Z5iz9TIstbIPzEeBFaj3a4bFrx0VQ8spCxp2M57aIaPiejRy2nSs6RDNCFZ_zYjg5FQEmPY9UPDCMO1onowwWdfjiSeEsnE1m841Sl2Fi3fx7Rp06nFt14GFiSqJ855WiZCa6O9a4wQV0VpspYsNCFv35aXvaU7SGsO8Ba_d5eTynFyeNy7fgJ2ZzX3T0ePNu-N2VfJX-zLHlPOG3Zf_tPsOC73z05P8pH822IRFQQga98NnCzrTyaP9ikegafHNbTkGV--9x18AbdgZQQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble-based+hotel+recommender+system+using+sentiment+analysis+and+aspect+categorization+of+hotel+reviews&rft.jtitle=Applied+soft+computing&rft.au=Ray%2C+Biswarup&rft.au=Garain%2C+Avishek&rft.au=Sarkar%2C+Ram&rft.date=2021-01-01&rft.issn=1568-4946&rft.volume=98&rft.spage=106935&rft_id=info:doi/10.1016%2Fj.asoc.2020.106935&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106935 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |