Dimension reduction estimation for central mean subspace with missing multivariate response

Multivariate response data often arise in practice and they are frequently subject to missingness. Under this circumstance, the standard sufficient dimension reduction (SDR) methods cannot be used directly. To reduce the dimension and estimate the central mean subspace, a profile least squares estim...

Full description

Saved in:
Bibliographic Details
Published inJournal of multivariate analysis Vol. 174; p. 104542
Main Authors Fan, Guo-Liang, Xu, Hong-Xia, Liang, Han-Ying
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.11.2019
Subjects
Online AccessGet full text
ISSN0047-259X
1095-7243
DOI10.1016/j.jmva.2019.104542

Cover

Loading…
Abstract Multivariate response data often arise in practice and they are frequently subject to missingness. Under this circumstance, the standard sufficient dimension reduction (SDR) methods cannot be used directly. To reduce the dimension and estimate the central mean subspace, a profile least squares estimation method is proposed based on an inverse probability weighted technique. The profile least squares method does not need any distributional assumptions on the covariates and hence differs from existing SDR methods. The resulting estimator of the central mean subspace is proved to be asymptotically normal and root n consistent under some mild conditions. The structural dimension is determined by a BIC-type criterion and the consistency of its estimator is established. Comprehensive simulations and a real data analysis show that the proposed method works promisingly.
AbstractList Multivariate response data often arise in practice and they are frequently subject to missingness. Under this circumstance, the standard sufficient dimension reduction (SDR) methods cannot be used directly. To reduce the dimension and estimate the central mean subspace, a profile least squares estimation method is proposed based on an inverse probability weighted technique. The profile least squares method does not need any distributional assumptions on the covariates and hence differs from existing SDR methods. The resulting estimator of the central mean subspace is proved to be asymptotically normal and root n consistent under some mild conditions. The structural dimension is determined by a BIC-type criterion and the consistency of its estimator is established. Comprehensive simulations and a real data analysis show that the proposed method works promisingly.
ArticleNumber 104542
Author Fan, Guo-Liang
Xu, Hong-Xia
Liang, Han-Ying
Author_xml – sequence: 1
  givenname: Guo-Liang
  surname: Fan
  fullname: Fan, Guo-Liang
  organization: School of Economics and Management, Shanghai Maritime University, Shanghai, 201306, PR China
– sequence: 2
  givenname: Hong-Xia
  surname: Xu
  fullname: Xu, Hong-Xia
  organization: Department of Mathematics, Shanghai Maritime University, Shanghai, 201306, PR China
– sequence: 3
  givenname: Han-Ying
  surname: Liang
  fullname: Liang, Han-Ying
  email: hyliang@tongji.edu.cn
  organization: School of Mathematical Sciences, Tongji University, Shanghai 200092, PR China
BookMark eNp9kMtKxDAUhoOM4Dj6Aq76Ah1zbVNwI-MVBtwoCC5Cmp5oSpsOSWbEt7edceViVudw4Ps5_3eOZn7wgNAVwUuCSXHdLtt-p5cUk2o8cMHpCZoTXIm8pJzN0BxjXuZUVO9n6DzGFmNCRMnn6OPO9eCjG3wWoNmaNG0Qk-v1frVDyAz4FHSX9aB9Frd13GgD2bdLX1nvYnT-M-u3XXI7HZxOMAbFzeAjXKBTq7sIl39zgd4e7l9XT_n65fF5dbvODcM45bZgFZcNrrkRnJTSCCYLELaWVrDGMi40b4raUs0LShlQwMYwIoUEpmsi2ALRQ64JQ4wBrNqE8f_wowhWkx7VqkmPmvSog54Rkv8g49K-89jVdcfRmwMKY6mdg6CiceANNC6ASaoZ3DH8Fx8nhQU
CitedBy_id crossref_primary_10_1016_j_jmva_2021_104852
crossref_primary_10_1142_S2010326322500514
crossref_primary_10_1080_03610918_2023_2242606
crossref_primary_10_2298_FIL2407521F
Cites_doi 10.1198/016214505000001285
10.1016/j.jspi.2012.02.039
10.1198/016214501753208979
10.1007/s11749-014-0425-z
10.5705/ss.202017.0288
10.1016/j.csda.2015.05.006
10.1186/s12859-014-0346-6
10.1080/01621459.1992.10476258
10.1093/biomet/asq005
10.1177/0962280213511027
10.1111/rssb.12044
10.1016/j.spl.2017.02.030
10.1080/01621459.2011.646925
10.1016/j.jspi.2009.04.024
10.1006/jmva.1999.1866
10.1093/biomet/asv066
10.1214/aos/1021379861
10.1080/01621459.1991.10475035
10.1016/j.csda.2013.08.001
10.1016/j.jspi.2016.08.007
10.1093/biomet/ass075
10.1111/1467-9868.03411
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jmva.2019.104542
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1095-7243
ExternalDocumentID 10_1016_j_jmva_2019_104542
S0047259X19301605
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYJJ
ABAOU
ABEFU
ABFNM
ABIVO
ABJNI
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
UHS
WUQ
XFK
XOL
XPP
YHZ
ZGI
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-f63948d0b4c54178c5386e5fb8f53df345a4d6bf2a46223e2e0cc31858e3ab153
IEDL.DBID IXB
ISSN 0047-259X
IngestDate Thu Apr 24 22:58:50 EDT 2025
Tue Jul 01 01:21:48 EDT 2025
Fri Feb 23 02:18:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords secondary
Missing data
Central mean subspace
Sufficient dimension reduction
High dimensionality
Multivariate response
primary
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-f63948d0b4c54178c5386e5fb8f53df345a4d6bf2a46223e2e0cc31858e3ab153
ParticipantIDs crossref_primary_10_1016_j_jmva_2019_104542
crossref_citationtrail_10_1016_j_jmva_2019_104542
elsevier_sciencedirect_doi_10_1016_j_jmva_2019_104542
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationTitle Journal of multivariate analysis
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Cook (b4) 1998
Shi, Lau (b18) 2000; 72
Xia, Tong, Li, Zhu (b22) 2002; 64
Sun, Wang (b19) 2009; 139
Li (b13) 1992; 87
Zhu, Zhong (b28) 2015; 92
Fan, Zhu, Ma (b8) 2019; 29
Liao, Lin, Kang, Chandra, Bon, Kaminski, Sciurba, Tseng (b14) 2014; 15
Zhao, Long (b25) 2016; 25
Cheng, Zhu (b3) 2017; 126
Guo, Xu (b10) 2012; 142
Tang, Zhou (b20) 2015; 24
Ma, Zhu (b17) 2014; 76
Cook, Li (b5) 2002; 30
Ma, Zhu (b15) 2012; 107
Casella, Berger (b2) 2002
Zhu, Wang, Zhu (b27) 2012; 22
Y. Wei, Y. Tang, P.D. McNicholas, Flexible high-dimensional unsupervised learning with missing data, 2017
Fan, Gijbels (b7) 1996
Yang, Wang (b24) 2019
Guo, Wang, Xu, Zhu (b9) 2014; 69
.
Bura, Cook (b1) 2001; 96
Li (b12) 1991; 86
Hu, Follmann, Qin (b11) 2010; 97
Deng, Wang (b6) 2017; 181
Ma, Zhu (b16) 2013; 100
Xu, Guo, Xiong, Zhu, Jin (b23) 2016; 103
Zhu, Miao, Peng (b26) 2006; 101
Zhu (10.1016/j.jmva.2019.104542_b26) 2006; 101
Cook (10.1016/j.jmva.2019.104542_b5) 2002; 30
Deng (10.1016/j.jmva.2019.104542_b6) 2017; 181
Ma (10.1016/j.jmva.2019.104542_b17) 2014; 76
10.1016/j.jmva.2019.104542_b21
Cook (10.1016/j.jmva.2019.104542_b4) 1998
Shi (10.1016/j.jmva.2019.104542_b18) 2000; 72
Fan (10.1016/j.jmva.2019.104542_b7) 1996
Guo (10.1016/j.jmva.2019.104542_b9) 2014; 69
Xu (10.1016/j.jmva.2019.104542_b23) 2016; 103
Xia (10.1016/j.jmva.2019.104542_b22) 2002; 64
Casella (10.1016/j.jmva.2019.104542_b2) 2002
Zhu (10.1016/j.jmva.2019.104542_b27) 2012; 22
Guo (10.1016/j.jmva.2019.104542_b10) 2012; 142
Hu (10.1016/j.jmva.2019.104542_b11) 2010; 97
Cheng (10.1016/j.jmva.2019.104542_b3) 2017; 126
Zhu (10.1016/j.jmva.2019.104542_b28) 2015; 92
Li (10.1016/j.jmva.2019.104542_b13) 1992; 87
Ma (10.1016/j.jmva.2019.104542_b15) 2012; 107
Liao (10.1016/j.jmva.2019.104542_b14) 2014; 15
Ma (10.1016/j.jmva.2019.104542_b16) 2013; 100
Tang (10.1016/j.jmva.2019.104542_b20) 2015; 24
Li (10.1016/j.jmva.2019.104542_b12) 1991; 86
Zhao (10.1016/j.jmva.2019.104542_b25) 2016; 25
Fan (10.1016/j.jmva.2019.104542_b8) 2019; 29
Yang (10.1016/j.jmva.2019.104542_b24) 2019
Bura (10.1016/j.jmva.2019.104542_b1) 2001; 96
Sun (10.1016/j.jmva.2019.104542_b19) 2009; 139
References_xml – volume: 103
  start-page: 189
  year: 2016
  end-page: 203
  ident: b23
  article-title: An estimating equation approach to dimension reduction for longitudinal data
  publication-title: Biometrika
– volume: 107
  start-page: 168
  year: 2012
  end-page: 179
  ident: b15
  article-title: A semiparametric approach to dimension reduction
  publication-title: J. Amer. Statist. Assoc.
– volume: 76
  start-page: 885
  year: 2014
  end-page: 901
  ident: b17
  article-title: On estimation efficiency of the central mean subspace
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 92
  start-page: 68
  year: 2015
  end-page: 83
  ident: b28
  article-title: Estimation and inference on central mean subspace for multivariate response data
  publication-title: Comput. Statist. Data Anal.
– volume: 100
  start-page: 371
  year: 2013
  end-page: 383
  ident: b16
  article-title: Efficiency loss and the linearity condition in dimension reduction
  publication-title: Biometrika
– volume: 181
  start-page: 11
  year: 2017
  end-page: 29
  ident: b6
  article-title: Dimension reduction estimation for probability density with data missing at random when covariables are present
  publication-title: J. Statist. Plann. Inference
– volume: 69
  start-page: 228
  year: 2014
  end-page: 242
  ident: b9
  article-title: Dimension reduction with missing response at random
  publication-title: Comput. Statist. Data Anal.
– volume: 15
  start-page: 346
  year: 2014
  ident: b14
  article-title: Missing value imputation in high-dimensional phenomic data: imputable or not, and how?
  publication-title: BMC Bioinformatics
– volume: 97
  start-page: 305
  year: 2010
  end-page: 319
  ident: b11
  article-title: Semiparametric dimension reduction estimation for mean response with missing data
  publication-title: Biometrika
– volume: 86
  start-page: 316
  year: 1991
  end-page: 327
  ident: b12
  article-title: Sliced inverse regression for dimension reduction
  publication-title: J. Amer. Statist. Assoc.
– volume: 30
  start-page: 455
  year: 2002
  end-page: 474
  ident: b5
  article-title: Dimension reduction for conditional mean in regression
  publication-title: Ann. Statist.
– volume: 24
  start-page: 583
  year: 2015
  end-page: 604
  ident: b20
  article-title: Weighted local linear CQR for varying-coefficient models with missing covariates
  publication-title: Test
– reference: Y. Wei, Y. Tang, P.D. McNicholas, Flexible high-dimensional unsupervised learning with missing data, 2017,
– volume: 64
  start-page: 363
  year: 2002
  end-page: 410
  ident: b22
  article-title: An adaptive estimation of dimension reduction space
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 25
  start-page: 2021
  year: 2016
  end-page: 2035
  ident: b25
  article-title: Multiple imputation in the presence of high-dimensional data
  publication-title: Stat. Methods Med. Res.
– volume: 139
  start-page: 3588
  year: 2009
  end-page: 3604
  ident: b19
  article-title: Checking the adequacy of a general linear model with responses missing at random
  publication-title: J. Statist. Plann. Inference
– volume: 29
  start-page: 917
  year: 2019
  end-page: 937
  ident: b8
  article-title: Nonlinear interaction detection through model-based sufficient dimension reduction
  publication-title: Statist. Sinica
– year: 1996
  ident: b7
  article-title: Local Polynomial Modelling and Its Applications
– volume: 72
  start-page: 132
  year: 2000
  end-page: 148
  ident: b18
  article-title: Empirical likelihood for partially linear models
  publication-title: J. Multivariate Anal.
– volume: 22
  start-page: 1611
  year: 2012
  end-page: 1637
  ident: b27
  article-title: Sufficient dimension reduction in regressions with missing predictors
  publication-title: Statist. Sinica
– volume: 87
  start-page: 1025
  year: 1992
  end-page: 1039
  ident: b13
  article-title: On principal hessian directions for data visualization and dimension reduction: another application of Stein’s lemma
  publication-title: J. Amer. Statist. Assoc.
– reference: .
– volume: 96
  start-page: 996
  year: 2001
  end-page: 1003
  ident: b1
  article-title: Extending sliced inverse regression: the weighted chi-squared test
  publication-title: J. Amer. Statist. Assoc.
– year: 2019
  ident: b24
  article-title: Sufficient dimension reduction under dimension-reduction-based imputation with predictors missing at random
  publication-title: Statist. Sinica
– volume: 142
  start-page: 2047
  year: 2012
  end-page: 2058
  ident: b10
  article-title: Goodness-of-fit tests for general linear models with covariates missed at random
  publication-title: J. Statist. Plann. Inference
– volume: 126
  start-page: 108
  year: 2017
  end-page: 113
  ident: b3
  article-title: On relative efficiency of principal Hessian directions
  publication-title: Statist. Probab. Lett.
– year: 2002
  ident: b2
  article-title: Statistical Inference
– volume: 101
  start-page: 630
  year: 2006
  end-page: 643
  ident: b26
  article-title: On sliced inverse regression with high-dimensional covariates
  publication-title: J. Amer. Statist. Assoc.
– year: 1998
  ident: b4
  article-title: Regression Graphics
– year: 1996
  ident: 10.1016/j.jmva.2019.104542_b7
– volume: 101
  start-page: 630
  year: 2006
  ident: 10.1016/j.jmva.2019.104542_b26
  article-title: On sliced inverse regression with high-dimensional covariates
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214505000001285
– volume: 142
  start-page: 2047
  year: 2012
  ident: 10.1016/j.jmva.2019.104542_b10
  article-title: Goodness-of-fit tests for general linear models with covariates missed at random
  publication-title: J. Statist. Plann. Inference
  doi: 10.1016/j.jspi.2012.02.039
– ident: 10.1016/j.jmva.2019.104542_b21
– volume: 96
  start-page: 996
  year: 2001
  ident: 10.1016/j.jmva.2019.104542_b1
  article-title: Extending sliced inverse regression: the weighted chi-squared test
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214501753208979
– volume: 24
  start-page: 583
  year: 2015
  ident: 10.1016/j.jmva.2019.104542_b20
  article-title: Weighted local linear CQR for varying-coefficient models with missing covariates
  publication-title: Test
  doi: 10.1007/s11749-014-0425-z
– year: 2019
  ident: 10.1016/j.jmva.2019.104542_b24
  article-title: Sufficient dimension reduction under dimension-reduction-based imputation with predictors missing at random
  publication-title: Statist. Sinica
  doi: 10.5705/ss.202017.0288
– volume: 92
  start-page: 68
  year: 2015
  ident: 10.1016/j.jmva.2019.104542_b28
  article-title: Estimation and inference on central mean subspace for multivariate response data
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2015.05.006
– volume: 15
  start-page: 346
  year: 2014
  ident: 10.1016/j.jmva.2019.104542_b14
  article-title: Missing value imputation in high-dimensional phenomic data: imputable or not, and how?
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-014-0346-6
– volume: 87
  start-page: 1025
  year: 1992
  ident: 10.1016/j.jmva.2019.104542_b13
  article-title: On principal hessian directions for data visualization and dimension reduction: another application of Stein’s lemma
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1992.10476258
– year: 2002
  ident: 10.1016/j.jmva.2019.104542_b2
– volume: 97
  start-page: 305
  year: 2010
  ident: 10.1016/j.jmva.2019.104542_b11
  article-title: Semiparametric dimension reduction estimation for mean response with missing data
  publication-title: Biometrika
  doi: 10.1093/biomet/asq005
– volume: 29
  start-page: 917
  year: 2019
  ident: 10.1016/j.jmva.2019.104542_b8
  article-title: Nonlinear interaction detection through model-based sufficient dimension reduction
  publication-title: Statist. Sinica
– volume: 25
  start-page: 2021
  year: 2016
  ident: 10.1016/j.jmva.2019.104542_b25
  article-title: Multiple imputation in the presence of high-dimensional data
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280213511027
– volume: 76
  start-page: 885
  year: 2014
  ident: 10.1016/j.jmva.2019.104542_b17
  article-title: On estimation efficiency of the central mean subspace
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/rssb.12044
– volume: 126
  start-page: 108
  year: 2017
  ident: 10.1016/j.jmva.2019.104542_b3
  article-title: On relative efficiency of principal Hessian directions
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/j.spl.2017.02.030
– volume: 107
  start-page: 168
  year: 2012
  ident: 10.1016/j.jmva.2019.104542_b15
  article-title: A semiparametric approach to dimension reduction
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2011.646925
– volume: 139
  start-page: 3588
  year: 2009
  ident: 10.1016/j.jmva.2019.104542_b19
  article-title: Checking the adequacy of a general linear model with responses missing at random
  publication-title: J. Statist. Plann. Inference
  doi: 10.1016/j.jspi.2009.04.024
– year: 1998
  ident: 10.1016/j.jmva.2019.104542_b4
– volume: 72
  start-page: 132
  year: 2000
  ident: 10.1016/j.jmva.2019.104542_b18
  article-title: Empirical likelihood for partially linear models
  publication-title: J. Multivariate Anal.
  doi: 10.1006/jmva.1999.1866
– volume: 22
  start-page: 1611
  year: 2012
  ident: 10.1016/j.jmva.2019.104542_b27
  article-title: Sufficient dimension reduction in regressions with missing predictors
  publication-title: Statist. Sinica
– volume: 103
  start-page: 189
  year: 2016
  ident: 10.1016/j.jmva.2019.104542_b23
  article-title: An estimating equation approach to dimension reduction for longitudinal data
  publication-title: Biometrika
  doi: 10.1093/biomet/asv066
– volume: 30
  start-page: 455
  year: 2002
  ident: 10.1016/j.jmva.2019.104542_b5
  article-title: Dimension reduction for conditional mean in regression
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1021379861
– volume: 86
  start-page: 316
  year: 1991
  ident: 10.1016/j.jmva.2019.104542_b12
  article-title: Sliced inverse regression for dimension reduction
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1991.10475035
– volume: 69
  start-page: 228
  year: 2014
  ident: 10.1016/j.jmva.2019.104542_b9
  article-title: Dimension reduction with missing response at random
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2013.08.001
– volume: 181
  start-page: 11
  year: 2017
  ident: 10.1016/j.jmva.2019.104542_b6
  article-title: Dimension reduction estimation for probability density with data missing at random when covariables are present
  publication-title: J. Statist. Plann. Inference
  doi: 10.1016/j.jspi.2016.08.007
– volume: 100
  start-page: 371
  year: 2013
  ident: 10.1016/j.jmva.2019.104542_b16
  article-title: Efficiency loss and the linearity condition in dimension reduction
  publication-title: Biometrika
  doi: 10.1093/biomet/ass075
– volume: 64
  start-page: 363
  year: 2002
  ident: 10.1016/j.jmva.2019.104542_b22
  article-title: An adaptive estimation of dimension reduction space
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/1467-9868.03411
SSID ssj0011574
Score 2.2406867
Snippet Multivariate response data often arise in practice and they are frequently subject to missingness. Under this circumstance, the standard sufficient dimension...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104542
SubjectTerms Central mean subspace
High dimensionality
Missing data
Multivariate response
Sufficient dimension reduction
Title Dimension reduction estimation for central mean subspace with missing multivariate response
URI https://dx.doi.org/10.1016/j.jmva.2019.104542
Volume 174
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zXvQg_sT5Y-TgTeraJmnT45yOqWwnBwUPpUlT2HB1bHNH_3bfa9OhIDt4Ki1NKV_Cy_eS930h5EbLIDCSZY6vmXJ4lDEn0ix0NPfgykLDy2M6h6NgMObPsYgbpFdrYbCs0sb-KqaX0do-6Vg0O_PJBDW-PATyHgMFQZs0FJozLksRX3y_2UnwhHViLh0JotgKZ6oar-lsjd5DXoRbnYL7f09OPyac_iE5sEyRdqufOSINUxyT_eHGZnV5Qt4e0Jsf17voAi1YEWSKthmVHpECIaW2-pLOTFrQJYQJSJINxeVXCl2MKwW0LCpcQ9IMvBM-VBbNmlMy7j--9gaOPS3B0cx1V04OXIPLzFVcC-6FUkMoC4zIlcwFy3LGRcqzQOV-ygPgBMY3rtaonZaGpQoC3xlpFh-FOSfUeNzAvJVDagLZmwzTSAsAKdKh0kYrt0W8GqZEWytxPNHiPalrxqYJQpsgtEkFbYvcbtrMKyONrW-LGv3k13BIINJvaXfxz3aXZA_vKpHhFWmuFp_mGtjGSrXJzt2X1ya73aeXwahdDq5vMrPVzg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD-rB-DPizx68mYVtbffjqCgBBU6QLPHQrF2XQGQSQP5-39sK0cRw8LRkW5fla_P1e-17Xwm511EQmIhljq-ZcnicMSfWLHQ09-DKQsPLYzr7g6Az4q-JSGqkta6FwbRKy_0Vp5dsbe80LZrN2XiMNb48BPGegARBmzSxQ3ZBDQQ4tLvJ02YrwRPWirm0JIgTWzlTJXlNpis0H_Ji3OsU3P97dvox47SPyKGVivSx-ptjUjPFCTnob3xWF6fk_RnN-XHBi87RgxVRpuibURUkUlCk1KZf0qlJC7oAnoAo2VBcf6XQx7hUQMuswhVEzSA84UNl1qw5I6P2y7DVcexxCY5mrrt0chAbPMpcxbXgXhhp4LLAiFxFuWBZzrhIeRao3E95AKLA-MbVGounI8NSBcx3TurFZ2EuCDUeNzBx5RCbQPgWhWmsBYAU61Bpo5XbIN4aJqmtlzgeafEh10ljE4nQSoRWVtA2yMOmzaxy0tj6tlijL3-NBwlUv6Xd5T_b3ZG9zrDfk73u4O2K7OOTquLwmtSX8y9zA9JjqW7LofUNUTDWaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimension+reduction+estimation+for+central+mean+subspace+with+missing+multivariate+response&rft.jtitle=Journal+of+multivariate+analysis&rft.au=Fan%2C+Guo-Liang&rft.au=Xu%2C+Hong-Xia&rft.au=Liang%2C+Han-Ying&rft.date=2019-11-01&rft.issn=0047-259X&rft.volume=174&rft.spage=104542&rft_id=info:doi/10.1016%2Fj.jmva.2019.104542&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmva_2019_104542
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-259X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-259X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-259X&client=summon