Optimization of Optimal Power Flow Problem Using Multi-Objective Manta Ray Foraging Optimizer

Finding a feasible solution set for optimization problems in conflict with objective functions poses significant challenges. Moreover, in such problems, the level of complexity may increase depending on the geometry of the objective and decision spaces. The most effective methods in solving multi-ob...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 116; p. 108334
Main Authors Kahraman, Hamdi Tolga, Akbel, Mustafa, Duman, Serhat
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2022
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2021.108334

Cover

Loading…
Abstract Finding a feasible solution set for optimization problems in conflict with objective functions poses significant challenges. Moreover, in such problems, the level of complexity may increase depending on the geometry of the objective and decision spaces. The most effective methods in solving multi-objective problems having high levels of complexity are search algorithms using the Pareto-based archiving approach. Recently, the crowding distance approach has been used to improve the performance of the Pareto-based archiving method. This article presents research conducted on the development of a method that can find the optimum solution set for a multi-objective optimal power flow (MOOPF) problem whose objective functions are in conflict. For this purpose, a powerful and effective method was developed using the Pareto archiving approach based on crowding distance. The performance of the developed method was tested on twenty-four benchmark problems of different types and difficulty levels and compared with competing algorithms. The data obtained from the experimental trials and four different performance metrics were analyzed using statistical test methods. Analysis results showed that the proposed method yielded a competitive performance on different types of multi-objective optimization problems and was able to find the best solutions in the literature for the real-world MOOPF problem. •The IMOMRFO was developed using crowding distance-based Pareto archiving strategy.•The performance of the developed IMOMRFO was tested on the CEC 2020 benchmark suite.•The improvement in IMOMRFO performance was verified by statistical analysis.•The IMOMRFO was compared with the latest and strongest competitors.•The IMOMRFO was used for solving the multi-objective optimal power flow problem with different objective functions.
AbstractList Finding a feasible solution set for optimization problems in conflict with objective functions poses significant challenges. Moreover, in such problems, the level of complexity may increase depending on the geometry of the objective and decision spaces. The most effective methods in solving multi-objective problems having high levels of complexity are search algorithms using the Pareto-based archiving approach. Recently, the crowding distance approach has been used to improve the performance of the Pareto-based archiving method. This article presents research conducted on the development of a method that can find the optimum solution set for a multi-objective optimal power flow (MOOPF) problem whose objective functions are in conflict. For this purpose, a powerful and effective method was developed using the Pareto archiving approach based on crowding distance. The performance of the developed method was tested on twenty-four benchmark problems of different types and difficulty levels and compared with competing algorithms. The data obtained from the experimental trials and four different performance metrics were analyzed using statistical test methods. Analysis results showed that the proposed method yielded a competitive performance on different types of multi-objective optimization problems and was able to find the best solutions in the literature for the real-world MOOPF problem. •The IMOMRFO was developed using crowding distance-based Pareto archiving strategy.•The performance of the developed IMOMRFO was tested on the CEC 2020 benchmark suite.•The improvement in IMOMRFO performance was verified by statistical analysis.•The IMOMRFO was compared with the latest and strongest competitors.•The IMOMRFO was used for solving the multi-objective optimal power flow problem with different objective functions.
ArticleNumber 108334
Author Akbel, Mustafa
Kahraman, Hamdi Tolga
Duman, Serhat
Author_xml – sequence: 1
  givenname: Hamdi Tolga
  orcidid: 0000-0001-9985-6324
  surname: Kahraman
  fullname: Kahraman, Hamdi Tolga
  email: htolgakahraman@ktu.edu.tr
  organization: Software Engineering, Of Technology Faculty, Karadeniz Technical University, Trabzon, 61080, Turkey
– sequence: 2
  givenname: Mustafa
  orcidid: 0000-0003-0491-5438
  surname: Akbel
  fullname: Akbel, Mustafa
  email: mustafaakbell@gmail.com
  organization: MASOMO, İzmir, Turkey
– sequence: 3
  givenname: Serhat
  orcidid: 0000-0002-1091-125X
  surname: Duman
  fullname: Duman, Serhat
  email: sduman@bandirma.edu.tr
  organization: Electrical Engineering, Engineering and Natural Sciences Faculty, Bandirma Onyedi Eylul University, Bandirma, 10200, Turkey
BookMark eNp9kMtqAjEUhkOxULV9ga7yAmOTueQC3RSpbUFRSl2WkMlkJMM4kSRV7NM3o666cHUunO_A_43AoLOdBuARowlGmDw1E-mtmqQoxXHBsiy_AUPMaJpwwvAg9gVhSc5zcgdG3jcoQjxlQ_C93AWzNb8yGNtBW8PTLFu4sgft4Ky1B7hytmz1Fq696TZw8dMGkyzLRqtg9houZBck_JRHOLNObvqTy0_t7sFtLVuvHy51DNaz16_pezJfvn1MX-aJyhAKSU0yLCUvcpXmFS8VoUXFKCaEcpqnZakZpXVZM8qYxAVFVCme17yiqMhooUk2Buz8VznrvdO1UCacIgUnTSswEr0m0Yhek-g1ibOmiKb_0J2LAtzxOvR8hnQMtTfaCa-M7pSujItaRGXNNfwPBgeDkA
CitedBy_id crossref_primary_10_3390_sym16111474
crossref_primary_10_1142_S021821302350032X
crossref_primary_10_3390_app13053330
crossref_primary_10_1016_j_jobe_2023_107366
crossref_primary_10_1016_j_knosys_2022_109989
crossref_primary_10_1049_gtd2_13076
crossref_primary_10_1016_j_compeleceng_2025_110230
crossref_primary_10_3390_math11051250
crossref_primary_10_3390_en15176387
crossref_primary_10_1038_s41598_024_54510_1
crossref_primary_10_1016_j_eswa_2024_123819
crossref_primary_10_1016_j_seta_2023_103534
crossref_primary_10_1088_2631_8695_ad4cb7
crossref_primary_10_3390_en17092209
crossref_primary_10_3390_fractalfract6040194
crossref_primary_10_1155_2024_5546940
crossref_primary_10_1007_s40974_022_00249_2
crossref_primary_10_1016_j_apenergy_2023_121612
crossref_primary_10_1016_j_eswa_2022_118827
crossref_primary_10_1016_j_eswa_2023_122367
crossref_primary_10_3390_sym14122619
crossref_primary_10_3390_electronics11050831
crossref_primary_10_1016_j_swevo_2022_101196
crossref_primary_10_1007_s00521_024_10312_0
crossref_primary_10_1007_s42235_024_00481_y
crossref_primary_10_1007_s10489_024_05714_5
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_3390_app13084760
crossref_primary_10_1109_ACCESS_2024_3368383
crossref_primary_10_1016_j_jare_2024_09_019
crossref_primary_10_1016_j_asoc_2023_110688
crossref_primary_10_1109_ACCESS_2023_3337535
crossref_primary_10_1109_ACCESS_2023_3283573
crossref_primary_10_3390_su142416444
crossref_primary_10_1016_j_jhydrol_2022_128469
crossref_primary_10_1016_j_egyr_2022_09_025
crossref_primary_10_3390_math10162960
crossref_primary_10_3390_en15207473
crossref_primary_10_1038_s41598_023_37635_7
crossref_primary_10_1109_ACCESS_2022_3193371
crossref_primary_10_1155_2023_8847164
crossref_primary_10_1142_S0218126623502006
crossref_primary_10_1016_j_eswa_2024_124929
crossref_primary_10_1016_j_heliyon_2024_e31755
crossref_primary_10_1016_j_eswa_2023_121217
crossref_primary_10_1016_j_rineng_2025_104553
crossref_primary_10_1109_ACCESS_2023_3276264
crossref_primary_10_1016_j_asoc_2023_110612
crossref_primary_10_1016_j_enbuild_2023_112840
crossref_primary_10_1016_j_asoc_2023_110977
crossref_primary_10_1016_j_egyr_2024_02_038
crossref_primary_10_1016_j_eswa_2023_121212
crossref_primary_10_1038_s41598_023_41608_1
crossref_primary_10_1109_ACCESS_2024_3430862
crossref_primary_10_1016_j_dajour_2023_100299
crossref_primary_10_1016_j_ijhydene_2024_10_051
crossref_primary_10_3390_pr10122723
crossref_primary_10_1016_j_engappai_2023_107564
crossref_primary_10_18038_estubtda_1348497
crossref_primary_10_3390_electricity5040035
crossref_primary_10_1016_j_eswa_2023_119863
crossref_primary_10_1007_s00202_024_02937_0
crossref_primary_10_1016_j_asoc_2024_112155
crossref_primary_10_1016_j_egyr_2023_12_053
crossref_primary_10_1038_s41598_023_41749_3
crossref_primary_10_1016_j_eswa_2023_120738
crossref_primary_10_1016_j_asoc_2023_110585
crossref_primary_10_1007_s00521_023_08481_5
crossref_primary_10_3390_en15218303
crossref_primary_10_3390_math10173036
crossref_primary_10_1016_j_asoc_2023_110426
crossref_primary_10_1016_j_swevo_2023_101464
crossref_primary_10_1007_s00500_024_09877_8
crossref_primary_10_1016_j_eswa_2023_120298
crossref_primary_10_1088_2631_8695_ad6e54
crossref_primary_10_1007_s00202_024_02822_w
crossref_primary_10_1016_j_swevo_2023_101423
crossref_primary_10_1016_j_egyr_2024_04_016
crossref_primary_10_1016_j_ins_2024_120999
Cites_doi 10.1016/j.ijepes.2020.106492
10.1109/4235.996017
10.1016/j.energy.2020.117314
10.1049/iet-gtd.2016.1379
10.1016/j.asoc.2017.01.030
10.1016/j.asoc.2016.01.041
10.1016/j.engappai.2019.103300
10.1016/j.epsr.2016.09.025
10.1016/j.asoc.2017.12.026
10.1109/TEVC.2003.810758
10.1007/s10489-016-0825-8
10.1016/j.energy.2014.10.007
10.1016/j.energy.2021.120211
10.1016/j.asoc.2016.06.022
10.1109/TSE.2018.2868082
10.1016/j.engappai.2017.10.019
10.1109/TPWRS.2010.2051168
10.1016/j.ins.2019.03.049
10.1109/TEVC.2017.2754271
10.1016/j.asoc.2021.107814
10.1016/j.engappai.2020.103905
10.1016/j.ijepes.2015.12.021
10.1016/j.ijepes.2018.01.024
10.1016/j.energy.2017.01.071
10.1109/TEVC.2009.2021467
10.1016/j.energy.2011.09.027
10.1049/iet-gtd.2016.1135
10.1016/j.asoc.2018.04.006
10.1109/TEVC.2020.3013290
10.1016/j.asoc.2020.106321
10.1016/j.asoc.2020.106252
10.1016/j.ins.2014.05.040
10.1007/s00500-019-04077-1
10.1016/j.swevo.2020.100665
10.1016/j.asoc.2019.105977
10.1016/j.ejor.2006.06.042
10.1016/j.ins.2014.09.051
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2021.108334
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_108334
S1568494621011212
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-f631aa954c24d9bc675d8716679742bbe877fbf8788a15707cc94f9d705375e63
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:13 EDT 2025
Thu Apr 24 23:01:05 EDT 2025
Fri Feb 23 02:41:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective optimal power flow
Multi-objective improved manta ray foraging optimization
Crowd distance
Multi-objective optimization
Power system planning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-f631aa954c24d9bc675d8716679742bbe877fbf8788a15707cc94f9d705375e63
ORCID 0000-0002-1091-125X
0000-0003-0491-5438
0000-0001-9985-6324
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2021_108334
crossref_primary_10_1016_j_asoc_2021_108334
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_108334
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Biswas, Suganthan, Mallipeddi, Amaratunga (b6) 2018; 68
Deb, Pratap, Agarwal, Meyarivan (b11) 2002; 6
Barocio, Regalado, Cuevas, Uribe, Zuniga, Torres (b27) 2017; 11
Zitzler, Thiele, Laumanns, Fonseca, Fonseca (b36) 2003; 7
Ghasemi, Ghavidel, Ghanbarian, Gharibzadeh, Vahed (b20) 2014; 78
Carrasco, García, Rueda, Das, Herrera (b38) 2020; 54
Deb, Tiwari (b8) 2008; 185
Niknam, Narimani, Jabbari, Malekpour (b26) 2011; 36
Duman, Akbel, Kahraman (b31) 2021
Yue, Qu, Liang (b37) 2018; 22
Meng, Zeng, Wang, Chen, Zhou, Zheng, Yin (b1) 2021; 225
Zimmerman, Murillo-Sanchez, Thomas (b44) 2011; 26
Zhou, Zhang, Jin (b33) 2009; 13
IEEE 30-bus test system data
Yuan, Zhang, Wang, Liang, Yuan, Huang, Lei (b22) 2017; 122
El-Fergany, Hasanien (b5) 2018; 64
Osawa, Watanabe, Hiroyasu, Hiwa (b9) 2019
Di Nucci, Panichella, Zaidman, De Lucia (b34) 2018; 46
Bouchekara, Chaib, Abido, El-Sehiemy (b16) 2016; 42
Liang, Suganthan, Qu, Gong, Yue (b32) 2019
Shaheen, Farrag, El-Sehiemy (b28) 2017; 11
Eftimov, Korošec (b40) 2019; 489
Naderi, KAsmaei, Cerna, Lehtonen (b18) 2021; 125
Zhang, Tang, Li, Deng, Chen (b19) 2016; 47
Biswas, Suganthan, Mallipeddi, Amaratunga (b25) 2020; 24
Liu, Ishibuchi, Nojima, Masuyama, Shang (b10) 2018
Mirjalili, Jangir, Saremi (b14) 2017; 46
Shang, Ishibuchi, He, Pang (b35) 2021; 25
IEEE 57-bus test system data
Pulluri, Naresh, Sharma (b21) 2017; 54
Warid (b2) 2020; 91
Zhang, Liu, Tu (b41) 2020; 95
Mohamed, Mohamed, El-Gaafary, Hemeida (b17) 2017; 142
Deb, Agrawal, Pratap, Meyarivan (b12) 2000
.
Zhao, Zhang, Wang (b7) 2020; 87
Ghasemi, Ghavidel, Ghanbarian, Gitizadeh (b23) 2015; 294
Ghasemi, Ghavidel, Ghanbarian, Massrur, Gharibzadeh (b29) 2014; 281
Eftimov, Petelin, Korošec (b39) 2020; 87
Chen, Qian, Zhang, Li (b30) 2020; 92
Attia, El Sehiemy, Hasanien (b4) 2018; 99
MATPOWER
E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm, TIK-report, 2001.
Chen, Yi, Zhang, Wang (b24) 2018; 68
Abaci, Yamacli (b15) 2016; 79
Li, Gong, Wang, Yan, Hu (b3) 2020; 198
Eftimov (10.1016/j.asoc.2021.108334_b39) 2020; 87
Attia (10.1016/j.asoc.2021.108334_b4) 2018; 99
Chen (10.1016/j.asoc.2021.108334_b30) 2020; 92
Osawa (10.1016/j.asoc.2021.108334_b9) 2019
Shang (10.1016/j.asoc.2021.108334_b35) 2021; 25
Deb (10.1016/j.asoc.2021.108334_b12) 2000
Deb (10.1016/j.asoc.2021.108334_b8) 2008; 185
Liu (10.1016/j.asoc.2021.108334_b10) 2018
Abaci (10.1016/j.asoc.2021.108334_b15) 2016; 79
Pulluri (10.1016/j.asoc.2021.108334_b21) 2017; 54
Eftimov (10.1016/j.asoc.2021.108334_b40) 2019; 489
Liang (10.1016/j.asoc.2021.108334_b32) 2019
Deb (10.1016/j.asoc.2021.108334_b11) 2002; 6
Ghasemi (10.1016/j.asoc.2021.108334_b23) 2015; 294
Zitzler (10.1016/j.asoc.2021.108334_b36) 2003; 7
Zimmerman (10.1016/j.asoc.2021.108334_b44) 2011; 26
10.1016/j.asoc.2021.108334_b13
Yue (10.1016/j.asoc.2021.108334_b37) 2018; 22
Ghasemi (10.1016/j.asoc.2021.108334_b20) 2014; 78
Mirjalili (10.1016/j.asoc.2021.108334_b14) 2017; 46
Yuan (10.1016/j.asoc.2021.108334_b22) 2017; 122
Shaheen (10.1016/j.asoc.2021.108334_b28) 2017; 11
Duman (10.1016/j.asoc.2021.108334_b31) 2021
Chen (10.1016/j.asoc.2021.108334_b24) 2018; 68
Naderi (10.1016/j.asoc.2021.108334_b18) 2021; 125
Warid (10.1016/j.asoc.2021.108334_b2) 2020; 91
Barocio (10.1016/j.asoc.2021.108334_b27) 2017; 11
Carrasco (10.1016/j.asoc.2021.108334_b38) 2020; 54
Bouchekara (10.1016/j.asoc.2021.108334_b16) 2016; 42
Zhang (10.1016/j.asoc.2021.108334_b19) 2016; 47
Li (10.1016/j.asoc.2021.108334_b3) 2020; 198
El-Fergany (10.1016/j.asoc.2021.108334_b5) 2018; 64
Mohamed (10.1016/j.asoc.2021.108334_b17) 2017; 142
Di Nucci (10.1016/j.asoc.2021.108334_b34) 2018; 46
Ghasemi (10.1016/j.asoc.2021.108334_b29) 2014; 281
10.1016/j.asoc.2021.108334_b45
Zhang (10.1016/j.asoc.2021.108334_b41) 2020; 95
Biswas (10.1016/j.asoc.2021.108334_b6) 2018; 68
Meng (10.1016/j.asoc.2021.108334_b1) 2021; 225
Zhao (10.1016/j.asoc.2021.108334_b7) 2020; 87
Zhou (10.1016/j.asoc.2021.108334_b33) 2009; 13
10.1016/j.asoc.2021.108334_b42
10.1016/j.asoc.2021.108334_b43
Biswas (10.1016/j.asoc.2021.108334_b25) 2020; 24
Niknam (10.1016/j.asoc.2021.108334_b26) 2011; 36
References_xml – volume: 22
  start-page: 805
  year: 2018
  end-page: 817
  ident: b37
  article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 262
  year: 2018
  end-page: 273
  ident: b10
  article-title: A double-niched evolutionary algorithm and its behavior on polygon-based problems
  publication-title: International Conference on Parallel Problem Solving from Nature
– volume: 47
  start-page: 494
  year: 2016
  end-page: 514
  ident: b19
  article-title: A modified MOEA/D approach to the solution of multi-objective optimal power flow problem
  publication-title: Appl. Soft Comput.
– volume: 92
  year: 2020
  ident: b30
  article-title: Application of modified pigeon-inspired optimization algorithm and constraint-objective sorting rule on multi-objective optimal power flow problem
  publication-title: Appl. Soft Comput.
– year: 2021
  ident: b31
  article-title: Development of the multi-objective adaptive guided differential evolution and optimization of the MO-ACOPF for wind/PV/tidal energy sources
  publication-title: Appl. Soft Comput.
– year: 2019
  ident: b32
  article-title: Problem Definitions and Evaluation Criteria for the CEC 2020 Special Session on Multimodal Multiobjective Optimization
– start-page: 1793
  year: 2019
  end-page: 1801
  ident: b9
  article-title: Performance study of double-niched evolutionary algorithm on multi-objective knapsack problems
  publication-title: 2019 IEEE Symposium Series on Computational Intelligence, SSCI
– volume: 24
  start-page: 2999
  year: 2020
  end-page: 3023
  ident: b25
  article-title: Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms
  publication-title: Soft Comput.
– reference: E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm, TIK-report, 2001.
– volume: 294
  start-page: 286
  year: 2015
  end-page: 304
  ident: b23
  article-title: Multi-objective optimal electric power planning in the power system using Gaussian bare-bones imperialist competitive algorithm
  publication-title: Inform. Sci.
– volume: 185
  start-page: 1062
  year: 2008
  end-page: 1087
  ident: b8
  article-title: Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization
  publication-title: European J. Oper. Res.
– volume: 122
  start-page: 70
  year: 2017
  end-page: 82
  ident: b22
  article-title: Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm
  publication-title: Energy
– volume: 79
  start-page: 1
  year: 2016
  end-page: 10
  ident: b15
  article-title: Differential search algorithm for solving multi-objective optimal power flow problem
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 11
  start-page: 1012
  year: 2017
  end-page: 1022
  ident: b27
  article-title: Modified bio-inspired optimisation algorithm with a centroid decision making approach for solving a multi-objective optimal power flow problem
  publication-title: IET Gener. Transm. Distrib.
– volume: 87
  year: 2020
  ident: b7
  article-title: Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications
  publication-title: Eng. Appl. Artif. Intell.
– volume: 68
  start-page: 322
  year: 2018
  end-page: 342
  ident: b24
  article-title: Applications of multi-objective dimension-based firefly algorithm to optimize the power losses, emission, and cost in power systems
  publication-title: Appl. Soft Comput.
– volume: 125
  year: 2021
  ident: b18
  article-title: A novel hybrid self-adaptive heuristic algorithm to handle single- and multi-objective optimal power flow problems
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 78
  start-page: 276
  year: 2014
  end-page: 289
  ident: b20
  article-title: Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm
  publication-title: Energy
– volume: 11
  start-page: 570
  year: 2017
  end-page: 581
  ident: b28
  article-title: MOPF solution methodology
  publication-title: IET Gener. Transm. Distrib.
– volume: 87
  year: 2020
  ident: b39
  article-title: DSCTool: A web-service-based framework for statistical comparison of stochastic optimization algorithms
  publication-title: Appl. Soft Comput.
– year: 2000
  ident: b12
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
  publication-title: International Conference on Parallel Problem Solving from Nature
– reference: IEEE 57-bus test system data,
– volume: 13
  start-page: 1167
  year: 2009
  end-page: 1189
  ident: b33
  article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm
  publication-title: IEEE Trans. Evol. Comput.
– volume: 68
  start-page: 81
  year: 2018
  end-page: 100
  ident: b6
  article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques
  publication-title: Eng. Appl. Artif. Intell.
– reference: IEEE 30-bus test system data,
– volume: 46
  start-page: 79
  year: 2017
  end-page: 95
  ident: b14
  article-title: Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems
  publication-title: Appl. Intell.
– volume: 225
  year: 2021
  ident: b1
  article-title: A high-performance crisscross search based grey wolf optimizer for solving optimal power flow problem
  publication-title: Energy
– volume: 46
  start-page: 674
  year: 2018
  end-page: 696
  ident: b34
  article-title: A test case prioritization genetic algorithm guided by the hypervolume indicator
  publication-title: IEEE Trans. Softw. Eng.
– volume: 489
  start-page: 255
  year: 2019
  end-page: 273
  ident: b40
  article-title: A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space
  publication-title: Inform. Sci.
– reference: .
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b11
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 25
  start-page: 1
  year: 2021
  end-page: 20
  ident: b35
  article-title: A survey on the hypervolume indicator in evolutionary multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 198
  year: 2020
  ident: b3
  article-title: Optimal power flow by means of improved adaptive differential evolution
  publication-title: Energy
– reference: MATPOWER,
– volume: 64
  start-page: 307
  year: 2018
  end-page: 316
  ident: b5
  article-title: Tree-seed algorithm for solving optimal power flow problem in large-scale power systems incorporating validations and comparisons
  publication-title: Appl. Soft Comput.
– volume: 54
  start-page: 229
  year: 2017
  end-page: 245
  ident: b21
  article-title: An enhanced self-adaptive differential evolution based solution methodology for multiobjective optimal power flow
  publication-title: Appl. Soft Comput.
– volume: 91
  year: 2020
  ident: b2
  article-title: Optimal power flow using the AMTPG-Jaya algorithm
  publication-title: Appl. Soft Comput.
– volume: 95
  year: 2020
  ident: b41
  article-title: A modified particle swarm optimization for multimodal multi-objective optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 36
  start-page: 6420
  year: 2011
  end-page: 6432
  ident: b26
  article-title: A modified shuffle frog leaping algorithm for multi-objective optimal power flow
  publication-title: Energy
– volume: 281
  start-page: 225
  year: 2014
  end-page: 247
  ident: b29
  article-title: Application of imperialist competitive algorithm with its modified techniques for multi-objective optimal power flow problem: A comparative study
  publication-title: Inform. Sci.
– volume: 7
  start-page: 117
  year: 2003
  end-page: 132
  ident: b36
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: IEEE Trans. Evol. Comput.
– volume: 42
  start-page: 119
  year: 2016
  end-page: 131
  ident: b16
  article-title: Optimal power flow using an improved colliding bodies optimization algorithm
  publication-title: Appl. Soft Comput.
– volume: 142
  start-page: 190
  year: 2017
  end-page: 206
  ident: b17
  article-title: Optimal power flow using moth swarm algorithm
  publication-title: Electr. Power Syst. Res.
– volume: 26
  start-page: 12
  year: 2011
  end-page: 19
  ident: b44
  article-title: MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education
  publication-title: IEEE Trans. Power Syst.
– volume: 54
  year: 2020
  ident: b38
  article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review
  publication-title: Swarm Evol. Comput.
– volume: 99
  start-page: 331
  year: 2018
  end-page: 343
  ident: b4
  article-title: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 125
  year: 2021
  ident: 10.1016/j.asoc.2021.108334_b18
  article-title: A novel hybrid self-adaptive heuristic algorithm to handle single- and multi-objective optimal power flow problems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2020.106492
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.asoc.2021.108334_b11
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 198
  year: 2020
  ident: 10.1016/j.asoc.2021.108334_b3
  article-title: Optimal power flow by means of improved adaptive differential evolution
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117314
– year: 2000
  ident: 10.1016/j.asoc.2021.108334_b12
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
– volume: 11
  start-page: 570
  issue: 2
  year: 2017
  ident: 10.1016/j.asoc.2021.108334_b28
  article-title: MOPF solution methodology
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2016.1379
– volume: 54
  start-page: 229
  year: 2017
  ident: 10.1016/j.asoc.2021.108334_b21
  article-title: An enhanced self-adaptive differential evolution based solution methodology for multiobjective optimal power flow
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.01.030
– volume: 42
  start-page: 119
  year: 2016
  ident: 10.1016/j.asoc.2021.108334_b16
  article-title: Optimal power flow using an improved colliding bodies optimization algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.01.041
– volume: 87
  year: 2020
  ident: 10.1016/j.asoc.2021.108334_b7
  article-title: Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103300
– volume: 142
  start-page: 190
  year: 2017
  ident: 10.1016/j.asoc.2021.108334_b17
  article-title: Optimal power flow using moth swarm algorithm
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2016.09.025
– volume: 64
  start-page: 307
  year: 2018
  ident: 10.1016/j.asoc.2021.108334_b5
  article-title: Tree-seed algorithm for solving optimal power flow problem in large-scale power systems incorporating validations and comparisons
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.12.026
– volume: 7
  start-page: 117
  issue: 2
  year: 2003
  ident: 10.1016/j.asoc.2021.108334_b36
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810758
– volume: 46
  start-page: 79
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2021.108334_b14
  article-title: Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-016-0825-8
– volume: 78
  start-page: 276
  year: 2014
  ident: 10.1016/j.asoc.2021.108334_b20
  article-title: Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2014.10.007
– volume: 225
  year: 2021
  ident: 10.1016/j.asoc.2021.108334_b1
  article-title: A high-performance crisscross search based grey wolf optimizer for solving optimal power flow problem
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120211
– volume: 47
  start-page: 494
  year: 2016
  ident: 10.1016/j.asoc.2021.108334_b19
  article-title: A modified MOEA/D approach to the solution of multi-objective optimal power flow problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.06.022
– volume: 46
  start-page: 674
  issue: 6
  year: 2018
  ident: 10.1016/j.asoc.2021.108334_b34
  article-title: A test case prioritization genetic algorithm guided by the hypervolume indicator
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2018.2868082
– volume: 68
  start-page: 81
  year: 2018
  ident: 10.1016/j.asoc.2021.108334_b6
  article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.10.019
– year: 2019
  ident: 10.1016/j.asoc.2021.108334_b32
– start-page: 262
  year: 2018
  ident: 10.1016/j.asoc.2021.108334_b10
  article-title: A double-niched evolutionary algorithm and its behavior on polygon-based problems
– volume: 26
  start-page: 12
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2021.108334_b44
  article-title: MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2010.2051168
– volume: 489
  start-page: 255
  year: 2019
  ident: 10.1016/j.asoc.2021.108334_b40
  article-title: A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.03.049
– volume: 22
  start-page: 805
  issue: 5
  year: 2018
  ident: 10.1016/j.asoc.2021.108334_b37
  article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2754271
– ident: 10.1016/j.asoc.2021.108334_b45
– year: 2021
  ident: 10.1016/j.asoc.2021.108334_b31
  article-title: Development of the multi-objective adaptive guided differential evolution and optimization of the MO-ACOPF for wind/PV/tidal energy sources
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107814
– ident: 10.1016/j.asoc.2021.108334_b43
– volume: 95
  year: 2020
  ident: 10.1016/j.asoc.2021.108334_b41
  article-title: A modified particle swarm optimization for multimodal multi-objective optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103905
– volume: 79
  start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2021.108334_b15
  article-title: Differential search algorithm for solving multi-objective optimal power flow problem
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.12.021
– volume: 99
  start-page: 331
  year: 2018
  ident: 10.1016/j.asoc.2021.108334_b4
  article-title: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.01.024
– volume: 122
  start-page: 70
  year: 2017
  ident: 10.1016/j.asoc.2021.108334_b22
  article-title: Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2017.01.071
– start-page: 1793
  year: 2019
  ident: 10.1016/j.asoc.2021.108334_b9
  article-title: Performance study of double-niched evolutionary algorithm on multi-objective knapsack problems
– volume: 13
  start-page: 1167
  issue: 5
  year: 2009
  ident: 10.1016/j.asoc.2021.108334_b33
  article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2021467
– volume: 36
  start-page: 6420
  year: 2011
  ident: 10.1016/j.asoc.2021.108334_b26
  article-title: A modified shuffle frog leaping algorithm for multi-objective optimal power flow
  publication-title: Energy
  doi: 10.1016/j.energy.2011.09.027
– volume: 11
  start-page: 1012
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2021.108334_b27
  article-title: Modified bio-inspired optimisation algorithm with a centroid decision making approach for solving a multi-objective optimal power flow problem
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2016.1135
– ident: 10.1016/j.asoc.2021.108334_b13
– volume: 68
  start-page: 322
  year: 2018
  ident: 10.1016/j.asoc.2021.108334_b24
  article-title: Applications of multi-objective dimension-based firefly algorithm to optimize the power losses, emission, and cost in power systems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.04.006
– volume: 25
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2021.108334_b35
  article-title: A survey on the hypervolume indicator in evolutionary multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.3013290
– volume: 92
  year: 2020
  ident: 10.1016/j.asoc.2021.108334_b30
  article-title: Application of modified pigeon-inspired optimization algorithm and constraint-objective sorting rule on multi-objective optimal power flow problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106321
– volume: 91
  year: 2020
  ident: 10.1016/j.asoc.2021.108334_b2
  article-title: Optimal power flow using the AMTPG-Jaya algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106252
– volume: 281
  start-page: 225
  year: 2014
  ident: 10.1016/j.asoc.2021.108334_b29
  article-title: Application of imperialist competitive algorithm with its modified techniques for multi-objective optimal power flow problem: A comparative study
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.05.040
– volume: 24
  start-page: 2999
  year: 2020
  ident: 10.1016/j.asoc.2021.108334_b25
  article-title: Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-04077-1
– volume: 54
  year: 2020
  ident: 10.1016/j.asoc.2021.108334_b38
  article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100665
– volume: 87
  year: 2020
  ident: 10.1016/j.asoc.2021.108334_b39
  article-title: DSCTool: A web-service-based framework for statistical comparison of stochastic optimization algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105977
– volume: 185
  start-page: 1062
  issue: 3
  year: 2008
  ident: 10.1016/j.asoc.2021.108334_b8
  article-title: Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2006.06.042
– volume: 294
  start-page: 286
  year: 2015
  ident: 10.1016/j.asoc.2021.108334_b23
  article-title: Multi-objective optimal electric power planning in the power system using Gaussian bare-bones imperialist competitive algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.09.051
– ident: 10.1016/j.asoc.2021.108334_b42
SSID ssj0016928
Score 2.5954788
Snippet Finding a feasible solution set for optimization problems in conflict with objective functions poses significant challenges. Moreover, in such problems, the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108334
SubjectTerms Crowd distance
Multi-objective improved manta ray foraging optimization
Multi-objective optimal power flow
Multi-objective optimization
Power system planning
Title Optimization of Optimal Power Flow Problem Using Multi-Objective Manta Ray Foraging Optimizer
URI https://dx.doi.org/10.1016/j.asoc.2021.108334
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA6lXry4i3UpOXiTsbNkmRxLcahLF6qFXmRI0gRaaltKRbz4200ymaIgPXgaZsgbhjfJy_vC994HwHUimNAakwATTgOEhAyYlQxLQ8rHmCsWK3s00OmS9hA9jPCoAlplLYylVfrYX8R0F639k4b3ZmM5mTSeDfJIEUPEgBaTNDilYYSo7Z9_-7WheUSEOX1VOziwo33hTMHx4sYDBiPGkaXaJQn6e3P6seFkB2DPZ4qwWXzMIaio-RHYL1UYoF-Ux-C1Z1b9my-nhAsN3b2x7FsBNJjNFh-wX8jGQEcQgK7oNuiJaRHsYMd4l8MB_4SZmRBWtQj6d6rVCRhmdy-tduBFEwKZhOE60CSJOGcYyRiNmZAGEIwtKCLUIIdYCJVSqoVODfTlEaYhlZIhzcbUNnbBiiSnoDpfzNUZgKGQPJFpLHXITVZFRYhDwoUmqVAKM1UDUemtXPqO4lbYYpaX1LFpbj2cWw_nhYdr4GZjsyz6aWwdjcufkP-aFbkJ-Fvszv9pdwF2Y1ve4FjZl6C6Xr2rK5N0rEXdzao62Gm2Bk99e71_bHe_AS8612I
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBWhObSX7qXpqkNvxcSLFusYQo3TrLQJ5FKMpEiQkCYhpJT-fSVbDi2UHHq08RjzPBrNs2fmAfAQCSa0xsTDhFMPISE9ZiXDYp_yCeaKhcp-Guj2SDpCz2M8roBm2Qtjyypd7C9ieh6t3Zm6Q7O-mk7rr4Z5xIghYkiLSRqs0nDVTqcyzl5ttNppb_szgbBcYtVe71kD1ztTlHlxA4KhiWFgq-2iCP29P_3Yc5JjcOiSRdgonucEVNTiFByVQgzQrcsz8NY3C__ddVTCpYb5sbEcWA00mMyXn3BQKMfAvEYA5n23Xl_MingHuwZgDl_4F0yMT1jhIujuqdbnYJQ8DZup53QTPBn5_sbTJAo4ZxjJEE2YkIYTTCwvItSQh1AIFVOqhY4N--UBpj6VkiHNJtTOdsGKRBdgb7FcqEsAfSF5JONQap-bxIoKH_uEC01ioRRmqgaCEq1MuqHiVttinpXVY7PMIpxZhLMC4Rp43NqsipEaO6_G5UvIfjlGZmL-Drurf9rdg_102O1knVavfQ0OQtvtkBdp34C9zfpD3ZocZCPunI99A96z2H4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Optimal+Power+Flow+Problem+Using+Multi-Objective+Manta+Ray+Foraging+Optimizer&rft.jtitle=Applied+soft+computing&rft.au=Kahraman%2C+Hamdi+Tolga&rft.au=Akbel%2C+Mustafa&rft.au=Duman%2C+Serhat&rft.date=2022-02-01&rft.issn=1568-4946&rft.volume=116&rft.spage=108334&rft_id=info:doi/10.1016%2Fj.asoc.2021.108334&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_108334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon