Optimization of Optimal Power Flow Problem Using Multi-Objective Manta Ray Foraging Optimizer
Finding a feasible solution set for optimization problems in conflict with objective functions poses significant challenges. Moreover, in such problems, the level of complexity may increase depending on the geometry of the objective and decision spaces. The most effective methods in solving multi-ob...
Saved in:
Published in | Applied soft computing Vol. 116; p. 108334 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2021.108334 |
Cover
Loading…
Abstract | Finding a feasible solution set for optimization problems in conflict with objective functions poses significant challenges. Moreover, in such problems, the level of complexity may increase depending on the geometry of the objective and decision spaces. The most effective methods in solving multi-objective problems having high levels of complexity are search algorithms using the Pareto-based archiving approach. Recently, the crowding distance approach has been used to improve the performance of the Pareto-based archiving method. This article presents research conducted on the development of a method that can find the optimum solution set for a multi-objective optimal power flow (MOOPF) problem whose objective functions are in conflict. For this purpose, a powerful and effective method was developed using the Pareto archiving approach based on crowding distance. The performance of the developed method was tested on twenty-four benchmark problems of different types and difficulty levels and compared with competing algorithms. The data obtained from the experimental trials and four different performance metrics were analyzed using statistical test methods. Analysis results showed that the proposed method yielded a competitive performance on different types of multi-objective optimization problems and was able to find the best solutions in the literature for the real-world MOOPF problem.
•The IMOMRFO was developed using crowding distance-based Pareto archiving strategy.•The performance of the developed IMOMRFO was tested on the CEC 2020 benchmark suite.•The improvement in IMOMRFO performance was verified by statistical analysis.•The IMOMRFO was compared with the latest and strongest competitors.•The IMOMRFO was used for solving the multi-objective optimal power flow problem with different objective functions. |
---|---|
AbstractList | Finding a feasible solution set for optimization problems in conflict with objective functions poses significant challenges. Moreover, in such problems, the level of complexity may increase depending on the geometry of the objective and decision spaces. The most effective methods in solving multi-objective problems having high levels of complexity are search algorithms using the Pareto-based archiving approach. Recently, the crowding distance approach has been used to improve the performance of the Pareto-based archiving method. This article presents research conducted on the development of a method that can find the optimum solution set for a multi-objective optimal power flow (MOOPF) problem whose objective functions are in conflict. For this purpose, a powerful and effective method was developed using the Pareto archiving approach based on crowding distance. The performance of the developed method was tested on twenty-four benchmark problems of different types and difficulty levels and compared with competing algorithms. The data obtained from the experimental trials and four different performance metrics were analyzed using statistical test methods. Analysis results showed that the proposed method yielded a competitive performance on different types of multi-objective optimization problems and was able to find the best solutions in the literature for the real-world MOOPF problem.
•The IMOMRFO was developed using crowding distance-based Pareto archiving strategy.•The performance of the developed IMOMRFO was tested on the CEC 2020 benchmark suite.•The improvement in IMOMRFO performance was verified by statistical analysis.•The IMOMRFO was compared with the latest and strongest competitors.•The IMOMRFO was used for solving the multi-objective optimal power flow problem with different objective functions. |
ArticleNumber | 108334 |
Author | Akbel, Mustafa Kahraman, Hamdi Tolga Duman, Serhat |
Author_xml | – sequence: 1 givenname: Hamdi Tolga orcidid: 0000-0001-9985-6324 surname: Kahraman fullname: Kahraman, Hamdi Tolga email: htolgakahraman@ktu.edu.tr organization: Software Engineering, Of Technology Faculty, Karadeniz Technical University, Trabzon, 61080, Turkey – sequence: 2 givenname: Mustafa orcidid: 0000-0003-0491-5438 surname: Akbel fullname: Akbel, Mustafa email: mustafaakbell@gmail.com organization: MASOMO, İzmir, Turkey – sequence: 3 givenname: Serhat orcidid: 0000-0002-1091-125X surname: Duman fullname: Duman, Serhat email: sduman@bandirma.edu.tr organization: Electrical Engineering, Engineering and Natural Sciences Faculty, Bandirma Onyedi Eylul University, Bandirma, 10200, Turkey |
BookMark | eNp9kMtqAjEUhkOxULV9ga7yAmOTueQC3RSpbUFRSl2WkMlkJMM4kSRV7NM3o666cHUunO_A_43AoLOdBuARowlGmDw1E-mtmqQoxXHBsiy_AUPMaJpwwvAg9gVhSc5zcgdG3jcoQjxlQ_C93AWzNb8yGNtBW8PTLFu4sgft4Ky1B7hytmz1Fq696TZw8dMGkyzLRqtg9houZBck_JRHOLNObvqTy0_t7sFtLVuvHy51DNaz16_pezJfvn1MX-aJyhAKSU0yLCUvcpXmFS8VoUXFKCaEcpqnZakZpXVZM8qYxAVFVCme17yiqMhooUk2Buz8VznrvdO1UCacIgUnTSswEr0m0Yhek-g1ibOmiKb_0J2LAtzxOvR8hnQMtTfaCa-M7pSujItaRGXNNfwPBgeDkA |
CitedBy_id | crossref_primary_10_3390_sym16111474 crossref_primary_10_1142_S021821302350032X crossref_primary_10_3390_app13053330 crossref_primary_10_1016_j_jobe_2023_107366 crossref_primary_10_1016_j_knosys_2022_109989 crossref_primary_10_1049_gtd2_13076 crossref_primary_10_1016_j_compeleceng_2025_110230 crossref_primary_10_3390_math11051250 crossref_primary_10_3390_en15176387 crossref_primary_10_1038_s41598_024_54510_1 crossref_primary_10_1016_j_eswa_2024_123819 crossref_primary_10_1016_j_seta_2023_103534 crossref_primary_10_1088_2631_8695_ad4cb7 crossref_primary_10_3390_en17092209 crossref_primary_10_3390_fractalfract6040194 crossref_primary_10_1155_2024_5546940 crossref_primary_10_1007_s40974_022_00249_2 crossref_primary_10_1016_j_apenergy_2023_121612 crossref_primary_10_1016_j_eswa_2022_118827 crossref_primary_10_1016_j_eswa_2023_122367 crossref_primary_10_3390_sym14122619 crossref_primary_10_3390_electronics11050831 crossref_primary_10_1016_j_swevo_2022_101196 crossref_primary_10_1007_s00521_024_10312_0 crossref_primary_10_1007_s42235_024_00481_y crossref_primary_10_1007_s10489_024_05714_5 crossref_primary_10_1007_s12530_022_09425_5 crossref_primary_10_3390_app13084760 crossref_primary_10_1109_ACCESS_2024_3368383 crossref_primary_10_1016_j_jare_2024_09_019 crossref_primary_10_1016_j_asoc_2023_110688 crossref_primary_10_1109_ACCESS_2023_3337535 crossref_primary_10_1109_ACCESS_2023_3283573 crossref_primary_10_3390_su142416444 crossref_primary_10_1016_j_jhydrol_2022_128469 crossref_primary_10_1016_j_egyr_2022_09_025 crossref_primary_10_3390_math10162960 crossref_primary_10_3390_en15207473 crossref_primary_10_1038_s41598_023_37635_7 crossref_primary_10_1109_ACCESS_2022_3193371 crossref_primary_10_1155_2023_8847164 crossref_primary_10_1142_S0218126623502006 crossref_primary_10_1016_j_eswa_2024_124929 crossref_primary_10_1016_j_heliyon_2024_e31755 crossref_primary_10_1016_j_eswa_2023_121217 crossref_primary_10_1016_j_rineng_2025_104553 crossref_primary_10_1109_ACCESS_2023_3276264 crossref_primary_10_1016_j_asoc_2023_110612 crossref_primary_10_1016_j_enbuild_2023_112840 crossref_primary_10_1016_j_asoc_2023_110977 crossref_primary_10_1016_j_egyr_2024_02_038 crossref_primary_10_1016_j_eswa_2023_121212 crossref_primary_10_1038_s41598_023_41608_1 crossref_primary_10_1109_ACCESS_2024_3430862 crossref_primary_10_1016_j_dajour_2023_100299 crossref_primary_10_1016_j_ijhydene_2024_10_051 crossref_primary_10_3390_pr10122723 crossref_primary_10_1016_j_engappai_2023_107564 crossref_primary_10_18038_estubtda_1348497 crossref_primary_10_3390_electricity5040035 crossref_primary_10_1016_j_eswa_2023_119863 crossref_primary_10_1007_s00202_024_02937_0 crossref_primary_10_1016_j_asoc_2024_112155 crossref_primary_10_1016_j_egyr_2023_12_053 crossref_primary_10_1038_s41598_023_41749_3 crossref_primary_10_1016_j_eswa_2023_120738 crossref_primary_10_1016_j_asoc_2023_110585 crossref_primary_10_1007_s00521_023_08481_5 crossref_primary_10_3390_en15218303 crossref_primary_10_3390_math10173036 crossref_primary_10_1016_j_asoc_2023_110426 crossref_primary_10_1016_j_swevo_2023_101464 crossref_primary_10_1007_s00500_024_09877_8 crossref_primary_10_1016_j_eswa_2023_120298 crossref_primary_10_1088_2631_8695_ad6e54 crossref_primary_10_1007_s00202_024_02822_w crossref_primary_10_1016_j_swevo_2023_101423 crossref_primary_10_1016_j_egyr_2024_04_016 crossref_primary_10_1016_j_ins_2024_120999 |
Cites_doi | 10.1016/j.ijepes.2020.106492 10.1109/4235.996017 10.1016/j.energy.2020.117314 10.1049/iet-gtd.2016.1379 10.1016/j.asoc.2017.01.030 10.1016/j.asoc.2016.01.041 10.1016/j.engappai.2019.103300 10.1016/j.epsr.2016.09.025 10.1016/j.asoc.2017.12.026 10.1109/TEVC.2003.810758 10.1007/s10489-016-0825-8 10.1016/j.energy.2014.10.007 10.1016/j.energy.2021.120211 10.1016/j.asoc.2016.06.022 10.1109/TSE.2018.2868082 10.1016/j.engappai.2017.10.019 10.1109/TPWRS.2010.2051168 10.1016/j.ins.2019.03.049 10.1109/TEVC.2017.2754271 10.1016/j.asoc.2021.107814 10.1016/j.engappai.2020.103905 10.1016/j.ijepes.2015.12.021 10.1016/j.ijepes.2018.01.024 10.1016/j.energy.2017.01.071 10.1109/TEVC.2009.2021467 10.1016/j.energy.2011.09.027 10.1049/iet-gtd.2016.1135 10.1016/j.asoc.2018.04.006 10.1109/TEVC.2020.3013290 10.1016/j.asoc.2020.106321 10.1016/j.asoc.2020.106252 10.1016/j.ins.2014.05.040 10.1007/s00500-019-04077-1 10.1016/j.swevo.2020.100665 10.1016/j.asoc.2019.105977 10.1016/j.ejor.2006.06.042 10.1016/j.ins.2014.09.051 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2021.108334 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2021_108334 S1568494621011212 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-f631aa954c24d9bc675d8716679742bbe877fbf8788a15707cc94f9d705375e63 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:13 EDT 2025 Thu Apr 24 23:01:05 EDT 2025 Fri Feb 23 02:41:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-objective optimal power flow Multi-objective improved manta ray foraging optimization Crowd distance Multi-objective optimization Power system planning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-f631aa954c24d9bc675d8716679742bbe877fbf8788a15707cc94f9d705375e63 |
ORCID | 0000-0002-1091-125X 0000-0003-0491-5438 0000-0001-9985-6324 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2021_108334 crossref_primary_10_1016_j_asoc_2021_108334 elsevier_sciencedirect_doi_10_1016_j_asoc_2021_108334 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Biswas, Suganthan, Mallipeddi, Amaratunga (b6) 2018; 68 Deb, Pratap, Agarwal, Meyarivan (b11) 2002; 6 Barocio, Regalado, Cuevas, Uribe, Zuniga, Torres (b27) 2017; 11 Zitzler, Thiele, Laumanns, Fonseca, Fonseca (b36) 2003; 7 Ghasemi, Ghavidel, Ghanbarian, Gharibzadeh, Vahed (b20) 2014; 78 Carrasco, García, Rueda, Das, Herrera (b38) 2020; 54 Deb, Tiwari (b8) 2008; 185 Niknam, Narimani, Jabbari, Malekpour (b26) 2011; 36 Duman, Akbel, Kahraman (b31) 2021 Yue, Qu, Liang (b37) 2018; 22 Meng, Zeng, Wang, Chen, Zhou, Zheng, Yin (b1) 2021; 225 Zimmerman, Murillo-Sanchez, Thomas (b44) 2011; 26 Zhou, Zhang, Jin (b33) 2009; 13 IEEE 30-bus test system data Yuan, Zhang, Wang, Liang, Yuan, Huang, Lei (b22) 2017; 122 El-Fergany, Hasanien (b5) 2018; 64 Osawa, Watanabe, Hiroyasu, Hiwa (b9) 2019 Di Nucci, Panichella, Zaidman, De Lucia (b34) 2018; 46 Bouchekara, Chaib, Abido, El-Sehiemy (b16) 2016; 42 Liang, Suganthan, Qu, Gong, Yue (b32) 2019 Shaheen, Farrag, El-Sehiemy (b28) 2017; 11 Eftimov, Korošec (b40) 2019; 489 Naderi, KAsmaei, Cerna, Lehtonen (b18) 2021; 125 Zhang, Tang, Li, Deng, Chen (b19) 2016; 47 Biswas, Suganthan, Mallipeddi, Amaratunga (b25) 2020; 24 Liu, Ishibuchi, Nojima, Masuyama, Shang (b10) 2018 Mirjalili, Jangir, Saremi (b14) 2017; 46 Shang, Ishibuchi, He, Pang (b35) 2021; 25 IEEE 57-bus test system data Pulluri, Naresh, Sharma (b21) 2017; 54 Warid (b2) 2020; 91 Zhang, Liu, Tu (b41) 2020; 95 Mohamed, Mohamed, El-Gaafary, Hemeida (b17) 2017; 142 Deb, Agrawal, Pratap, Meyarivan (b12) 2000 . Zhao, Zhang, Wang (b7) 2020; 87 Ghasemi, Ghavidel, Ghanbarian, Gitizadeh (b23) 2015; 294 Ghasemi, Ghavidel, Ghanbarian, Massrur, Gharibzadeh (b29) 2014; 281 Eftimov, Petelin, Korošec (b39) 2020; 87 Chen, Qian, Zhang, Li (b30) 2020; 92 Attia, El Sehiemy, Hasanien (b4) 2018; 99 MATPOWER E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm, TIK-report, 2001. Chen, Yi, Zhang, Wang (b24) 2018; 68 Abaci, Yamacli (b15) 2016; 79 Li, Gong, Wang, Yan, Hu (b3) 2020; 198 Eftimov (10.1016/j.asoc.2021.108334_b39) 2020; 87 Attia (10.1016/j.asoc.2021.108334_b4) 2018; 99 Chen (10.1016/j.asoc.2021.108334_b30) 2020; 92 Osawa (10.1016/j.asoc.2021.108334_b9) 2019 Shang (10.1016/j.asoc.2021.108334_b35) 2021; 25 Deb (10.1016/j.asoc.2021.108334_b12) 2000 Deb (10.1016/j.asoc.2021.108334_b8) 2008; 185 Liu (10.1016/j.asoc.2021.108334_b10) 2018 Abaci (10.1016/j.asoc.2021.108334_b15) 2016; 79 Pulluri (10.1016/j.asoc.2021.108334_b21) 2017; 54 Eftimov (10.1016/j.asoc.2021.108334_b40) 2019; 489 Liang (10.1016/j.asoc.2021.108334_b32) 2019 Deb (10.1016/j.asoc.2021.108334_b11) 2002; 6 Ghasemi (10.1016/j.asoc.2021.108334_b23) 2015; 294 Zitzler (10.1016/j.asoc.2021.108334_b36) 2003; 7 Zimmerman (10.1016/j.asoc.2021.108334_b44) 2011; 26 10.1016/j.asoc.2021.108334_b13 Yue (10.1016/j.asoc.2021.108334_b37) 2018; 22 Ghasemi (10.1016/j.asoc.2021.108334_b20) 2014; 78 Mirjalili (10.1016/j.asoc.2021.108334_b14) 2017; 46 Yuan (10.1016/j.asoc.2021.108334_b22) 2017; 122 Shaheen (10.1016/j.asoc.2021.108334_b28) 2017; 11 Duman (10.1016/j.asoc.2021.108334_b31) 2021 Chen (10.1016/j.asoc.2021.108334_b24) 2018; 68 Naderi (10.1016/j.asoc.2021.108334_b18) 2021; 125 Warid (10.1016/j.asoc.2021.108334_b2) 2020; 91 Barocio (10.1016/j.asoc.2021.108334_b27) 2017; 11 Carrasco (10.1016/j.asoc.2021.108334_b38) 2020; 54 Bouchekara (10.1016/j.asoc.2021.108334_b16) 2016; 42 Zhang (10.1016/j.asoc.2021.108334_b19) 2016; 47 Li (10.1016/j.asoc.2021.108334_b3) 2020; 198 El-Fergany (10.1016/j.asoc.2021.108334_b5) 2018; 64 Mohamed (10.1016/j.asoc.2021.108334_b17) 2017; 142 Di Nucci (10.1016/j.asoc.2021.108334_b34) 2018; 46 Ghasemi (10.1016/j.asoc.2021.108334_b29) 2014; 281 10.1016/j.asoc.2021.108334_b45 Zhang (10.1016/j.asoc.2021.108334_b41) 2020; 95 Biswas (10.1016/j.asoc.2021.108334_b6) 2018; 68 Meng (10.1016/j.asoc.2021.108334_b1) 2021; 225 Zhao (10.1016/j.asoc.2021.108334_b7) 2020; 87 Zhou (10.1016/j.asoc.2021.108334_b33) 2009; 13 10.1016/j.asoc.2021.108334_b42 10.1016/j.asoc.2021.108334_b43 Biswas (10.1016/j.asoc.2021.108334_b25) 2020; 24 Niknam (10.1016/j.asoc.2021.108334_b26) 2011; 36 |
References_xml | – volume: 22 start-page: 805 year: 2018 end-page: 817 ident: b37 article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems publication-title: IEEE Trans. Evol. Comput. – start-page: 262 year: 2018 end-page: 273 ident: b10 article-title: A double-niched evolutionary algorithm and its behavior on polygon-based problems publication-title: International Conference on Parallel Problem Solving from Nature – volume: 47 start-page: 494 year: 2016 end-page: 514 ident: b19 article-title: A modified MOEA/D approach to the solution of multi-objective optimal power flow problem publication-title: Appl. Soft Comput. – volume: 92 year: 2020 ident: b30 article-title: Application of modified pigeon-inspired optimization algorithm and constraint-objective sorting rule on multi-objective optimal power flow problem publication-title: Appl. Soft Comput. – year: 2021 ident: b31 article-title: Development of the multi-objective adaptive guided differential evolution and optimization of the MO-ACOPF for wind/PV/tidal energy sources publication-title: Appl. Soft Comput. – year: 2019 ident: b32 article-title: Problem Definitions and Evaluation Criteria for the CEC 2020 Special Session on Multimodal Multiobjective Optimization – start-page: 1793 year: 2019 end-page: 1801 ident: b9 article-title: Performance study of double-niched evolutionary algorithm on multi-objective knapsack problems publication-title: 2019 IEEE Symposium Series on Computational Intelligence, SSCI – volume: 24 start-page: 2999 year: 2020 end-page: 3023 ident: b25 article-title: Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms publication-title: Soft Comput. – reference: E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm, TIK-report, 2001. – volume: 294 start-page: 286 year: 2015 end-page: 304 ident: b23 article-title: Multi-objective optimal electric power planning in the power system using Gaussian bare-bones imperialist competitive algorithm publication-title: Inform. Sci. – volume: 185 start-page: 1062 year: 2008 end-page: 1087 ident: b8 article-title: Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization publication-title: European J. Oper. Res. – volume: 122 start-page: 70 year: 2017 end-page: 82 ident: b22 article-title: Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm publication-title: Energy – volume: 79 start-page: 1 year: 2016 end-page: 10 ident: b15 article-title: Differential search algorithm for solving multi-objective optimal power flow problem publication-title: Int. J. Electr. Power Energy Syst. – volume: 11 start-page: 1012 year: 2017 end-page: 1022 ident: b27 article-title: Modified bio-inspired optimisation algorithm with a centroid decision making approach for solving a multi-objective optimal power flow problem publication-title: IET Gener. Transm. Distrib. – volume: 87 year: 2020 ident: b7 article-title: Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications publication-title: Eng. Appl. Artif. Intell. – volume: 68 start-page: 322 year: 2018 end-page: 342 ident: b24 article-title: Applications of multi-objective dimension-based firefly algorithm to optimize the power losses, emission, and cost in power systems publication-title: Appl. Soft Comput. – volume: 125 year: 2021 ident: b18 article-title: A novel hybrid self-adaptive heuristic algorithm to handle single- and multi-objective optimal power flow problems publication-title: Int. J. Electr. Power Energy Syst. – volume: 78 start-page: 276 year: 2014 end-page: 289 ident: b20 article-title: Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm publication-title: Energy – volume: 11 start-page: 570 year: 2017 end-page: 581 ident: b28 article-title: MOPF solution methodology publication-title: IET Gener. Transm. Distrib. – volume: 87 year: 2020 ident: b39 article-title: DSCTool: A web-service-based framework for statistical comparison of stochastic optimization algorithms publication-title: Appl. Soft Comput. – year: 2000 ident: b12 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II publication-title: International Conference on Parallel Problem Solving from Nature – reference: IEEE 57-bus test system data, – volume: 13 start-page: 1167 year: 2009 end-page: 1189 ident: b33 article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm publication-title: IEEE Trans. Evol. Comput. – volume: 68 start-page: 81 year: 2018 end-page: 100 ident: b6 article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques publication-title: Eng. Appl. Artif. Intell. – reference: IEEE 30-bus test system data, – volume: 46 start-page: 79 year: 2017 end-page: 95 ident: b14 article-title: Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems publication-title: Appl. Intell. – volume: 225 year: 2021 ident: b1 article-title: A high-performance crisscross search based grey wolf optimizer for solving optimal power flow problem publication-title: Energy – volume: 46 start-page: 674 year: 2018 end-page: 696 ident: b34 article-title: A test case prioritization genetic algorithm guided by the hypervolume indicator publication-title: IEEE Trans. Softw. Eng. – volume: 489 start-page: 255 year: 2019 end-page: 273 ident: b40 article-title: A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space publication-title: Inform. Sci. – reference: . – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b11 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 25 start-page: 1 year: 2021 end-page: 20 ident: b35 article-title: A survey on the hypervolume indicator in evolutionary multi-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 198 year: 2020 ident: b3 article-title: Optimal power flow by means of improved adaptive differential evolution publication-title: Energy – reference: MATPOWER, – volume: 64 start-page: 307 year: 2018 end-page: 316 ident: b5 article-title: Tree-seed algorithm for solving optimal power flow problem in large-scale power systems incorporating validations and comparisons publication-title: Appl. Soft Comput. – volume: 54 start-page: 229 year: 2017 end-page: 245 ident: b21 article-title: An enhanced self-adaptive differential evolution based solution methodology for multiobjective optimal power flow publication-title: Appl. Soft Comput. – volume: 91 year: 2020 ident: b2 article-title: Optimal power flow using the AMTPG-Jaya algorithm publication-title: Appl. Soft Comput. – volume: 95 year: 2020 ident: b41 article-title: A modified particle swarm optimization for multimodal multi-objective optimization publication-title: Eng. Appl. Artif. Intell. – volume: 36 start-page: 6420 year: 2011 end-page: 6432 ident: b26 article-title: A modified shuffle frog leaping algorithm for multi-objective optimal power flow publication-title: Energy – volume: 281 start-page: 225 year: 2014 end-page: 247 ident: b29 article-title: Application of imperialist competitive algorithm with its modified techniques for multi-objective optimal power flow problem: A comparative study publication-title: Inform. Sci. – volume: 7 start-page: 117 year: 2003 end-page: 132 ident: b36 article-title: Performance assessment of multiobjective optimizers: An analysis and review publication-title: IEEE Trans. Evol. Comput. – volume: 42 start-page: 119 year: 2016 end-page: 131 ident: b16 article-title: Optimal power flow using an improved colliding bodies optimization algorithm publication-title: Appl. Soft Comput. – volume: 142 start-page: 190 year: 2017 end-page: 206 ident: b17 article-title: Optimal power flow using moth swarm algorithm publication-title: Electr. Power Syst. Res. – volume: 26 start-page: 12 year: 2011 end-page: 19 ident: b44 article-title: MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education publication-title: IEEE Trans. Power Syst. – volume: 54 year: 2020 ident: b38 article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review publication-title: Swarm Evol. Comput. – volume: 99 start-page: 331 year: 2018 end-page: 343 ident: b4 article-title: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm publication-title: Int. J. Electr. Power Energy Syst. – volume: 125 year: 2021 ident: 10.1016/j.asoc.2021.108334_b18 article-title: A novel hybrid self-adaptive heuristic algorithm to handle single- and multi-objective optimal power flow problems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2020.106492 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.asoc.2021.108334_b11 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 198 year: 2020 ident: 10.1016/j.asoc.2021.108334_b3 article-title: Optimal power flow by means of improved adaptive differential evolution publication-title: Energy doi: 10.1016/j.energy.2020.117314 – year: 2000 ident: 10.1016/j.asoc.2021.108334_b12 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II – volume: 11 start-page: 570 issue: 2 year: 2017 ident: 10.1016/j.asoc.2021.108334_b28 article-title: MOPF solution methodology publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2016.1379 – volume: 54 start-page: 229 year: 2017 ident: 10.1016/j.asoc.2021.108334_b21 article-title: An enhanced self-adaptive differential evolution based solution methodology for multiobjective optimal power flow publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.01.030 – volume: 42 start-page: 119 year: 2016 ident: 10.1016/j.asoc.2021.108334_b16 article-title: Optimal power flow using an improved colliding bodies optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.01.041 – volume: 87 year: 2020 ident: 10.1016/j.asoc.2021.108334_b7 article-title: Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103300 – volume: 142 start-page: 190 year: 2017 ident: 10.1016/j.asoc.2021.108334_b17 article-title: Optimal power flow using moth swarm algorithm publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2016.09.025 – volume: 64 start-page: 307 year: 2018 ident: 10.1016/j.asoc.2021.108334_b5 article-title: Tree-seed algorithm for solving optimal power flow problem in large-scale power systems incorporating validations and comparisons publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.12.026 – volume: 7 start-page: 117 issue: 2 year: 2003 ident: 10.1016/j.asoc.2021.108334_b36 article-title: Performance assessment of multiobjective optimizers: An analysis and review publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.810758 – volume: 46 start-page: 79 issue: 1 year: 2017 ident: 10.1016/j.asoc.2021.108334_b14 article-title: Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems publication-title: Appl. Intell. doi: 10.1007/s10489-016-0825-8 – volume: 78 start-page: 276 year: 2014 ident: 10.1016/j.asoc.2021.108334_b20 article-title: Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm publication-title: Energy doi: 10.1016/j.energy.2014.10.007 – volume: 225 year: 2021 ident: 10.1016/j.asoc.2021.108334_b1 article-title: A high-performance crisscross search based grey wolf optimizer for solving optimal power flow problem publication-title: Energy doi: 10.1016/j.energy.2021.120211 – volume: 47 start-page: 494 year: 2016 ident: 10.1016/j.asoc.2021.108334_b19 article-title: A modified MOEA/D approach to the solution of multi-objective optimal power flow problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.06.022 – volume: 46 start-page: 674 issue: 6 year: 2018 ident: 10.1016/j.asoc.2021.108334_b34 article-title: A test case prioritization genetic algorithm guided by the hypervolume indicator publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2018.2868082 – volume: 68 start-page: 81 year: 2018 ident: 10.1016/j.asoc.2021.108334_b6 article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.10.019 – year: 2019 ident: 10.1016/j.asoc.2021.108334_b32 – start-page: 262 year: 2018 ident: 10.1016/j.asoc.2021.108334_b10 article-title: A double-niched evolutionary algorithm and its behavior on polygon-based problems – volume: 26 start-page: 12 issue: 1 year: 2011 ident: 10.1016/j.asoc.2021.108334_b44 article-title: MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2010.2051168 – volume: 489 start-page: 255 year: 2019 ident: 10.1016/j.asoc.2021.108334_b40 article-title: A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.03.049 – volume: 22 start-page: 805 issue: 5 year: 2018 ident: 10.1016/j.asoc.2021.108334_b37 article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2754271 – ident: 10.1016/j.asoc.2021.108334_b45 – year: 2021 ident: 10.1016/j.asoc.2021.108334_b31 article-title: Development of the multi-objective adaptive guided differential evolution and optimization of the MO-ACOPF for wind/PV/tidal energy sources publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107814 – ident: 10.1016/j.asoc.2021.108334_b43 – volume: 95 year: 2020 ident: 10.1016/j.asoc.2021.108334_b41 article-title: A modified particle swarm optimization for multimodal multi-objective optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103905 – volume: 79 start-page: 1 year: 2016 ident: 10.1016/j.asoc.2021.108334_b15 article-title: Differential search algorithm for solving multi-objective optimal power flow problem publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.12.021 – volume: 99 start-page: 331 year: 2018 ident: 10.1016/j.asoc.2021.108334_b4 article-title: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2018.01.024 – volume: 122 start-page: 70 year: 2017 ident: 10.1016/j.asoc.2021.108334_b22 article-title: Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm publication-title: Energy doi: 10.1016/j.energy.2017.01.071 – start-page: 1793 year: 2019 ident: 10.1016/j.asoc.2021.108334_b9 article-title: Performance study of double-niched evolutionary algorithm on multi-objective knapsack problems – volume: 13 start-page: 1167 issue: 5 year: 2009 ident: 10.1016/j.asoc.2021.108334_b33 article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2021467 – volume: 36 start-page: 6420 year: 2011 ident: 10.1016/j.asoc.2021.108334_b26 article-title: A modified shuffle frog leaping algorithm for multi-objective optimal power flow publication-title: Energy doi: 10.1016/j.energy.2011.09.027 – volume: 11 start-page: 1012 issue: 4 year: 2017 ident: 10.1016/j.asoc.2021.108334_b27 article-title: Modified bio-inspired optimisation algorithm with a centroid decision making approach for solving a multi-objective optimal power flow problem publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2016.1135 – ident: 10.1016/j.asoc.2021.108334_b13 – volume: 68 start-page: 322 year: 2018 ident: 10.1016/j.asoc.2021.108334_b24 article-title: Applications of multi-objective dimension-based firefly algorithm to optimize the power losses, emission, and cost in power systems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.04.006 – volume: 25 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.asoc.2021.108334_b35 article-title: A survey on the hypervolume indicator in evolutionary multi-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.3013290 – volume: 92 year: 2020 ident: 10.1016/j.asoc.2021.108334_b30 article-title: Application of modified pigeon-inspired optimization algorithm and constraint-objective sorting rule on multi-objective optimal power flow problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106321 – volume: 91 year: 2020 ident: 10.1016/j.asoc.2021.108334_b2 article-title: Optimal power flow using the AMTPG-Jaya algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106252 – volume: 281 start-page: 225 year: 2014 ident: 10.1016/j.asoc.2021.108334_b29 article-title: Application of imperialist competitive algorithm with its modified techniques for multi-objective optimal power flow problem: A comparative study publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.05.040 – volume: 24 start-page: 2999 year: 2020 ident: 10.1016/j.asoc.2021.108334_b25 article-title: Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms publication-title: Soft Comput. doi: 10.1007/s00500-019-04077-1 – volume: 54 year: 2020 ident: 10.1016/j.asoc.2021.108334_b38 article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100665 – volume: 87 year: 2020 ident: 10.1016/j.asoc.2021.108334_b39 article-title: DSCTool: A web-service-based framework for statistical comparison of stochastic optimization algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105977 – volume: 185 start-page: 1062 issue: 3 year: 2008 ident: 10.1016/j.asoc.2021.108334_b8 article-title: Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2006.06.042 – volume: 294 start-page: 286 year: 2015 ident: 10.1016/j.asoc.2021.108334_b23 article-title: Multi-objective optimal electric power planning in the power system using Gaussian bare-bones imperialist competitive algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.09.051 – ident: 10.1016/j.asoc.2021.108334_b42 |
SSID | ssj0016928 |
Score | 2.5954788 |
Snippet | Finding a feasible solution set for optimization problems in conflict with objective functions poses significant challenges. Moreover, in such problems, the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108334 |
SubjectTerms | Crowd distance Multi-objective improved manta ray foraging optimization Multi-objective optimal power flow Multi-objective optimization Power system planning |
Title | Optimization of Optimal Power Flow Problem Using Multi-Objective Manta Ray Foraging Optimizer |
URI | https://dx.doi.org/10.1016/j.asoc.2021.108334 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA6lXry4i3UpOXiTsbNkmRxLcahLF6qFXmRI0gRaaltKRbz4200ymaIgPXgaZsgbhjfJy_vC994HwHUimNAakwATTgOEhAyYlQxLQ8rHmCsWK3s00OmS9hA9jPCoAlplLYylVfrYX8R0F639k4b3ZmM5mTSeDfJIEUPEgBaTNDilYYSo7Z9_-7WheUSEOX1VOziwo33hTMHx4sYDBiPGkaXaJQn6e3P6seFkB2DPZ4qwWXzMIaio-RHYL1UYoF-Ux-C1Z1b9my-nhAsN3b2x7FsBNJjNFh-wX8jGQEcQgK7oNuiJaRHsYMd4l8MB_4SZmRBWtQj6d6rVCRhmdy-tduBFEwKZhOE60CSJOGcYyRiNmZAGEIwtKCLUIIdYCJVSqoVODfTlEaYhlZIhzcbUNnbBiiSnoDpfzNUZgKGQPJFpLHXITVZFRYhDwoUmqVAKM1UDUemtXPqO4lbYYpaX1LFpbj2cWw_nhYdr4GZjsyz6aWwdjcufkP-aFbkJ-Fvszv9pdwF2Y1ve4FjZl6C6Xr2rK5N0rEXdzao62Gm2Bk99e71_bHe_AS8612I |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBWhObSX7qXpqkNvxcSLFusYQo3TrLQJ5FKMpEiQkCYhpJT-fSVbDi2UHHq08RjzPBrNs2fmAfAQCSa0xsTDhFMPISE9ZiXDYp_yCeaKhcp-Guj2SDpCz2M8roBm2Qtjyypd7C9ieh6t3Zm6Q7O-mk7rr4Z5xIghYkiLSRqs0nDVTqcyzl5ttNppb_szgbBcYtVe71kD1ztTlHlxA4KhiWFgq-2iCP29P_3Yc5JjcOiSRdgonucEVNTiFByVQgzQrcsz8NY3C__ddVTCpYb5sbEcWA00mMyXn3BQKMfAvEYA5n23Xl_MingHuwZgDl_4F0yMT1jhIujuqdbnYJQ8DZup53QTPBn5_sbTJAo4ZxjJEE2YkIYTTCwvItSQh1AIFVOqhY4N--UBpj6VkiHNJtTOdsGKRBdgb7FcqEsAfSF5JONQap-bxIoKH_uEC01ioRRmqgaCEq1MuqHiVttinpXVY7PMIpxZhLMC4Rp43NqsipEaO6_G5UvIfjlGZmL-Drurf9rdg_102O1knVavfQ0OQtvtkBdp34C9zfpD3ZocZCPunI99A96z2H4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Optimal+Power+Flow+Problem+Using+Multi-Objective+Manta+Ray+Foraging+Optimizer&rft.jtitle=Applied+soft+computing&rft.au=Kahraman%2C+Hamdi+Tolga&rft.au=Akbel%2C+Mustafa&rft.au=Duman%2C+Serhat&rft.date=2022-02-01&rft.issn=1568-4946&rft.volume=116&rft.spage=108334&rft_id=info:doi/10.1016%2Fj.asoc.2021.108334&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_108334 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |