Robust scheduling for flexible machining job shop subject to machine breakdowns and new job arrivals considering system reusability and task recurrence
•Robust optimization method with dynamic events is proposed.•Reusability of the system and repeatability of the processing tasks are considered.•A dynamic event response strategy (DERS) is proposed.•A particle swarm arithmetic optimization (PSAO) is used to solve the problem.•The results show that t...
Saved in:
Published in | Expert systems with applications Vol. 203; p. 117489 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Robust optimization method with dynamic events is proposed.•Reusability of the system and repeatability of the processing tasks are considered.•A dynamic event response strategy (DERS) is proposed.•A particle swarm arithmetic optimization (PSAO) is used to solve the problem.•The results show that the method can effectively improve the robustness performance.
This paper focuses on the production scheduling problem of flexible job shops. In the production process of flexible job shop, there are dynamic events such as machine breakdowns or new job arrivals, which will interfere with the implementation of scheduling scheme and reduce the stability of the system. In response to this problem, this paper proposes a new robust optimization method that considers dynamic events and designs two indicators for evaluating the robustness of the system, namely the reusability of the system and the reproducibility of processing tasks. Two indicators are used to evaluate the comprehensive reusability of the system jointly. In the process of system rescheduling, this paper proposes a dynamic event response strategy (DERS) considering the comprehensive reusability of the system and establishes a multi-objective optimization model considering the total energy consumption, the makespan, and the comprehensive reusability of the system. In order to solve the model efficiently and obtain the optimal Pareto frontier, a multi-objective particle swarm arithmetic optimization (PSAO) is proposed in this paper. Finally, this paper designs experiments based on standard data cases, solves them based on this model and compares them with other algorithms. The final results show that in the flexible job-shop scheduling process, this method can effectively adjust the scheduling plan to respond to dynamic events to achieve stable scheduling in an uncertain environment. |
---|---|
AbstractList | •Robust optimization method with dynamic events is proposed.•Reusability of the system and repeatability of the processing tasks are considered.•A dynamic event response strategy (DERS) is proposed.•A particle swarm arithmetic optimization (PSAO) is used to solve the problem.•The results show that the method can effectively improve the robustness performance.
This paper focuses on the production scheduling problem of flexible job shops. In the production process of flexible job shop, there are dynamic events such as machine breakdowns or new job arrivals, which will interfere with the implementation of scheduling scheme and reduce the stability of the system. In response to this problem, this paper proposes a new robust optimization method that considers dynamic events and designs two indicators for evaluating the robustness of the system, namely the reusability of the system and the reproducibility of processing tasks. Two indicators are used to evaluate the comprehensive reusability of the system jointly. In the process of system rescheduling, this paper proposes a dynamic event response strategy (DERS) considering the comprehensive reusability of the system and establishes a multi-objective optimization model considering the total energy consumption, the makespan, and the comprehensive reusability of the system. In order to solve the model efficiently and obtain the optimal Pareto frontier, a multi-objective particle swarm arithmetic optimization (PSAO) is proposed in this paper. Finally, this paper designs experiments based on standard data cases, solves them based on this model and compares them with other algorithms. The final results show that in the flexible job-shop scheduling process, this method can effectively adjust the scheduling plan to respond to dynamic events to achieve stable scheduling in an uncertain environment. |
ArticleNumber | 117489 |
Author | Wang, Jiahui Duan, Jianguo |
Author_xml | – sequence: 1 givenname: Jianguo surname: Duan fullname: Duan, Jianguo email: jgduan@shmtu.edu.cn organization: China Institute of FTZ Supply Chain, Shanghai Maritime University, Shanghai 201306, China – sequence: 2 givenname: Jiahui surname: Wang fullname: Wang, Jiahui organization: Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China |
BookMark | eNp9kM1qHDEQhEWwwWs7L-CTXmDW0kieH8jFGP8EFgIhOQtNTyur8axk1Bqv90nyupnx-pSDTw1V_RVUnbOTEAMydiXFWgpZXQ9rpL1dl6Is11LWumm_sJVsalVUdatO2Eq0N3WhZ-eMnRMNQshaiHrF_v6M3USZE2yxn0Yf_nAXE3cjvvluRL6zsPVhkYfYcdrGF05TNyBknuOHi7xLaJ_7uA_Ebeh5wP37u03Jv9qROMRAvse05NCBMu54wols50efD-9MtvQ8izClhAHwkp26mcSvH_eC_X64_3X3VGx-PH6_u90UoITIhdMVANoGq06VUDeoO9Wo2pWq1BqcFFbJttRQQVtVwmk5yw5bLVTTw42r1AVrjrmQIlFCZ8Bnm30MOVk_GinMMrAZzDKwWQY2x4FntPwPfUl-Z9Phc-jbEcK51KvHZAj8Urj3c_ls-ug_w_8BmuWbHw |
CitedBy_id | crossref_primary_10_1016_j_rcim_2025_102980 crossref_primary_10_1038_s41598_025_87867_y crossref_primary_10_1016_j_engappai_2024_107917 crossref_primary_10_1016_j_cie_2023_109848 crossref_primary_10_1016_j_cie_2024_110295 crossref_primary_10_1016_j_cor_2024_106952 crossref_primary_10_1016_j_ejor_2024_07_030 crossref_primary_10_1016_j_jmsy_2023_08_001 crossref_primary_10_1016_j_swevo_2024_101658 crossref_primary_10_1016_j_simpat_2024_102948 crossref_primary_10_1360_SST_2022_0481 crossref_primary_10_3390_pr10101944 crossref_primary_10_1016_j_eswa_2023_120268 crossref_primary_10_1007_s10845_023_02161_w crossref_primary_10_1016_j_jmsy_2024_03_002 crossref_primary_10_1016_j_swevo_2023_101414 crossref_primary_10_1016_j_swevo_2024_101750 crossref_primary_10_3390_math11071731 crossref_primary_10_1016_j_cie_2024_110624 crossref_primary_10_1016_j_cie_2024_110688 crossref_primary_10_1007_s12293_025_00449_3 crossref_primary_10_1111_itor_13593 crossref_primary_10_26599_TST_2023_9010141 crossref_primary_10_1177_00202940241245241 crossref_primary_10_15446_dyna_v90n227_107105 crossref_primary_10_3390_systems11020103 crossref_primary_10_1016_j_asoc_2024_112670 crossref_primary_10_1016_j_cor_2024_106744 crossref_primary_10_1016_j_jmsy_2024_01_002 crossref_primary_10_1007_s12555_023_0578_1 crossref_primary_10_1016_j_eswa_2023_121945 crossref_primary_10_1016_j_eswa_2023_121723 crossref_primary_10_1016_j_eswa_2023_121149 crossref_primary_10_3390_machines12070446 crossref_primary_10_1109_ACCESS_2025_3532600 crossref_primary_10_3390_a17100470 crossref_primary_10_3390_math12203176 crossref_primary_10_1016_j_eswa_2024_124375 crossref_primary_10_1016_j_eswa_2024_125189 crossref_primary_10_1016_j_jmsy_2023_01_004 crossref_primary_10_3390_systems13030170 |
Cites_doi | 10.1007/BF02023073 10.1080/00207543.2019.1620362 10.3901/JME.2021.04.227 10.1016/j.cie.2017.05.026 10.1016/j.ins.2014.11.036 10.1007/s10845-008-0150-0 10.1109/TETCI.2017.2743758 10.1016/j.jclepro.2020.120009 10.1080/00207540903433858 10.1016/j.swevo.2020.100807 10.3901/JME.2015.03.170 10.1016/j.jmsy.2011.11.001 10.1016/S0007-8506(07)61516-9 10.1016/j.ejor.2004.04.002 10.1080/00207543.2016.1267414 10.1080/00207543.2011.579637 10.1016/j.jmsy.2020.06.005 10.1016/j.ijpe.2012.04.015 10.1023/A:1011253011638 10.1109/4235.797969 10.1016/j.cor.2008.08.008 10.1016/j.eswa.2016.01.054 10.1080/00207543.2018.1543964 10.3934/jimo.2019030 10.1109/4235.996017 10.1007/s10845-012-0626-9 10.1109/TEVC.2003.810067 10.1016/j.asoc.2020.106208 10.1016/j.cma.2020.113609 10.1007/s00500-016-2245-4 10.1016/j.jmsy.2011.01.001 10.1016/j.eswa.2020.113545 10.1016/j.eswa.2009.05.001 10.1016/j.asoc.2016.07.025 10.1016/j.cie.2021.107211 10.1016/j.cor.2021.105401 10.1016/j.jclepro.2017.10.342 10.1080/0305215X.2016.1145216 10.1080/07408170701283198 10.1016/j.ijpe.2011.04.020 10.1016/j.ejor.2003.08.027 10.1016/j.cie.2021.107677 10.1016/j.ifacol.2017.08.2354 10.1016/j.cie.2021.107557 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2022.117489 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2022_117489 S0957417422008181 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c300t-f46ccea8e6b32c78e4b3837f23244cf10a31924c6c9660f41244fe94038dc5f63 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Tue Jul 01 04:06:01 EDT 2025 Thu Apr 24 23:06:11 EDT 2025 Fri Feb 23 02:39:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dynamic scheduling Multi-objective optimization Robust optimization PSAO Flexible job shop |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-f46ccea8e6b32c78e4b3837f23244cf10a31924c6c9660f41244fe94038dc5f63 |
ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2022_117489 crossref_primary_10_1016_j_eswa_2022_117489 elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117489 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 2022-10-00 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wu, Sun (b0215) 2018; 172 Zhang, Wong (b0250) 2017; 55 Fan, Xiong, Jiang, Li, Li (b0075) 2018; 24 Tang, Dai, Salido, Giret (bib261) 2016; 81 Liu, Gu, Xi (b0135) 2007; 31 Zitzler, Thiele (b0260) 1999; 3 Zhang, Yang, Zhou (b0240) 2016; 48 Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (b0005) 2021; 376 Erfani, Ebrahimnejad, Moosavi (b0070) 2020; 16 Fan, Xiong, Goh (b0080) 2021; 134 Nie, Gao, Li, Li (b0150) 2013; 24 Gholami, Zandieh (b0090) 2009; 20 Herroelen, Leus (b0100) 2005; 165 Ren, Yan, Hu, Guan (b0160) 2021 China Certifification Center for Energy Conservation Product (CECP). (2002). Review standby power consumption of products at home and abroad. Energy Conserv. Environ. Prot, 38-40. Jamili (b0110) 2016; 55 Huang, Zhao, Liang (b0105) 2019 Wang, Wang, Li, Shen, Yang (b0200) 2021; 174 Wu, Brown, Beck (b0210) 2009; 36 Li, He, Wang, Tao, Sutherland (b0125) 2020; 254 Duan, Wang (b0060) 2021; 161 Yang, Huang, Wang, Zhu (b0230) 2020; 158 Durasevic, Jakobovic, Knezevic (b0065) 2016; 48 Gomes, Barbosa-Póvoa, Novais (b0095) 2010; 48 Aytug, Lawley, McKay, Mohan, Uzsoy (b0020) 2005; 61 Mei, Nguyen, Xue, Zhang (b0145) 2017; 1 Ozturk, Bahadir, Teymourifar (b0155) 2019; 57 Adibi, Zandieh, Amiri (b0010) 2010; 37 Al-Hinai, ElMekkawy (b0015) 2011; 132 Jensen (b0115) 2003; 7 Baykasoglu, Madenoglu, Hamzadayi (b0025) 2020; 56 Dong, Jang (b0055) 2012; 50 Wang, Koren (b0195) 2012; 31 Luo (b0140) 2020; 91 Goren, Sabuncuolu (b0085) 2008; 40 Xiong, Xing, Chen (b0225) 2013; 141 Zhang, Dong, Wang, Liu (b0235) 2010; 46 Shahrabi, Adibi, Mahootchi (b0165) 2017; 110 Zhou, Yang, Huang (b0255) 2020; 58 Tan, Yuan, Wang, Zhang (b0190) 2021; 160 Deb, Pratap, Agarwal, Meyarivan (b0050) 2002; 6 Wei, Mingyang (b0205) 2005; 31 Chryssolouris, Subramaniam (b0045) 2001; 12 Brandimarte (b0030) 1993; 41 Shen, Yao (b0170) 2015; 298 Koren, Shpitalni (b0120) 2010; 29 Spicer, Koren, Shpitalni (b0185) 2002; 51 Zhang, Hao, Duan, Fu (b0245) 2015; 51 Bouazza, Sallez, Beldjilali (b0035) 2017; 50 Xiao, Wu, Sun, Jin (b0220) 2021; 57 Shen, Han, Fu (b0175) 2017; 21 Song, Lin (b0180) 2021; 60 Li, Deng, Zhang, Fan, Gong, Ding (b0130) 2021; 155 Chryssolouris (10.1016/j.eswa.2022.117489_b0045) 2001; 12 Wang (10.1016/j.eswa.2022.117489_b0200) 2021; 174 Duan (10.1016/j.eswa.2022.117489_b0060) 2021; 161 Herroelen (10.1016/j.eswa.2022.117489_b0100) 2005; 165 Wei (10.1016/j.eswa.2022.117489_b0205) 2005; 31 Zitzler (10.1016/j.eswa.2022.117489_b0260) 1999; 3 Wu (10.1016/j.eswa.2022.117489_b0210) 2009; 36 Wu (10.1016/j.eswa.2022.117489_b0215) 2018; 172 Shahrabi (10.1016/j.eswa.2022.117489_b0165) 2017; 110 Zhang (10.1016/j.eswa.2022.117489_b0235) 2010; 46 Tang (10.1016/j.eswa.2022.117489_bib261) 2016; 81 Zhang (10.1016/j.eswa.2022.117489_b0240) 2016; 48 Shen (10.1016/j.eswa.2022.117489_b0175) 2017; 21 Li (10.1016/j.eswa.2022.117489_b0130) 2021; 155 Abualigah (10.1016/j.eswa.2022.117489_b0005) 2021; 376 Zhang (10.1016/j.eswa.2022.117489_b0245) 2015; 51 Huang (10.1016/j.eswa.2022.117489_b0105) 2019 Spicer (10.1016/j.eswa.2022.117489_b0185) 2002; 51 Song (10.1016/j.eswa.2022.117489_b0180) 2021; 60 Xiong (10.1016/j.eswa.2022.117489_b0225) 2013; 141 Luo (10.1016/j.eswa.2022.117489_b0140) 2020; 91 Jensen (10.1016/j.eswa.2022.117489_b0115) 2003; 7 Deb (10.1016/j.eswa.2022.117489_b0050) 2002; 6 Gholami (10.1016/j.eswa.2022.117489_b0090) 2009; 20 Adibi (10.1016/j.eswa.2022.117489_b0010) 2010; 37 Goren (10.1016/j.eswa.2022.117489_b0085) 2008; 40 Wang (10.1016/j.eswa.2022.117489_b0195) 2012; 31 Liu (10.1016/j.eswa.2022.117489_b0135) 2007; 31 Tan (10.1016/j.eswa.2022.117489_b0190) 2021; 160 Ren (10.1016/j.eswa.2022.117489_b0160) 2021 Fan (10.1016/j.eswa.2022.117489_b0075) 2018; 24 10.1016/j.eswa.2022.117489_b0040 Baykasoglu (10.1016/j.eswa.2022.117489_b0025) 2020; 56 Durasevic (10.1016/j.eswa.2022.117489_b0065) 2016; 48 Zhang (10.1016/j.eswa.2022.117489_b0250) 2017; 55 Yang (10.1016/j.eswa.2022.117489_b0230) 2020; 158 Koren (10.1016/j.eswa.2022.117489_b0120) 2010; 29 Gomes (10.1016/j.eswa.2022.117489_b0095) 2010; 48 Li (10.1016/j.eswa.2022.117489_b0125) 2020; 254 Shen (10.1016/j.eswa.2022.117489_b0170) 2015; 298 Dong (10.1016/j.eswa.2022.117489_b0055) 2012; 50 Fan (10.1016/j.eswa.2022.117489_b0080) 2021; 134 Ozturk (10.1016/j.eswa.2022.117489_b0155) 2019; 57 Erfani (10.1016/j.eswa.2022.117489_b0070) 2020; 16 Zhou (10.1016/j.eswa.2022.117489_b0255) 2020; 58 Jamili (10.1016/j.eswa.2022.117489_b0110) 2016; 55 Xiao (10.1016/j.eswa.2022.117489_b0220) 2021; 57 Al-Hinai (10.1016/j.eswa.2022.117489_b0015) 2011; 132 Bouazza (10.1016/j.eswa.2022.117489_b0035) 2017; 50 Nie (10.1016/j.eswa.2022.117489_b0150) 2013; 24 Brandimarte (10.1016/j.eswa.2022.117489_b0030) 1993; 41 Aytug (10.1016/j.eswa.2022.117489_b0020) 2005; 61 Mei (10.1016/j.eswa.2022.117489_b0145) 2017; 1 |
References_xml | – volume: 174 year: 2021 ident: b0200 article-title: An improved multi-objective whale optimization algorithm for the hybrid flow shop scheduling problem considering device dynamic reconfiguration processes publication-title: Expert Systems with Applications – volume: 158 year: 2020 ident: b0230 article-title: Robust scheduling based on extreme learning machine for bi-objective flexible job-shop problems with machine breakdowns publication-title: Expert Systems with Applications – volume: 132 start-page: 279 year: 2011 end-page: 291 ident: b0015 article-title: Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm publication-title: International Journal of Production Economics – volume: 61 start-page: 86 year: 2005 end-page: 110 ident: b0020 article-title: Executing production schedules in the face of uncertainties: A review and some future directions publication-title: European Journal of Operational Research – volume: 134 year: 2021 ident: b0080 article-title: Genetic programming-based hyper-heuristic approach for solving dynamic job shop scheduling problem with extended technical precedence constraints publication-title: Computers & Operations Research – volume: 16 start-page: 1801 year: 2020 end-page: 1834 ident: b0070 article-title: An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-Ⅱ and local search algorithm publication-title: Journal of Industrial and Management Optimization – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: b0260 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach publication-title: IEEE Transactions on Evolutionary Computation – reference: China Certifification Center for Energy Conservation Product (CECP). (2002). Review standby power consumption of products at home and abroad. Energy Conserv. Environ. Prot, 38-40. – volume: 31 start-page: 645 year: 2007 end-page: 654 ident: b0135 article-title: Robust and stable scheduling of a single machine with random machine breakdowns publication-title: The International Journal of Advanced Manufacturing Technology – volume: 155 year: 2021 ident: b0130 article-title: An effective MCTS-based algorithm for minimizing makespan in dynamic flexible job shop scheduling problem publication-title: Computers & Industrial Engineering – volume: 58 start-page: 2561 year: 2020 end-page: 2580 ident: b0255 article-title: Automatic design of scheduling policies for dynamic flexible job shop scheduling via surrogate-assisted cooperative co-evolution genetic programming publication-title: International Journal of Production Research – volume: 24 start-page: 876 year: 2018 end-page: 885 ident: b0075 article-title: Generation of dispatching rules for dynamic job shop scheduling problem based on genetic programming algorithm publication-title: Computer Integrated Manufacturing Systems – volume: 48 start-page: 419 year: 2016 end-page: 430 ident: b0065 article-title: Adaptive scheduling on unrelated machines with genetic programming publication-title: Applied Soft Computing – volume: 55 start-page: 341 year: 2016 end-page: 350 ident: b0110 article-title: Robust job shop scheduling problem: Mathematical models, exact and heuristic algorithms publication-title: Expert Systems with Applications – volume: 60 year: 2021 ident: b0180 article-title: A genetic programming hyper-heuristic for the distributed assembly permutation flow-shop scheduling problem with sequence dependent setup times publication-title: Swarm and Evolutionary Computation – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0050 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation – volume: 48 start-page: 7395 year: 2010 end-page: 7422 ident: b0095 article-title: A discrete time reactive scheduling model for new order insertion in job shop, make-to-order industries publication-title: International Journal of Production Research – volume: 7 start-page: 275 year: 2003 end-page: 288 ident: b0115 article-title: Generating robust and flexible job shop schedules using genetic algorithms publication-title: IEEE Transactions on Evolutionary Computation – volume: 55 start-page: 3173 year: 2017 end-page: 3196 ident: b0250 article-title: Flexible job-shop scheduling/rescheduling in dynamic environment: A hybrid MAS/ACO approach publication-title: International Journal of Production Research – volume: 40 start-page: 66 year: 2008 end-page: 83 ident: b0085 article-title: Robustness and stability measures for scheduling: Single-machine environment publication-title: IIE Transactions – volume: 24 start-page: 763 year: 2013 end-page: 774 ident: b0150 article-title: A GEP-based reactive scheduling policies constructing approach for dynamic flexible job shop scheduling problem with job release dates publication-title: Journal of Intelligent Manufacturing – volume: 81 start-page: 82 year: 2016 end-page: 95 ident: bib261 publication-title: Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization – volume: 51 start-page: 276 year: 2002 end-page: 280 ident: b0185 article-title: Design principles for machining system configurations publication-title: CIRP Annals – volume: 29 start-page: 130 year: 2010 end-page: 141 ident: b0120 article-title: Design of reconfigurable manufacturing systems publication-title: Journal of Manufacturing Systems – volume: 110 start-page: 75 year: 2017 end-page: 82 ident: b0165 article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling publication-title: Computers & Industrial Engineering – volume: 37 start-page: 282 year: 2010 end-page: 287 ident: b0010 article-title: Multi-objective scheduling of dynamic job shop using variable neighborhood search publication-title: Expert Systems with Applications – volume: 31 start-page: 765 year: 2005 end-page: 771 ident: b0205 article-title: A reinforcement learning-based approach to dynamic job-shop scheduling publication-title: Acta Automatica Sinica – volume: 50 start-page: 2681 year: 2012 end-page: 2691 ident: b0055 article-title: Production rescheduling for machine breakdown at a job shop publication-title: International Journal of Production Research – volume: 141 start-page: 112 year: 2013 end-page: 126 ident: b0225 article-title: Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns publication-title: International Journal of Production Economics – start-page: 120 year: 2019 end-page: 123 ident: b0105 article-title: Application of Improved Particle Swarm Optimization in Vehicle Depot Overhaul Shop Scheduling publication-title: Proceedings of IEEE 7th International Conference on Computer Science and Network – volume: 20 start-page: 481 year: 2009 end-page: 498 ident: b0090 article-title: Integrating simulation and genetic algorithm to schedule a dynamic flexible job shop publication-title: Journal of Intelligent Manufacturing – volume: 298 start-page: 198 year: 2015 end-page: 224 ident: b0170 article-title: Mathematical modeling and multi-objective evolutionary algorithms applied to dynamic flexible job shop scheduling problems publication-title: Information Sciences – volume: 1 start-page: 339 year: 2017 end-page: 353 ident: b0145 article-title: An efficient feature selection algorithm for evolving job shop scheduling rules with genetic programming publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence – volume: 172 start-page: 3249 year: 2018 end-page: 3264 ident: b0215 article-title: A green scheduling algorithm for flexible job shop with energy-saving measures publication-title: Journal of Cleaner Production – volume: 56 start-page: 425 year: 2020 end-page: 451 ident: b0025 article-title: Greedy randomized adaptive search for dynamic flexible job-shop scheduling publication-title: Journal of Manufacturing Systems – volume: 51 start-page: 170 year: 2015 end-page: 181 ident: b0245 article-title: Layout reconfiguration planning of manufacturing systems considering system reusability and task recurrence publication-title: Journal Of Mechanical Engineering – volume: 161 year: 2021 ident: b0060 article-title: Energy-efficient scheduling for a flexible job shop with machine breakdowns considering machine idle time arrangement and machine speed level selection publication-title: Computers & Industrial Engineering – volume: 36 start-page: 2348 year: 2009 end-page: 2356 ident: b0210 article-title: Scheduling with uncertain durations: Modeling b-robust scheduling with constraints publication-title: Computers & Operations Research – volume: 91 year: 2020 ident: b0140 article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning publication-title: Applied Soft Computing – volume: 254 year: 2020 ident: b0125 article-title: An optimization method for energy-conscious production in flexible machining job shops with dynamic job arrivals and machine breakdowns publication-title: Journal of Cleaner Production – volume: 41 start-page: 157 year: 1993 end-page: 183 ident: b0030 article-title: Routing and scheduling in a flexible job shop by Tabu search publication-title: Annals of Operations Research – volume: 57 start-page: 3121 year: 2019 end-page: 3137 ident: b0155 article-title: Extracting priority rules for dynamic multi-objective flexible job shop scheduling problems using gene expression programming publication-title: International Journal of Production Research – volume: 21 start-page: 6531 year: 2017 end-page: 6554 ident: b0175 article-title: Robustness measures and robust scheduling for multi-objective stochastic flexible job shop scheduling problems publication-title: Soft Computing – year: 2021 ident: b0160 article-title: Joint optimisation for dynamic flexible job-shop scheduling problem with transportation time and resource constraints publication-title: International Journal of Production Research – volume: 48 start-page: 1973 year: 2016 end-page: 1989 ident: b0240 article-title: Robust scheduling for multi-objective flexible job-shop problems with flexible workdays publication-title: Engineering Optimization – volume: 165 start-page: 289 year: 2005 end-page: 306 ident: b0100 article-title: Project scheduling under uncertainty: Survey and research potentials publication-title: European Journal of Operational Research – volume: 31 start-page: 83 year: 2012 end-page: 91 ident: b0195 article-title: Scalability planning for reconfigurable manufacturing systems publication-title: Journal of Manufacturing Systems – volume: 50 start-page: 15890 year: 2017 end-page: 15895 ident: b0035 article-title: A distributed approach solving partially flexible job-shop scheduling problem with a q-learning effect publication-title: IFAC-PapersOnLine – volume: 57 start-page: 227 year: 2021 end-page: 239 ident: b0220 article-title: Research on the dual-resource constrained robust job shop scheduling problems publication-title: Journal of Mechanical Engineering – volume: 46 start-page: 156 year: 2010 end-page: 164 ident: b0235 article-title: Improved NSGA-II for the multi-objective flexible job-shop scheduling problem publication-title: Journal of Mechanical Engineering – volume: 12 start-page: 281 year: 2001 end-page: 293 ident: b0045 article-title: Dynamic scheduling of manufacturing job shops using genetic algorithms publication-title: Journal of Intelligent Manufacturing. – volume: 376 year: 2021 ident: b0005 article-title: The arithmetic optimization algorithm publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 160 year: 2021 ident: b0190 article-title: A fatigue-conscious dual resource constrained flexible job shop scheduling problem by enhanced NSGA-II: An application from casting workshop publication-title: Computers & Industrial Engineering – volume: 41 start-page: 157 year: 1993 ident: 10.1016/j.eswa.2022.117489_b0030 article-title: Routing and scheduling in a flexible job shop by Tabu search publication-title: Annals of Operations Research doi: 10.1007/BF02023073 – volume: 24 start-page: 876 issue: 04 year: 2018 ident: 10.1016/j.eswa.2022.117489_b0075 article-title: Generation of dispatching rules for dynamic job shop scheduling problem based on genetic programming algorithm publication-title: Computer Integrated Manufacturing Systems – volume: 58 start-page: 2561 year: 2020 ident: 10.1016/j.eswa.2022.117489_b0255 article-title: Automatic design of scheduling policies for dynamic flexible job shop scheduling via surrogate-assisted cooperative co-evolution genetic programming publication-title: International Journal of Production Research doi: 10.1080/00207543.2019.1620362 – volume: 57 start-page: 227 year: 2021 ident: 10.1016/j.eswa.2022.117489_b0220 article-title: Research on the dual-resource constrained robust job shop scheduling problems publication-title: Journal of Mechanical Engineering doi: 10.3901/JME.2021.04.227 – volume: 110 start-page: 75 year: 2017 ident: 10.1016/j.eswa.2022.117489_b0165 article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2017.05.026 – volume: 298 start-page: 198 year: 2015 ident: 10.1016/j.eswa.2022.117489_b0170 article-title: Mathematical modeling and multi-objective evolutionary algorithms applied to dynamic flexible job shop scheduling problems publication-title: Information Sciences doi: 10.1016/j.ins.2014.11.036 – volume: 20 start-page: 481 year: 2009 ident: 10.1016/j.eswa.2022.117489_b0090 article-title: Integrating simulation and genetic algorithm to schedule a dynamic flexible job shop publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-008-0150-0 – ident: 10.1016/j.eswa.2022.117489_b0040 – volume: 1 start-page: 339 issue: 5 year: 2017 ident: 10.1016/j.eswa.2022.117489_b0145 article-title: An efficient feature selection algorithm for evolving job shop scheduling rules with genetic programming publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence doi: 10.1109/TETCI.2017.2743758 – volume: 254 year: 2020 ident: 10.1016/j.eswa.2022.117489_b0125 article-title: An optimization method for energy-conscious production in flexible machining job shops with dynamic job arrivals and machine breakdowns publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2020.120009 – volume: 46 start-page: 156 year: 2010 ident: 10.1016/j.eswa.2022.117489_b0235 article-title: Improved NSGA-II for the multi-objective flexible job-shop scheduling problem publication-title: Journal of Mechanical Engineering – year: 2021 ident: 10.1016/j.eswa.2022.117489_b0160 article-title: Joint optimisation for dynamic flexible job-shop scheduling problem with transportation time and resource constraints publication-title: International Journal of Production Research – volume: 48 start-page: 7395 issue: 24 year: 2010 ident: 10.1016/j.eswa.2022.117489_b0095 article-title: A discrete time reactive scheduling model for new order insertion in job shop, make-to-order industries publication-title: International Journal of Production Research doi: 10.1080/00207540903433858 – volume: 60 year: 2021 ident: 10.1016/j.eswa.2022.117489_b0180 article-title: A genetic programming hyper-heuristic for the distributed assembly permutation flow-shop scheduling problem with sequence dependent setup times publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2020.100807 – start-page: 120 year: 2019 ident: 10.1016/j.eswa.2022.117489_b0105 article-title: Application of Improved Particle Swarm Optimization in Vehicle Depot Overhaul Shop Scheduling – volume: 51 start-page: 170 year: 2015 ident: 10.1016/j.eswa.2022.117489_b0245 article-title: Layout reconfiguration planning of manufacturing systems considering system reusability and task recurrence publication-title: Journal Of Mechanical Engineering doi: 10.3901/JME.2015.03.170 – volume: 31 start-page: 83 issue: 2 year: 2012 ident: 10.1016/j.eswa.2022.117489_b0195 article-title: Scalability planning for reconfigurable manufacturing systems publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2011.11.001 – volume: 51 start-page: 276 issue: 1 year: 2002 ident: 10.1016/j.eswa.2022.117489_b0185 article-title: Design principles for machining system configurations publication-title: CIRP Annals doi: 10.1016/S0007-8506(07)61516-9 – volume: 165 start-page: 289 year: 2005 ident: 10.1016/j.eswa.2022.117489_b0100 article-title: Project scheduling under uncertainty: Survey and research potentials publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2004.04.002 – volume: 55 start-page: 3173 year: 2017 ident: 10.1016/j.eswa.2022.117489_b0250 article-title: Flexible job-shop scheduling/rescheduling in dynamic environment: A hybrid MAS/ACO approach publication-title: International Journal of Production Research doi: 10.1080/00207543.2016.1267414 – volume: 50 start-page: 2681 issue: 10 year: 2012 ident: 10.1016/j.eswa.2022.117489_b0055 article-title: Production rescheduling for machine breakdown at a job shop publication-title: International Journal of Production Research doi: 10.1080/00207543.2011.579637 – volume: 56 start-page: 425 year: 2020 ident: 10.1016/j.eswa.2022.117489_b0025 article-title: Greedy randomized adaptive search for dynamic flexible job-shop scheduling publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2020.06.005 – volume: 141 start-page: 112 year: 2013 ident: 10.1016/j.eswa.2022.117489_b0225 article-title: Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2012.04.015 – volume: 12 start-page: 281 issue: 3 year: 2001 ident: 10.1016/j.eswa.2022.117489_b0045 article-title: Dynamic scheduling of manufacturing job shops using genetic algorithms publication-title: Journal of Intelligent Manufacturing. doi: 10.1023/A:1011253011638 – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 10.1016/j.eswa.2022.117489_b0260 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.797969 – volume: 36 start-page: 2348 year: 2009 ident: 10.1016/j.eswa.2022.117489_b0210 article-title: Scheduling with uncertain durations: Modeling b-robust scheduling with constraints publication-title: Computers & Operations Research doi: 10.1016/j.cor.2008.08.008 – volume: 55 start-page: 341 year: 2016 ident: 10.1016/j.eswa.2022.117489_b0110 article-title: Robust job shop scheduling problem: Mathematical models, exact and heuristic algorithms publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.01.054 – volume: 57 start-page: 3121 year: 2019 ident: 10.1016/j.eswa.2022.117489_b0155 article-title: Extracting priority rules for dynamic multi-objective flexible job shop scheduling problems using gene expression programming publication-title: International Journal of Production Research doi: 10.1080/00207543.2018.1543964 – volume: 16 start-page: 1801 year: 2020 ident: 10.1016/j.eswa.2022.117489_b0070 article-title: An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-Ⅱ and local search algorithm publication-title: Journal of Industrial and Management Optimization doi: 10.3934/jimo.2019030 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.eswa.2022.117489_b0050 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – volume: 24 start-page: 763 year: 2013 ident: 10.1016/j.eswa.2022.117489_b0150 article-title: A GEP-based reactive scheduling policies constructing approach for dynamic flexible job shop scheduling problem with job release dates publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-012-0626-9 – volume: 174 year: 2021 ident: 10.1016/j.eswa.2022.117489_b0200 article-title: An improved multi-objective whale optimization algorithm for the hybrid flow shop scheduling problem considering device dynamic reconfiguration processes publication-title: Expert Systems with Applications – volume: 7 start-page: 275 year: 2003 ident: 10.1016/j.eswa.2022.117489_b0115 article-title: Generating robust and flexible job shop schedules using genetic algorithms publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2003.810067 – volume: 91 year: 2020 ident: 10.1016/j.eswa.2022.117489_b0140 article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106208 – volume: 376 year: 2021 ident: 10.1016/j.eswa.2022.117489_b0005 article-title: The arithmetic optimization algorithm publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2020.113609 – volume: 21 start-page: 6531 year: 2017 ident: 10.1016/j.eswa.2022.117489_b0175 article-title: Robustness measures and robust scheduling for multi-objective stochastic flexible job shop scheduling problems publication-title: Soft Computing doi: 10.1007/s00500-016-2245-4 – volume: 31 start-page: 645 issue: 7–8 year: 2007 ident: 10.1016/j.eswa.2022.117489_b0135 article-title: Robust and stable scheduling of a single machine with random machine breakdowns publication-title: The International Journal of Advanced Manufacturing Technology – volume: 29 start-page: 130 issue: 4 year: 2010 ident: 10.1016/j.eswa.2022.117489_b0120 article-title: Design of reconfigurable manufacturing systems publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2011.01.001 – volume: 31 start-page: 765 issue: 5 year: 2005 ident: 10.1016/j.eswa.2022.117489_b0205 article-title: A reinforcement learning-based approach to dynamic job-shop scheduling publication-title: Acta Automatica Sinica – volume: 158 year: 2020 ident: 10.1016/j.eswa.2022.117489_b0230 article-title: Robust scheduling based on extreme learning machine for bi-objective flexible job-shop problems with machine breakdowns publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113545 – volume: 37 start-page: 282 issue: 1 year: 2010 ident: 10.1016/j.eswa.2022.117489_b0010 article-title: Multi-objective scheduling of dynamic job shop using variable neighborhood search publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.05.001 – volume: 48 start-page: 419 year: 2016 ident: 10.1016/j.eswa.2022.117489_b0065 article-title: Adaptive scheduling on unrelated machines with genetic programming publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.07.025 – volume: 155 year: 2021 ident: 10.1016/j.eswa.2022.117489_b0130 article-title: An effective MCTS-based algorithm for minimizing makespan in dynamic flexible job shop scheduling problem publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2021.107211 – volume: 134 year: 2021 ident: 10.1016/j.eswa.2022.117489_b0080 article-title: Genetic programming-based hyper-heuristic approach for solving dynamic job shop scheduling problem with extended technical precedence constraints publication-title: Computers & Operations Research doi: 10.1016/j.cor.2021.105401 – volume: 81 start-page: 82 year: 2016 ident: 10.1016/j.eswa.2022.117489_bib261 publication-title: Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization – volume: 172 start-page: 3249 year: 2018 ident: 10.1016/j.eswa.2022.117489_b0215 article-title: A green scheduling algorithm for flexible job shop with energy-saving measures publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2017.10.342 – volume: 48 start-page: 1973 year: 2016 ident: 10.1016/j.eswa.2022.117489_b0240 article-title: Robust scheduling for multi-objective flexible job-shop problems with flexible workdays publication-title: Engineering Optimization doi: 10.1080/0305215X.2016.1145216 – volume: 40 start-page: 66 issue: 1 year: 2008 ident: 10.1016/j.eswa.2022.117489_b0085 article-title: Robustness and stability measures for scheduling: Single-machine environment publication-title: IIE Transactions doi: 10.1080/07408170701283198 – volume: 132 start-page: 279 year: 2011 ident: 10.1016/j.eswa.2022.117489_b0015 article-title: Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2011.04.020 – volume: 61 start-page: 86 issue: 1 year: 2005 ident: 10.1016/j.eswa.2022.117489_b0020 article-title: Executing production schedules in the face of uncertainties: A review and some future directions publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2003.08.027 – volume: 161 year: 2021 ident: 10.1016/j.eswa.2022.117489_b0060 article-title: Energy-efficient scheduling for a flexible job shop with machine breakdowns considering machine idle time arrangement and machine speed level selection publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2021.107677 – volume: 50 start-page: 15890 issue: 1 year: 2017 ident: 10.1016/j.eswa.2022.117489_b0035 article-title: A distributed approach solving partially flexible job-shop scheduling problem with a q-learning effect publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2017.08.2354 – volume: 160 year: 2021 ident: 10.1016/j.eswa.2022.117489_b0190 article-title: A fatigue-conscious dual resource constrained flexible job shop scheduling problem by enhanced NSGA-II: An application from casting workshop publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2021.107557 |
SSID | ssj0017007 |
Score | 2.5756586 |
Snippet | •Robust optimization method with dynamic events is proposed.•Reusability of the system and repeatability of the processing tasks are considered.•A dynamic... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 117489 |
SubjectTerms | Dynamic scheduling Flexible job shop Multi-objective optimization PSAO Robust optimization |
Title | Robust scheduling for flexible machining job shop subject to machine breakdowns and new job arrivals considering system reusability and task recurrence |
URI | https://dx.doi.org/10.1016/j.eswa.2022.117489 |
Volume | 203 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRjwrD2wotE1cJx2riqqA6ABU6hbZF1v0QVM1qRALf4O_iy92KpBQB8Y4vijyXXzfOXffEXIFJqpqSak9iDjzGOeJF4FknkR3pwwGbnOsd34c8P6Q3Y9aowrplrUwmFbp9n67pxe7tRupu9WsL8bj-rMBB8YdmtDOL3jZigp2FqKV33yu0zyQfi60fHuhh7Nd4YzN8VLZO3IP-T7-u2TY6v0v5_TD4fT2yI5DirRjX2afVNT8gOyWXRio-ygPyddTKldZTk2YatwGVpdTA0SpRqZLOVP0rUiXxOFJKmn2mi5otpJ4_ELz1N1V1ETGYprgUTMV84QasF1MF8vl2NhiRsE19sTnWPZnulQry8-bfxQyucimZhAKxidQR2TYu33p9j3XbsGDoNHIPc04gBKR4jLwIYwUkxi-asRcDHSzIQKM1oADMnpqbFvNtGqzRhAl0NI8OCbVeTpXJ4RKxSJh5CJoR0xBInRTCPCbHGUV46ekWa5zDI6LHFtizOIy6WwSo25i1E1sdXNKrtcyC8vEsXF2q1Rf_MueYuMqNsid_VPunGzjlU3zuyDVfLlSlwau5LJW2GONbHXuHvqDbzym7Tg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb0SBgg9wQmE3idebPXBAhWpLHwdopd6CPRmLbctmtcmq6oW_wQ_hDzITOxVIqAekXm2PlXgm83BmvgF4hRxVjZzzCRZGJ9qYKinQ6cSJuSP2gSdG6p33D8z0SH86Hh2vwa--FkbSKqPuDzq909ZxZBBPc7CYzQZf2Dlgc8ihXdbhsqUxs3KXLs45bmve7XxgJr_Osu2Ph1vTJLYWSDAfDtvEa4NItiDj8gzHBWknoZoX_0KjT4c2l8gEDQp6pZcWzdrTRA_zosKRNznvewNualYX0jbh7Y_LvBLBuxsHgL9xIo8XK3VCUhk15wJ2lGXys1RLb_l_WcM_LNz2PbgTXVP1Prz9fVij-QO427d9UFELPISfn2u3alrFcTHbKSlnV-z5Ki_Qmu6M1PcuP1OGT2qnmm_1QjUrJ_c9qq3jLCkOxe1pJXfbys4rxd59t9wulzMW_kZh7CQq-wS4abWkVQAEbi86mtY2pzyIHcQU0iM4uhYmPIb1eT2nJ6Ac6cIyXYGTQhNW1qfWYpYaoSVtNiDtz7nECH4uPTjOyj7L7aQU3pTCmzLwZgPeXNIsAvTHlatHPfvKvwS4ZNt0Bd3T_6R7Cbemh_t75d7Owe4zuC0zIcfwOay3yxVtsq_UuhedbCr4et0fw2-RhCfp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+scheduling+for+flexible+machining+job+shop+subject+to+machine+breakdowns+and+new+job+arrivals+considering+system+reusability+and+task+recurrence&rft.jtitle=Expert+systems+with+applications&rft.au=Duan%2C+Jianguo&rft.au=Wang%2C+Jiahui&rft.date=2022-10-01&rft.issn=0957-4174&rft.volume=203&rft.spage=117489&rft_id=info:doi/10.1016%2Fj.eswa.2022.117489&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_117489 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |