Robust scheduling for flexible machining job shop subject to machine breakdowns and new job arrivals considering system reusability and task recurrence

•Robust optimization method with dynamic events is proposed.•Reusability of the system and repeatability of the processing tasks are considered.•A dynamic event response strategy (DERS) is proposed.•A particle swarm arithmetic optimization (PSAO) is used to solve the problem.•The results show that t...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 203; p. 117489
Main Authors Duan, Jianguo, Wang, Jiahui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Robust optimization method with dynamic events is proposed.•Reusability of the system and repeatability of the processing tasks are considered.•A dynamic event response strategy (DERS) is proposed.•A particle swarm arithmetic optimization (PSAO) is used to solve the problem.•The results show that the method can effectively improve the robustness performance. This paper focuses on the production scheduling problem of flexible job shops. In the production process of flexible job shop, there are dynamic events such as machine breakdowns or new job arrivals, which will interfere with the implementation of scheduling scheme and reduce the stability of the system. In response to this problem, this paper proposes a new robust optimization method that considers dynamic events and designs two indicators for evaluating the robustness of the system, namely the reusability of the system and the reproducibility of processing tasks. Two indicators are used to evaluate the comprehensive reusability of the system jointly. In the process of system rescheduling, this paper proposes a dynamic event response strategy (DERS) considering the comprehensive reusability of the system and establishes a multi-objective optimization model considering the total energy consumption, the makespan, and the comprehensive reusability of the system. In order to solve the model efficiently and obtain the optimal Pareto frontier, a multi-objective particle swarm arithmetic optimization (PSAO) is proposed in this paper. Finally, this paper designs experiments based on standard data cases, solves them based on this model and compares them with other algorithms. The final results show that in the flexible job-shop scheduling process, this method can effectively adjust the scheduling plan to respond to dynamic events to achieve stable scheduling in an uncertain environment.
AbstractList •Robust optimization method with dynamic events is proposed.•Reusability of the system and repeatability of the processing tasks are considered.•A dynamic event response strategy (DERS) is proposed.•A particle swarm arithmetic optimization (PSAO) is used to solve the problem.•The results show that the method can effectively improve the robustness performance. This paper focuses on the production scheduling problem of flexible job shops. In the production process of flexible job shop, there are dynamic events such as machine breakdowns or new job arrivals, which will interfere with the implementation of scheduling scheme and reduce the stability of the system. In response to this problem, this paper proposes a new robust optimization method that considers dynamic events and designs two indicators for evaluating the robustness of the system, namely the reusability of the system and the reproducibility of processing tasks. Two indicators are used to evaluate the comprehensive reusability of the system jointly. In the process of system rescheduling, this paper proposes a dynamic event response strategy (DERS) considering the comprehensive reusability of the system and establishes a multi-objective optimization model considering the total energy consumption, the makespan, and the comprehensive reusability of the system. In order to solve the model efficiently and obtain the optimal Pareto frontier, a multi-objective particle swarm arithmetic optimization (PSAO) is proposed in this paper. Finally, this paper designs experiments based on standard data cases, solves them based on this model and compares them with other algorithms. The final results show that in the flexible job-shop scheduling process, this method can effectively adjust the scheduling plan to respond to dynamic events to achieve stable scheduling in an uncertain environment.
ArticleNumber 117489
Author Wang, Jiahui
Duan, Jianguo
Author_xml – sequence: 1
  givenname: Jianguo
  surname: Duan
  fullname: Duan, Jianguo
  email: jgduan@shmtu.edu.cn
  organization: China Institute of FTZ Supply Chain, Shanghai Maritime University, Shanghai 201306, China
– sequence: 2
  givenname: Jiahui
  surname: Wang
  fullname: Wang, Jiahui
  organization: Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
BookMark eNp9kM1qHDEQhEWwwWs7L-CTXmDW0kieH8jFGP8EFgIhOQtNTyur8axk1Bqv90nyupnx-pSDTw1V_RVUnbOTEAMydiXFWgpZXQ9rpL1dl6Is11LWumm_sJVsalVUdatO2Eq0N3WhZ-eMnRMNQshaiHrF_v6M3USZE2yxn0Yf_nAXE3cjvvluRL6zsPVhkYfYcdrGF05TNyBknuOHi7xLaJ_7uA_Ebeh5wP37u03Jv9qROMRAvse05NCBMu54wols50efD-9MtvQ8izClhAHwkp26mcSvH_eC_X64_3X3VGx-PH6_u90UoITIhdMVANoGq06VUDeoO9Wo2pWq1BqcFFbJttRQQVtVwmk5yw5bLVTTw42r1AVrjrmQIlFCZ8Bnm30MOVk_GinMMrAZzDKwWQY2x4FntPwPfUl-Z9Phc-jbEcK51KvHZAj8Urj3c_ls-ug_w_8BmuWbHw
CitedBy_id crossref_primary_10_1016_j_rcim_2025_102980
crossref_primary_10_1038_s41598_025_87867_y
crossref_primary_10_1016_j_engappai_2024_107917
crossref_primary_10_1016_j_cie_2023_109848
crossref_primary_10_1016_j_cie_2024_110295
crossref_primary_10_1016_j_cor_2024_106952
crossref_primary_10_1016_j_ejor_2024_07_030
crossref_primary_10_1016_j_jmsy_2023_08_001
crossref_primary_10_1016_j_swevo_2024_101658
crossref_primary_10_1016_j_simpat_2024_102948
crossref_primary_10_1360_SST_2022_0481
crossref_primary_10_3390_pr10101944
crossref_primary_10_1016_j_eswa_2023_120268
crossref_primary_10_1007_s10845_023_02161_w
crossref_primary_10_1016_j_jmsy_2024_03_002
crossref_primary_10_1016_j_swevo_2023_101414
crossref_primary_10_1016_j_swevo_2024_101750
crossref_primary_10_3390_math11071731
crossref_primary_10_1016_j_cie_2024_110624
crossref_primary_10_1016_j_cie_2024_110688
crossref_primary_10_1007_s12293_025_00449_3
crossref_primary_10_1111_itor_13593
crossref_primary_10_26599_TST_2023_9010141
crossref_primary_10_1177_00202940241245241
crossref_primary_10_15446_dyna_v90n227_107105
crossref_primary_10_3390_systems11020103
crossref_primary_10_1016_j_asoc_2024_112670
crossref_primary_10_1016_j_cor_2024_106744
crossref_primary_10_1016_j_jmsy_2024_01_002
crossref_primary_10_1007_s12555_023_0578_1
crossref_primary_10_1016_j_eswa_2023_121945
crossref_primary_10_1016_j_eswa_2023_121723
crossref_primary_10_1016_j_eswa_2023_121149
crossref_primary_10_3390_machines12070446
crossref_primary_10_1109_ACCESS_2025_3532600
crossref_primary_10_3390_a17100470
crossref_primary_10_3390_math12203176
crossref_primary_10_1016_j_eswa_2024_124375
crossref_primary_10_1016_j_eswa_2024_125189
crossref_primary_10_1016_j_jmsy_2023_01_004
crossref_primary_10_3390_systems13030170
Cites_doi 10.1007/BF02023073
10.1080/00207543.2019.1620362
10.3901/JME.2021.04.227
10.1016/j.cie.2017.05.026
10.1016/j.ins.2014.11.036
10.1007/s10845-008-0150-0
10.1109/TETCI.2017.2743758
10.1016/j.jclepro.2020.120009
10.1080/00207540903433858
10.1016/j.swevo.2020.100807
10.3901/JME.2015.03.170
10.1016/j.jmsy.2011.11.001
10.1016/S0007-8506(07)61516-9
10.1016/j.ejor.2004.04.002
10.1080/00207543.2016.1267414
10.1080/00207543.2011.579637
10.1016/j.jmsy.2020.06.005
10.1016/j.ijpe.2012.04.015
10.1023/A:1011253011638
10.1109/4235.797969
10.1016/j.cor.2008.08.008
10.1016/j.eswa.2016.01.054
10.1080/00207543.2018.1543964
10.3934/jimo.2019030
10.1109/4235.996017
10.1007/s10845-012-0626-9
10.1109/TEVC.2003.810067
10.1016/j.asoc.2020.106208
10.1016/j.cma.2020.113609
10.1007/s00500-016-2245-4
10.1016/j.jmsy.2011.01.001
10.1016/j.eswa.2020.113545
10.1016/j.eswa.2009.05.001
10.1016/j.asoc.2016.07.025
10.1016/j.cie.2021.107211
10.1016/j.cor.2021.105401
10.1016/j.jclepro.2017.10.342
10.1080/0305215X.2016.1145216
10.1080/07408170701283198
10.1016/j.ijpe.2011.04.020
10.1016/j.ejor.2003.08.027
10.1016/j.cie.2021.107677
10.1016/j.ifacol.2017.08.2354
10.1016/j.cie.2021.107557
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2022.117489
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_117489
S0957417422008181
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c300t-f46ccea8e6b32c78e4b3837f23244cf10a31924c6c9660f41244fe94038dc5f63
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Tue Jul 01 04:06:01 EDT 2025
Thu Apr 24 23:06:11 EDT 2025
Fri Feb 23 02:39:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dynamic scheduling
Multi-objective optimization
Robust optimization
PSAO
Flexible job shop
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-f46ccea8e6b32c78e4b3837f23244cf10a31924c6c9660f41244fe94038dc5f63
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2022_117489
crossref_primary_10_1016_j_eswa_2022_117489
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_117489
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu, Sun (b0215) 2018; 172
Zhang, Wong (b0250) 2017; 55
Fan, Xiong, Jiang, Li, Li (b0075) 2018; 24
Tang, Dai, Salido, Giret (bib261) 2016; 81
Liu, Gu, Xi (b0135) 2007; 31
Zitzler, Thiele (b0260) 1999; 3
Zhang, Yang, Zhou (b0240) 2016; 48
Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (b0005) 2021; 376
Erfani, Ebrahimnejad, Moosavi (b0070) 2020; 16
Fan, Xiong, Goh (b0080) 2021; 134
Nie, Gao, Li, Li (b0150) 2013; 24
Gholami, Zandieh (b0090) 2009; 20
Herroelen, Leus (b0100) 2005; 165
Ren, Yan, Hu, Guan (b0160) 2021
China Certifification Center for Energy Conservation Product (CECP). (2002). Review standby power consumption of products at home and abroad. Energy Conserv. Environ. Prot, 38-40.
Jamili (b0110) 2016; 55
Huang, Zhao, Liang (b0105) 2019
Wang, Wang, Li, Shen, Yang (b0200) 2021; 174
Wu, Brown, Beck (b0210) 2009; 36
Li, He, Wang, Tao, Sutherland (b0125) 2020; 254
Duan, Wang (b0060) 2021; 161
Yang, Huang, Wang, Zhu (b0230) 2020; 158
Durasevic, Jakobovic, Knezevic (b0065) 2016; 48
Gomes, Barbosa-Póvoa, Novais (b0095) 2010; 48
Aytug, Lawley, McKay, Mohan, Uzsoy (b0020) 2005; 61
Mei, Nguyen, Xue, Zhang (b0145) 2017; 1
Ozturk, Bahadir, Teymourifar (b0155) 2019; 57
Adibi, Zandieh, Amiri (b0010) 2010; 37
Al-Hinai, ElMekkawy (b0015) 2011; 132
Jensen (b0115) 2003; 7
Baykasoglu, Madenoglu, Hamzadayi (b0025) 2020; 56
Dong, Jang (b0055) 2012; 50
Wang, Koren (b0195) 2012; 31
Luo (b0140) 2020; 91
Goren, Sabuncuolu (b0085) 2008; 40
Xiong, Xing, Chen (b0225) 2013; 141
Zhang, Dong, Wang, Liu (b0235) 2010; 46
Shahrabi, Adibi, Mahootchi (b0165) 2017; 110
Zhou, Yang, Huang (b0255) 2020; 58
Tan, Yuan, Wang, Zhang (b0190) 2021; 160
Deb, Pratap, Agarwal, Meyarivan (b0050) 2002; 6
Wei, Mingyang (b0205) 2005; 31
Chryssolouris, Subramaniam (b0045) 2001; 12
Brandimarte (b0030) 1993; 41
Shen, Yao (b0170) 2015; 298
Koren, Shpitalni (b0120) 2010; 29
Spicer, Koren, Shpitalni (b0185) 2002; 51
Zhang, Hao, Duan, Fu (b0245) 2015; 51
Bouazza, Sallez, Beldjilali (b0035) 2017; 50
Xiao, Wu, Sun, Jin (b0220) 2021; 57
Shen, Han, Fu (b0175) 2017; 21
Song, Lin (b0180) 2021; 60
Li, Deng, Zhang, Fan, Gong, Ding (b0130) 2021; 155
Chryssolouris (10.1016/j.eswa.2022.117489_b0045) 2001; 12
Wang (10.1016/j.eswa.2022.117489_b0200) 2021; 174
Duan (10.1016/j.eswa.2022.117489_b0060) 2021; 161
Herroelen (10.1016/j.eswa.2022.117489_b0100) 2005; 165
Wei (10.1016/j.eswa.2022.117489_b0205) 2005; 31
Zitzler (10.1016/j.eswa.2022.117489_b0260) 1999; 3
Wu (10.1016/j.eswa.2022.117489_b0210) 2009; 36
Wu (10.1016/j.eswa.2022.117489_b0215) 2018; 172
Shahrabi (10.1016/j.eswa.2022.117489_b0165) 2017; 110
Zhang (10.1016/j.eswa.2022.117489_b0235) 2010; 46
Tang (10.1016/j.eswa.2022.117489_bib261) 2016; 81
Zhang (10.1016/j.eswa.2022.117489_b0240) 2016; 48
Shen (10.1016/j.eswa.2022.117489_b0175) 2017; 21
Li (10.1016/j.eswa.2022.117489_b0130) 2021; 155
Abualigah (10.1016/j.eswa.2022.117489_b0005) 2021; 376
Zhang (10.1016/j.eswa.2022.117489_b0245) 2015; 51
Huang (10.1016/j.eswa.2022.117489_b0105) 2019
Spicer (10.1016/j.eswa.2022.117489_b0185) 2002; 51
Song (10.1016/j.eswa.2022.117489_b0180) 2021; 60
Xiong (10.1016/j.eswa.2022.117489_b0225) 2013; 141
Luo (10.1016/j.eswa.2022.117489_b0140) 2020; 91
Jensen (10.1016/j.eswa.2022.117489_b0115) 2003; 7
Deb (10.1016/j.eswa.2022.117489_b0050) 2002; 6
Gholami (10.1016/j.eswa.2022.117489_b0090) 2009; 20
Adibi (10.1016/j.eswa.2022.117489_b0010) 2010; 37
Goren (10.1016/j.eswa.2022.117489_b0085) 2008; 40
Wang (10.1016/j.eswa.2022.117489_b0195) 2012; 31
Liu (10.1016/j.eswa.2022.117489_b0135) 2007; 31
Tan (10.1016/j.eswa.2022.117489_b0190) 2021; 160
Ren (10.1016/j.eswa.2022.117489_b0160) 2021
Fan (10.1016/j.eswa.2022.117489_b0075) 2018; 24
10.1016/j.eswa.2022.117489_b0040
Baykasoglu (10.1016/j.eswa.2022.117489_b0025) 2020; 56
Durasevic (10.1016/j.eswa.2022.117489_b0065) 2016; 48
Zhang (10.1016/j.eswa.2022.117489_b0250) 2017; 55
Yang (10.1016/j.eswa.2022.117489_b0230) 2020; 158
Koren (10.1016/j.eswa.2022.117489_b0120) 2010; 29
Gomes (10.1016/j.eswa.2022.117489_b0095) 2010; 48
Li (10.1016/j.eswa.2022.117489_b0125) 2020; 254
Shen (10.1016/j.eswa.2022.117489_b0170) 2015; 298
Dong (10.1016/j.eswa.2022.117489_b0055) 2012; 50
Fan (10.1016/j.eswa.2022.117489_b0080) 2021; 134
Ozturk (10.1016/j.eswa.2022.117489_b0155) 2019; 57
Erfani (10.1016/j.eswa.2022.117489_b0070) 2020; 16
Zhou (10.1016/j.eswa.2022.117489_b0255) 2020; 58
Jamili (10.1016/j.eswa.2022.117489_b0110) 2016; 55
Xiao (10.1016/j.eswa.2022.117489_b0220) 2021; 57
Al-Hinai (10.1016/j.eswa.2022.117489_b0015) 2011; 132
Bouazza (10.1016/j.eswa.2022.117489_b0035) 2017; 50
Nie (10.1016/j.eswa.2022.117489_b0150) 2013; 24
Brandimarte (10.1016/j.eswa.2022.117489_b0030) 1993; 41
Aytug (10.1016/j.eswa.2022.117489_b0020) 2005; 61
Mei (10.1016/j.eswa.2022.117489_b0145) 2017; 1
References_xml – volume: 174
  year: 2021
  ident: b0200
  article-title: An improved multi-objective whale optimization algorithm for the hybrid flow shop scheduling problem considering device dynamic reconfiguration processes
  publication-title: Expert Systems with Applications
– volume: 158
  year: 2020
  ident: b0230
  article-title: Robust scheduling based on extreme learning machine for bi-objective flexible job-shop problems with machine breakdowns
  publication-title: Expert Systems with Applications
– volume: 132
  start-page: 279
  year: 2011
  end-page: 291
  ident: b0015
  article-title: Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm
  publication-title: International Journal of Production Economics
– volume: 61
  start-page: 86
  year: 2005
  end-page: 110
  ident: b0020
  article-title: Executing production schedules in the face of uncertainties: A review and some future directions
  publication-title: European Journal of Operational Research
– volume: 134
  year: 2021
  ident: b0080
  article-title: Genetic programming-based hyper-heuristic approach for solving dynamic job shop scheduling problem with extended technical precedence constraints
  publication-title: Computers & Operations Research
– volume: 16
  start-page: 1801
  year: 2020
  end-page: 1834
  ident: b0070
  article-title: An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-Ⅱ and local search algorithm
  publication-title: Journal of Industrial and Management Optimization
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: b0260
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: China Certifification Center for Energy Conservation Product (CECP). (2002). Review standby power consumption of products at home and abroad. Energy Conserv. Environ. Prot, 38-40.
– volume: 31
  start-page: 645
  year: 2007
  end-page: 654
  ident: b0135
  article-title: Robust and stable scheduling of a single machine with random machine breakdowns
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 155
  year: 2021
  ident: b0130
  article-title: An effective MCTS-based algorithm for minimizing makespan in dynamic flexible job shop scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: 58
  start-page: 2561
  year: 2020
  end-page: 2580
  ident: b0255
  article-title: Automatic design of scheduling policies for dynamic flexible job shop scheduling via surrogate-assisted cooperative co-evolution genetic programming
  publication-title: International Journal of Production Research
– volume: 24
  start-page: 876
  year: 2018
  end-page: 885
  ident: b0075
  article-title: Generation of dispatching rules for dynamic job shop scheduling problem based on genetic programming algorithm
  publication-title: Computer Integrated Manufacturing Systems
– volume: 48
  start-page: 419
  year: 2016
  end-page: 430
  ident: b0065
  article-title: Adaptive scheduling on unrelated machines with genetic programming
  publication-title: Applied Soft Computing
– volume: 55
  start-page: 341
  year: 2016
  end-page: 350
  ident: b0110
  article-title: Robust job shop scheduling problem: Mathematical models, exact and heuristic algorithms
  publication-title: Expert Systems with Applications
– volume: 60
  year: 2021
  ident: b0180
  article-title: A genetic programming hyper-heuristic for the distributed assembly permutation flow-shop scheduling problem with sequence dependent setup times
  publication-title: Swarm and Evolutionary Computation
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0050
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 48
  start-page: 7395
  year: 2010
  end-page: 7422
  ident: b0095
  article-title: A discrete time reactive scheduling model for new order insertion in job shop, make-to-order industries
  publication-title: International Journal of Production Research
– volume: 7
  start-page: 275
  year: 2003
  end-page: 288
  ident: b0115
  article-title: Generating robust and flexible job shop schedules using genetic algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 55
  start-page: 3173
  year: 2017
  end-page: 3196
  ident: b0250
  article-title: Flexible job-shop scheduling/rescheduling in dynamic environment: A hybrid MAS/ACO approach
  publication-title: International Journal of Production Research
– volume: 40
  start-page: 66
  year: 2008
  end-page: 83
  ident: b0085
  article-title: Robustness and stability measures for scheduling: Single-machine environment
  publication-title: IIE Transactions
– volume: 24
  start-page: 763
  year: 2013
  end-page: 774
  ident: b0150
  article-title: A GEP-based reactive scheduling policies constructing approach for dynamic flexible job shop scheduling problem with job release dates
  publication-title: Journal of Intelligent Manufacturing
– volume: 81
  start-page: 82
  year: 2016
  end-page: 95
  ident: bib261
  publication-title: Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization
– volume: 51
  start-page: 276
  year: 2002
  end-page: 280
  ident: b0185
  article-title: Design principles for machining system configurations
  publication-title: CIRP Annals
– volume: 29
  start-page: 130
  year: 2010
  end-page: 141
  ident: b0120
  article-title: Design of reconfigurable manufacturing systems
  publication-title: Journal of Manufacturing Systems
– volume: 110
  start-page: 75
  year: 2017
  end-page: 82
  ident: b0165
  article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling
  publication-title: Computers & Industrial Engineering
– volume: 37
  start-page: 282
  year: 2010
  end-page: 287
  ident: b0010
  article-title: Multi-objective scheduling of dynamic job shop using variable neighborhood search
  publication-title: Expert Systems with Applications
– volume: 31
  start-page: 765
  year: 2005
  end-page: 771
  ident: b0205
  article-title: A reinforcement learning-based approach to dynamic job-shop scheduling
  publication-title: Acta Automatica Sinica
– volume: 50
  start-page: 2681
  year: 2012
  end-page: 2691
  ident: b0055
  article-title: Production rescheduling for machine breakdown at a job shop
  publication-title: International Journal of Production Research
– volume: 141
  start-page: 112
  year: 2013
  end-page: 126
  ident: b0225
  article-title: Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns
  publication-title: International Journal of Production Economics
– start-page: 120
  year: 2019
  end-page: 123
  ident: b0105
  article-title: Application of Improved Particle Swarm Optimization in Vehicle Depot Overhaul Shop Scheduling
  publication-title: Proceedings of IEEE 7th International Conference on Computer Science and Network
– volume: 20
  start-page: 481
  year: 2009
  end-page: 498
  ident: b0090
  article-title: Integrating simulation and genetic algorithm to schedule a dynamic flexible job shop
  publication-title: Journal of Intelligent Manufacturing
– volume: 298
  start-page: 198
  year: 2015
  end-page: 224
  ident: b0170
  article-title: Mathematical modeling and multi-objective evolutionary algorithms applied to dynamic flexible job shop scheduling problems
  publication-title: Information Sciences
– volume: 1
  start-page: 339
  year: 2017
  end-page: 353
  ident: b0145
  article-title: An efficient feature selection algorithm for evolving job shop scheduling rules with genetic programming
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
– volume: 172
  start-page: 3249
  year: 2018
  end-page: 3264
  ident: b0215
  article-title: A green scheduling algorithm for flexible job shop with energy-saving measures
  publication-title: Journal of Cleaner Production
– volume: 56
  start-page: 425
  year: 2020
  end-page: 451
  ident: b0025
  article-title: Greedy randomized adaptive search for dynamic flexible job-shop scheduling
  publication-title: Journal of Manufacturing Systems
– volume: 51
  start-page: 170
  year: 2015
  end-page: 181
  ident: b0245
  article-title: Layout reconfiguration planning of manufacturing systems considering system reusability and task recurrence
  publication-title: Journal Of Mechanical Engineering
– volume: 161
  year: 2021
  ident: b0060
  article-title: Energy-efficient scheduling for a flexible job shop with machine breakdowns considering machine idle time arrangement and machine speed level selection
  publication-title: Computers & Industrial Engineering
– volume: 36
  start-page: 2348
  year: 2009
  end-page: 2356
  ident: b0210
  article-title: Scheduling with uncertain durations: Modeling b-robust scheduling with constraints
  publication-title: Computers & Operations Research
– volume: 91
  year: 2020
  ident: b0140
  article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning
  publication-title: Applied Soft Computing
– volume: 254
  year: 2020
  ident: b0125
  article-title: An optimization method for energy-conscious production in flexible machining job shops with dynamic job arrivals and machine breakdowns
  publication-title: Journal of Cleaner Production
– volume: 41
  start-page: 157
  year: 1993
  end-page: 183
  ident: b0030
  article-title: Routing and scheduling in a flexible job shop by Tabu search
  publication-title: Annals of Operations Research
– volume: 57
  start-page: 3121
  year: 2019
  end-page: 3137
  ident: b0155
  article-title: Extracting priority rules for dynamic multi-objective flexible job shop scheduling problems using gene expression programming
  publication-title: International Journal of Production Research
– volume: 21
  start-page: 6531
  year: 2017
  end-page: 6554
  ident: b0175
  article-title: Robustness measures and robust scheduling for multi-objective stochastic flexible job shop scheduling problems
  publication-title: Soft Computing
– year: 2021
  ident: b0160
  article-title: Joint optimisation for dynamic flexible job-shop scheduling problem with transportation time and resource constraints
  publication-title: International Journal of Production Research
– volume: 48
  start-page: 1973
  year: 2016
  end-page: 1989
  ident: b0240
  article-title: Robust scheduling for multi-objective flexible job-shop problems with flexible workdays
  publication-title: Engineering Optimization
– volume: 165
  start-page: 289
  year: 2005
  end-page: 306
  ident: b0100
  article-title: Project scheduling under uncertainty: Survey and research potentials
  publication-title: European Journal of Operational Research
– volume: 31
  start-page: 83
  year: 2012
  end-page: 91
  ident: b0195
  article-title: Scalability planning for reconfigurable manufacturing systems
  publication-title: Journal of Manufacturing Systems
– volume: 50
  start-page: 15890
  year: 2017
  end-page: 15895
  ident: b0035
  article-title: A distributed approach solving partially flexible job-shop scheduling problem with a q-learning effect
  publication-title: IFAC-PapersOnLine
– volume: 57
  start-page: 227
  year: 2021
  end-page: 239
  ident: b0220
  article-title: Research on the dual-resource constrained robust job shop scheduling problems
  publication-title: Journal of Mechanical Engineering
– volume: 46
  start-page: 156
  year: 2010
  end-page: 164
  ident: b0235
  article-title: Improved NSGA-II for the multi-objective flexible job-shop scheduling problem
  publication-title: Journal of Mechanical Engineering
– volume: 12
  start-page: 281
  year: 2001
  end-page: 293
  ident: b0045
  article-title: Dynamic scheduling of manufacturing job shops using genetic algorithms
  publication-title: Journal of Intelligent Manufacturing.
– volume: 376
  year: 2021
  ident: b0005
  article-title: The arithmetic optimization algorithm
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 160
  year: 2021
  ident: b0190
  article-title: A fatigue-conscious dual resource constrained flexible job shop scheduling problem by enhanced NSGA-II: An application from casting workshop
  publication-title: Computers & Industrial Engineering
– volume: 41
  start-page: 157
  year: 1993
  ident: 10.1016/j.eswa.2022.117489_b0030
  article-title: Routing and scheduling in a flexible job shop by Tabu search
  publication-title: Annals of Operations Research
  doi: 10.1007/BF02023073
– volume: 24
  start-page: 876
  issue: 04
  year: 2018
  ident: 10.1016/j.eswa.2022.117489_b0075
  article-title: Generation of dispatching rules for dynamic job shop scheduling problem based on genetic programming algorithm
  publication-title: Computer Integrated Manufacturing Systems
– volume: 58
  start-page: 2561
  year: 2020
  ident: 10.1016/j.eswa.2022.117489_b0255
  article-title: Automatic design of scheduling policies for dynamic flexible job shop scheduling via surrogate-assisted cooperative co-evolution genetic programming
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2019.1620362
– volume: 57
  start-page: 227
  year: 2021
  ident: 10.1016/j.eswa.2022.117489_b0220
  article-title: Research on the dual-resource constrained robust job shop scheduling problems
  publication-title: Journal of Mechanical Engineering
  doi: 10.3901/JME.2021.04.227
– volume: 110
  start-page: 75
  year: 2017
  ident: 10.1016/j.eswa.2022.117489_b0165
  article-title: A reinforcement learning approach to parameter estimation in dynamic job shop scheduling
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2017.05.026
– volume: 298
  start-page: 198
  year: 2015
  ident: 10.1016/j.eswa.2022.117489_b0170
  article-title: Mathematical modeling and multi-objective evolutionary algorithms applied to dynamic flexible job shop scheduling problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.11.036
– volume: 20
  start-page: 481
  year: 2009
  ident: 10.1016/j.eswa.2022.117489_b0090
  article-title: Integrating simulation and genetic algorithm to schedule a dynamic flexible job shop
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-008-0150-0
– ident: 10.1016/j.eswa.2022.117489_b0040
– volume: 1
  start-page: 339
  issue: 5
  year: 2017
  ident: 10.1016/j.eswa.2022.117489_b0145
  article-title: An efficient feature selection algorithm for evolving job shop scheduling rules with genetic programming
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
  doi: 10.1109/TETCI.2017.2743758
– volume: 254
  year: 2020
  ident: 10.1016/j.eswa.2022.117489_b0125
  article-title: An optimization method for energy-conscious production in flexible machining job shops with dynamic job arrivals and machine breakdowns
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2020.120009
– volume: 46
  start-page: 156
  year: 2010
  ident: 10.1016/j.eswa.2022.117489_b0235
  article-title: Improved NSGA-II for the multi-objective flexible job-shop scheduling problem
  publication-title: Journal of Mechanical Engineering
– year: 2021
  ident: 10.1016/j.eswa.2022.117489_b0160
  article-title: Joint optimisation for dynamic flexible job-shop scheduling problem with transportation time and resource constraints
  publication-title: International Journal of Production Research
– volume: 48
  start-page: 7395
  issue: 24
  year: 2010
  ident: 10.1016/j.eswa.2022.117489_b0095
  article-title: A discrete time reactive scheduling model for new order insertion in job shop, make-to-order industries
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540903433858
– volume: 60
  year: 2021
  ident: 10.1016/j.eswa.2022.117489_b0180
  article-title: A genetic programming hyper-heuristic for the distributed assembly permutation flow-shop scheduling problem with sequence dependent setup times
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2020.100807
– start-page: 120
  year: 2019
  ident: 10.1016/j.eswa.2022.117489_b0105
  article-title: Application of Improved Particle Swarm Optimization in Vehicle Depot Overhaul Shop Scheduling
– volume: 51
  start-page: 170
  year: 2015
  ident: 10.1016/j.eswa.2022.117489_b0245
  article-title: Layout reconfiguration planning of manufacturing systems considering system reusability and task recurrence
  publication-title: Journal Of Mechanical Engineering
  doi: 10.3901/JME.2015.03.170
– volume: 31
  start-page: 83
  issue: 2
  year: 2012
  ident: 10.1016/j.eswa.2022.117489_b0195
  article-title: Scalability planning for reconfigurable manufacturing systems
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2011.11.001
– volume: 51
  start-page: 276
  issue: 1
  year: 2002
  ident: 10.1016/j.eswa.2022.117489_b0185
  article-title: Design principles for machining system configurations
  publication-title: CIRP Annals
  doi: 10.1016/S0007-8506(07)61516-9
– volume: 165
  start-page: 289
  year: 2005
  ident: 10.1016/j.eswa.2022.117489_b0100
  article-title: Project scheduling under uncertainty: Survey and research potentials
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2004.04.002
– volume: 55
  start-page: 3173
  year: 2017
  ident: 10.1016/j.eswa.2022.117489_b0250
  article-title: Flexible job-shop scheduling/rescheduling in dynamic environment: A hybrid MAS/ACO approach
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2016.1267414
– volume: 50
  start-page: 2681
  issue: 10
  year: 2012
  ident: 10.1016/j.eswa.2022.117489_b0055
  article-title: Production rescheduling for machine breakdown at a job shop
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2011.579637
– volume: 56
  start-page: 425
  year: 2020
  ident: 10.1016/j.eswa.2022.117489_b0025
  article-title: Greedy randomized adaptive search for dynamic flexible job-shop scheduling
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2020.06.005
– volume: 141
  start-page: 112
  year: 2013
  ident: 10.1016/j.eswa.2022.117489_b0225
  article-title: Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2012.04.015
– volume: 12
  start-page: 281
  issue: 3
  year: 2001
  ident: 10.1016/j.eswa.2022.117489_b0045
  article-title: Dynamic scheduling of manufacturing job shops using genetic algorithms
  publication-title: Journal of Intelligent Manufacturing.
  doi: 10.1023/A:1011253011638
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.eswa.2022.117489_b0260
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– volume: 36
  start-page: 2348
  year: 2009
  ident: 10.1016/j.eswa.2022.117489_b0210
  article-title: Scheduling with uncertain durations: Modeling b-robust scheduling with constraints
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2008.08.008
– volume: 55
  start-page: 341
  year: 2016
  ident: 10.1016/j.eswa.2022.117489_b0110
  article-title: Robust job shop scheduling problem: Mathematical models, exact and heuristic algorithms
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.01.054
– volume: 57
  start-page: 3121
  year: 2019
  ident: 10.1016/j.eswa.2022.117489_b0155
  article-title: Extracting priority rules for dynamic multi-objective flexible job shop scheduling problems using gene expression programming
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2018.1543964
– volume: 16
  start-page: 1801
  year: 2020
  ident: 10.1016/j.eswa.2022.117489_b0070
  article-title: An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-Ⅱ and local search algorithm
  publication-title: Journal of Industrial and Management Optimization
  doi: 10.3934/jimo.2019030
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.eswa.2022.117489_b0050
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 24
  start-page: 763
  year: 2013
  ident: 10.1016/j.eswa.2022.117489_b0150
  article-title: A GEP-based reactive scheduling policies constructing approach for dynamic flexible job shop scheduling problem with job release dates
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-012-0626-9
– volume: 174
  year: 2021
  ident: 10.1016/j.eswa.2022.117489_b0200
  article-title: An improved multi-objective whale optimization algorithm for the hybrid flow shop scheduling problem considering device dynamic reconfiguration processes
  publication-title: Expert Systems with Applications
– volume: 7
  start-page: 275
  year: 2003
  ident: 10.1016/j.eswa.2022.117489_b0115
  article-title: Generating robust and flexible job shop schedules using genetic algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.810067
– volume: 91
  year: 2020
  ident: 10.1016/j.eswa.2022.117489_b0140
  article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106208
– volume: 376
  year: 2021
  ident: 10.1016/j.eswa.2022.117489_b0005
  article-title: The arithmetic optimization algorithm
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2020.113609
– volume: 21
  start-page: 6531
  year: 2017
  ident: 10.1016/j.eswa.2022.117489_b0175
  article-title: Robustness measures and robust scheduling for multi-objective stochastic flexible job shop scheduling problems
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2245-4
– volume: 31
  start-page: 645
  issue: 7–8
  year: 2007
  ident: 10.1016/j.eswa.2022.117489_b0135
  article-title: Robust and stable scheduling of a single machine with random machine breakdowns
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 29
  start-page: 130
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2022.117489_b0120
  article-title: Design of reconfigurable manufacturing systems
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2011.01.001
– volume: 31
  start-page: 765
  issue: 5
  year: 2005
  ident: 10.1016/j.eswa.2022.117489_b0205
  article-title: A reinforcement learning-based approach to dynamic job-shop scheduling
  publication-title: Acta Automatica Sinica
– volume: 158
  year: 2020
  ident: 10.1016/j.eswa.2022.117489_b0230
  article-title: Robust scheduling based on extreme learning machine for bi-objective flexible job-shop problems with machine breakdowns
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113545
– volume: 37
  start-page: 282
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2022.117489_b0010
  article-title: Multi-objective scheduling of dynamic job shop using variable neighborhood search
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.05.001
– volume: 48
  start-page: 419
  year: 2016
  ident: 10.1016/j.eswa.2022.117489_b0065
  article-title: Adaptive scheduling on unrelated machines with genetic programming
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.07.025
– volume: 155
  year: 2021
  ident: 10.1016/j.eswa.2022.117489_b0130
  article-title: An effective MCTS-based algorithm for minimizing makespan in dynamic flexible job shop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107211
– volume: 134
  year: 2021
  ident: 10.1016/j.eswa.2022.117489_b0080
  article-title: Genetic programming-based hyper-heuristic approach for solving dynamic job shop scheduling problem with extended technical precedence constraints
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2021.105401
– volume: 81
  start-page: 82
  year: 2016
  ident: 10.1016/j.eswa.2022.117489_bib261
  publication-title: Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization
– volume: 172
  start-page: 3249
  year: 2018
  ident: 10.1016/j.eswa.2022.117489_b0215
  article-title: A green scheduling algorithm for flexible job shop with energy-saving measures
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2017.10.342
– volume: 48
  start-page: 1973
  year: 2016
  ident: 10.1016/j.eswa.2022.117489_b0240
  article-title: Robust scheduling for multi-objective flexible job-shop problems with flexible workdays
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2016.1145216
– volume: 40
  start-page: 66
  issue: 1
  year: 2008
  ident: 10.1016/j.eswa.2022.117489_b0085
  article-title: Robustness and stability measures for scheduling: Single-machine environment
  publication-title: IIE Transactions
  doi: 10.1080/07408170701283198
– volume: 132
  start-page: 279
  year: 2011
  ident: 10.1016/j.eswa.2022.117489_b0015
  article-title: Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2011.04.020
– volume: 61
  start-page: 86
  issue: 1
  year: 2005
  ident: 10.1016/j.eswa.2022.117489_b0020
  article-title: Executing production schedules in the face of uncertainties: A review and some future directions
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2003.08.027
– volume: 161
  year: 2021
  ident: 10.1016/j.eswa.2022.117489_b0060
  article-title: Energy-efficient scheduling for a flexible job shop with machine breakdowns considering machine idle time arrangement and machine speed level selection
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107677
– volume: 50
  start-page: 15890
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2022.117489_b0035
  article-title: A distributed approach solving partially flexible job-shop scheduling problem with a q-learning effect
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2017.08.2354
– volume: 160
  year: 2021
  ident: 10.1016/j.eswa.2022.117489_b0190
  article-title: A fatigue-conscious dual resource constrained flexible job shop scheduling problem by enhanced NSGA-II: An application from casting workshop
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107557
SSID ssj0017007
Score 2.5756586
Snippet •Robust optimization method with dynamic events is proposed.•Reusability of the system and repeatability of the processing tasks are considered.•A dynamic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117489
SubjectTerms Dynamic scheduling
Flexible job shop
Multi-objective optimization
PSAO
Robust optimization
Title Robust scheduling for flexible machining job shop subject to machine breakdowns and new job arrivals considering system reusability and task recurrence
URI https://dx.doi.org/10.1016/j.eswa.2022.117489
Volume 203
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRjwrD2wotE1cJx2riqqA6ABU6hbZF1v0QVM1qRALf4O_iy92KpBQB8Y4vijyXXzfOXffEXIFJqpqSak9iDjzGOeJF4FknkR3pwwGbnOsd34c8P6Q3Y9aowrplrUwmFbp9n67pxe7tRupu9WsL8bj-rMBB8YdmtDOL3jZigp2FqKV33yu0zyQfi60fHuhh7Nd4YzN8VLZO3IP-T7-u2TY6v0v5_TD4fT2yI5DirRjX2afVNT8gOyWXRio-ygPyddTKldZTk2YatwGVpdTA0SpRqZLOVP0rUiXxOFJKmn2mi5otpJ4_ELz1N1V1ETGYprgUTMV84QasF1MF8vl2NhiRsE19sTnWPZnulQry8-bfxQyucimZhAKxidQR2TYu33p9j3XbsGDoNHIPc04gBKR4jLwIYwUkxi-asRcDHSzIQKM1oADMnpqbFvNtGqzRhAl0NI8OCbVeTpXJ4RKxSJh5CJoR0xBInRTCPCbHGUV46ekWa5zDI6LHFtizOIy6WwSo25i1E1sdXNKrtcyC8vEsXF2q1Rf_MueYuMqNsid_VPunGzjlU3zuyDVfLlSlwau5LJW2GONbHXuHvqDbzym7Tg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb0SBgg9wQmE3idebPXBAhWpLHwdopd6CPRmLbctmtcmq6oW_wQ_hDzITOxVIqAekXm2PlXgm83BmvgF4hRxVjZzzCRZGJ9qYKinQ6cSJuSP2gSdG6p33D8z0SH86Hh2vwa--FkbSKqPuDzq909ZxZBBPc7CYzQZf2Dlgc8ihXdbhsqUxs3KXLs45bmve7XxgJr_Osu2Ph1vTJLYWSDAfDtvEa4NItiDj8gzHBWknoZoX_0KjT4c2l8gEDQp6pZcWzdrTRA_zosKRNznvewNualYX0jbh7Y_LvBLBuxsHgL9xIo8XK3VCUhk15wJ2lGXys1RLb_l_WcM_LNz2PbgTXVP1Prz9fVij-QO427d9UFELPISfn2u3alrFcTHbKSlnV-z5Ki_Qmu6M1PcuP1OGT2qnmm_1QjUrJ_c9qq3jLCkOxe1pJXfbys4rxd59t9wulzMW_kZh7CQq-wS4abWkVQAEbi86mtY2pzyIHcQU0iM4uhYmPIb1eT2nJ6Ac6cIyXYGTQhNW1qfWYpYaoSVtNiDtz7nECH4uPTjOyj7L7aQU3pTCmzLwZgPeXNIsAvTHlatHPfvKvwS4ZNt0Bd3T_6R7Cbemh_t75d7Owe4zuC0zIcfwOay3yxVtsq_UuhedbCr4et0fw2-RhCfp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+scheduling+for+flexible+machining+job+shop+subject+to+machine+breakdowns+and+new+job+arrivals+considering+system+reusability+and+task+recurrence&rft.jtitle=Expert+systems+with+applications&rft.au=Duan%2C+Jianguo&rft.au=Wang%2C+Jiahui&rft.date=2022-10-01&rft.issn=0957-4174&rft.volume=203&rft.spage=117489&rft_id=info:doi/10.1016%2Fj.eswa.2022.117489&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2022_117489
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon