Deep learning based online metallic surface defect detection method for wire and arc additive manufacturing

Wire and arc additive manufacturing (WAAM) is an emerging manufacturing technology that is widely used in different manufacturing industries. To achieve fully automated production, WAAM requires a dependable, efficient, and automatic defect detection system. Although machine learning is dominant in...

Full description

Saved in:
Bibliographic Details
Published inRobotics and computer-integrated manufacturing Vol. 80; p. 102470
Main Authors Li, Wenhao, Zhang, Haiou, Wang, Guilan, Xiong, Gang, Zhao, Meihua, Li, Guokuan, Li, Runsheng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wire and arc additive manufacturing (WAAM) is an emerging manufacturing technology that is widely used in different manufacturing industries. To achieve fully automated production, WAAM requires a dependable, efficient, and automatic defect detection system. Although machine learning is dominant in the object detection domain, classic algorithms have defect detection difficulty in WAAM due to complex defect types and noisy detection environments. This paper presents a deep learning-based novel automatic defect detection solution, you only look once (YOLO)-attention, based on YOLOv4, which achieves both fast and accurate defect detection for WAAM. YOLO-attention makes improvements on three existing object detection models: the channel-wise attention mechanism, multiple spatial pyramid pooling, and exponential moving average. The evaluation on the WAAM defect dataset shows that our model obtains a 94.5 mean average precision (mAP) with at least 42 frames per second. This method has been applied to additive manufacturing of single-pass, multi-pass deposition and parts. It demonstrates its feasibility in practical industrial applications and has potential as a vision-based methodology that can be implemented in real-time defect detection systems. •Propose a defect detection method in additive manufacturing based on deep learning.•Use attention model, multiple spatial pyramid pooling and exponential moving average.•Establish a wire and arc additive manufacturing defect dataset to verify the effect.•YOLO-attention achieves a mean average precision of 94.5%.
AbstractList Wire and arc additive manufacturing (WAAM) is an emerging manufacturing technology that is widely used in different manufacturing industries. To achieve fully automated production, WAAM requires a dependable, efficient, and automatic defect detection system. Although machine learning is dominant in the object detection domain, classic algorithms have defect detection difficulty in WAAM due to complex defect types and noisy detection environments. This paper presents a deep learning-based novel automatic defect detection solution, you only look once (YOLO)-attention, based on YOLOv4, which achieves both fast and accurate defect detection for WAAM. YOLO-attention makes improvements on three existing object detection models: the channel-wise attention mechanism, multiple spatial pyramid pooling, and exponential moving average. The evaluation on the WAAM defect dataset shows that our model obtains a 94.5 mean average precision (mAP) with at least 42 frames per second. This method has been applied to additive manufacturing of single-pass, multi-pass deposition and parts. It demonstrates its feasibility in practical industrial applications and has potential as a vision-based methodology that can be implemented in real-time defect detection systems. •Propose a defect detection method in additive manufacturing based on deep learning.•Use attention model, multiple spatial pyramid pooling and exponential moving average.•Establish a wire and arc additive manufacturing defect dataset to verify the effect.•YOLO-attention achieves a mean average precision of 94.5%.
ArticleNumber 102470
Author Zhang, Haiou
Li, Runsheng
Li, Wenhao
Wang, Guilan
Xiong, Gang
Li, Guokuan
Zhao, Meihua
Author_xml – sequence: 1
  givenname: Wenhao
  orcidid: 0000-0002-5428-258X
  surname: Li
  fullname: Li, Wenhao
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
– sequence: 2
  givenname: Haiou
  surname: Zhang
  fullname: Zhang, Haiou
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
– sequence: 3
  givenname: Guilan
  surname: Wang
  fullname: Wang, Guilan
  organization: School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
– sequence: 4
  givenname: Gang
  surname: Xiong
  fullname: Xiong, Gang
  organization: Beijing Engineering Research Center of Intelligent Systems and Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 5
  givenname: Meihua
  orcidid: 0000-0003-0108-3752
  surname: Zhao
  fullname: Zhao, Meihua
  organization: State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 6
  givenname: Guokuan
  surname: Li
  fullname: Li, Guokuan
  organization: Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, 430074, China
– sequence: 7
  givenname: Runsheng
  orcidid: 0000-0002-1904-9774
  surname: Li
  fullname: Li, Runsheng
  email: lirunsheng@hust.edu.cn
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
BookMark eNp9kM1OAyEURlnUxFZ9AVe8wFQGZjo0cWPqb9LEja7JHbgodQoN0BrfXiZ15aKrL-Fyvtx7ZmTig0dCrms2r1m9uNnMo3bbOWeclwfedGxCpqwTi6qVTXtOZiltGCuDVkzJ1z3ijg4I0Tv_QXtIaGjwg_NIt5hhGJymaR8taKQGLepcIpdwwY8_PoOhNkT67SJS8IZC1BSMcdkdSgX4fUHzPpb2S3JmYUh49ZcX5P3x4W31XK1fn15Wd-tKC8ZyZYVgyDpcGt31veiFaZadtFbW7QKltH3fojEIuIQaJQcEbrpGam2YbVhbiwsij706hpQiWqVdhnHhHMENqmZqFKU2ahSlRlHqKKqg_B-6i24L8ec0dHuEsBx1cBhV0g69RlOc6KxMcKfwXxutiTw
CitedBy_id crossref_primary_10_1115_1_4065525
crossref_primary_10_1002_srin_202300369
crossref_primary_10_1088_1361_6501_acfe2f
crossref_primary_10_1080_17452759_2023_2266658
crossref_primary_10_1016_j_rcim_2024_102806
crossref_primary_10_1080_17452759_2023_2294336
crossref_primary_10_1080_24725854_2024_2443592
crossref_primary_10_1063_5_0185513
crossref_primary_10_1016_j_eswa_2024_125741
crossref_primary_10_3390_su162310724
crossref_primary_10_1016_j_measurement_2024_114975
crossref_primary_10_1016_j_addma_2023_103547
crossref_primary_10_1016_j_jmapro_2024_07_060
crossref_primary_10_1080_17452759_2024_2409390
crossref_primary_10_1109_ACCESS_2025_3545057
crossref_primary_10_1007_s00170_023_12624_2
crossref_primary_10_1016_j_engappai_2023_106143
crossref_primary_10_1016_j_jii_2023_100484
crossref_primary_10_1088_1361_6501_ad80b5
crossref_primary_10_1145_3715851
crossref_primary_10_1016_j_ijmecsci_2023_108269
crossref_primary_10_1007_s43069_024_00337_5
crossref_primary_10_1108_IR_05_2024_0215
crossref_primary_10_1016_j_jmapro_2023_03_016
crossref_primary_10_1016_j_rcim_2023_102639
crossref_primary_10_1016_j_engappai_2023_107717
crossref_primary_10_1016_j_measurement_2024_114689
crossref_primary_10_1016_j_jmapro_2024_08_033
crossref_primary_10_3390_s24020429
crossref_primary_10_1016_j_optlastec_2023_110243
crossref_primary_10_1016_j_rcim_2023_102581
crossref_primary_10_1016_j_eswa_2023_120959
crossref_primary_10_1080_02670836_2023_2246772
crossref_primary_10_1016_j_rineng_2024_103462
crossref_primary_10_7717_peerj_cs_2224
crossref_primary_10_1177_09544062241283330
crossref_primary_10_1007_s10845_024_02487_z
crossref_primary_10_1016_j_amf_2024_200159
crossref_primary_10_1016_j_jmrt_2024_06_018
crossref_primary_10_1002_tee_24158
crossref_primary_10_1007_s10921_024_01107_3
crossref_primary_10_1016_j_rcim_2023_102575
crossref_primary_10_1109_TCSS_2024_3407823
crossref_primary_10_3390_ma17061373
crossref_primary_10_1016_j_compositesb_2023_111006
crossref_primary_10_3390_electronics12163446
crossref_primary_10_1007_s40964_024_00612_1
crossref_primary_10_1080_17452759_2023_2291471
crossref_primary_10_1016_j_compind_2024_104084
crossref_primary_10_1016_j_addma_2024_104323
crossref_primary_10_1007_s13198_024_02472_y
crossref_primary_10_1016_j_eswa_2024_126212
crossref_primary_10_1007_s10845_024_02387_2
crossref_primary_10_1016_j_compind_2024_104154
crossref_primary_10_3390_s23167291
crossref_primary_10_1080_09507116_2023_2252733
crossref_primary_10_1109_TIM_2023_3302372
crossref_primary_10_1016_j_aei_2025_103138
crossref_primary_10_1016_j_engappai_2024_108075
crossref_primary_10_1109_TPS_2024_3350203
crossref_primary_10_1088_2631_8695_ad777c
crossref_primary_10_1177_03019233241296959
crossref_primary_10_1016_j_optlaseng_2024_108369
crossref_primary_10_1016_j_mtcomm_2024_110294
crossref_primary_10_3390_s24227127
crossref_primary_10_32604_cmes_2024_054735
crossref_primary_10_1088_1361_6501_ad26c9
crossref_primary_10_1016_j_compind_2023_103911
crossref_primary_10_1016_j_eswa_2023_121529
crossref_primary_10_1080_10426914_2023_2254386
crossref_primary_10_1016_j_ijmecsci_2024_108963
crossref_primary_10_1016_j_matchar_2024_113985
crossref_primary_10_1016_j_measurement_2024_115193
crossref_primary_10_1016_j_jmapro_2023_12_033
crossref_primary_10_1016_j_jmsy_2023_11_017
crossref_primary_10_3390_jimaging10070164
crossref_primary_10_1007_s00170_023_12798_9
crossref_primary_10_3390_a15120466
crossref_primary_10_3390_app13126898
crossref_primary_10_1016_j_compind_2023_103963
crossref_primary_10_1016_j_jmsy_2023_11_014
crossref_primary_10_3390_ma16103635
crossref_primary_10_1038_s41598_025_88109_x
crossref_primary_10_3390_a17120574
crossref_primary_10_1016_j_jmapro_2024_04_024
crossref_primary_10_1007_s11554_025_01656_4
crossref_primary_10_1016_j_eswa_2023_122669
crossref_primary_10_1007_s40747_024_01554_5
crossref_primary_10_1088_1361_6501_ad63c2
crossref_primary_10_3390_s24134397
crossref_primary_10_1007_s00170_024_13641_5
crossref_primary_10_1080_17452759_2023_2210553
crossref_primary_10_12677_MOS_2023_126522
crossref_primary_10_1016_j_sna_2024_115547
crossref_primary_10_3390_app14135576
crossref_primary_10_1109_ACCESS_2023_3271748
crossref_primary_10_1016_j_engappai_2024_109723
crossref_primary_10_1108_RPJ_04_2023_0133
crossref_primary_10_1016_j_optlastec_2025_112413
crossref_primary_10_3390_math12213414
crossref_primary_10_1016_j_jcomc_2024_100451
crossref_primary_10_3390_machines11080834
crossref_primary_10_3390_met13040648
crossref_primary_10_1371_journal_pone_0297059
crossref_primary_10_3390_math12162480
Cites_doi 10.1109/CVPR.2017.690
10.1016/j.measurement.2020.107546
10.1016/j.ifacol.2018.09.412
10.1016/j.neucom.2014.09.007
10.1108/13552540510612929
10.1109/TCYB.2017.2668395
10.1016/j.neucom.2017.02.021
10.1109/ICCV.2017.324
10.1109/TII.2014.2359416
10.1016/j.jmapro.2018.08.001
10.1016/j.ijleo.2015.04.017
10.1016/j.asoc.2016.10.030
10.1016/j.apsusc.2015.05.033
10.1080/14786451.2013.826223
10.1016/j.imavis.2009.03.007
10.1016/j.polymertesting.2015.04.013
10.1080/17452759.2015.1111519
10.1109/CVPR.2017.106
10.1007/s11665-014-0958-z
10.1108/RPJ-05-2019-0123
10.1016/j.matdes.2006.08.008
10.1109/TII.2015.2417676
10.1109/CVPR.2017.545
10.1016/j.rcim.2019.01.006
10.1109/TIM.2017.2783098
10.1115/1.4042108
10.1016/j.ins.2020.02.067
10.1109/ICCV.2015.123
10.1108/CW-07-2014-0027
10.14743/apem2018.2.281
10.1109/ICCV.2017.593
10.1109/JSEN.2016.2625815
10.1109/CVPR42600.2020.01079
10.1109/TPAMI.2015.2389824
10.1109/CVPR.2018.00745
10.3390/app8091575
10.1109/TPAMI.2016.2587642
10.1109/TIA.1982.4504068
10.1016/S0143-8166(00)00072-5
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.rcim.2022.102470
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
ExternalDocumentID 10_1016_j_rcim_2022_102470
S0736584522001521
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFSI
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
E.L
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PZZ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c300t-f330e07e9dc7bb3b3d4978ff8156e88fbb5eddeae9a1e82aea2d748ccd0f40513
IEDL.DBID .~1
ISSN 0736-5845
IngestDate Tue Jul 01 02:40:47 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
Sun Apr 06 06:53:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Wire and arc additive manufacturing
Online
Defect detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-f330e07e9dc7bb3b3d4978ff8156e88fbb5eddeae9a1e82aea2d748ccd0f40513
ORCID 0000-0002-1904-9774
0000-0002-5428-258X
0000-0003-0108-3752
ParticipantIDs crossref_citationtrail_10_1016_j_rcim_2022_102470
crossref_primary_10_1016_j_rcim_2022_102470
elsevier_sciencedirect_doi_10_1016_j_rcim_2022_102470
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Robotics and computer-integrated manufacturing
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Redmon, Farhadi (b52) 2018
Tao, Zhang, Ma, Liu, Xu (b46) 2018; 8
Li, Zhang, Dai, Huang, Wang (b5) 2019
S. Ren, K. He, R. Girshick, J. Sun, Faster r-CNN: Towards real-time object detection with region proposal networks, in: Advances in Neural Information Processing Systems, 2015, pp. 91–99.
Zheng, Wang, Liu, Li, Ye, Ren (b59) 2019
Cunningham, Flynn, Shokrani, Dhokia, Newman (b2) 2018; 22
Cen, Zhao, Cen, Cui, Miao, Wei (b21) 2015; 149
Li, Su, Geng, Yin (b17) 2018; 51
Li, Wang, Ding, Tang, Chen, Dai, Wang, Song, Zhang (b10) 2020; 36
Wang, Zhao, Zhou, Hao (b34) 2016
Lin, Lin, Chen, Hsu (b47) 2018
Wanjara, Brochu, Jahazi (b7) 2007; 28
Mahmoudi, Ezzat, Elwany (b39) 2019; 141
J. Redmon, A. Farhadi, YOLO9000: Better, faster, stronger, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7263–7271.
Tan, Le (b42) 2019
Bai, Fang, Lin, Wang, Ju (b23) 2014; 10
Misra (b61) 2019
Susan, Sharma (b22) 2017; 239
Tastimur, Yetis, Karaköse, Akin (b27) 2016; 5
Li, Gao, Woo, Tian, Qiu, Gu (b33) 2016; 17
Mak, Peng, Yiu (b29) 2009; 27
Li, Wang, Zhao, Dai, Huang, Zhang, Chen, Song, Zhang (b11) 2021; 46
Everton, Dickens, Tuck, Dutton (b19) 2015; Vol. 9353
Wu, Pan, Ding, Cuiuri, Li, Xu, Norrish (b1) 2018; 35
Loshchilov, Hutter (b58) 2016
A. Diba, V. Sharma, A. Pazandeh, H. Pirsiavash, L. Van Gool, Weakly supervised cascaded convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 914–922.
Jian, Gao, Ao (b28) 2017; 52
Kalaiselvi, Nagaraja (b30) 2015; 1
Chen, Fang, Lin, Vedantam, Gupta, Dollár, Zitnick (b15) 2015
Ren, Hung, Tan (b20) 2017; 48
He, Zhang, Ren, Sun (b56) 2015; 37
Lee (b13) 1982; IA-18
Huang, Wang, Fu, Yu, Guo, Wang (b50) 2020
M. Tan, R. Pang, Q.V. Le, Efficientdet: Scalable and efficient object detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 10781–10790.
Zhang, Gao, Chen, Zeng (b40) 2019; 30
N. Bodla, B. Singh, R. Chellappa, L.S. Davis, Soft-NMS–improving object detection with one line of code, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5561–5569.
Zhang, Ren, Yang, Wen (b41) 2020; 156
Pandiyan, Murugan, Tjahjowidodo, Caesarendra, Manyar, Then (b49) 2019; 57
Chabot, Laroche, Carcreff, Rauch, Hascoët (b37) 2019
Hu (b25) 2015; 126
Ramachandran, Zoph, Le (b62) 2017
Knezović, Dolšak (b35) 2018; 13
T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2117–2125.
Borwankar, Ludwig (b24) 2018; 67
J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
Lopez, Bacelar, Pires, Santos, Sousa, Quintino (b36) 2018; 21
Ouyang, Zeng, Wang, Qiu, Luo, Tian, Li, Yang, Wang, Li (b44) 2016; 39
Frazier (b3) 2014; 23
K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034.
Joshi, Sheikh (b9) 2015; 10
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (b16) 2016
Win, Bushroa, Hassan, Hilman, Ide-Ektessabi (b31) 2015; 11
Mazumder, Dutta, Kikuchi, Ghosh (b6) 2000; 34
Gibson, Rosen, Stucker (b4) 2014
T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2980–2988.
Nassar, Spurgeon, Reutzel (b18) 2014
Bochkovskiy, Wang, Liao (b14) 2020
Yuan, Wu, Peng (b32) 2015; 349
Vavilov, Pawar (b38) 2015; 44
Sreenathbabu, Karunakaran, Amarnath (b8) 2005
Tsanakas, Chrysostomou, Botsaris, Gasteratos (b26) 2015; 34
Taşdemir, Nohut (b12) 2020
Vavilov (10.1016/j.rcim.2022.102470_b38) 2015; 44
Ramachandran (10.1016/j.rcim.2022.102470_b62) 2017
Bai (10.1016/j.rcim.2022.102470_b23) 2014; 10
Gibson (10.1016/j.rcim.2022.102470_b4) 2014
Chabot (10.1016/j.rcim.2022.102470_b37) 2019
Lin (10.1016/j.rcim.2022.102470_b47) 2018
Chen (10.1016/j.rcim.2022.102470_b15) 2015
Zheng (10.1016/j.rcim.2022.102470_b59) 2019
Tastimur (10.1016/j.rcim.2022.102470_b27) 2016; 5
10.1016/j.rcim.2022.102470_b60
Mazumder (10.1016/j.rcim.2022.102470_b6) 2000; 34
Pandiyan (10.1016/j.rcim.2022.102470_b49) 2019; 57
Tsanakas (10.1016/j.rcim.2022.102470_b26) 2015; 34
Zhang (10.1016/j.rcim.2022.102470_b41) 2020; 156
Win (10.1016/j.rcim.2022.102470_b31) 2015; 11
Cen (10.1016/j.rcim.2022.102470_b21) 2015; 149
Knezović (10.1016/j.rcim.2022.102470_b35) 2018; 13
Misra (10.1016/j.rcim.2022.102470_b61) 2019
Yuan (10.1016/j.rcim.2022.102470_b32) 2015; 349
Wu (10.1016/j.rcim.2022.102470_b1) 2018; 35
Li (10.1016/j.rcim.2022.102470_b10) 2020; 36
Taşdemir (10.1016/j.rcim.2022.102470_b12) 2020
Wang (10.1016/j.rcim.2022.102470_b34) 2016
Lee (10.1016/j.rcim.2022.102470_b13) 1982; IA-18
Mak (10.1016/j.rcim.2022.102470_b29) 2009; 27
Ren (10.1016/j.rcim.2022.102470_b20) 2017; 48
Tao (10.1016/j.rcim.2022.102470_b46) 2018; 8
10.1016/j.rcim.2022.102470_b48
Li (10.1016/j.rcim.2022.102470_b5) 2019
Joshi (10.1016/j.rcim.2022.102470_b9) 2015; 10
10.1016/j.rcim.2022.102470_b43
10.1016/j.rcim.2022.102470_b45
Wanjara (10.1016/j.rcim.2022.102470_b7) 2007; 28
Jian (10.1016/j.rcim.2022.102470_b28) 2017; 52
Li (10.1016/j.rcim.2022.102470_b17) 2018; 51
He (10.1016/j.rcim.2022.102470_b56) 2015; 37
Everton (10.1016/j.rcim.2022.102470_b19) 2015; Vol. 9353
Ouyang (10.1016/j.rcim.2022.102470_b44) 2016; 39
Zhang (10.1016/j.rcim.2022.102470_b40) 2019; 30
Huang (10.1016/j.rcim.2022.102470_b50) 2020
Redmon (10.1016/j.rcim.2022.102470_b52) 2018
Frazier (10.1016/j.rcim.2022.102470_b3) 2014; 23
Susan (10.1016/j.rcim.2022.102470_b22) 2017; 239
Sreenathbabu (10.1016/j.rcim.2022.102470_b8) 2005
Hu (10.1016/j.rcim.2022.102470_b25) 2015; 126
Kalaiselvi (10.1016/j.rcim.2022.102470_b30) 2015; 1
Li (10.1016/j.rcim.2022.102470_b33) 2016; 17
Lopez (10.1016/j.rcim.2022.102470_b36) 2018; 21
Cunningham (10.1016/j.rcim.2022.102470_b2) 2018; 22
Borwankar (10.1016/j.rcim.2022.102470_b24) 2018; 67
10.1016/j.rcim.2022.102470_b51
Li (10.1016/j.rcim.2022.102470_b11) 2021; 46
Liu (10.1016/j.rcim.2022.102470_b16) 2016
10.1016/j.rcim.2022.102470_b53
10.1016/j.rcim.2022.102470_b54
Loshchilov (10.1016/j.rcim.2022.102470_b58) 2016
10.1016/j.rcim.2022.102470_b55
10.1016/j.rcim.2022.102470_b57
Bochkovskiy (10.1016/j.rcim.2022.102470_b14) 2020
Tan (10.1016/j.rcim.2022.102470_b42) 2019
Nassar (10.1016/j.rcim.2022.102470_b18) 2014
Mahmoudi (10.1016/j.rcim.2022.102470_b39) 2019; 141
References_xml – year: 2016
  ident: b34
  article-title: Calculation of flexible printed circuit boards (FPC) global and local defect detection based on computer vision
  publication-title: Circuit World
– volume: 149
  start-page: 1206
  year: 2015
  end-page: 1215
  ident: b21
  article-title: Defect inspection for TFT-LCD images based on the low-rank matrix reconstruction
  publication-title: Neurocomputing
– reference: S. Ren, K. He, R. Girshick, J. Sun, Faster r-CNN: Towards real-time object detection with region proposal networks, in: Advances in Neural Information Processing Systems, 2015, pp. 91–99.
– volume: IA-18
  start-page: 246
  year: 1982
  end-page: 251
  ident: b13
  article-title: The other electrical hazard: Electric arc blast burns
  publication-title: IEEE Trans. Ind. Appl.
– volume: 126
  start-page: 1331
  year: 2015
  end-page: 1340
  ident: b25
  article-title: Automated defect detection in textured surfaces using optimal elliptical Gabor filters
  publication-title: Optik
– volume: 349
  start-page: 472
  year: 2015
  end-page: 484
  ident: b32
  article-title: An improved Otsu method using the weighted object variance for defect detection
  publication-title: Appl. Surf. Sci.
– volume: 28
  start-page: 2278
  year: 2007
  end-page: 2286
  ident: b7
  article-title: Electron beam freeforming of stainless steel using solid wire feed
  publication-title: Mater. Des.
– volume: 239
  start-page: 232
  year: 2017
  end-page: 237
  ident: b22
  article-title: Automatic texture defect detection using Gaussian mixture entropy modeling
  publication-title: Neurocomputing
– volume: 156
  year: 2020
  ident: b41
  article-title: Real-time seam defect identification for Al alloys in robotic arc welding using optical spectroscopy and integrating learning
  publication-title: Measurement
– year: 2018
  ident: b52
  article-title: YOLOv3: An incremental improvement
– reference: K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034.
– volume: 51
  start-page: 76
  year: 2018
  end-page: 81
  ident: b17
  article-title: Real-time detection of steel strip surface defects based on improved yolo detection network
  publication-title: IFAC-PapersOnLine
– volume: 52
  start-page: 348
  year: 2017
  end-page: 358
  ident: b28
  article-title: Automatic surface defect detection for mobile phone screen glass based on machine vision
  publication-title: Appl. Soft Comput.
– year: 2019
  ident: b61
  article-title: Mish: A self regularized non-monotonic neural activation function
– volume: 8
  start-page: 1575
  year: 2018
  ident: b46
  article-title: Automatic metallic surface defect detection and recognition with convolutional neural networks
  publication-title: Appl. Sci.
– volume: 67
  start-page: 690
  year: 2018
  end-page: 697
  ident: b24
  article-title: An optical surface inspection and automatic classification technique using the rotated wavelet transform
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 46
  year: 2021
  ident: b11
  article-title: Effect of path strategy on residual stress and distortion in laser and cold metal transfer hybrid additive manufacturing
  publication-title: Addit. Manuf.
– volume: 27
  start-page: 1585
  year: 2009
  end-page: 1592
  ident: b29
  article-title: Fabric defect detection using morphological filters
  publication-title: Image Vis. Comput.
– volume: Vol. 9353
  year: 2015
  ident: b19
  article-title: Evaluation of laser ultrasonic testing for inspection of metal additive manufacturing
  publication-title: Laser 3D Manufacturing II
– start-page: 21
  year: 2016
  end-page: 37
  ident: b16
  article-title: SSD: Single shot multibox detector
  publication-title: European Conference on Computer Vision
– start-page: 1
  year: 2019
  end-page: 11
  ident: b37
  article-title: Towards defect monitoring for metallic additive manufacturing components using phased array ultrasonic testing
  publication-title: J. Intell. Manuf.
– year: 2015
  ident: b15
  article-title: Microsoft coco captions: Data collection and evaluation server
– reference: M. Tan, R. Pang, Q.V. Le, Efficientdet: Scalable and efficient object detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 10781–10790.
– volume: 10
  start-page: 175
  year: 2015
  end-page: 185
  ident: b9
  article-title: 3D printing in aerospace and its long-term sustainability
  publication-title: Virtual Phys. Prototyp.
– year: 2019
  ident: b42
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
– volume: 36
  year: 2020
  ident: b10
  article-title: Optimization of the geometry for the end lateral extension path strategy to fabricate intersections using laser and cold metal transfer hybrid additive manufacturing
  publication-title: Addit. Manuf.
– volume: 1
  start-page: 77
  year: 2015
  end-page: 85
  ident: b30
  article-title: A rapid automatic brain tumor detection method for MRI images using modified minimum error thresholding technique
  publication-title: Int. J. Imaging Syst. Technol.
– volume: 23
  start-page: 1917
  year: 2014
  end-page: 1928
  ident: b3
  article-title: Metal additive manufacturing: A review
  publication-title: J. Mater. Eng. Perform.
– year: 2014
  ident: b4
  article-title: Additive Manufacturing Technologies, Vol. 17
– year: 2017
  ident: b62
  article-title: Searching for activation functions
– volume: 21
  start-page: 298
  year: 2018
  end-page: 306
  ident: b36
  article-title: Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing
  publication-title: Addit. Manuf.
– volume: 17
  start-page: 412
  year: 2016
  end-page: 421
  ident: b33
  article-title: Quantitative surface crack evaluation based on eddy current pulsed thermography
  publication-title: IEEE Sens. J.
– volume: 35
  start-page: 127
  year: 2018
  end-page: 139
  ident: b1
  article-title: A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement
  publication-title: J. Manuf. Process.
– year: 2020
  ident: b50
  article-title: DC-SPP-YOLO: Dense connection and spatial pyramid pooling based YOLO for object detection
  publication-title: Inform. Sci.
– year: 2016
  ident: b58
  article-title: SGDR: Stochastic gradient descent with restarts. CoRR
– volume: 44
  start-page: 224
  year: 2015
  end-page: 233
  ident: b38
  article-title: A novel approach for one-sided thermal nondestructive testing of composites by using infrared thermography
  publication-title: Polym. Test.
– volume: 11
  start-page: 642
  year: 2015
  end-page: 649
  ident: b31
  article-title: A contrast adjustment thresholding method for surface defect detection based on mesoscopy
  publication-title: IEEE Trans. Ind. Inf.
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: b56
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 57
  start-page: 477
  year: 2019
  end-page: 487
  ident: b49
  article-title: In-process virtual verification of weld seam removal in robotic abrasive belt grinding process using deep learning
  publication-title: Robot. Comput.-Integr. Manuf.
– volume: 13
  start-page: 158
  year: 2018
  end-page: 168
  ident: b35
  article-title: In-process non-destructive ultrasonic testing application during wire plus arc additive manufacturing
  publication-title: Adv. Produc. Eng. Manag.
– reference: T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2980–2988.
– volume: 5
  start-page: 283
  year: 2016
  ident: b27
  article-title: Rail defect detection and classification with real time image processing technique
  publication-title: Int. J. Comput. Sci. Softw. Eng.
– year: 2005
  ident: b8
  article-title: Statistical process design for hybrid adaptive layer manufacturing
  publication-title: Rapid Prototyp. J.
– start-page: 141
  year: 2018
  end-page: 149
  ident: b47
  article-title: Steel surface defects detection based on deep learning
  publication-title: International Conference on Applied Human Factors and Ergonomics
– volume: 48
  start-page: 929
  year: 2017
  end-page: 940
  ident: b20
  article-title: A generic deep-learning-based approach for automated surface inspection
  publication-title: IEEE Trans. Cybern.
– start-page: 278
  year: 2014
  end-page: 287
  ident: b18
  article-title: Sensing defects during directed-energy additive manufacturing of metal parts using optical emissions spectroscopy
  publication-title: Solid Freeform Fabrication Symposium Proceedings
– volume: 10
  start-page: 2135
  year: 2014
  end-page: 2145
  ident: b23
  article-title: Saliency-based defect detection in industrial images by using phase spectrum
  publication-title: IEEE Trans. Ind. Inf.
– reference: J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
– start-page: 1
  year: 2020
  end-page: 18
  ident: b12
  article-title: An overview of wire arc additive manufacturing (WAAM) in shipbuilding industry
  publication-title: Ships Offshore Struct.
– volume: 141
  year: 2019
  ident: b39
  article-title: Layerwise anomaly detection in laser powder-bed fusion metal additive manufacturing
  publication-title: J. Manuf. Sci. Eng.
– reference: A. Diba, V. Sharma, A. Pazandeh, H. Pirsiavash, L. Van Gool, Weakly supervised cascaded convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 914–922.
– reference: N. Bodla, B. Singh, R. Chellappa, L.S. Davis, Soft-NMS–improving object detection with one line of code, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5561–5569.
– volume: 30
  year: 2019
  ident: b40
  article-title: Spectral diagnosis of wire arc additive manufacturing of Al alloys
  publication-title: Addit. Manuf.
– year: 2020
  ident: b14
  article-title: YOLOv4: Optimal speed and accuracy of object detection
– volume: 39
  start-page: 1320
  year: 2016
  end-page: 1334
  ident: b44
  article-title: DeepID-Net: Object detection with deformable part based convolutional neural networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 22
  start-page: 672
  year: 2018
  end-page: 686
  ident: b2
  article-title: Invited review article: Strategies and processes for high quality wire arc additive manufacturing
  publication-title: Addit. Manuf.
– year: 2019
  ident: b5
  article-title: End lateral extension path strategy for intersection in wire and arc additive manufactured 2319 aluminum alloy
  publication-title: Rapid Prototyp. J.
– year: 2019
  ident: b59
  article-title: Distance-IoU loss: Faster and better learning for bounding box regression
– reference: J. Redmon, A. Farhadi, YOLO9000: Better, faster, stronger, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7263–7271.
– reference: T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2117–2125.
– volume: 34
  start-page: 397
  year: 2000
  end-page: 414
  ident: b6
  article-title: Closed loop direct metal deposition: Art to part
  publication-title: Opt. Lasers Eng.
– volume: 34
  start-page: 351
  year: 2015
  end-page: 372
  ident: b26
  article-title: Fault diagnosis of photovoltaic modules through image processing and canny edge detection on field thermographic measurements
  publication-title: Int. J. Sustain. Energy
– ident: 10.1016/j.rcim.2022.102470_b51
  doi: 10.1109/CVPR.2017.690
– start-page: 1
  year: 2020
  ident: 10.1016/j.rcim.2022.102470_b12
  article-title: An overview of wire arc additive manufacturing (WAAM) in shipbuilding industry
  publication-title: Ships Offshore Struct.
– volume: 156
  year: 2020
  ident: 10.1016/j.rcim.2022.102470_b41
  article-title: Real-time seam defect identification for Al alloys in robotic arc welding using optical spectroscopy and integrating learning
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107546
– volume: 51
  start-page: 76
  year: 2018
  ident: 10.1016/j.rcim.2022.102470_b17
  article-title: Real-time detection of steel strip surface defects based on improved yolo detection network
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.09.412
– start-page: 1
  year: 2019
  ident: 10.1016/j.rcim.2022.102470_b37
  article-title: Towards defect monitoring for metallic additive manufacturing components using phased array ultrasonic testing
  publication-title: J. Intell. Manuf.
– year: 2015
  ident: 10.1016/j.rcim.2022.102470_b15
– volume: 149
  start-page: 1206
  year: 2015
  ident: 10.1016/j.rcim.2022.102470_b21
  article-title: Defect inspection for TFT-LCD images based on the low-rank matrix reconstruction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.007
– volume: 30
  year: 2019
  ident: 10.1016/j.rcim.2022.102470_b40
  article-title: Spectral diagnosis of wire arc additive manufacturing of Al alloys
  publication-title: Addit. Manuf.
– year: 2016
  ident: 10.1016/j.rcim.2022.102470_b58
– year: 2005
  ident: 10.1016/j.rcim.2022.102470_b8
  article-title: Statistical process design for hybrid adaptive layer manufacturing
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552540510612929
– volume: 48
  start-page: 929
  year: 2017
  ident: 10.1016/j.rcim.2022.102470_b20
  article-title: A generic deep-learning-based approach for automated surface inspection
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2668395
– volume: 239
  start-page: 232
  year: 2017
  ident: 10.1016/j.rcim.2022.102470_b22
  article-title: Automatic texture defect detection using Gaussian mixture entropy modeling
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.021
– ident: 10.1016/j.rcim.2022.102470_b60
  doi: 10.1109/ICCV.2017.324
– volume: 10
  start-page: 2135
  year: 2014
  ident: 10.1016/j.rcim.2022.102470_b23
  article-title: Saliency-based defect detection in industrial images by using phase spectrum
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2014.2359416
– year: 2018
  ident: 10.1016/j.rcim.2022.102470_b52
– volume: 35
  start-page: 127
  year: 2018
  ident: 10.1016/j.rcim.2022.102470_b1
  article-title: A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2018.08.001
– start-page: 21
  year: 2016
  ident: 10.1016/j.rcim.2022.102470_b16
  article-title: SSD: Single shot multibox detector
– volume: 126
  start-page: 1331
  year: 2015
  ident: 10.1016/j.rcim.2022.102470_b25
  article-title: Automated defect detection in textured surfaces using optimal elliptical Gabor filters
  publication-title: Optik
  doi: 10.1016/j.ijleo.2015.04.017
– volume: 52
  start-page: 348
  year: 2017
  ident: 10.1016/j.rcim.2022.102470_b28
  article-title: Automatic surface defect detection for mobile phone screen glass based on machine vision
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.10.030
– volume: 349
  start-page: 472
  year: 2015
  ident: 10.1016/j.rcim.2022.102470_b32
  article-title: An improved Otsu method using the weighted object variance for defect detection
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.05.033
– volume: 34
  start-page: 351
  year: 2015
  ident: 10.1016/j.rcim.2022.102470_b26
  article-title: Fault diagnosis of photovoltaic modules through image processing and canny edge detection on field thermographic measurements
  publication-title: Int. J. Sustain. Energy
  doi: 10.1080/14786451.2013.826223
– volume: 27
  start-page: 1585
  year: 2009
  ident: 10.1016/j.rcim.2022.102470_b29
  article-title: Fabric defect detection using morphological filters
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2009.03.007
– volume: 1
  start-page: 77
  year: 2015
  ident: 10.1016/j.rcim.2022.102470_b30
  article-title: A rapid automatic brain tumor detection method for MRI images using modified minimum error thresholding technique
  publication-title: Int. J. Imaging Syst. Technol.
– year: 2020
  ident: 10.1016/j.rcim.2022.102470_b14
– volume: 44
  start-page: 224
  year: 2015
  ident: 10.1016/j.rcim.2022.102470_b38
  article-title: A novel approach for one-sided thermal nondestructive testing of composites by using infrared thermography
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2015.04.013
– year: 2017
  ident: 10.1016/j.rcim.2022.102470_b62
– volume: 10
  start-page: 175
  year: 2015
  ident: 10.1016/j.rcim.2022.102470_b9
  article-title: 3D printing in aerospace and its long-term sustainability
  publication-title: Virtual Phys. Prototyp.
  doi: 10.1080/17452759.2015.1111519
– ident: 10.1016/j.rcim.2022.102470_b54
  doi: 10.1109/CVPR.2017.106
– volume: 23
  start-page: 1917
  year: 2014
  ident: 10.1016/j.rcim.2022.102470_b3
  article-title: Metal additive manufacturing: A review
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-014-0958-z
– year: 2019
  ident: 10.1016/j.rcim.2022.102470_b5
  article-title: End lateral extension path strategy for intersection in wire and arc additive manufactured 2319 aluminum alloy
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-05-2019-0123
– start-page: 278
  year: 2014
  ident: 10.1016/j.rcim.2022.102470_b18
  article-title: Sensing defects during directed-energy additive manufacturing of metal parts using optical emissions spectroscopy
– volume: 28
  start-page: 2278
  year: 2007
  ident: 10.1016/j.rcim.2022.102470_b7
  article-title: Electron beam freeforming of stainless steel using solid wire feed
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2006.08.008
– volume: 46
  year: 2021
  ident: 10.1016/j.rcim.2022.102470_b11
  article-title: Effect of path strategy on residual stress and distortion in laser and cold metal transfer hybrid additive manufacturing
  publication-title: Addit. Manuf.
– volume: 5
  start-page: 283
  year: 2016
  ident: 10.1016/j.rcim.2022.102470_b27
  article-title: Rail defect detection and classification with real time image processing technique
  publication-title: Int. J. Comput. Sci. Softw. Eng.
– volume: 11
  start-page: 642
  year: 2015
  ident: 10.1016/j.rcim.2022.102470_b31
  article-title: A contrast adjustment thresholding method for surface defect detection based on mesoscopy
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2015.2417676
– ident: 10.1016/j.rcim.2022.102470_b45
  doi: 10.1109/CVPR.2017.545
– volume: 57
  start-page: 477
  year: 2019
  ident: 10.1016/j.rcim.2022.102470_b49
  article-title: In-process virtual verification of weld seam removal in robotic abrasive belt grinding process using deep learning
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2019.01.006
– volume: 67
  start-page: 690
  year: 2018
  ident: 10.1016/j.rcim.2022.102470_b24
  article-title: An optical surface inspection and automatic classification technique using the rotated wavelet transform
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2783098
– volume: 141
  year: 2019
  ident: 10.1016/j.rcim.2022.102470_b39
  article-title: Layerwise anomaly detection in laser powder-bed fusion metal additive manufacturing
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4042108
– ident: 10.1016/j.rcim.2022.102470_b48
– volume: 36
  year: 2020
  ident: 10.1016/j.rcim.2022.102470_b10
  article-title: Optimization of the geometry for the end lateral extension path strategy to fabricate intersections using laser and cold metal transfer hybrid additive manufacturing
  publication-title: Addit. Manuf.
– year: 2020
  ident: 10.1016/j.rcim.2022.102470_b50
  article-title: DC-SPP-YOLO: Dense connection and spatial pyramid pooling based YOLO for object detection
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.02.067
– ident: 10.1016/j.rcim.2022.102470_b53
  doi: 10.1109/ICCV.2015.123
– start-page: 141
  year: 2018
  ident: 10.1016/j.rcim.2022.102470_b47
  article-title: Steel surface defects detection based on deep learning
– volume: 22
  start-page: 672
  year: 2018
  ident: 10.1016/j.rcim.2022.102470_b2
  article-title: Invited review article: Strategies and processes for high quality wire arc additive manufacturing
  publication-title: Addit. Manuf.
– volume: Vol. 9353
  year: 2015
  ident: 10.1016/j.rcim.2022.102470_b19
  article-title: Evaluation of laser ultrasonic testing for inspection of metal additive manufacturing
– volume: 21
  start-page: 298
  year: 2018
  ident: 10.1016/j.rcim.2022.102470_b36
  article-title: Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing
  publication-title: Addit. Manuf.
– year: 2014
  ident: 10.1016/j.rcim.2022.102470_b4
– year: 2016
  ident: 10.1016/j.rcim.2022.102470_b34
  article-title: Calculation of flexible printed circuit boards (FPC) global and local defect detection based on computer vision
  publication-title: Circuit World
  doi: 10.1108/CW-07-2014-0027
– volume: 13
  start-page: 158
  year: 2018
  ident: 10.1016/j.rcim.2022.102470_b35
  article-title: In-process non-destructive ultrasonic testing application during wire plus arc additive manufacturing
  publication-title: Adv. Produc. Eng. Manag.
  doi: 10.14743/apem2018.2.281
– ident: 10.1016/j.rcim.2022.102470_b57
  doi: 10.1109/ICCV.2017.593
– volume: 17
  start-page: 412
  year: 2016
  ident: 10.1016/j.rcim.2022.102470_b33
  article-title: Quantitative surface crack evaluation based on eddy current pulsed thermography
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2625815
– ident: 10.1016/j.rcim.2022.102470_b55
  doi: 10.1109/CVPR42600.2020.01079
– volume: 37
  start-page: 1904
  year: 2015
  ident: 10.1016/j.rcim.2022.102470_b56
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: 10.1016/j.rcim.2022.102470_b43
  doi: 10.1109/CVPR.2018.00745
– volume: 8
  start-page: 1575
  year: 2018
  ident: 10.1016/j.rcim.2022.102470_b46
  article-title: Automatic metallic surface defect detection and recognition with convolutional neural networks
  publication-title: Appl. Sci.
  doi: 10.3390/app8091575
– year: 2019
  ident: 10.1016/j.rcim.2022.102470_b59
– year: 2019
  ident: 10.1016/j.rcim.2022.102470_b42
– volume: 39
  start-page: 1320
  year: 2016
  ident: 10.1016/j.rcim.2022.102470_b44
  article-title: DeepID-Net: Object detection with deformable part based convolutional neural networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2587642
– volume: IA-18
  start-page: 246
  year: 1982
  ident: 10.1016/j.rcim.2022.102470_b13
  article-title: The other electrical hazard: Electric arc blast burns
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.1982.4504068
– year: 2019
  ident: 10.1016/j.rcim.2022.102470_b61
– volume: 34
  start-page: 397
  year: 2000
  ident: 10.1016/j.rcim.2022.102470_b6
  article-title: Closed loop direct metal deposition: Art to part
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/S0143-8166(00)00072-5
SSID ssj0002453
Score 2.6542494
Snippet Wire and arc additive manufacturing (WAAM) is an emerging manufacturing technology that is widely used in different manufacturing industries. To achieve fully...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102470
SubjectTerms Deep learning
Defect detection
Online
Wire and arc additive manufacturing
Title Deep learning based online metallic surface defect detection method for wire and arc additive manufacturing
URI https://dx.doi.org/10.1016/j.rcim.2022.102470
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvTgoyrWR9mDN4ndJpsmPZZqqa8iaqG3sI-JRNtYanv1t7uT3WgF6cHTQtiFMJmd-SDffB8hZ6H2pYpDgXraLQ8htSe0uVcMFJM4yGj_mN4PWv0hvxmFowrplrMwSKt0td_W9KJauycNF83GNMsaTyY5sX0aAIGNvxgm5zzCLL_4_KF5-NwqUZrNHu52gzOW4zVTGU6j-z4qGHA0LP6rOS01nN4O2XJIkXbsy-ySCuRVsl26MFB3Katkc0lScI-8XQJMqfOCeKHYpDS1chh0AgZpjzNFPxazVCigGpDMYZZ5QcjKqfWTpgbIUtQwpiLX1NwEiqwjrIt0IvIFzkIUw437ZNi7eu72PWeo4KmAsbmXBgEDFkFbq0jKQAYa_eXSFBVjII5TKUMw5U5AWzQh9gUIX0c8Vkqz1AC7ZnBA1vL3HA4JjVuhH8YmAQxi4SAiiX3fwDfOlGRRGtVIs4xkopzaOJpejJOSVvaaYPQTjH5io18j599nplZrY-XusPxAya-MSUwzWHHu6J_njskGWs1b1s4JWZvPFnBqAMlc1ouMq5P1Tvfx7gHX69v-4AvnnuHg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTsJAFJ0QXKgLH6gRn7NwZypDH7QsDUpQgY2QsGvmcWuqUAmWrd_u3M5UMTEsXJE0M0lzuY-T9NxzCLkKlCtkFHDU0245CKkdrnRdMZBM4CKj-WI6GLZ6Y_9xEkwqpFPuwiCt0vZ-09OLbm2fNGw0G_M0bTzr5MTxqQEEDn5cJt_wdfmijcHN5w_Pw_WNFKU-7eBxuzljSF4LmeI6uuuihIGPjsV_TaeVidPdIzsWKtJb8zb7pAJZjeyWNgzUVmWNbK9oCh6QtzuAObVmEC8Up5SiRg-DzkBD7Wkq6cdykXAJVAGyOfRPXjCyMmoMpalGshRFjCnPFNWlQJF2hI2Rzni2xGWIYrvxkIy796NOz7GOCo70GMudxPMYsBDaSoZCeMJTaDCXJCgZA1GUCBGA7ncc2rwJkcuBuyr0IykVSzSya3pHpJq9Z3BMaNQK3CDSGaAhiw88FDj4NX7zmRQsTMI6aZaRjKWVG0fXi2lc8speY4x-jNGPTfTr5Pr7ztyIbaw9HZR_UPwrZWI9DdbcO_nnvUuy2RsN-nH_Yfh0SrbQd95QeM5INV8s4Vyjk1xcFNn3BRfT4dk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+based+online+metallic+surface+defect+detection+method+for+wire+and+arc+additive+manufacturing&rft.jtitle=Robotics+and+computer-integrated+manufacturing&rft.au=Li%2C+Wenhao&rft.au=Zhang%2C+Haiou&rft.au=Wang%2C+Guilan&rft.au=Xiong%2C+Gang&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=0736-5845&rft.volume=80&rft_id=info:doi/10.1016%2Fj.rcim.2022.102470&rft.externalDocID=S0736584522001521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5845&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5845&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5845&client=summon