HiFuse: Hierarchical multi-scale feature fusion network for medical image classification

Effective fusion of global and local multi-scale features is crucial for medical image classification. Medical images have many noisy, scattered features, intra-class variations, and inter-class similarities. Many studies have shown that global and local features are helpful to reduce noise interfer...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 87; p. 105534
Main Authors Huo, Xiangzuo, Sun, Gang, Tian, Shengwei, Wang, Yan, Yu, Long, Long, Jun, Zhang, Wendong, Li, Aolun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Effective fusion of global and local multi-scale features is crucial for medical image classification. Medical images have many noisy, scattered features, intra-class variations, and inter-class similarities. Many studies have shown that global and local features are helpful to reduce noise interference in medical images. It is difficult to capture the global features of images due to the fixed size of the receptive domain of the convolution kernel. Although the self-attention-based Transformer can model long-range dependencies, it has high computational complexity and lacks local inductive bias. In this paper, we propose a three-branch hierarchical multi-scale feature fusion network structure termed as HiFuse, which can fuse multi-scale global and local features without destroying the respective modeling, thus improving the classification accuracy of various medical images. There are two key characteristics: (i) a parallel hierarchical structure consisting of global and local feature blocks; (ii) an adaptive hierarchical feature fusion block (HFF block) and inverted residual multi-layer perceptron(IRMLP). The advantage of this network structure lies in that the resulting representation is semantically richer and the local features and global representations can be effectively extracted at different semantic scales. Our proposed model’s ACC and F1 values reached 85.85% and 75.32% on the ISIC2018 dataset, 86.12% and 86.13% on the Kvasir dataset, 76.88% and 76.31% on the Covid-19 dataset, 92.31% and 88.81% on the esophageal cancer pathology dataset. The HiFuse model performs the best compared to other advanced models. Our code is open source and available from https://github.com/huoxiangzuo/HiFuse. •Proposed a novel three-branch hierarchical multi-scale feature fusion network structure.•Design of global and local feature blocks with CNN and self-attention, and their fusion by HFF block.•Effective fusion of global and local multi-scale features is crucial for medical image classification.•Validated the performance with four medical image datasets.•This work can contribute to various downstream tasks in medical imagery.
AbstractList Effective fusion of global and local multi-scale features is crucial for medical image classification. Medical images have many noisy, scattered features, intra-class variations, and inter-class similarities. Many studies have shown that global and local features are helpful to reduce noise interference in medical images. It is difficult to capture the global features of images due to the fixed size of the receptive domain of the convolution kernel. Although the self-attention-based Transformer can model long-range dependencies, it has high computational complexity and lacks local inductive bias. In this paper, we propose a three-branch hierarchical multi-scale feature fusion network structure termed as HiFuse, which can fuse multi-scale global and local features without destroying the respective modeling, thus improving the classification accuracy of various medical images. There are two key characteristics: (i) a parallel hierarchical structure consisting of global and local feature blocks; (ii) an adaptive hierarchical feature fusion block (HFF block) and inverted residual multi-layer perceptron(IRMLP). The advantage of this network structure lies in that the resulting representation is semantically richer and the local features and global representations can be effectively extracted at different semantic scales. Our proposed model’s ACC and F1 values reached 85.85% and 75.32% on the ISIC2018 dataset, 86.12% and 86.13% on the Kvasir dataset, 76.88% and 76.31% on the Covid-19 dataset, 92.31% and 88.81% on the esophageal cancer pathology dataset. The HiFuse model performs the best compared to other advanced models. Our code is open source and available from https://github.com/huoxiangzuo/HiFuse. •Proposed a novel three-branch hierarchical multi-scale feature fusion network structure.•Design of global and local feature blocks with CNN and self-attention, and their fusion by HFF block.•Effective fusion of global and local multi-scale features is crucial for medical image classification.•Validated the performance with four medical image datasets.•This work can contribute to various downstream tasks in medical imagery.
ArticleNumber 105534
Author Yu, Long
Sun, Gang
Zhang, Wendong
Li, Aolun
Huo, Xiangzuo
Long, Jun
Tian, Shengwei
Wang, Yan
Author_xml – sequence: 1
  givenname: Xiangzuo
  orcidid: 0000-0001-5691-4432
  surname: Huo
  fullname: Huo, Xiangzuo
  email: huoxiangzuo@163.com
  organization: School of Information Science and Engineering, Xinjiang University, Urumqi, 830000, Xinjiang, China
– sequence: 2
  givenname: Gang
  surname: Sun
  fullname: Sun, Gang
  email: sung853219@163.com
  organization: Department of Breast and Thyroid Surgery, The Affiliated Tumour Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
– sequence: 3
  givenname: Shengwei
  orcidid: 0000-0003-3525-5102
  surname: Tian
  fullname: Tian, Shengwei
  email: tianshengwei@163.com
  organization: School of Information Science and Engineering, Xinjiang University, Urumqi, 830000, Xinjiang, China
– sequence: 4
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  email: xjwangyan2012@163.com
  organization: Department of Breast and Thyroid Surgery, The Affiliated Tumour Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
– sequence: 5
  givenname: Long
  surname: Yu
  fullname: Yu, Long
  organization: School of Information Science and Engineering, Xinjiang University, Urumqi, 830000, Xinjiang, China
– sequence: 6
  givenname: Jun
  surname: Long
  fullname: Long, Jun
  organization: Big Data Institute, Central South University, Changsha, 410083, Hunan, China
– sequence: 7
  givenname: Wendong
  surname: Zhang
  fullname: Zhang, Wendong
  organization: School of Information Science and Engineering, Xinjiang University, Urumqi, 830000, Xinjiang, China
– sequence: 8
  givenname: Aolun
  orcidid: 0000-0003-4439-4331
  surname: Li
  fullname: Li, Aolun
  organization: School of Information Science and Engineering, Xinjiang University, Urumqi, 830000, Xinjiang, China
BookMark eNp9kMFOwzAMhiM0JLbBC3DqC3TYbdZmiAuaGEOaxAUkblGaOpDRtVOSgnj7ZRtcOOxky_o_y_5GbNB2LTF2jTBBwOJmPan8Vk8yyPI4mE5zfsaGWPIiFQhi8NfDjF-wkfdrAC5K5EP2trSL3tNtsrTklNMfVqsm2fRNsKmPLSWGVOhdrL23XZu0FL4795mYziUbqg9xu1HvlOhGeW9NnIQYvGTnRjWern7rmL0uHl7my3T1_Pg0v1-lOgcIqcnKWhkwGZ9W2tRFVSFiTgBCGF4VRFrUyBWKepYDhxx1huUMCLEgNJTlY5Yd92rXee_IyK2L97gfiSD3buRa7t3IvRt5dBMh8Q_SNhzODk7Z5jR6d0QpPvUVpUmvLbU6qnCkg6w7ewrfAQ8lguQ
CitedBy_id crossref_primary_10_1016_j_ins_2024_120715
crossref_primary_10_1371_journal_pone_0301441
crossref_primary_10_1016_j_eswa_2024_123334
crossref_primary_10_1109_ACCESS_2025_3531001
crossref_primary_10_1016_j_bspc_2025_107702
crossref_primary_10_1007_s00429_024_02889_y
crossref_primary_10_1016_j_procs_2024_09_388
crossref_primary_10_1007_s11042_024_19837_x
crossref_primary_10_32604_cmc_2024_052060
crossref_primary_10_1007_s10278_025_01466_x
crossref_primary_10_3390_app14188446
crossref_primary_10_3390_rs16193562
crossref_primary_10_1088_2057_1976_ad9f68
crossref_primary_10_1109_JAS_2023_124167
crossref_primary_10_1109_TMI_2024_3436080
crossref_primary_10_2174_0118749445335423240808062700
crossref_primary_10_1016_j_cmpb_2023_107958
crossref_primary_10_1016_j_engappai_2024_109469
crossref_primary_10_1016_j_jrras_2024_101210
crossref_primary_10_1016_j_neucom_2024_128749
crossref_primary_10_1186_s12880_024_01486_z
crossref_primary_10_1038_s41598_025_93143_w
crossref_primary_10_3390_app14104278
crossref_primary_10_1016_j_engappai_2024_108386
crossref_primary_10_1109_TMI_2024_3381994
crossref_primary_10_1016_j_media_2025_103515
crossref_primary_10_1016_j_bspc_2025_107727
crossref_primary_10_1109_TIM_2024_3406810
crossref_primary_10_26599_BDMA_2024_9020057
crossref_primary_10_1007_s11042_024_18848_y
crossref_primary_10_1016_j_patcog_2025_111371
crossref_primary_10_1088_2057_1976_adb494
crossref_primary_10_1007_s11042_024_18985_4
crossref_primary_10_1007_s12530_024_09647_9
crossref_primary_10_1007_s10489_025_06408_2
crossref_primary_10_1016_j_eswa_2025_127145
crossref_primary_10_1016_j_inffus_2025_102937
crossref_primary_10_1109_TFUZZ_2024_3410929
crossref_primary_10_1016_j_compbiomed_2024_108202
crossref_primary_10_1002_ima_23202
crossref_primary_10_1038_s41598_024_84949_1
crossref_primary_10_3390_s24237710
crossref_primary_10_1007_s12539_025_00693_8
crossref_primary_10_1109_ACCESS_2024_3460830
crossref_primary_10_1016_j_neunet_2025_107209
crossref_primary_10_1088_1361_6560_ad869f
crossref_primary_10_3390_rs16132323
crossref_primary_10_1007_s40747_024_01708_5
crossref_primary_10_3390_app142411611
crossref_primary_10_3390_electronics13245002
crossref_primary_10_4236_jcc_2024_122011
crossref_primary_10_1109_ACCESS_2024_3433374
crossref_primary_10_1109_ACCESS_2024_3397197
crossref_primary_10_1016_j_neucom_2024_129182
crossref_primary_10_1038_s41598_025_90440_2
crossref_primary_10_32604_cmc_2024_058647
crossref_primary_10_1007_s40998_024_00788_w
crossref_primary_10_1016_j_eswa_2024_125964
crossref_primary_10_1063_5_0242894
crossref_primary_10_1016_j_jrras_2025_101332
crossref_primary_10_32604_cmc_2024_050767
crossref_primary_10_1007_s10489_024_05900_5
crossref_primary_10_1109_TGRS_2024_3369083
crossref_primary_10_1016_j_cmpb_2024_108112
crossref_primary_10_1109_TMI_2024_3459910
crossref_primary_10_1002_jbio_202400233
crossref_primary_10_1016_j_asoc_2024_112500
crossref_primary_10_3390_app14072900
crossref_primary_10_1007_s11760_024_03477_7
crossref_primary_10_1016_j_advengsoft_2024_103719
crossref_primary_10_1109_ACCESS_2025_3538504
crossref_primary_10_1007_s00371_025_03837_5
Cites_doi 10.1109/TMI.2013.2241448
10.1109/CVPR52688.2022.01167
10.1109/TIP.2006.888348
10.1109/CVPR.2018.00745
10.1109/ICCV48922.2021.00465
10.1109/ICCV.2017.89
10.1145/3083187.3083212
10.1038/nature22985
10.1109/ICCV48922.2021.00986
10.1016/j.patcog.2016.05.029
10.1109/CVPR46437.2021.00681
10.1109/ICCV48922.2021.00042
10.1016/j.compbiomed.2023.107038
10.1109/CVPR.2016.90
10.1109/JPROC.2021.3054390
10.3390/rs13030498
10.1016/j.patcog.2022.108827
10.1109/ICCV48922.2021.00060
10.1109/JSTARS.2021.3119654
10.1109/CVPR.2017.195
10.1109/CVPR52688.2022.01186
10.3390/drones7050287
10.1109/TPAMI.2022.3152247
10.1145/3505244
10.3390/info8030091
10.1109/CVPR52729.2023.00995
10.1109/ICCV.2017.74
10.3390/ijerph18063056
10.1109/CVPR46437.2021.01212
10.1109/ICCV48922.2021.00061
10.1109/JBHI.2016.2635663
10.1016/j.cmpb.2022.106924
10.1103/PhysRevA.34.4217
10.1109/TMI.2016.2529665
10.3390/s22114061
10.1007/978-3-030-01234-2_1
10.1109/CVPR.2017.667
10.1109/CVPR.2017.634
10.1016/j.media.2021.102313
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2023.105534
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2023_105534
S1746809423009679
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-f27daf0f245bcfd6bb1113e0088f4b6eec8d14a18d9304031c21790e116e1fe23
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 22:58:59 EDT 2025
Tue Jul 01 01:34:20 EDT 2025
Fri Feb 23 02:33:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Feature fusion
Hybrid network
Medical image classification
Swin-Transformer
Multi-scale feature
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-f27daf0f245bcfd6bb1113e0088f4b6eec8d14a18d9304031c21790e116e1fe23
ORCID 0000-0001-5691-4432
0000-0003-3525-5102
0000-0003-4439-4331
ParticipantIDs crossref_primary_10_1016_j_bspc_2023_105534
crossref_citationtrail_10_1016_j_bspc_2023_105534
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105534
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Beal, Kim, Tzeng, Park, Zhai, Kislyuk (b31) 2020
Baloch, Krim (b19) 2007; 16
Koitka, Friedrich (b1) 2016
H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu, W. Gao, Pre-trained image processing transformer, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 12299–12310.
Khan, Naseer, Hayat, Zamir, Khan, Shah (b26) 2022; 54
Valanarasu, Oza, Hacihaliloglu, Patel (b36) 2021
K. Pogorelov, K.R. Randel, C. Griwodz, S.L. Eskeland, T. de Lange, D. Johansen, C. Spampinato, D.-T. Dang-Nguyen, M. Lux, P.T. Schmidt, et al., Kvasir: A multi-class image dataset for computer aided gastrointestinal disease detection, in: Proceedings of the 8th ACM on Multimedia Systems Conference, 2017, pp. 164–169.
Wang, Chen, Ding, Yu, Zha, Li (b39) 2021
Yang, Li, Dai, Gao (b64) 2022; 35
Personnaz, Guyon, Dreyfus (b5) 1986; 34
Zhu, Su, Lu, Li, Wang, Dai (b30) 2020
S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated residual transformations for deep neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1492–1500.
Song, Cai, Zhou, Feng (b20) 2013; 32
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b8) 2017; 30
J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, Y. Wei, Deformable convolutional networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 764–773.
Carion, Massa, Synnaeve, Usunier, Kirillov, Zagoruyko (b29) 2020
Vahadane, Peng, Sethi, Albarqouni, Wang, Baust, Steiger, Schlitter, Esposito, Navab (b59) 2016; 35
Zhang, Liu, Hu (b13) 2021
L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F.E. Tay, J. Feng, S. Yan, Tokens-to-token vit: Training vision transformers from scratch on imagenet, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 558–567.
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly (b9) 2020
Cheng, Tian, Yu, Gao, Kang, Ma, Wu, Liu, Lu (b23) 2022; 76
Han, Wang, Chen, Chen, Guo, Liu, Tang, Xiao, Xu, Xu (b24) 2022; 45
H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, H. Jegou, Training data-efficient image transformers I& amp; distillation through attention, in: International Conference on Machine Learning, Vol. 139, 2021, pp. 10347–10357.
Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, S. Xie, A convnet for the 2020s, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11976–11986.
Chen, Li, Wang, Li, Rahaman, Sun, Hu, Li, Liu, Sun (b40) 2022; 130
Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–10022.
J. Guo, K. Han, H. Wu, Y. Tang, X. Chen, Y. Wang, C. Xu, Cmt: Convolutional neural networks meet vision transformers, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 12175–12185.
Wu, Xu, Dai, Wan, Zhang, Yan, Tomizuka, Gonzalez, Keutzer, Vajda (b27) 2020
Shen, Zhou, Yang, Yu, Dong, Yang, Zang, Tian (b3) 2017; 61
Codella, Rotemberg, Tschandl, Celebi, Dusza, Gutman, Helba, Kalloo, Liopyris, Marchetti (b56) 2019
Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (b4) 2017; 546
F. Chollet, Xception: Deep learning with depthwise separable convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1251–1258.
Zhou, Greenspan, Davatzikos, Duncan, Van Ginneken, Madabhushi, Prince, Rueckert, Summers (b69) 2021; 109
Fu, Zhang, He, Cao, Guo, Wang (b12) 2022
Mnih, Heess, Graves (b49) 2014; 27
Jamil, Jalil Piran, Kwon (b25) 2023; 7
Irfan, Iftikhar, Yasin, Draz, Ali, Hussain, Bukhari, Alwadie, Rahman, Glowacz (b21) 2021; 18
L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, T.-S. Chua, Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 5659–5667.
Guo, Xu, Liu, Liu, Jiang, Mu, Zhang, Martin, Cheng, Hu (b52) 2022
He, Chen, Lin (b37) 2021; 13
Tolstikhin, Houlsby, Kolesnikov, Beyer, Zhai, Unterthiner, Yung, Steiner, Keysers, Uszkoreit (b62) 2021; 34
Yuan, Fu, Huang, Lin, Zhang, Chen, Wang (b55) 2021; 34
He, Yang, Zhang, Zhao, Zhang, Xing, Xie (b58) 2020
Xu, Zhang, Zhang, Tao (b11) 2021; 34
MM.C.V. Contributors (b60) 2018
J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (b43) 2017
Xu, Mo, Feng, Zhong, Lai, Eric, Chang (b2) 2014
Simonyan, Zisserman (b61) 2014
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Ba, Kiros, Hinton (b42) 2016
Z. Peng, W. Huang, S. Gu, L. Xie, Y. Wang, J. Jiao, Q. Ye, Conformer: Local features coupling global representations for visual recognition, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 367–376.
S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng, T. Xiang, P.H. Torr, et al., Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 6881–6890.
Wang, Tian, Yu, Zhou, Wang, Wang (b41) 2023; 161
Li, Wang, Zhang, Gao, Song, Liu, Li, Qiao (b65) 2023
L. Zhu, X. Wang, Z. Ke, W. Zhang, R.W. Lau, BiFormer: Vision Transformer with Bi-Level Routing Attention, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 10323–10333.
Z. Wan, J. Zhang, D. Chen, J. Liao, High-fidelity pluralistic image completion with transformers, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 4692–4701.
Yu, Lin, Meng, Wei, Guo, Zhao (b7) 2017; 8
Gao, Liu, Yang, Chen, Wan, Xiao, Qian (b33) 2021; 14
Jiang, Chang, Wang (b38) 2021; 34
Almalki, Qayyum, Irfan, Haider, Glowacz, Alshehri, Alduraibi, Alshamrani, Alkhalik Basha, Alduraibi (b22) 2021
Touvron, Cord, Douze, Massa, Sablayrolles, Jégou (b28) 2021
Kumar, Kim, Lyndon, Fulham, Feng (b6) 2016; 21
Yan, Ren, Li, Rao, Lv, Zheng, Zhang (b46) 2022; 22
S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19.
Yang, Li, Zhang, Dai, Xiao, Yuan, Gao (b53) 2021
W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, L. Shao, Pyramid vision transformer: A versatile backbone for dense prediction without convolutions, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 568–578.
R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: Visual explanations from deep networks via gradient-based localization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618–626.
Min, Zhao, Luo, Cho (b63) 2022; 35
Chen (10.1016/j.bspc.2023.105534_b40) 2022; 130
Zhu (10.1016/j.bspc.2023.105534_b30) 2020
Dosovitskiy (10.1016/j.bspc.2023.105534_b9) 2020
Koitka (10.1016/j.bspc.2023.105534_b1) 2016
Wang (10.1016/j.bspc.2023.105534_b39) 2021
10.1016/j.bspc.2023.105534_b48
Yang (10.1016/j.bspc.2023.105534_b64) 2022; 35
Personnaz (10.1016/j.bspc.2023.105534_b5) 1986; 34
Fu (10.1016/j.bspc.2023.105534_b12) 2022
10.1016/j.bspc.2023.105534_b44
10.1016/j.bspc.2023.105534_b45
Xu (10.1016/j.bspc.2023.105534_b11) 2021; 34
10.1016/j.bspc.2023.105534_b47
Han (10.1016/j.bspc.2023.105534_b24) 2022; 45
Min (10.1016/j.bspc.2023.105534_b63) 2022; 35
Zhou (10.1016/j.bspc.2023.105534_b69) 2021; 109
Ba (10.1016/j.bspc.2023.105534_b42) 2016
Mnih (10.1016/j.bspc.2023.105534_b49) 2014; 27
Irfan (10.1016/j.bspc.2023.105534_b21) 2021; 18
Yan (10.1016/j.bspc.2023.105534_b46) 2022; 22
Baloch (10.1016/j.bspc.2023.105534_b19) 2007; 16
Kumar (10.1016/j.bspc.2023.105534_b6) 2016; 21
Beal (10.1016/j.bspc.2023.105534_b31) 2020
Xu (10.1016/j.bspc.2023.105534_b2) 2014
Yuan (10.1016/j.bspc.2023.105534_b55) 2021; 34
Vahadane (10.1016/j.bspc.2023.105534_b59) 2016; 35
10.1016/j.bspc.2023.105534_b15
Touvron (10.1016/j.bspc.2023.105534_b28) 2021
10.1016/j.bspc.2023.105534_b16
10.1016/j.bspc.2023.105534_b17
10.1016/j.bspc.2023.105534_b18
10.1016/j.bspc.2023.105534_b57
10.1016/j.bspc.2023.105534_b14
Gao (10.1016/j.bspc.2023.105534_b33) 2021; 14
10.1016/j.bspc.2023.105534_b51
Jiang (10.1016/j.bspc.2023.105534_b38) 2021; 34
Jamil (10.1016/j.bspc.2023.105534_b25) 2023; 7
10.1016/j.bspc.2023.105534_b10
10.1016/j.bspc.2023.105534_b54
10.1016/j.bspc.2023.105534_b50
Shen (10.1016/j.bspc.2023.105534_b3) 2017; 61
MM.C.V. Contributors (10.1016/j.bspc.2023.105534_b60) 2018
Cheng (10.1016/j.bspc.2023.105534_b23) 2022; 76
Vaswani (10.1016/j.bspc.2023.105534_b8) 2017; 30
Tolstikhin (10.1016/j.bspc.2023.105534_b62) 2021; 34
Wang (10.1016/j.bspc.2023.105534_b41) 2023; 161
He (10.1016/j.bspc.2023.105534_b58) 2020
10.1016/j.bspc.2023.105534_b66
Khan (10.1016/j.bspc.2023.105534_b26) 2022; 54
10.1016/j.bspc.2023.105534_b67
10.1016/j.bspc.2023.105534_b68
Wu (10.1016/j.bspc.2023.105534_b27) 2020
Valanarasu (10.1016/j.bspc.2023.105534_b36) 2021
Codella (10.1016/j.bspc.2023.105534_b56) 2019
Li (10.1016/j.bspc.2023.105534_b65) 2023
Zhang (10.1016/j.bspc.2023.105534_b13) 2021
Song (10.1016/j.bspc.2023.105534_b20) 2013; 32
Guo (10.1016/j.bspc.2023.105534_b52) 2022
Esteva (10.1016/j.bspc.2023.105534_b4) 2017; 546
Yang (10.1016/j.bspc.2023.105534_b53) 2021
Almalki (10.1016/j.bspc.2023.105534_b22) 2021
Yu (10.1016/j.bspc.2023.105534_b7) 2017; 8
10.1016/j.bspc.2023.105534_b34
Howard (10.1016/j.bspc.2023.105534_b43) 2017
10.1016/j.bspc.2023.105534_b35
10.1016/j.bspc.2023.105534_b32
He (10.1016/j.bspc.2023.105534_b37) 2021; 13
Simonyan (10.1016/j.bspc.2023.105534_b61) 2014
Carion (10.1016/j.bspc.2023.105534_b29) 2020
References_xml – volume: 21
  start-page: 31
  year: 2016
  end-page: 40
  ident: b6
  article-title: An ensemble of fine-tuned convolutional neural networks for medical image classification
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 34
  start-page: 4217
  year: 1986
  ident: b5
  article-title: Collective computational properties of neural networks: New learning mechanisms
  publication-title: Phys. Rev. A
– reference: R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: Visual explanations from deep networks via gradient-based localization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618–626.
– volume: 54
  start-page: 1
  year: 2022
  end-page: 41
  ident: b26
  article-title: Transformers in vision: A survey
  publication-title: ACM Comput. Surv.
– year: 2020
  ident: b58
  article-title: Sample-Efficient Deep Learning for COVID-19 Diagnosis Based on CT Scans
– reference: F. Chollet, Xception: Deep learning with depthwise separable convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1251–1258.
– volume: 18
  start-page: 3056
  year: 2021
  ident: b21
  article-title: Role of hybrid deep neural networks (HDNNs), computed tomography, and chest X-rays for the detection of COVID-19
  publication-title: Int. J. Environ. Res. Public Health
– volume: 35
  start-page: 32097
  year: 2022
  end-page: 32111
  ident: b63
  article-title: Peripheral vision transformer
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2017
  ident: b43
  article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications
– volume: 14
  start-page: 10990
  year: 2021
  end-page: 11003
  ident: b33
  article-title: STransFuse: Fusing swin transformer and convolutional neural network for remote sensing image semantic segmentation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 109
  start-page: 820
  year: 2021
  end-page: 838
  ident: b69
  article-title: A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises
  publication-title: Proc. IEEE
– reference: L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, T.-S. Chua, Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 5659–5667.
– volume: 7
  start-page: 287
  year: 2023
  ident: b25
  article-title: A comprehensive survey of transformers for computer vision
  publication-title: Drones
– reference: L. Zhu, X. Wang, Z. Ke, W. Zhang, R.W. Lau, BiFormer: Vision Transformer with Bi-Level Routing Attention, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 10323–10333.
– reference: J. Guo, K. Han, H. Wu, Y. Tang, X. Chen, Y. Wang, C. Xu, Cmt: Convolutional neural networks meet vision transformers, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 12175–12185.
– start-page: 36
  year: 2021
  end-page: 46
  ident: b36
  article-title: Medical transformer: Gated axial-attention for medical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 34
  start-page: 28522
  year: 2021
  end-page: 28535
  ident: b11
  article-title: Vitae: Vision transformer advanced by exploring intrinsic inductive bias
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 45
  start-page: 87
  year: 2022
  end-page: 110
  ident: b24
  article-title: A survey on vision transformer
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2018
  ident: b60
  article-title: MMCV: OpenMMLab computer vision foundation
– volume: 546
  start-page: 686
  year: 2017
  ident: b4
  article-title: Correction: Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 130
  year: 2022
  ident: b40
  article-title: GasHis-transformer: A multi-scale visual transformer approach for gastric histopathological image detection
  publication-title: Pattern Recognit.
– volume: 35
  start-page: 4203
  year: 2022
  end-page: 4217
  ident: b64
  article-title: Focal modulation networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 35
  start-page: 1962
  year: 2016
  end-page: 1971
  ident: b59
  article-title: Structure-preserving color normalization and sparse stain separation for histological images
  publication-title: IEEE Trans. Med. Imaging
– reference: Z. Wan, J. Zhang, D. Chen, J. Liao, High-fidelity pluralistic image completion with transformers, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 4692–4701.
– year: 2023
  ident: b65
  article-title: Uniformer: Unifying convolution and self-attention for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 16
  start-page: 317
  year: 2007
  end-page: 328
  ident: b19
  article-title: Flexible skew-symmetric shape model for shape representation, classification, and sampling
  publication-title: IEEE Trans. Image Process.
– volume: 34
  start-page: 24261
  year: 2021
  end-page: 24272
  ident: b62
  article-title: Mlp-mixer: An all-mlp architecture for vision
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2019
  ident: b56
  article-title: Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic)
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– reference: L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F.E. Tay, J. Feng, S. Yan, Tokens-to-token vit: Training vision transformers from scratch on imagenet, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 558–567.
– start-page: 14
  year: 2021
  end-page: 24
  ident: b13
  article-title: Transfuse: Fusing transformers and cnns for medical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu, W. Gao, Pre-trained image processing transformer, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 12299–12310.
– year: 2021
  ident: b53
  article-title: Focal self-attention for local-global interactions in vision transformers
– start-page: 109
  year: 2021
  end-page: 119
  ident: b39
  article-title: Transbts: Multimodal brain tumor segmentation using transformer
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2014
  ident: b61
  article-title: Very deep convolutional networks for large-scale image recognition
– reference: W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, L. Shao, Pyramid vision transformer: A versatile backbone for dense prediction without convolutions, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 568–578.
– volume: 27
  year: 2014
  ident: b49
  article-title: Recurrent models of visual attention
  publication-title: Advances in neural information processing systems
– volume: 34
  start-page: 7281
  year: 2021
  end-page: 7293
  ident: b55
  article-title: Hrformer: High-resolution vision transformer for dense predict
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, S. Xie, A convnet for the 2020s, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11976–11986.
– reference: J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
– reference: K. Pogorelov, K.R. Randel, C. Griwodz, S.L. Eskeland, T. de Lange, D. Johansen, C. Spampinato, D.-T. Dang-Nguyen, M. Lux, P.T. Schmidt, et al., Kvasir: A multi-class image dataset for computer aided gastrointestinal disease detection, in: Proceedings of the 8th ACM on Multimedia Systems Conference, 2017, pp. 164–169.
– volume: 22
  start-page: 4061
  year: 2022
  ident: b46
  article-title: Nuclei-guided network for breast cancer grading in he-stained pathological images
  publication-title: Sensors
– start-page: 213
  year: 2020
  end-page: 229
  ident: b29
  article-title: End-to-end object detection with transformers
  publication-title: European Conference on Computer Vision
– year: 2016
  ident: b42
  article-title: Layer normalization
– reference: H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, H. Jegou, Training data-efficient image transformers I& amp; distillation through attention, in: International Conference on Machine Learning, Vol. 139, 2021, pp. 10347–10357.
– start-page: 304
  year: 2016
  end-page: 317
  ident: b1
  article-title: Traditional feature engineering and deep learning approaches at medical classification task of imageclef 2016
  publication-title: CLEF (Working Notes)
– year: 2022
  ident: b12
  article-title: StoHisNet: A hybrid multi-classification model with CNN and transformer for gastric pathology images
  publication-title: Comput. Methods Programs Biomed.
– start-page: 1626
  year: 2014
  end-page: 1630
  ident: b2
  article-title: Deep learning of feature representation with multiple instance learning for medical image analysis
  publication-title: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
– reference: S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19.
– start-page: 522
  year: 2021
  ident: b22
  article-title: A novel method for COVID-19 diagnosis using artificial intelligence in chest X-ray images
  publication-title: Healthcare, Vol. 9, No. 5
– volume: 161
  year: 2023
  ident: b41
  article-title: HIGF-Net: Hierarchical information-guided fusion network for polyp segmentation based on transformer and convolution feature learning
  publication-title: Comput. Biol. Med.
– start-page: 10347
  year: 2021
  end-page: 10357
  ident: b28
  article-title: Training data-efficient image transformers & distillation through attention
  publication-title: International Conference on Machine Learning
– volume: 13
  start-page: 498
  year: 2021
  ident: b37
  article-title: Spatial-spectral transformer for hyperspectral image classification
  publication-title: Remote Sens.
– volume: 32
  start-page: 797
  year: 2013
  end-page: 808
  ident: b20
  article-title: Feature-based image patch approximation for lung tissue classification
  publication-title: IEEE Trans. Med. Imaging
– year: 2020
  ident: b31
  article-title: Toward transformer-based object detection
– reference: S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng, T. Xiang, P.H. Torr, et al., Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 6881–6890.
– start-page: 1
  year: 2022
  end-page: 38
  ident: b52
  article-title: Attention mechanisms in computer vision: A survey
  publication-title: Comput. Vis. Media
– volume: 8
  start-page: 91
  year: 2017
  ident: b7
  article-title: Deep transfer learning for modality classification of medical images
  publication-title: Information
– volume: 61
  start-page: 663
  year: 2017
  end-page: 673
  ident: b3
  article-title: Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification
  publication-title: Pattern Recognit.
– volume: 30
  year: 2017
  ident: b8
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: b9
  article-title: An image is worth 16 × 16 words: Transformers for image recognition at scale
– volume: 34
  start-page: 14745
  year: 2021
  end-page: 14758
  ident: b38
  article-title: Transgan: Two pure transformers can make one strong gan, and that can scale up
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 76
  year: 2022
  ident: b23
  article-title: ResGANet: Residual group attention network for medical image classification and segmentation
  publication-title: Med. Image Anal.
– reference: J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, Y. Wei, Deformable convolutional networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 764–773.
– reference: S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated residual transformations for deep neural networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1492–1500.
– year: 2020
  ident: b30
  article-title: Deformable detr: Deformable transformers for end-to-end object detection
– reference: Z. Peng, W. Huang, S. Gu, L. Xie, Y. Wang, J. Jiao, Q. Ye, Conformer: Local features coupling global representations for visual recognition, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 367–376.
– year: 2020
  ident: b27
  article-title: Visual transformers: Token-based image representation and processing for computer vision
– reference: Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–10022.
– volume: 32
  start-page: 797
  issue: 4
  year: 2013
  ident: 10.1016/j.bspc.2023.105534_b20
  article-title: Feature-based image patch approximation for lung tissue classification
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2241448
– volume: 27
  year: 2014
  ident: 10.1016/j.bspc.2023.105534_b49
  article-title: Recurrent models of visual attention
  publication-title: Advances in neural information processing systems
– year: 2023
  ident: 10.1016/j.bspc.2023.105534_b65
  article-title: Uniformer: Unifying convolution and self-attention for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 10.1016/j.bspc.2023.105534_b17
  doi: 10.1109/CVPR52688.2022.01167
– volume: 35
  start-page: 4203
  year: 2022
  ident: 10.1016/j.bspc.2023.105534_b64
  article-title: Focal modulation networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 35
  start-page: 32097
  year: 2022
  ident: 10.1016/j.bspc.2023.105534_b63
  article-title: Peripheral vision transformer
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2018
  ident: 10.1016/j.bspc.2023.105534_b60
– volume: 16
  start-page: 317
  issue: 2
  year: 2007
  ident: 10.1016/j.bspc.2023.105534_b19
  article-title: Flexible skew-symmetric shape model for shape representation, classification, and sampling
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.888348
– ident: 10.1016/j.bspc.2023.105534_b47
  doi: 10.1109/CVPR.2018.00745
– ident: 10.1016/j.bspc.2023.105534_b35
  doi: 10.1109/ICCV48922.2021.00465
– start-page: 304
  year: 2016
  ident: 10.1016/j.bspc.2023.105534_b1
  article-title: Traditional feature engineering and deep learning approaches at medical classification task of imageclef 2016
– start-page: 1626
  year: 2014
  ident: 10.1016/j.bspc.2023.105534_b2
  article-title: Deep learning of feature representation with multiple instance learning for medical image analysis
– start-page: 14
  year: 2021
  ident: 10.1016/j.bspc.2023.105534_b13
  article-title: Transfuse: Fusing transformers and cnns for medical image segmentation
– ident: 10.1016/j.bspc.2023.105534_b51
  doi: 10.1109/ICCV.2017.89
– ident: 10.1016/j.bspc.2023.105534_b57
  doi: 10.1145/3083187.3083212
– volume: 546
  start-page: 686
  issue: 7660
  year: 2017
  ident: 10.1016/j.bspc.2023.105534_b4
  article-title: Correction: Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature22985
– ident: 10.1016/j.bspc.2023.105534_b18
  doi: 10.1109/ICCV48922.2021.00986
– start-page: 36
  year: 2021
  ident: 10.1016/j.bspc.2023.105534_b36
  article-title: Medical transformer: Gated axial-attention for medical image segmentation
– year: 2016
  ident: 10.1016/j.bspc.2023.105534_b42
– volume: 34
  start-page: 7281
  year: 2021
  ident: 10.1016/j.bspc.2023.105534_b55
  article-title: Hrformer: High-resolution vision transformer for dense predict
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 61
  start-page: 663
  year: 2017
  ident: 10.1016/j.bspc.2023.105534_b3
  article-title: Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.05.029
– ident: 10.1016/j.bspc.2023.105534_b32
  doi: 10.1109/CVPR46437.2021.00681
– ident: 10.1016/j.bspc.2023.105534_b15
  doi: 10.1109/ICCV48922.2021.00042
– year: 2021
  ident: 10.1016/j.bspc.2023.105534_b53
– start-page: 109
  year: 2021
  ident: 10.1016/j.bspc.2023.105534_b39
  article-title: Transbts: Multimodal brain tumor segmentation using transformer
– volume: 161
  year: 2023
  ident: 10.1016/j.bspc.2023.105534_b41
  article-title: HIGF-Net: Hierarchical information-guided fusion network for polyp segmentation based on transformer and convolution feature learning
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.107038
– ident: 10.1016/j.bspc.2023.105534_b16
  doi: 10.1109/CVPR.2016.90
– year: 2020
  ident: 10.1016/j.bspc.2023.105534_b27
– volume: 109
  start-page: 820
  issue: 5
  year: 2021
  ident: 10.1016/j.bspc.2023.105534_b69
  article-title: A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3054390
– volume: 13
  start-page: 498
  issue: 3
  year: 2021
  ident: 10.1016/j.bspc.2023.105534_b37
  article-title: Spatial-spectral transformer for hyperspectral image classification
  publication-title: Remote Sens.
  doi: 10.3390/rs13030498
– volume: 130
  year: 2022
  ident: 10.1016/j.bspc.2023.105534_b40
  article-title: GasHis-transformer: A multi-scale visual transformer approach for gastric histopathological image detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.108827
– ident: 10.1016/j.bspc.2023.105534_b10
  doi: 10.1109/ICCV48922.2021.00060
– volume: 14
  start-page: 10990
  year: 2021
  ident: 10.1016/j.bspc.2023.105534_b33
  article-title: STransFuse: Fusing swin transformer and convolutional neural network for remote sensing image semantic segmentation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3119654
– ident: 10.1016/j.bspc.2023.105534_b44
  doi: 10.1109/CVPR.2017.195
– year: 2020
  ident: 10.1016/j.bspc.2023.105534_b9
– ident: 10.1016/j.bspc.2023.105534_b14
  doi: 10.1109/CVPR52688.2022.01186
– year: 2019
  ident: 10.1016/j.bspc.2023.105534_b56
– volume: 7
  start-page: 287
  issue: 5
  year: 2023
  ident: 10.1016/j.bspc.2023.105534_b25
  article-title: A comprehensive survey of transformers for computer vision
  publication-title: Drones
  doi: 10.3390/drones7050287
– year: 2020
  ident: 10.1016/j.bspc.2023.105534_b30
– start-page: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.105534_b52
  article-title: Attention mechanisms in computer vision: A survey
  publication-title: Comput. Vis. Media
– volume: 34
  start-page: 24261
  year: 2021
  ident: 10.1016/j.bspc.2023.105534_b62
  article-title: Mlp-mixer: An all-mlp architecture for vision
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 45
  start-page: 87
  issue: 1
  year: 2022
  ident: 10.1016/j.bspc.2023.105534_b24
  article-title: A survey on vision transformer
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3152247
– volume: 54
  start-page: 1
  issue: 10s
  year: 2022
  ident: 10.1016/j.bspc.2023.105534_b26
  article-title: Transformers in vision: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3505244
– volume: 8
  start-page: 91
  issue: 3
  year: 2017
  ident: 10.1016/j.bspc.2023.105534_b7
  article-title: Deep transfer learning for modality classification of medical images
  publication-title: Information
  doi: 10.3390/info8030091
– ident: 10.1016/j.bspc.2023.105534_b66
  doi: 10.1109/CVPR52729.2023.00995
– ident: 10.1016/j.bspc.2023.105534_b67
– ident: 10.1016/j.bspc.2023.105534_b68
  doi: 10.1109/ICCV.2017.74
– volume: 18
  start-page: 3056
  issue: 6
  year: 2021
  ident: 10.1016/j.bspc.2023.105534_b21
  article-title: Role of hybrid deep neural networks (HDNNs), computed tomography, and chest X-rays for the detection of COVID-19
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph18063056
– ident: 10.1016/j.bspc.2023.105534_b34
  doi: 10.1109/CVPR46437.2021.01212
– ident: 10.1016/j.bspc.2023.105534_b54
  doi: 10.1109/ICCV48922.2021.00061
– start-page: 522
  year: 2021
  ident: 10.1016/j.bspc.2023.105534_b22
  article-title: A novel method for COVID-19 diagnosis using artificial intelligence in chest X-ray images
– volume: 21
  start-page: 31
  issue: 1
  year: 2016
  ident: 10.1016/j.bspc.2023.105534_b6
  article-title: An ensemble of fine-tuned convolutional neural networks for medical image classification
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2635663
– start-page: 213
  year: 2020
  ident: 10.1016/j.bspc.2023.105534_b29
  article-title: End-to-end object detection with transformers
– year: 2022
  ident: 10.1016/j.bspc.2023.105534_b12
  article-title: StoHisNet: A hybrid multi-classification model with CNN and transformer for gastric pathology images
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2022.106924
– year: 2014
  ident: 10.1016/j.bspc.2023.105534_b61
– start-page: 10347
  year: 2021
  ident: 10.1016/j.bspc.2023.105534_b28
  article-title: Training data-efficient image transformers & distillation through attention
– volume: 34
  start-page: 4217
  issue: 5
  year: 1986
  ident: 10.1016/j.bspc.2023.105534_b5
  article-title: Collective computational properties of neural networks: New learning mechanisms
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.34.4217
– volume: 35
  start-page: 1962
  issue: 8
  year: 2016
  ident: 10.1016/j.bspc.2023.105534_b59
  article-title: Structure-preserving color normalization and sparse stain separation for histological images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2529665
– volume: 22
  start-page: 4061
  issue: 11
  year: 2022
  ident: 10.1016/j.bspc.2023.105534_b46
  article-title: Nuclei-guided network for breast cancer grading in he-stained pathological images
  publication-title: Sensors
  doi: 10.3390/s22114061
– ident: 10.1016/j.bspc.2023.105534_b50
  doi: 10.1007/978-3-030-01234-2_1
– volume: 34
  start-page: 28522
  year: 2021
  ident: 10.1016/j.bspc.2023.105534_b11
  article-title: Vitae: Vision transformer advanced by exploring intrinsic inductive bias
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.bspc.2023.105534_b48
  doi: 10.1109/CVPR.2017.667
– ident: 10.1016/j.bspc.2023.105534_b45
  doi: 10.1109/CVPR.2017.634
– volume: 76
  year: 2022
  ident: 10.1016/j.bspc.2023.105534_b23
  article-title: ResGANet: Residual group attention network for medical image classification and segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102313
– volume: 34
  start-page: 14745
  year: 2021
  ident: 10.1016/j.bspc.2023.105534_b38
  article-title: Transgan: Two pure transformers can make one strong gan, and that can scale up
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: 10.1016/j.bspc.2023.105534_b31
– year: 2017
  ident: 10.1016/j.bspc.2023.105534_b43
– year: 2020
  ident: 10.1016/j.bspc.2023.105534_b58
– volume: 30
  year: 2017
  ident: 10.1016/j.bspc.2023.105534_b8
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0048714
Score 2.6458194
Snippet Effective fusion of global and local multi-scale features is crucial for medical image classification. Medical images have many noisy, scattered features,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105534
SubjectTerms Feature fusion
Hybrid network
Medical image classification
Multi-scale feature
Swin-Transformer
Title HiFuse: Hierarchical multi-scale feature fusion network for medical image classification
URI https://dx.doi.org/10.1016/j.bspc.2023.105534
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywodA6tvNgqyqqAKILVOoWxS8pqA0VbVd-O2c7qYqEOrDlcY6Si33-4nz3HUK3knMNMJkGRuokYAUlMOZiFui-jkOamihyOgWv4yibsOcpn7bQsMmFsbTKOvb7mO6idX2kV3uztyjL3htg6SiBrxMA0YDDY5vEx1hse_n994bmAXjc6Xtb48Ba14kznuMllgsrYxhSW-6WU_b35LQ14YyO0GGNFPHA38wxaunqBB1s6QeeomlWjtZL_YCz0uYRu7ImM-w4gsESNjU22gl3YrO2q2K48qRvDEgVz_0vGlzOIaRgaVG0pQ25N3WGJqPH92EW1KUSAglPvwpMGKvC9E3IuJBGRULYEvIaJvjEMBFpLRNFWEESlVIYtpTI0EpzaUIiTYwO6TlqV5-VvkAYztBQpSYUMWWMmSKOFFw1VYQrI1LeQaTxUS5rHXFbzmKWN4Sxj9z6Nbd-zb1fO-hu02bhVTR2WvPG9fmvvpBDmN_R7vKf7a7QPuwxv7Byjdqrr7W-AaixEl3Xl7pob_D0ko1_ACil0oI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YENheJnEjZUUQVou9BK3aLEsaWgNlS0XfntnOOkKhLqwBbFvii5-M5fnM_fIXSrhNAAk5lnlA48njACMedzTz9on7LQSFnqFPQHMhrx17EYN1Cn3gtjaZVV7nc5vczW1Zl25c32LM_b74ClZQBfJwCiAYf74Rba5hC-tozB_feK5wGAvBT4tr09273aOeNIXul8ZnUMKbP1bgXjf89OazNO9wDtV1ARP7m7OUQNXRyhvTUBwWM0jvLucq4fcZTbjcRlXZMJLkmC3hwONTa6VO7EZmmXxXDhWN8YoCqeun80OJ9CTsHKwmjLGypf1QkadZ-HnciraiV4Ch5_4RnqZ4l5MJSLVJlMpqmtIa9hhg8MT6XWKsgIT0iQhQzilhFFrTaXJkRqYjRlp6hZfBb6DGFoYTQLDU19xjk3iS8zuGqYEZGZNBQtRGofxaoSErf1LCZxzRj7iK1fY-vX2Pm1he5WNjMno7Gxt6hdH_8aDDHk-Q125_-0u0E70bDfi3svg7cLtAst3K2yXKLm4muprwB3LNLrclz9ACKw1BA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HiFuse%3A+Hierarchical+multi-scale+feature+fusion+network+for+medical+image+classification&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Huo%2C+Xiangzuo&rft.au=Sun%2C+Gang&rft.au=Tian%2C+Shengwei&rft.au=Wang%2C+Yan&rft.date=2024-01-01&rft.issn=1746-8094&rft.volume=87&rft.spage=105534&rft_id=info:doi/10.1016%2Fj.bspc.2023.105534&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2023_105534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon