EEG-eye movement based subject dependence, cross-subject, and cross-session emotion recognition with multidimensional homogeneous encoding space alignment
The joint learning of multimodal is helpful to extract the general information cross-modality in improving the performance of multimodal emotion recognition. However, focusing on a single common pattern can cause multimodal data to deviate from its original distribution and fail to fully capture the...
Saved in:
Published in | Expert systems with applications Vol. 251; p. 124001 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The joint learning of multimodal is helpful to extract the general information cross-modality in improving the performance of multimodal emotion recognition. However, focusing on a single common pattern can cause multimodal data to deviate from its original distribution and fail to fully capture the potential representation of the data. Therefore, we propose a multi-dimensional homogenous encoding spatial alignment (MHESA) method, which consists of two parts: multi-modal joint learning and modal knowledge transfer. To obtain a common projection space of EEG-EM features, we use a multimodal joint space encoder to learn the homogeneous joint space of EEG-Eye Movement (EM). To obtain a homogeneous encoding space based on modal knowledge, the knowledge transfer module learns the spatial distribution of EM features while retaining the original EEG features. The output of each module is used to construct a multidimensional homogeneous encoding space. The weight and multi-task loss function of the multi-dimensional homogeneous encoding space are dynamically adjusted by the Multi-task Joint Optimization Strategy (MJOS). By analyzing the effect of multi-task optimization, we found that compared with the subject dependence scene, the cross-subject scene has an advantage in the construction of joint encoding space, and the modal knowledge transfer feature has a higher contribution degree in cross-session. The experimental results show the MHESA method can make the model achieve more stable performance in three emotion recognition scenes. |
---|---|
AbstractList | The joint learning of multimodal is helpful to extract the general information cross-modality in improving the performance of multimodal emotion recognition. However, focusing on a single common pattern can cause multimodal data to deviate from its original distribution and fail to fully capture the potential representation of the data. Therefore, we propose a multi-dimensional homogenous encoding spatial alignment (MHESA) method, which consists of two parts: multi-modal joint learning and modal knowledge transfer. To obtain a common projection space of EEG-EM features, we use a multimodal joint space encoder to learn the homogeneous joint space of EEG-Eye Movement (EM). To obtain a homogeneous encoding space based on modal knowledge, the knowledge transfer module learns the spatial distribution of EM features while retaining the original EEG features. The output of each module is used to construct a multidimensional homogeneous encoding space. The weight and multi-task loss function of the multi-dimensional homogeneous encoding space are dynamically adjusted by the Multi-task Joint Optimization Strategy (MJOS). By analyzing the effect of multi-task optimization, we found that compared with the subject dependence scene, the cross-subject scene has an advantage in the construction of joint encoding space, and the modal knowledge transfer feature has a higher contribution degree in cross-session. The experimental results show the MHESA method can make the model achieve more stable performance in three emotion recognition scenes. |
ArticleNumber | 124001 |
Author | Gao, Qiang Bai, Zhongli Zhu, Mu Wu, Qingzhou Song, Yu |
Author_xml | – sequence: 1 givenname: Mu surname: Zhu fullname: Zhu, Mu email: zm78792021@163.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China – sequence: 2 givenname: Qingzhou surname: Wu fullname: Wu, Qingzhou email: wqz9879@163.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China – sequence: 3 givenname: Zhongli surname: Bai fullname: Bai, Zhongli email: ZL.Bai@hotmail.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China – sequence: 4 givenname: Yu orcidid: 0000-0002-9295-7795 surname: Song fullname: Song, Yu email: jasonsongrain@hotmail.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China – sequence: 5 givenname: Qiang surname: Gao fullname: Gao, Qiang email: gaoqiang@tjut.edu.cn organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, TUT Maritime College, Tianjin University of Technology, Tianjin 300384, China |
BookMark | eNp9kEtOwzAQhi0EEqVwAVY-AAl2Xk4kNgiVglSJDawtP8apo8SuYreIq3BaEgobFqzG8sz3a-a7QKfOO0DompKUElrddimEd5FmJCtSmhWE0BO0oDXLk4o1-SlakKZkSUFZcY4uQuimAUYIW6DP1WqdwAfgwR9gABexFAE0DnvZgYpYww6cBqfgBqvRh5D8dG6wcPr3C0Kw3mEYfJzrCMq3zn6_323c4mHfR6vtlD_PiR5v_eBbcOD3AU_hXlvX4rATCrDobevmTS7RmRF9gKufukRvj6vXh6dk87J-frjfJConJCYmo7XMKqbyUuYlSGZkk4tGZkYyTQ0jRQkMCKvq2hgtaCbzhlTM0LKuoGzqfInqY-73MSMYrmwU8_JxFLbnlPDZMe_47JjPjvnR8YRmf9DdaAcxfvwP3R0hmI46WBh5UHY2rO0kLnLt7X_4F6CRnFQ |
CitedBy_id | crossref_primary_10_1016_j_knosys_2025_113238 crossref_primary_10_1016_j_aej_2024_12_081 crossref_primary_10_1016_j_eswa_2024_125089 |
Cites_doi | 10.1016/j.bspc.2023.104741 10.1109/TIM.2024.3488141 10.1109/TNSRE.2022.3225948 10.1007/s11571-022-09851-w 10.1016/j.cognition.2023.105416 10.1109/TCDS.2021.3071170 10.1109/TCSS.2022.3153660 10.1145/3524499 10.1109/JBHI.2021.3092412 10.1109/TCSS.2023.3298324 10.1016/j.knosys.2023.110756 10.1037/emo0001144 10.1109/TNSRE.2023.3236687 10.1016/j.patcog.2022.108833 10.1109/TAMD.2015.2431497 10.1109/JAS.2022.105515 10.1109/ACCESS.2023.3270977 10.1016/j.compbiomed.2022.105303 10.1109/JSEN.2021.3119074 10.1016/j.jsc.2020.10.005 10.3758/s13428-021-01763-7 10.1109/TAFFC.2022.3170428 10.1038/s41593-019-0488-y 10.1016/j.bspc.2022.104314 10.1109/TCYB.2018.2797176 10.1088/1741-2552/ac49a7 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2024.124001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2024_124001 S0957417424008674 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY1 LY7 R2- SBC SET SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c300t-f218b267c35b35eb7fb93a9b2fb7d1f7045e7e07688ffda12b39067f1586e5983 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Tue Jul 01 01:51:19 EDT 2025 Thu Apr 24 23:00:27 EDT 2025 Tue Jun 18 08:50:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multimodal joint learning Multi-task learning Knowledge transfer Multidimensional homogeneous encoding space |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-f218b267c35b35eb7fb93a9b2fb7d1f7045e7e07688ffda12b39067f1586e5983 |
ORCID | 0000-0002-9295-7795 |
ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2024_124001 crossref_primary_10_1016_j_eswa_2024_124001 elsevier_sciencedirect_doi_10_1016_j_eswa_2024_124001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 2024-10-00 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Al-Quraishi, Elamvazuthi, Tang, Muhammad, Parasuraman, Borboni (b0005) 2021; 21 Zheng, Liu, Lu, Lu, Cichocki (b0185) 2018; 49 Li (b0065) 2023; 14 Çelik (b0020) 2021; 104 Zheng, Lu (b0190) 2015; 7 Zhao (b0175) 2019 Li (b0070) 2023; 276 Zheng, Hsiao (b0180) 2023; 23 Chen (b0030) 2023; 80 Quan (b0120) 2023; 84 Ma, Zhao, Meng, Zhang, She, Zhang (b0115) 2023; 31 Gautier, El Haj (b0035) 2023; 235 Long, Cao, Wang, Jordan (b0105) 2018 Bayoudh (b0015) 2021 Gong, Chen, Zhang (b0040) 2024; 11 Startsev, Zemblys (b0130) 2023; 55 Yang, Gao, Song, Song, Mao, Liu (b0150) 2022; 26 Zhang, Tang, Guan (b0170) 2022; 130 Yin, Wu, Yang, Li, Li, Liang, Lv (b0160) 2024; 73 Bai, Li, Li, Song, Gao, Mao (b0010) 2023; 11 Gu, Cai, Gao, Jiang, Ning, Qian (b0045) 2022; 9 Liu, Tuzel (b0100) 2016 Yu, Wang, Chen, Huang (b0165) 2019 Li, Zhang, Tiwari, Song, Hu, Yang, Zhao, Kumar, Marttinen (b0080) 2022; 55 Li (b0055) Oct. 2019; 66 Li, Liu, Yang, Hou, Song, Song, Gao, Mao (b0075) 2023; 31 Wang (b0135) 2021 Chen (b0025) 2023; 17 Li (b0060) 2022; 143 Shanechi (b0125) 2019; 22 Wang (b0140) 2022; 9 Lu, Zheng, Li, Lu (b0110) 2015; 15 Lan, Liu, Bao-Liang (b0050) 2020 Liu (b0085) 2019 Wu (b0145) 2022; 19 Liu, Breuel, Kautz (b0095) 2017 Yang, Li, Hou, Song, Gao (b0155) 2024; 71 Liu (b0090) 2021; 14 Li (10.1016/j.eswa.2024.124001_b0065) 2023; 14 Zheng (10.1016/j.eswa.2024.124001_b0185) 2018; 49 Li (10.1016/j.eswa.2024.124001_b0055) 2019; 66 Long (10.1016/j.eswa.2024.124001_b0105) 2018 Liu (10.1016/j.eswa.2024.124001_b0100) 2016 Ma (10.1016/j.eswa.2024.124001_b0115) 2023; 31 Quan (10.1016/j.eswa.2024.124001_b0120) 2023; 84 Li (10.1016/j.eswa.2024.124001_b0060) 2022; 143 Çelik (10.1016/j.eswa.2024.124001_b0020) 2021; 104 Li (10.1016/j.eswa.2024.124001_b0070) 2023; 276 Wang (10.1016/j.eswa.2024.124001_b0140) 2022; 9 Wang (10.1016/j.eswa.2024.124001_b0135) 2021 Chen (10.1016/j.eswa.2024.124001_b0030) 2023; 80 Startsev (10.1016/j.eswa.2024.124001_b0130) 2023; 55 Gautier (10.1016/j.eswa.2024.124001_b0035) 2023; 235 Wu (10.1016/j.eswa.2024.124001_b0145) 2022; 19 Zheng (10.1016/j.eswa.2024.124001_b0190) 2015; 7 Bayoudh (10.1016/j.eswa.2024.124001_b0015) 2021 Yang (10.1016/j.eswa.2024.124001_b0150) 2022; 26 Zhang (10.1016/j.eswa.2024.124001_b0170) 2022; 130 Zhao (10.1016/j.eswa.2024.124001_b0175) 2019 Gu (10.1016/j.eswa.2024.124001_b0045) 2022; 9 Shanechi (10.1016/j.eswa.2024.124001_b0125) 2019; 22 Li (10.1016/j.eswa.2024.124001_b0080) 2022; 55 Yin (10.1016/j.eswa.2024.124001_b0160) 2024; 73 Zheng (10.1016/j.eswa.2024.124001_b0180) 2023; 23 Yang (10.1016/j.eswa.2024.124001_b0155) 2024; 71 Gong (10.1016/j.eswa.2024.124001_b0040) 2024; 11 Liu (10.1016/j.eswa.2024.124001_b0085) 2019 Liu (10.1016/j.eswa.2024.124001_b0095) 2017 Lu (10.1016/j.eswa.2024.124001_b0110) 2015; 15 Li (10.1016/j.eswa.2024.124001_b0075) 2023; 31 Liu (10.1016/j.eswa.2024.124001_b0090) 2021; 14 Al-Quraishi (10.1016/j.eswa.2024.124001_b0005) 2021; 21 Lan (10.1016/j.eswa.2024.124001_b0050) 2020 Bai (10.1016/j.eswa.2024.124001_b0010) 2023; 11 Chen (10.1016/j.eswa.2024.124001_b0025) 2023; 17 Yu (10.1016/j.eswa.2024.124001_b0165) 2019 |
References_xml | – volume: 21 start-page: 27640 year: 2021 end-page: 37650 ident: b0005 article-title: Multi-modal fusion approach based on EEG and EMG signals for lower limb movement recognition publication-title: IEEE Sensors Journal – volume: 276 year: 2023 ident: b0070 article-title: MTLFuseNet: A novel emotion recognition model based on deep latent feature fusion of EEG signals and multi-task learning publication-title: Knowledge-based Systems – volume: 71 start-page: 1526 year: 2024 end-page: 1530 ident: b0155 article-title: Deep feature extraction and attention fusion for multimodal emotion recognition publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs – volume: 143 year: 2022 ident: b0060 article-title: Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism publication-title: Computers in Biology and Medicine – volume: 14 start-page: 2512 year: 2023 end-page: 2525 ident: b0065 article-title: GMSS: Graph-based multi-task self-supervised learning for EEG emotion recognition publication-title: IEEE Transactions on Affective Computing – volume: 130 year: 2022 ident: b0170 article-title: Visual-to-EEG cross-modal knowledge distillation for continuous emotion recognition publication-title: Pattern Recognition – volume: 26 start-page: 589 year: 2022 end-page: 599 ident: b0150 article-title: Investigating of deaf emotion cognition pattern by EEG and facial expression combination publication-title: IEEE Journal of Biomedical and Health Informatics – year: 2019 ident: b0085 article-title: Multimodal emotion recognition using deep canonical correlation analysis publication-title: arXiv preprint arXiv – start-page: 778 year: 2019 end-page: 786 ident: b0165 article-title: Transfer learning with dynamic adversarial adaptation network publication-title: Proceedings IEEE International Conference on Data Mining – volume: 49 start-page: 1110 year: 2018 end-page: 1122 ident: b0185 article-title: Emotionmeter: A multi-modal framework for recognizing human emotions publication-title: IEEE Transactions of Cybernetics – year: 2020 ident: b0050 article-title: Multimodal emotion recognition using deep generalized canonical correlation analysis with an attention mechanism publication-title: 2020 International Joint Conference on Neural Networks (IJCNN) – volume: 55 start-page: 1653 year: 2023 end-page: 1714 ident: b0130 article-title: Evaluating eye movement event detection: A review of the state of the art publication-title: Behav Res – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: b0190 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Transactions on Autonomous Mental Development – volume: 22 start-page: 1554 year: 2019 end-page: 1564 ident: b0125 article-title: Brain-machine interfaces from motor to mood publication-title: Nature Neuroscience – volume: 11 start-page: 2014 year: 2024 end-page: 2025 ident: b0040 article-title: Cross-cultural emotion recognition with EEG and eye movement signals based on multiple stacked broad learning system publication-title: IEEE Transactions on Computational Social Systems – volume: 15 start-page: 1170 year: 2015 end-page: 1176 ident: b0110 article-title: Combining eye movements and EEG to enhance emotion recognition publication-title: IJCAI’15 – volume: 66 start-page: 2869 year: Oct. 2019 end-page: 2881 ident: b0055 article-title: EEG based emotion recognition by combining functional connectivity network and local activations publication-title: I.E.E.E. Transactions on Bio-Medical Engineering – volume: 55 start-page: 1 year: 2022 end-page: 57 ident: b0080 article-title: EEG based emotion recognition: A tutorial and review publication-title: ACM Computing Surveys – start-page: 469 year: 2016 end-page: 477 ident: b0100 article-title: Coupled generative adversarial networks – volume: 80 year: 2023 ident: b0030 article-title: Similarity constraint style transfer map** for emotion recognition publication-title: Biomedical Signal Processing and Control – start-page: 1640 year: 2018 end-page: 1650 ident: b0105 article-title: Conditional adversarial domain adaptation – volume: 11 start-page: 55023 year: 2023 end-page: 55034 ident: b0010 article-title: Domain-adaptive emotion recognition based on horizontal vertical flow representation of EEG signals publication-title: IEEE Access – volume: 31 start-page: 936 year: 2023 end-page: 943 ident: b0115 article-title: Cross-subject emotion recognition based on domain similarity of EEG signal transfer learning publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 23 start-page: 1028 year: 2023 ident: b0180 article-title: Differential audiovisual information processing in emotion recognition: An eye-tracking study publication-title: Emotion – start-page: 700 year: 2017 end-page: 708 ident: b0095 article-title: Unsupervised image-to-image translation networks – volume: 17 start-page: 671 year: 2023 end-page: 680 ident: b0025 article-title: A multi-stage dynamical fusion network for multimodal emotion recognition publication-title: Cognitive Neurodynamics – volume: 73 start-page: 1 year: 2024 end-page: 12 ident: b0160 article-title: Research on multimodal emotion recognition based on fusion of electroencephalogram and electrooculography – volume: 9 start-page: 1612 year: 2022 end-page: 1626 ident: b0140 article-title: Multi-modal domain adaptation variational autoencoder for eeg-based emotion recognition publication-title: IEEE/CAA Journal of Automatica Sinica – volume: 235 year: 2023 ident: b0035 article-title: Eyes don't lie: Eye movements differ during covert and overt autobiographical recall publication-title: Cognition – year: 2021 ident: b0135 article-title: Emotion transformer fusion: Complementary representation properties of EEG and eye movements on recognizing anger and surprise publication-title: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) – start-page: 1 year: 2021 end-page: 32 ident: b0015 article-title: A survey on deep multimodal learning for computer vision: Advances, trends, applications, and dataset publication-title: The Visual Computer – volume: 19 year: 2022 ident: b0145 article-title: Investigating EEG-based functional connectivity patterns for multimodal emotion recognition publication-title: Journal of Neural Engineering – volume: 31 start-page: 437 year: 2023 end-page: 445 ident: b0075 article-title: Emotion recognition of subjects with hearing impairment based on fusion of facial expression and EEG topographic map publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 104 start-page: 855 year: 2021 end-page: 873 ident: b0020 article-title: Wasserstein distance to independence models publication-title: Journal of Symbolic Computation – volume: 9 start-page: 1604 year: 2022 end-page: 1612 ident: b0045 article-title: Multi-source domain transfer discriminative dictionary learning modeling for electroencephalogram-based emotion recognition publication-title: IEEE Transactions on Computational Social Systems – volume: 14 start-page: 715 year: 2021 end-page: 729 ident: b0090 article-title: Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition publication-title: IEEE Transactions on Cognitive and Developmental Systems – volume: 84 year: 2023 ident: b0120 article-title: EEG-based cross-subject emotion recognition using multi-source domain transfer learning publication-title: Biomedical Signal Processing and Control – year: 2019 ident: b0175 article-title: Classification of five emotions from EEG and eye movement data: Complementary representation properties publication-title: 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER) – start-page: 778 year: 2019 ident: 10.1016/j.eswa.2024.124001_b0165 article-title: Transfer learning with dynamic adversarial adaptation network – volume: 84 year: 2023 ident: 10.1016/j.eswa.2024.124001_b0120 article-title: EEG-based cross-subject emotion recognition using multi-source domain transfer learning publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2023.104741 – volume: 73 start-page: 1 year: 2024 ident: 10.1016/j.eswa.2024.124001_b0160 article-title: Research on multimodal emotion recognition based on fusion of electroencephalogram and electrooculography publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2024.3488141 – volume: 31 start-page: 437 year: 2023 ident: 10.1016/j.eswa.2024.124001_b0075 article-title: Emotion recognition of subjects with hearing impairment based on fusion of facial expression and EEG topographic map publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2022.3225948 – volume: 15 start-page: 1170 year: 2015 ident: 10.1016/j.eswa.2024.124001_b0110 article-title: Combining eye movements and EEG to enhance emotion recognition publication-title: IJCAI’15 – volume: 17 start-page: 671 issue: 3 year: 2023 ident: 10.1016/j.eswa.2024.124001_b0025 article-title: A multi-stage dynamical fusion network for multimodal emotion recognition publication-title: Cognitive Neurodynamics doi: 10.1007/s11571-022-09851-w – year: 2019 ident: 10.1016/j.eswa.2024.124001_b0085 article-title: Multimodal emotion recognition using deep canonical correlation analysis publication-title: arXiv preprint arXiv – volume: 235 year: 2023 ident: 10.1016/j.eswa.2024.124001_b0035 article-title: Eyes don't lie: Eye movements differ during covert and overt autobiographical recall publication-title: Cognition doi: 10.1016/j.cognition.2023.105416 – volume: 14 start-page: 715 issue: 2 year: 2021 ident: 10.1016/j.eswa.2024.124001_b0090 article-title: Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition publication-title: IEEE Transactions on Cognitive and Developmental Systems doi: 10.1109/TCDS.2021.3071170 – volume: 9 start-page: 1604 issue: 6 year: 2022 ident: 10.1016/j.eswa.2024.124001_b0045 article-title: Multi-source domain transfer discriminative dictionary learning modeling for electroencephalogram-based emotion recognition publication-title: IEEE Transactions on Computational Social Systems doi: 10.1109/TCSS.2022.3153660 – volume: 55 start-page: 1 issue: 4 year: 2022 ident: 10.1016/j.eswa.2024.124001_b0080 article-title: EEG based emotion recognition: A tutorial and review publication-title: ACM Computing Surveys doi: 10.1145/3524499 – volume: 26 start-page: 589 issue: 2 year: 2022 ident: 10.1016/j.eswa.2024.124001_b0150 article-title: Investigating of deaf emotion cognition pattern by EEG and facial expression combination publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2021.3092412 – volume: 11 start-page: 2014 issue: 2 year: 2024 ident: 10.1016/j.eswa.2024.124001_b0040 article-title: Cross-cultural emotion recognition with EEG and eye movement signals based on multiple stacked broad learning system publication-title: IEEE Transactions on Computational Social Systems doi: 10.1109/TCSS.2023.3298324 – start-page: 1 year: 2021 ident: 10.1016/j.eswa.2024.124001_b0015 article-title: A survey on deep multimodal learning for computer vision: Advances, trends, applications, and dataset publication-title: The Visual Computer – year: 2020 ident: 10.1016/j.eswa.2024.124001_b0050 article-title: Multimodal emotion recognition using deep generalized canonical correlation analysis with an attention mechanism – volume: 276 year: 2023 ident: 10.1016/j.eswa.2024.124001_b0070 article-title: MTLFuseNet: A novel emotion recognition model based on deep latent feature fusion of EEG signals and multi-task learning publication-title: Knowledge-based Systems doi: 10.1016/j.knosys.2023.110756 – year: 2021 ident: 10.1016/j.eswa.2024.124001_b0135 article-title: Emotion transformer fusion: Complementary representation properties of EEG and eye movements on recognizing anger and surprise – volume: 71 start-page: 1526 issue: 3 year: 2024 ident: 10.1016/j.eswa.2024.124001_b0155 article-title: Deep feature extraction and attention fusion for multimodal emotion recognition publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs – volume: 23 start-page: 1028 issue: 4 year: 2023 ident: 10.1016/j.eswa.2024.124001_b0180 article-title: Differential audiovisual information processing in emotion recognition: An eye-tracking study publication-title: Emotion doi: 10.1037/emo0001144 – volume: 31 start-page: 936 year: 2023 ident: 10.1016/j.eswa.2024.124001_b0115 article-title: Cross-subject emotion recognition based on domain similarity of EEG signal transfer learning publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2023.3236687 – volume: 66 start-page: 2869 issue: 10 year: 2019 ident: 10.1016/j.eswa.2024.124001_b0055 article-title: EEG based emotion recognition by combining functional connectivity network and local activations publication-title: I.E.E.E. Transactions on Bio-Medical Engineering – volume: 130 year: 2022 ident: 10.1016/j.eswa.2024.124001_b0170 article-title: Visual-to-EEG cross-modal knowledge distillation for continuous emotion recognition publication-title: Pattern Recognition doi: 10.1016/j.patcog.2022.108833 – volume: 7 start-page: 162 issue: 3 year: 2015 ident: 10.1016/j.eswa.2024.124001_b0190 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Transactions on Autonomous Mental Development doi: 10.1109/TAMD.2015.2431497 – volume: 9 start-page: 1612 issue: 9 year: 2022 ident: 10.1016/j.eswa.2024.124001_b0140 article-title: Multi-modal domain adaptation variational autoencoder for eeg-based emotion recognition publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2022.105515 – volume: 11 start-page: 55023 year: 2023 ident: 10.1016/j.eswa.2024.124001_b0010 article-title: Domain-adaptive emotion recognition based on horizontal vertical flow representation of EEG signals publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3270977 – volume: 143 year: 2022 ident: 10.1016/j.eswa.2024.124001_b0060 article-title: Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2022.105303 – volume: 21 start-page: 27640 issue: 24 year: 2021 ident: 10.1016/j.eswa.2024.124001_b0005 article-title: Multi-modal fusion approach based on EEG and EMG signals for lower limb movement recognition publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2021.3119074 – volume: 104 start-page: 855 year: 2021 ident: 10.1016/j.eswa.2024.124001_b0020 article-title: Wasserstein distance to independence models publication-title: Journal of Symbolic Computation doi: 10.1016/j.jsc.2020.10.005 – start-page: 1640 year: 2018 ident: 10.1016/j.eswa.2024.124001_b0105 article-title: Conditional adversarial domain adaptation – volume: 55 start-page: 1653 year: 2023 ident: 10.1016/j.eswa.2024.124001_b0130 article-title: Evaluating eye movement event detection: A review of the state of the art publication-title: Behav Res doi: 10.3758/s13428-021-01763-7 – volume: 14 start-page: 2512 issue: 3 year: 2023 ident: 10.1016/j.eswa.2024.124001_b0065 article-title: GMSS: Graph-based multi-task self-supervised learning for EEG emotion recognition publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2022.3170428 – volume: 22 start-page: 1554 issue: 10 year: 2019 ident: 10.1016/j.eswa.2024.124001_b0125 article-title: Brain-machine interfaces from motor to mood publication-title: Nature Neuroscience doi: 10.1038/s41593-019-0488-y – year: 2019 ident: 10.1016/j.eswa.2024.124001_b0175 article-title: Classification of five emotions from EEG and eye movement data: Complementary representation properties – volume: 80 year: 2023 ident: 10.1016/j.eswa.2024.124001_b0030 article-title: Similarity constraint style transfer map** for emotion recognition publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2022.104314 – start-page: 469 year: 2016 ident: 10.1016/j.eswa.2024.124001_b0100 article-title: Coupled generative adversarial networks – volume: 49 start-page: 1110 issue: 3 year: 2018 ident: 10.1016/j.eswa.2024.124001_b0185 article-title: Emotionmeter: A multi-modal framework for recognizing human emotions publication-title: IEEE Transactions of Cybernetics doi: 10.1109/TCYB.2018.2797176 – start-page: 700 year: 2017 ident: 10.1016/j.eswa.2024.124001_b0095 article-title: Unsupervised image-to-image translation networks – volume: 19 issue: 1 year: 2022 ident: 10.1016/j.eswa.2024.124001_b0145 article-title: Investigating EEG-based functional connectivity patterns for multimodal emotion recognition publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/ac49a7 |
SSID | ssj0017007 |
Score | 2.493564 |
Snippet | The joint learning of multimodal is helpful to extract the general information cross-modality in improving the performance of multimodal emotion recognition.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 124001 |
SubjectTerms | Knowledge transfer Multi-task learning Multidimensional homogeneous encoding space Multimodal joint learning |
Title | EEG-eye movement based subject dependence, cross-subject, and cross-session emotion recognition with multidimensional homogeneous encoding space alignment |
URI | https://dx.doi.org/10.1016/j.eswa.2024.124001 |
Volume | 251 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLCy8EeVReWCjpk3sxMlYVS0FBAtUYoti5wxF0CDaCrHwQ_i1-GKnAgkxsOVhJ5Hv4u9sf_6OkOOO0DKAWLMEpB2gcC1ZyhPBUoWraCbVQaUze3UdD0fi4i66WyK9ei8M0ip93-_69Kq39lfavjXbL-Nx-8YGBxYO7dBOYFwuURNUCIlefvqxoHmg_Jx0enuSYWm_ccZxvGD6htpDoTgN8CnB7-D0DXAGG2TNR4q06z5mkyzBZIus11kYqP8pt8lnv3_G4B3oc1lpf88oIlNBp3OFcyy0TnOroUWr1zJ_p0XzSVFfcvIcFFxWH7rgFdljnKqlFfGwwFQATsaDPpTPpXU-KOdTimKYiIHUdk8aqA3t7yuSwQ4ZDfq3vSHzGReY5p3OjBkL-CqMpeaR4hEoaVTK81SFRskiMNLGfyABF-8SY4o8CBVPLdyZIEpiiNKE75LlSTmBPULB8KjoGBMqYYc4qchVXkRFAknMZW6jogYJ6qbOtJcjx6wYT1nNO3vM0DwZmidz5mmQk0WdFyfG8WfpqLZg9sOlMosWf9Tb_2e9A7KKZ47pd0iWZ69zOLIRy0w1K5dskpXu-eXw-guDmu2o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb9QX4AOcqLub2ImTAwcEW7b0caGVeguxM4aidlN1d1X1wg_p3-APMhM7K5BQD0i9RXacOB5nHvbnbwBeD7UzCeZOFmgoQFHOyFIVWpaWd9F86ZKOZ3b_IB8f6c_H2fES_OrPwjCsMur-oNM7bR1LBnE0B-cnJ4Mv5ByQOaTQTrNfbnREVu7i1SXFbdN3Ox9JyG_SdHt0-GEsY2oB6dRwOJOeLJtNc-NUZlWG1nhbqrq0qbemSbwhRwcN8i5V4X1TJ6lVJel1n2RFjllZKHruHbirSV1w2oStnwtcCfPdmUDwZyR3L57UCaAynF4y2VGqtxLudvJva_iHhdt-BA-iayreh69_DEs4eQIP-7QPImqBp3A9Gn2SeIXirO3IxmeCTWEjpnPLizqiz6vrcFN0r5WxZlPUk6YvCnwgAkMaIbEAMtE1rw2LDunYcO6BwBsivrdnLc12bOdTweybbHQF6UOHgmKJbx2q4Rkc3YocnsPypJ3gCgj0KmuG3qdWU0xV6trWTdYUWOTK1OSGrULSD3XlIv85p-E4rXqg24-KxVOxeKognlV4u2hzHtg_brw76yVY_TWHKzJPN7Rb-892r-De-HB_r9rbOdhdh_tcE2CGG7A8u5jjC3KXZvZlNz0FfL3t_-E3CyQo5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-eye+movement+based+subject+dependence%2C+cross-subject%2C+and+cross-session+emotion+recognition+with+multidimensional+homogeneous+encoding+space+alignment&rft.jtitle=Expert+systems+with+applications&rft.au=Zhu%2C+Mu&rft.au=Wu%2C+Qingzhou&rft.au=Bai%2C+Zhongli&rft.au=Song%2C+Yu&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=251&rft_id=info:doi/10.1016%2Fj.eswa.2024.124001&rft.externalDocID=S0957417424008674 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |