Asymptotic efficiency of the calibration estimator in a high-dimensional data setting
In a finite population sampling survey, auxiliary information is commonly used to improve the Horvitz–Thompson estimators and calibration has been extensively used by national statistical agencies over the last decades for that purpose. This method enables to make estimators consistent with known to...
Saved in:
Published in | Journal of statistical planning and inference Vol. 217; pp. 177 - 187 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-3758 1873-1171 |
DOI | 10.1016/j.jspi.2021.07.011 |
Cover
Loading…
Abstract | In a finite population sampling survey, auxiliary information is commonly used to improve the Horvitz–Thompson estimators and calibration has been extensively used by national statistical agencies over the last decades for that purpose. This method enables to make estimators consistent with known totals of auxiliary variables and to reduce variance if the calibration variables are explanatory for the variable of interest. Nowadays, it is not unusual anymore to have high-dimensional auxiliary data sets and adding too much additional calibration variables may increase the variance of calibration estimators. We study in this paper the asymptotic efficiency of the calibration estimator with high-dimensional auxiliary data sets and we prove that it may suffer from an additional variability that may not be neglected in certain conditions. We suggest a bootstrap criterion in the choice of calibration variables. A short simulation study shows that the proposed method may lead to a more parsimonious number of calibration variables with associated weights of smaller variation and no variance inflation.
•Convergence rate of the regression coefficient estimator in high-dimensional setting.•Asymptotic efficiency of the calibration estimator in high-dimensional setting.•Bootstrap variable selection procedure. |
---|---|
AbstractList | In a finite population sampling survey, auxiliary information is commonly used to improve the Horvitz–Thompson estimators and calibration has been extensively used by national statistical agencies over the last decades for that purpose. This method enables to make estimators consistent with known totals of auxiliary variables and to reduce variance if the calibration variables are explanatory for the variable of interest. Nowadays, it is not unusual anymore to have high-dimensional auxiliary data sets and adding too much additional calibration variables may increase the variance of calibration estimators. We study in this paper the asymptotic efficiency of the calibration estimator with high-dimensional auxiliary data sets and we prove that it may suffer from an additional variability that may not be neglected in certain conditions. We suggest a bootstrap criterion in the choice of calibration variables. A short simulation study shows that the proposed method may lead to a more parsimonious number of calibration variables with associated weights of smaller variation and no variance inflation.
•Convergence rate of the regression coefficient estimator in high-dimensional setting.•Asymptotic efficiency of the calibration estimator in high-dimensional setting.•Bootstrap variable selection procedure. |
Author | Chauvet, Guillaume Goga, Camelia |
Author_xml | – sequence: 1 givenname: Guillaume surname: Chauvet fullname: Chauvet, Guillaume email: guillaume.chauvet@ensai.fr organization: Ensai (Irmar), Campus de Ker Lann, 35170, Bruz, France – sequence: 2 givenname: Camelia surname: Goga fullname: Goga, Camelia email: camelia.goga@univ-fcomte.fr organization: Laboratoire de Mathématiques de Besançon, Université de Bourgogne Franche-Comté, 16 Route de Gray, 25000, Besançon, France |
BookMark | eNp9kMtqwzAQRUVJoWnaH-hKP2B3ZDmWA92E0BcEuknXQpZGyRjHDpIo5O_rJF11kdnMYjiXueeeTfqhR8aeBOQCRPXc5m08UF5AIXJQOQhxw6aiVjITQokJm4JUdSbVvL5j9zG2ME4F8yn7Xsbj_pCGRJaj92QJe3vkg-dph9yajppgEg09x5hob9IQOPXc8B1td5mjPfZxvJqOO5MMj5gS9dsHdutNF_Hxb8_Y5u11s_rI1l_vn6vlOrMSIGW-AFPJumo8NrIpmxIceOXBuQUWSliYi6bEwqLEyiixqCwILCpQrlwIZ-SMFZdYG4YYA3p9COOP4agF6JMX3eqTF33yokHp0csI1f8gS-lcMQVD3XX05YLi2OmHMOh49oWOAtqk3UDX8F9D_oJj |
CitedBy_id | crossref_primary_10_1111_sjos_12776 crossref_primary_10_1016_j_cam_2024_115876 crossref_primary_10_1007_s40300_024_00280_9 crossref_primary_10_1080_02664763_2022_2047905 crossref_primary_10_1177_09622802231151211 crossref_primary_10_1007_s40300_023_00253_4 crossref_primary_10_1093_biomet_asad016 crossref_primary_10_1016_j_cam_2023_115189 crossref_primary_10_1002_mma_8431 |
Cites_doi | 10.1214/13-EJS779 10.1198/016214505000000141 10.1198/016214501750333054 10.1016/j.csda.2018.06.006 10.1080/01621459.1992.10475217 10.1111/rssb.12024 10.1016/j.jspi.2010.04.010 10.1080/01621459.1982.10477770 10.1111/j.1751-5823.2011.00166.x 10.1214/aos/1015956706 10.1016/j.jspi.2009.06.012 10.1214/aos/1176346793 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jspi.2021.07.011 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1873-1171 |
EndPage | 187 |
ExternalDocumentID | 10_1016_j_jspi_2021_07_011 S0378375821000781 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6P2 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABEHJ ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HMJ HVGLF HZ~ H~9 IHE J1W KOM LY1 M26 M41 MHUIS MO0 N9A NHB O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SDS SES SEW SME SPC SPCBC SSB SSD SSW SSZ T5K TN5 UNMZH VH1 WUQ XFK ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-f20a6386bfeb3b4b40d0f7f0dd9e271c051b4e2ce3e6a7196c01e2607d491da3 |
IEDL.DBID | .~1 |
ISSN | 0378-3758 |
IngestDate | Tue Jul 01 00:30:11 EDT 2025 Thu Apr 24 22:56:44 EDT 2025 Fri Feb 23 02:43:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | GREG estimator Calibrated weights Survey sampling Variable selection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-f20a6386bfeb3b4b40d0f7f0dd9e271c051b4e2ce3e6a7196c01e2607d491da3 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_jspi_2021_07_011 crossref_citationtrail_10_1016_j_jspi_2021_07_011 elsevier_sciencedirect_doi_10_1016_j_jspi_2021_07_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of statistical planning and inference |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Särndal (b21) 2007; 33 Golub, Van Loan (b13) 2013 Cardot, Goga, Lardin (b5) 2013; 7 Deville, Särndal (b10) 1992; 87 Goga (b11) 2021 Beaumont, Patak (b2) 2012; 80 Cardot, Chaouch, Goga, Labruère (b4) 2010; 140 Chauvet (b7) 2007 Silva, Skinner (b22) 1997; 23 Isaki, Fuller (b16) 1982; 77 Montanari, Ranalli (b17) 2005; 100 Portnoy (b18) 1984; 12 Guggemos, Tillé (b15) 2010; 140 Wu, Sitter (b24) 2001; 96 Chauvet, Do Paco (b8) 2018; 128 Goga, Ruiz-Gazen (b12) 2014; 76 Skinner, Silva (b23) 1997 Rao, Singh (b19) 2009; 25 Robinson, Särndal (b20) 1983; 45 Beaumont, Bocci (b1) 2008; LXVI Cardot, Goga, Shehzad (b6) 2017; 27 Chauvet, Goga (b9) 2013 Gross (b14) 1980 Breidt, Opsomer (b3) 2000; 28 Cardot (10.1016/j.jspi.2021.07.011_b5) 2013; 7 Cardot (10.1016/j.jspi.2021.07.011_b4) 2010; 140 Chauvet (10.1016/j.jspi.2021.07.011_b8) 2018; 128 Rao (10.1016/j.jspi.2021.07.011_b19) 2009; 25 Deville (10.1016/j.jspi.2021.07.011_b10) 1992; 87 Montanari (10.1016/j.jspi.2021.07.011_b17) 2005; 100 Isaki (10.1016/j.jspi.2021.07.011_b16) 1982; 77 Särndal (10.1016/j.jspi.2021.07.011_b21) 2007; 33 Wu (10.1016/j.jspi.2021.07.011_b24) 2001; 96 Portnoy (10.1016/j.jspi.2021.07.011_b18) 1984; 12 Silva (10.1016/j.jspi.2021.07.011_b22) 1997; 23 Gross (10.1016/j.jspi.2021.07.011_b14) 1980 Skinner (10.1016/j.jspi.2021.07.011_b23) 1997 Cardot (10.1016/j.jspi.2021.07.011_b6) 2017; 27 Chauvet (10.1016/j.jspi.2021.07.011_b9) 2013 Breidt (10.1016/j.jspi.2021.07.011_b3) 2000; 28 Golub (10.1016/j.jspi.2021.07.011_b13) 2013 Robinson (10.1016/j.jspi.2021.07.011_b20) 1983; 45 Beaumont (10.1016/j.jspi.2021.07.011_b2) 2012; 80 Goga (10.1016/j.jspi.2021.07.011_b11) 2021 Beaumont (10.1016/j.jspi.2021.07.011_b1) 2008; LXVI Guggemos (10.1016/j.jspi.2021.07.011_b15) 2010; 140 Goga (10.1016/j.jspi.2021.07.011_b12) 2014; 76 Chauvet (10.1016/j.jspi.2021.07.011_b7) 2007 |
References_xml | – volume: 76 start-page: 113 year: 2014 end-page: 140 ident: b12 article-title: Efficient estimation of non-linear finite population parameters by using non-parametrics publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – year: 2007 ident: b7 article-title: Méthodes de Bootstrap en Population Finie – volume: 128 start-page: 1 year: 2018 end-page: 16 ident: b8 article-title: Exact balanced random imputation for sample survey data publication-title: Comput. Statist. Data Anal. – volume: 77 start-page: 49 year: 1982 end-page: 61 ident: b16 article-title: Survey design under the regression superpopulation model publication-title: J. Amer. Statist. Assoc. – volume: 33 start-page: 99 year: 2007 end-page: 119 ident: b21 article-title: The calibration approach in survey theory and practice publication-title: Surv. Methodol. – volume: 28 start-page: 1023 year: 2000 end-page: 1053 ident: b3 article-title: Local polynomial regression estimators in survey sampling publication-title: Ann. Statist. – volume: 100 start-page: 1429 year: 2005 end-page: 1442 ident: b17 article-title: Nonparametric model calibration in survey sampling publication-title: J. Amer. Statist. Assoc. – year: 1980 ident: b14 article-title: Median estimation in sample surveys publication-title: ASA Proceedings of Survey Research – year: 1997 ident: b23 article-title: Variable selection for regression estimation in the presence of nonresponse publication-title: Proceedings of the Section on Survey Research Methods – volume: 12 start-page: 1298 year: 1984 end-page: 1309 ident: b18 article-title: Asymptotic behaviour of publication-title: Ann. Statist. – volume: 25 start-page: 371 year: 2009 end-page: 384 ident: b19 article-title: Range restricted weight calibration for survey data using ridge regression publication-title: Pak. J. Statist. – volume: 140 start-page: 3199 year: 2010 end-page: 3212 ident: b15 article-title: Penalized calibration in survey sampling: Design-based estimation assisted by mixed models publication-title: J. Statist. Plann. Inference – volume: LXVI start-page: 260 year: 2008 end-page: 262 ident: b1 article-title: Another look at ridge calibration publication-title: Metron-International Journal of Statistics – volume: 45 start-page: 240 year: 1983 end-page: 248 ident: b20 article-title: Asymptotic properties of the generalized regression estimator in probability sampling publication-title: Sankhyā B – year: 2013 ident: b13 article-title: Matrix Computations – volume: 7 start-page: 562 year: 2013 end-page: 596 ident: b5 article-title: Uniform convergence and asymptotic confidence bands for model-assisted estimators of the mean of sampled functional data publication-title: Electron. J. Stat. – year: 2013 ident: b9 article-title: Sélection de variables de calage par une méthode de bootstrap publication-title: J. Soc. Frana̧ise Statist. – volume: 23 start-page: 23 year: 1997 end-page: 32 ident: b22 article-title: Variable selection for regression estimation in finite populations publication-title: Surv. Methodol. – volume: 140 start-page: 75 year: 2010 end-page: 91 ident: b4 article-title: Properties of design-based functional principal components analysis publication-title: J. Statist. Plann. Inference – volume: 87 start-page: 376 year: 1992 end-page: 382 ident: b10 article-title: Calibration estimators in survey sampling publication-title: J. Amer. Statist. Assoc. – volume: 27 year: 2017 ident: b6 article-title: Calibration and partial calibration on principal components when the number of auxiliary variables is large publication-title: Statist. Sinica – start-page: 79 year: 2021 end-page: 99 ident: b11 article-title: B-spline estimation in a survey sampling framework publication-title: Advances in Contemporary Statistics and Econometrics, Festschrift in Honor of Christine Thomas-Agnan – volume: 80 start-page: 127 year: 2012 end-page: 148 ident: b2 article-title: On the generalized bootstrap for sample surveys with special attention to Poisson sampling publication-title: Internat. Statist. Rev. – volume: 96 start-page: 185 year: 2001 end-page: 193 ident: b24 article-title: A model-calibration approach to using complete auxiliary information from survey data publication-title: J. Amer. Statist. Assoc. – volume: 7 start-page: 562 year: 2013 ident: 10.1016/j.jspi.2021.07.011_b5 article-title: Uniform convergence and asymptotic confidence bands for model-assisted estimators of the mean of sampled functional data publication-title: Electron. J. Stat. doi: 10.1214/13-EJS779 – volume: 100 start-page: 1429 year: 2005 ident: 10.1016/j.jspi.2021.07.011_b17 article-title: Nonparametric model calibration in survey sampling publication-title: J. Amer. Statist. Assoc. doi: 10.1198/016214505000000141 – volume: 96 start-page: 185 year: 2001 ident: 10.1016/j.jspi.2021.07.011_b24 article-title: A model-calibration approach to using complete auxiliary information from survey data publication-title: J. Amer. Statist. Assoc. doi: 10.1198/016214501750333054 – year: 2007 ident: 10.1016/j.jspi.2021.07.011_b7 – volume: 128 start-page: 1 year: 2018 ident: 10.1016/j.jspi.2021.07.011_b8 article-title: Exact balanced random imputation for sample survey data publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2018.06.006 – volume: 45 start-page: 240 issue: 2 year: 1983 ident: 10.1016/j.jspi.2021.07.011_b20 article-title: Asymptotic properties of the generalized regression estimator in probability sampling publication-title: Sankhyā B – year: 1980 ident: 10.1016/j.jspi.2021.07.011_b14 article-title: Median estimation in sample surveys – year: 1997 ident: 10.1016/j.jspi.2021.07.011_b23 article-title: Variable selection for regression estimation in the presence of nonresponse – volume: 27 issue: 243–260 year: 2017 ident: 10.1016/j.jspi.2021.07.011_b6 article-title: Calibration and partial calibration on principal components when the number of auxiliary variables is large publication-title: Statist. Sinica – volume: 25 start-page: 371 issue: 4 year: 2009 ident: 10.1016/j.jspi.2021.07.011_b19 article-title: Range restricted weight calibration for survey data using ridge regression publication-title: Pak. J. Statist. – volume: 87 start-page: 376 year: 1992 ident: 10.1016/j.jspi.2021.07.011_b10 article-title: Calibration estimators in survey sampling publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1992.10475217 – volume: 76 start-page: 113 year: 2014 ident: 10.1016/j.jspi.2021.07.011_b12 article-title: Efficient estimation of non-linear finite population parameters by using non-parametrics publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/rssb.12024 – year: 2013 ident: 10.1016/j.jspi.2021.07.011_b13 – year: 2013 ident: 10.1016/j.jspi.2021.07.011_b9 article-title: Sélection de variables de calage par une méthode de bootstrap publication-title: J. Soc. Frana̧ise Statist. – volume: LXVI start-page: 260 year: 2008 ident: 10.1016/j.jspi.2021.07.011_b1 article-title: Another look at ridge calibration publication-title: Metron-International Journal of Statistics – volume: 140 start-page: 3199 year: 2010 ident: 10.1016/j.jspi.2021.07.011_b15 article-title: Penalized calibration in survey sampling: Design-based estimation assisted by mixed models publication-title: J. Statist. Plann. Inference doi: 10.1016/j.jspi.2010.04.010 – volume: 23 start-page: 23 year: 1997 ident: 10.1016/j.jspi.2021.07.011_b22 article-title: Variable selection for regression estimation in finite populations publication-title: Surv. Methodol. – volume: 77 start-page: 49 year: 1982 ident: 10.1016/j.jspi.2021.07.011_b16 article-title: Survey design under the regression superpopulation model publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1982.10477770 – volume: 80 start-page: 127 issue: 1 year: 2012 ident: 10.1016/j.jspi.2021.07.011_b2 article-title: On the generalized bootstrap for sample surveys with special attention to Poisson sampling publication-title: Internat. Statist. Rev. doi: 10.1111/j.1751-5823.2011.00166.x – volume: 28 start-page: 1023 issue: 4 year: 2000 ident: 10.1016/j.jspi.2021.07.011_b3 article-title: Local polynomial regression estimators in survey sampling publication-title: Ann. Statist. doi: 10.1214/aos/1015956706 – volume: 140 start-page: 75 year: 2010 ident: 10.1016/j.jspi.2021.07.011_b4 article-title: Properties of design-based functional principal components analysis publication-title: J. Statist. Plann. Inference doi: 10.1016/j.jspi.2009.06.012 – start-page: 79 year: 2021 ident: 10.1016/j.jspi.2021.07.011_b11 article-title: B-spline estimation in a survey sampling framework – volume: 33 start-page: 99 year: 2007 ident: 10.1016/j.jspi.2021.07.011_b21 article-title: The calibration approach in survey theory and practice publication-title: Surv. Methodol. – volume: 12 start-page: 1298 issue: 4 year: 1984 ident: 10.1016/j.jspi.2021.07.011_b18 article-title: Asymptotic behaviour of m-estimators of p-regression parameters when p2/n is large.i. consistency publication-title: Ann. Statist. doi: 10.1214/aos/1176346793 |
SSID | ssj0000605 |
Score | 2.3656843 |
Snippet | In a finite population sampling survey, auxiliary information is commonly used to improve the Horvitz–Thompson estimators and calibration has been extensively... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 177 |
SubjectTerms | Calibrated weights GREG estimator Survey sampling Variable selection |
Title | Asymptotic efficiency of the calibration estimator in a high-dimensional data setting |
URI | https://dx.doi.org/10.1016/j.jspi.2021.07.011 |
Volume | 217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0QvODBKGrED7IHb6ayH223HAmRoAYuQsKt6Xa3CUSgkXrw4m93ZlsIJoaDxzadpJndnZmXvPeWkHvh2yzkqfSkDCMAKCbxNHQezzJtgygVURSgUHg0DodT_2UWzGqkv9XCIK2yqv1lTXfVunrTqbLZyefzzhuTCtAVCj1do3MKdl-hf_7jN9-rxiWNUSINAL6uhDMlx2uxyeeAEQV3Bp6c_92c9hrO4JScVJMi7ZU_c0ZqdtUkx6OdzeqmSRo4KpZOy-dk2tt8LfNiDU_UOmMIVFXSdUYhgsJSIDDGZaBorLFEsE3nK5pQdCz2DLr8lw4dFFmjdGMdI_qCTAZPk_7Qqy5N8FLJWOFlgiVwpkKdAUzWvob0s0xlzJiuFYqncAi1b0VqpQ0TBecvZdwCqFHG73KTyEtSX61X9orQMJOJhHExslb5mQgjYyKArdIIlQaa6Rbh22TFaWUojvdavMdb5tgixgTHmOCYqRgS3CIPu5i8tNM4-HWwXYP416aIod4fiLv-Z9wNaQhUNziK2S2pFx-f9g5mjkK33aZqk6Pe8-tw_AMdtdaM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHqwH0apYn3vwJrH7SLLpsRRL1bYXW-htyWY30GIfmHrw4m93JklLBenBY8IOLLOzM_PBN98Sci98l4Y8kZ6UYQQAxcaegcrjOWZcECUiigIcFO4Pwu7IfxkH4wppr2dhkFZZ5v4ip-fZuvzTKL3ZWE4mjTcmFaArHPTMCx1AoH0_kApD-_Gbb6XjgscokQcAy8vJmYLkNc2WEwCJgucKnpz_XZ22Kk7nmByVrSJtFbs5IRU3r5HD_kZnNauRKvaKhdTyKRm1sq_ZcrWAL-pyZQgcq6SLlIIFhbNAZIznQFFZY4Zom07mNKYoWexZlPkvJDoo0kZp5nJK9BkZdp6G7a5XvprgJZKxlZcKFsOlCk0KONn4BvzPUpUya5tOKJ7ALTS-E4mTLowVXMCEcQeoRlm_yW0sz8nefDF3F4SGqYwl9IuRc8pPRRhZGwFulVaoJDDM1AlfO0snpaI4PmzxrtfUsalGB2t0sGZKg4Pr5GFjsyz0NHauDtZnoH9FhYaEv8Pu8p92d-SgO-z3dO958HpFqgJHHXK-2TXZW318uhtoQFbmNg-wHz0h2CI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotic+efficiency+of+the+calibration+estimator+in+a+high-dimensional+data+setting&rft.jtitle=Journal+of+statistical+planning+and+inference&rft.au=Chauvet%2C+Guillaume&rft.au=Goga%2C+Camelia&rft.date=2022-03-01&rft.pub=Elsevier+B.V&rft.issn=0378-3758&rft.eissn=1873-1171&rft.volume=217&rft.spage=177&rft.epage=187&rft_id=info:doi/10.1016%2Fj.jspi.2021.07.011&rft.externalDocID=S0378375821000781 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3758&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3758&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3758&client=summon |