Asymptotic efficiency of the calibration estimator in a high-dimensional data setting

In a finite population sampling survey, auxiliary information is commonly used to improve the Horvitz–Thompson estimators and calibration has been extensively used by national statistical agencies over the last decades for that purpose. This method enables to make estimators consistent with known to...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical planning and inference Vol. 217; pp. 177 - 187
Main Authors Chauvet, Guillaume, Goga, Camelia
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2022
Subjects
Online AccessGet full text
ISSN0378-3758
1873-1171
DOI10.1016/j.jspi.2021.07.011

Cover

Loading…
Abstract In a finite population sampling survey, auxiliary information is commonly used to improve the Horvitz–Thompson estimators and calibration has been extensively used by national statistical agencies over the last decades for that purpose. This method enables to make estimators consistent with known totals of auxiliary variables and to reduce variance if the calibration variables are explanatory for the variable of interest. Nowadays, it is not unusual anymore to have high-dimensional auxiliary data sets and adding too much additional calibration variables may increase the variance of calibration estimators. We study in this paper the asymptotic efficiency of the calibration estimator with high-dimensional auxiliary data sets and we prove that it may suffer from an additional variability that may not be neglected in certain conditions. We suggest a bootstrap criterion in the choice of calibration variables. A short simulation study shows that the proposed method may lead to a more parsimonious number of calibration variables with associated weights of smaller variation and no variance inflation. •Convergence rate of the regression coefficient estimator in high-dimensional setting.•Asymptotic efficiency of the calibration estimator in high-dimensional setting.•Bootstrap variable selection procedure.
AbstractList In a finite population sampling survey, auxiliary information is commonly used to improve the Horvitz–Thompson estimators and calibration has been extensively used by national statistical agencies over the last decades for that purpose. This method enables to make estimators consistent with known totals of auxiliary variables and to reduce variance if the calibration variables are explanatory for the variable of interest. Nowadays, it is not unusual anymore to have high-dimensional auxiliary data sets and adding too much additional calibration variables may increase the variance of calibration estimators. We study in this paper the asymptotic efficiency of the calibration estimator with high-dimensional auxiliary data sets and we prove that it may suffer from an additional variability that may not be neglected in certain conditions. We suggest a bootstrap criterion in the choice of calibration variables. A short simulation study shows that the proposed method may lead to a more parsimonious number of calibration variables with associated weights of smaller variation and no variance inflation. •Convergence rate of the regression coefficient estimator in high-dimensional setting.•Asymptotic efficiency of the calibration estimator in high-dimensional setting.•Bootstrap variable selection procedure.
Author Chauvet, Guillaume
Goga, Camelia
Author_xml – sequence: 1
  givenname: Guillaume
  surname: Chauvet
  fullname: Chauvet, Guillaume
  email: guillaume.chauvet@ensai.fr
  organization: Ensai (Irmar), Campus de Ker Lann, 35170, Bruz, France
– sequence: 2
  givenname: Camelia
  surname: Goga
  fullname: Goga, Camelia
  email: camelia.goga@univ-fcomte.fr
  organization: Laboratoire de Mathématiques de Besançon, Université de Bourgogne Franche-Comté, 16 Route de Gray, 25000, Besançon, France
BookMark eNp9kMtqwzAQRUVJoWnaH-hKP2B3ZDmWA92E0BcEuknXQpZGyRjHDpIo5O_rJF11kdnMYjiXueeeTfqhR8aeBOQCRPXc5m08UF5AIXJQOQhxw6aiVjITQokJm4JUdSbVvL5j9zG2ME4F8yn7Xsbj_pCGRJaj92QJe3vkg-dph9yajppgEg09x5hob9IQOPXc8B1td5mjPfZxvJqOO5MMj5gS9dsHdutNF_Hxb8_Y5u11s_rI1l_vn6vlOrMSIGW-AFPJumo8NrIpmxIceOXBuQUWSliYi6bEwqLEyiixqCwILCpQrlwIZ-SMFZdYG4YYA3p9COOP4agF6JMX3eqTF33yokHp0csI1f8gS-lcMQVD3XX05YLi2OmHMOh49oWOAtqk3UDX8F9D_oJj
CitedBy_id crossref_primary_10_1111_sjos_12776
crossref_primary_10_1016_j_cam_2024_115876
crossref_primary_10_1007_s40300_024_00280_9
crossref_primary_10_1080_02664763_2022_2047905
crossref_primary_10_1177_09622802231151211
crossref_primary_10_1007_s40300_023_00253_4
crossref_primary_10_1093_biomet_asad016
crossref_primary_10_1016_j_cam_2023_115189
crossref_primary_10_1002_mma_8431
Cites_doi 10.1214/13-EJS779
10.1198/016214505000000141
10.1198/016214501750333054
10.1016/j.csda.2018.06.006
10.1080/01621459.1992.10475217
10.1111/rssb.12024
10.1016/j.jspi.2010.04.010
10.1080/01621459.1982.10477770
10.1111/j.1751-5823.2011.00166.x
10.1214/aos/1015956706
10.1016/j.jspi.2009.06.012
10.1214/aos/1176346793
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jspi.2021.07.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1873-1171
EndPage 187
ExternalDocumentID 10_1016_j_jspi_2021_07_011
S0378375821000781
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6P2
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABEHJ
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMJ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M26
M41
MHUIS
MO0
N9A
NHB
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
UNMZH
VH1
WUQ
XFK
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-f20a6386bfeb3b4b40d0f7f0dd9e271c051b4e2ce3e6a7196c01e2607d491da3
IEDL.DBID .~1
ISSN 0378-3758
IngestDate Tue Jul 01 00:30:11 EDT 2025
Thu Apr 24 22:56:44 EDT 2025
Fri Feb 23 02:43:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords GREG estimator
Calibrated weights
Survey sampling
Variable selection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-f20a6386bfeb3b4b40d0f7f0dd9e271c051b4e2ce3e6a7196c01e2607d491da3
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_jspi_2021_07_011
crossref_citationtrail_10_1016_j_jspi_2021_07_011
elsevier_sciencedirect_doi_10_1016_j_jspi_2021_07_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Journal of statistical planning and inference
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Särndal (b21) 2007; 33
Golub, Van Loan (b13) 2013
Cardot, Goga, Lardin (b5) 2013; 7
Deville, Särndal (b10) 1992; 87
Goga (b11) 2021
Beaumont, Patak (b2) 2012; 80
Cardot, Chaouch, Goga, Labruère (b4) 2010; 140
Chauvet (b7) 2007
Silva, Skinner (b22) 1997; 23
Isaki, Fuller (b16) 1982; 77
Montanari, Ranalli (b17) 2005; 100
Portnoy (b18) 1984; 12
Guggemos, Tillé (b15) 2010; 140
Wu, Sitter (b24) 2001; 96
Chauvet, Do Paco (b8) 2018; 128
Goga, Ruiz-Gazen (b12) 2014; 76
Skinner, Silva (b23) 1997
Rao, Singh (b19) 2009; 25
Robinson, Särndal (b20) 1983; 45
Beaumont, Bocci (b1) 2008; LXVI
Cardot, Goga, Shehzad (b6) 2017; 27
Chauvet, Goga (b9) 2013
Gross (b14) 1980
Breidt, Opsomer (b3) 2000; 28
Cardot (10.1016/j.jspi.2021.07.011_b5) 2013; 7
Cardot (10.1016/j.jspi.2021.07.011_b4) 2010; 140
Chauvet (10.1016/j.jspi.2021.07.011_b8) 2018; 128
Rao (10.1016/j.jspi.2021.07.011_b19) 2009; 25
Deville (10.1016/j.jspi.2021.07.011_b10) 1992; 87
Montanari (10.1016/j.jspi.2021.07.011_b17) 2005; 100
Isaki (10.1016/j.jspi.2021.07.011_b16) 1982; 77
Särndal (10.1016/j.jspi.2021.07.011_b21) 2007; 33
Wu (10.1016/j.jspi.2021.07.011_b24) 2001; 96
Portnoy (10.1016/j.jspi.2021.07.011_b18) 1984; 12
Silva (10.1016/j.jspi.2021.07.011_b22) 1997; 23
Gross (10.1016/j.jspi.2021.07.011_b14) 1980
Skinner (10.1016/j.jspi.2021.07.011_b23) 1997
Cardot (10.1016/j.jspi.2021.07.011_b6) 2017; 27
Chauvet (10.1016/j.jspi.2021.07.011_b9) 2013
Breidt (10.1016/j.jspi.2021.07.011_b3) 2000; 28
Golub (10.1016/j.jspi.2021.07.011_b13) 2013
Robinson (10.1016/j.jspi.2021.07.011_b20) 1983; 45
Beaumont (10.1016/j.jspi.2021.07.011_b2) 2012; 80
Goga (10.1016/j.jspi.2021.07.011_b11) 2021
Beaumont (10.1016/j.jspi.2021.07.011_b1) 2008; LXVI
Guggemos (10.1016/j.jspi.2021.07.011_b15) 2010; 140
Goga (10.1016/j.jspi.2021.07.011_b12) 2014; 76
Chauvet (10.1016/j.jspi.2021.07.011_b7) 2007
References_xml – volume: 76
  start-page: 113
  year: 2014
  end-page: 140
  ident: b12
  article-title: Efficient estimation of non-linear finite population parameters by using non-parametrics
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– year: 2007
  ident: b7
  article-title: Méthodes de Bootstrap en Population Finie
– volume: 128
  start-page: 1
  year: 2018
  end-page: 16
  ident: b8
  article-title: Exact balanced random imputation for sample survey data
  publication-title: Comput. Statist. Data Anal.
– volume: 77
  start-page: 49
  year: 1982
  end-page: 61
  ident: b16
  article-title: Survey design under the regression superpopulation model
  publication-title: J. Amer. Statist. Assoc.
– volume: 33
  start-page: 99
  year: 2007
  end-page: 119
  ident: b21
  article-title: The calibration approach in survey theory and practice
  publication-title: Surv. Methodol.
– volume: 28
  start-page: 1023
  year: 2000
  end-page: 1053
  ident: b3
  article-title: Local polynomial regression estimators in survey sampling
  publication-title: Ann. Statist.
– volume: 100
  start-page: 1429
  year: 2005
  end-page: 1442
  ident: b17
  article-title: Nonparametric model calibration in survey sampling
  publication-title: J. Amer. Statist. Assoc.
– year: 1980
  ident: b14
  article-title: Median estimation in sample surveys
  publication-title: ASA Proceedings of Survey Research
– year: 1997
  ident: b23
  article-title: Variable selection for regression estimation in the presence of nonresponse
  publication-title: Proceedings of the Section on Survey Research Methods
– volume: 12
  start-page: 1298
  year: 1984
  end-page: 1309
  ident: b18
  article-title: Asymptotic behaviour of
  publication-title: Ann. Statist.
– volume: 25
  start-page: 371
  year: 2009
  end-page: 384
  ident: b19
  article-title: Range restricted weight calibration for survey data using ridge regression
  publication-title: Pak. J. Statist.
– volume: 140
  start-page: 3199
  year: 2010
  end-page: 3212
  ident: b15
  article-title: Penalized calibration in survey sampling: Design-based estimation assisted by mixed models
  publication-title: J. Statist. Plann. Inference
– volume: LXVI
  start-page: 260
  year: 2008
  end-page: 262
  ident: b1
  article-title: Another look at ridge calibration
  publication-title: Metron-International Journal of Statistics
– volume: 45
  start-page: 240
  year: 1983
  end-page: 248
  ident: b20
  article-title: Asymptotic properties of the generalized regression estimator in probability sampling
  publication-title: Sankhyā B
– year: 2013
  ident: b13
  article-title: Matrix Computations
– volume: 7
  start-page: 562
  year: 2013
  end-page: 596
  ident: b5
  article-title: Uniform convergence and asymptotic confidence bands for model-assisted estimators of the mean of sampled functional data
  publication-title: Electron. J. Stat.
– year: 2013
  ident: b9
  article-title: Sélection de variables de calage par une méthode de bootstrap
  publication-title: J. Soc. Frana̧ise Statist.
– volume: 23
  start-page: 23
  year: 1997
  end-page: 32
  ident: b22
  article-title: Variable selection for regression estimation in finite populations
  publication-title: Surv. Methodol.
– volume: 140
  start-page: 75
  year: 2010
  end-page: 91
  ident: b4
  article-title: Properties of design-based functional principal components analysis
  publication-title: J. Statist. Plann. Inference
– volume: 87
  start-page: 376
  year: 1992
  end-page: 382
  ident: b10
  article-title: Calibration estimators in survey sampling
  publication-title: J. Amer. Statist. Assoc.
– volume: 27
  year: 2017
  ident: b6
  article-title: Calibration and partial calibration on principal components when the number of auxiliary variables is large
  publication-title: Statist. Sinica
– start-page: 79
  year: 2021
  end-page: 99
  ident: b11
  article-title: B-spline estimation in a survey sampling framework
  publication-title: Advances in Contemporary Statistics and Econometrics, Festschrift in Honor of Christine Thomas-Agnan
– volume: 80
  start-page: 127
  year: 2012
  end-page: 148
  ident: b2
  article-title: On the generalized bootstrap for sample surveys with special attention to Poisson sampling
  publication-title: Internat. Statist. Rev.
– volume: 96
  start-page: 185
  year: 2001
  end-page: 193
  ident: b24
  article-title: A model-calibration approach to using complete auxiliary information from survey data
  publication-title: J. Amer. Statist. Assoc.
– volume: 7
  start-page: 562
  year: 2013
  ident: 10.1016/j.jspi.2021.07.011_b5
  article-title: Uniform convergence and asymptotic confidence bands for model-assisted estimators of the mean of sampled functional data
  publication-title: Electron. J. Stat.
  doi: 10.1214/13-EJS779
– volume: 100
  start-page: 1429
  year: 2005
  ident: 10.1016/j.jspi.2021.07.011_b17
  article-title: Nonparametric model calibration in survey sampling
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214505000000141
– volume: 96
  start-page: 185
  year: 2001
  ident: 10.1016/j.jspi.2021.07.011_b24
  article-title: A model-calibration approach to using complete auxiliary information from survey data
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214501750333054
– year: 2007
  ident: 10.1016/j.jspi.2021.07.011_b7
– volume: 128
  start-page: 1
  year: 2018
  ident: 10.1016/j.jspi.2021.07.011_b8
  article-title: Exact balanced random imputation for sample survey data
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2018.06.006
– volume: 45
  start-page: 240
  issue: 2
  year: 1983
  ident: 10.1016/j.jspi.2021.07.011_b20
  article-title: Asymptotic properties of the generalized regression estimator in probability sampling
  publication-title: Sankhyā B
– year: 1980
  ident: 10.1016/j.jspi.2021.07.011_b14
  article-title: Median estimation in sample surveys
– year: 1997
  ident: 10.1016/j.jspi.2021.07.011_b23
  article-title: Variable selection for regression estimation in the presence of nonresponse
– volume: 27
  issue: 243–260
  year: 2017
  ident: 10.1016/j.jspi.2021.07.011_b6
  article-title: Calibration and partial calibration on principal components when the number of auxiliary variables is large
  publication-title: Statist. Sinica
– volume: 25
  start-page: 371
  issue: 4
  year: 2009
  ident: 10.1016/j.jspi.2021.07.011_b19
  article-title: Range restricted weight calibration for survey data using ridge regression
  publication-title: Pak. J. Statist.
– volume: 87
  start-page: 376
  year: 1992
  ident: 10.1016/j.jspi.2021.07.011_b10
  article-title: Calibration estimators in survey sampling
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1992.10475217
– volume: 76
  start-page: 113
  year: 2014
  ident: 10.1016/j.jspi.2021.07.011_b12
  article-title: Efficient estimation of non-linear finite population parameters by using non-parametrics
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/rssb.12024
– year: 2013
  ident: 10.1016/j.jspi.2021.07.011_b13
– year: 2013
  ident: 10.1016/j.jspi.2021.07.011_b9
  article-title: Sélection de variables de calage par une méthode de bootstrap
  publication-title: J. Soc. Frana̧ise Statist.
– volume: LXVI
  start-page: 260
  year: 2008
  ident: 10.1016/j.jspi.2021.07.011_b1
  article-title: Another look at ridge calibration
  publication-title: Metron-International Journal of Statistics
– volume: 140
  start-page: 3199
  year: 2010
  ident: 10.1016/j.jspi.2021.07.011_b15
  article-title: Penalized calibration in survey sampling: Design-based estimation assisted by mixed models
  publication-title: J. Statist. Plann. Inference
  doi: 10.1016/j.jspi.2010.04.010
– volume: 23
  start-page: 23
  year: 1997
  ident: 10.1016/j.jspi.2021.07.011_b22
  article-title: Variable selection for regression estimation in finite populations
  publication-title: Surv. Methodol.
– volume: 77
  start-page: 49
  year: 1982
  ident: 10.1016/j.jspi.2021.07.011_b16
  article-title: Survey design under the regression superpopulation model
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1982.10477770
– volume: 80
  start-page: 127
  issue: 1
  year: 2012
  ident: 10.1016/j.jspi.2021.07.011_b2
  article-title: On the generalized bootstrap for sample surveys with special attention to Poisson sampling
  publication-title: Internat. Statist. Rev.
  doi: 10.1111/j.1751-5823.2011.00166.x
– volume: 28
  start-page: 1023
  issue: 4
  year: 2000
  ident: 10.1016/j.jspi.2021.07.011_b3
  article-title: Local polynomial regression estimators in survey sampling
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1015956706
– volume: 140
  start-page: 75
  year: 2010
  ident: 10.1016/j.jspi.2021.07.011_b4
  article-title: Properties of design-based functional principal components analysis
  publication-title: J. Statist. Plann. Inference
  doi: 10.1016/j.jspi.2009.06.012
– start-page: 79
  year: 2021
  ident: 10.1016/j.jspi.2021.07.011_b11
  article-title: B-spline estimation in a survey sampling framework
– volume: 33
  start-page: 99
  year: 2007
  ident: 10.1016/j.jspi.2021.07.011_b21
  article-title: The calibration approach in survey theory and practice
  publication-title: Surv. Methodol.
– volume: 12
  start-page: 1298
  issue: 4
  year: 1984
  ident: 10.1016/j.jspi.2021.07.011_b18
  article-title: Asymptotic behaviour of m-estimators of p-regression parameters when p2/n is large.i. consistency
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176346793
SSID ssj0000605
Score 2.3656843
Snippet In a finite population sampling survey, auxiliary information is commonly used to improve the Horvitz–Thompson estimators and calibration has been extensively...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 177
SubjectTerms Calibrated weights
GREG estimator
Survey sampling
Variable selection
Title Asymptotic efficiency of the calibration estimator in a high-dimensional data setting
URI https://dx.doi.org/10.1016/j.jspi.2021.07.011
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0QvODBKGrED7IHb6ayH223HAmRoAYuQsKt6Xa3CUSgkXrw4m93ZlsIJoaDxzadpJndnZmXvPeWkHvh2yzkqfSkDCMAKCbxNHQezzJtgygVURSgUHg0DodT_2UWzGqkv9XCIK2yqv1lTXfVunrTqbLZyefzzhuTCtAVCj1do3MKdl-hf_7jN9-rxiWNUSINAL6uhDMlx2uxyeeAEQV3Bp6c_92c9hrO4JScVJMi7ZU_c0ZqdtUkx6OdzeqmSRo4KpZOy-dk2tt8LfNiDU_UOmMIVFXSdUYhgsJSIDDGZaBorLFEsE3nK5pQdCz2DLr8lw4dFFmjdGMdI_qCTAZPk_7Qqy5N8FLJWOFlgiVwpkKdAUzWvob0s0xlzJiuFYqncAi1b0VqpQ0TBecvZdwCqFHG73KTyEtSX61X9orQMJOJhHExslb5mQgjYyKArdIIlQaa6Rbh22TFaWUojvdavMdb5tgixgTHmOCYqRgS3CIPu5i8tNM4-HWwXYP416aIod4fiLv-Z9wNaQhUNziK2S2pFx-f9g5mjkK33aZqk6Pe8-tw_AMdtdaM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHqwH0apYn3vwJrH7SLLpsRRL1bYXW-htyWY30GIfmHrw4m93JklLBenBY8IOLLOzM_PBN98Sci98l4Y8kZ6UYQQAxcaegcrjOWZcECUiigIcFO4Pwu7IfxkH4wppr2dhkFZZ5v4ip-fZuvzTKL3ZWE4mjTcmFaArHPTMCx1AoH0_kApD-_Gbb6XjgscokQcAy8vJmYLkNc2WEwCJgucKnpz_XZ22Kk7nmByVrSJtFbs5IRU3r5HD_kZnNauRKvaKhdTyKRm1sq_ZcrWAL-pyZQgcq6SLlIIFhbNAZIznQFFZY4Zom07mNKYoWexZlPkvJDoo0kZp5nJK9BkZdp6G7a5XvprgJZKxlZcKFsOlCk0KONn4BvzPUpUya5tOKJ7ALTS-E4mTLowVXMCEcQeoRlm_yW0sz8nefDF3F4SGqYwl9IuRc8pPRRhZGwFulVaoJDDM1AlfO0snpaI4PmzxrtfUsalGB2t0sGZKg4Pr5GFjsyz0NHauDtZnoH9FhYaEv8Pu8p92d-SgO-z3dO958HpFqgJHHXK-2TXZW318uhtoQFbmNg-wHz0h2CI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotic+efficiency+of+the+calibration+estimator+in+a+high-dimensional+data+setting&rft.jtitle=Journal+of+statistical+planning+and+inference&rft.au=Chauvet%2C+Guillaume&rft.au=Goga%2C+Camelia&rft.date=2022-03-01&rft.pub=Elsevier+B.V&rft.issn=0378-3758&rft.eissn=1873-1171&rft.volume=217&rft.spage=177&rft.epage=187&rft_id=info:doi/10.1016%2Fj.jspi.2021.07.011&rft.externalDocID=S0378375821000781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3758&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3758&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3758&client=summon