Deep neural network for hierarchical extreme multi-label text classification
The classification of natural language texts has gained a growing importance in many real world applications due to its significant implications in relation to crucial tasks, such as Information Retrieval, Question Answering, Text Summarization, Natural Language Understanding. In this paper we prese...
Saved in:
Published in | Applied soft computing Vol. 79; pp. 125 - 138 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 1872-9681 |
DOI | 10.1016/j.asoc.2019.03.041 |
Cover
Loading…
Abstract | The classification of natural language texts has gained a growing importance in many real world applications due to its significant implications in relation to crucial tasks, such as Information Retrieval, Question Answering, Text Summarization, Natural Language Understanding. In this paper we present an analysis of a Deep Learning architecture devoted to text classification, considering the extreme multi-class and multi-label text classification problem, when a hierarchical label set is defined. The paper presents a methodology named Hierarchical Label Set Expansion (HLSE), used to regularize the data labels, and an analysis of the impact of different Word Embedding (WE) models that explicitly incorporate grammatical and syntactic features. We evaluate the aforementioned methodologies on the PubMed scientific articles collection, where a multi-class and multi-label text classification problem is defined with the Medical Subject Headings (MeSH) label set, a hierarchical set of 27,775 classes. The experimental assessment proves the usefulness of the proposed HLSE methodology and also provides some interesting results relating to the impact of different uses and combinations of WE models as input to the neural network in this kind of application.
[Display omitted]
•Deep Neural Network architecture for extreme multilabel text classification.•Multi-label classification problem with a huge label space hierarchically organized.•Comparison among different word-embeddings methods for text representation.•Definition of a method for label set expansion exploiting the label hierarchy.•Experimental assessment based on flat and hierarchical measures. |
---|---|
AbstractList | The classification of natural language texts has gained a growing importance in many real world applications due to its significant implications in relation to crucial tasks, such as Information Retrieval, Question Answering, Text Summarization, Natural Language Understanding. In this paper we present an analysis of a Deep Learning architecture devoted to text classification, considering the extreme multi-class and multi-label text classification problem, when a hierarchical label set is defined. The paper presents a methodology named Hierarchical Label Set Expansion (HLSE), used to regularize the data labels, and an analysis of the impact of different Word Embedding (WE) models that explicitly incorporate grammatical and syntactic features. We evaluate the aforementioned methodologies on the PubMed scientific articles collection, where a multi-class and multi-label text classification problem is defined with the Medical Subject Headings (MeSH) label set, a hierarchical set of 27,775 classes. The experimental assessment proves the usefulness of the proposed HLSE methodology and also provides some interesting results relating to the impact of different uses and combinations of WE models as input to the neural network in this kind of application.
[Display omitted]
•Deep Neural Network architecture for extreme multilabel text classification.•Multi-label classification problem with a huge label space hierarchically organized.•Comparison among different word-embeddings methods for text representation.•Definition of a method for label set expansion exploiting the label hierarchy.•Experimental assessment based on flat and hierarchical measures. |
Author | Gargiulo, Francesco Silvestri, Stefano Ciampi, Mario De Pietro, Giuseppe |
Author_xml | – sequence: 1 givenname: Francesco orcidid: 0000-0003-0400-3332 surname: Gargiulo fullname: Gargiulo, Francesco email: francesco.gargiulo@icar.cnr.it organization: Institute for High Performance Computing and Networking of National Research Council, ICAR-CNR, Via Pietro Castellino 111 - 80131, Naples, Italy – sequence: 2 givenname: Stefano orcidid: 0000-0002-9890-8409 surname: Silvestri fullname: Silvestri, Stefano organization: Institute for High Performance Computing and Networking of National Research Council, ICAR-CNR, Via Pietro Castellino 111 - 80131, Naples, Italy – sequence: 3 givenname: Mario surname: Ciampi fullname: Ciampi, Mario organization: Institute for High Performance Computing and Networking of National Research Council, ICAR-CNR, Via Pietro Castellino 111 - 80131, Naples, Italy – sequence: 4 givenname: Giuseppe orcidid: 0000-0002-4675-5957 surname: De Pietro fullname: De Pietro, Giuseppe organization: Institute for High Performance Computing and Networking of National Research Council, ICAR-CNR, Via Pietro Castellino 111 - 80131, Naples, Italy |
BookMark | eNp9kMlOAzEMQCNUJNrCD3CaH5ghWzOJxAWVVarEBc5RJuOoKdNJlaQsf08KnDj0ZMv2s-w3Q5MxjIDQJcENwURcbRqTgm0oJqrBrMGcnKApkS2tlZBkUvKFkDVXXJyhWUobXCBF5RStbgF21Qj7aIYS8keIb5ULsVp7iCbatbelAZ85whaq7X7Ivh5MB0OVS7Gyg0nJuzKUfRjP0akzQ4KLvzhHr_d3L8vHevX88LS8WdWWYZxrRxi0LVZdC5Rw4gThVCra41b2C-xIx4Q1vF8I2zkHCjimytEehGNGcNmxOaK_e20MKUVwehf91sQvTbA--NAbffChDz40Zrr4KJD8B1mff87O0fjhOHr9i0J56r2I0cl6GC30PoLNug_-GP4NcpZ_OA |
CitedBy_id | crossref_primary_10_1016_j_neucom_2020_06_117 crossref_primary_10_1016_j_asoc_2022_108839 crossref_primary_10_1080_02664763_2024_2307535 crossref_primary_10_1016_j_asoc_2020_106699 crossref_primary_10_1016_j_jngse_2021_104406 crossref_primary_10_1007_s10618_020_00704_w crossref_primary_10_1016_j_knosys_2021_106876 crossref_primary_10_1051_e3sconf_202449101014 crossref_primary_10_1109_ACCESS_2021_3103931 crossref_primary_10_1016_j_knosys_2020_106597 crossref_primary_10_1007_s11227_024_06882_4 crossref_primary_10_1016_j_knosys_2021_108012 crossref_primary_10_1007_s00500_021_06645_w crossref_primary_10_1016_j_tourman_2024_104911 crossref_primary_10_17798_bitlisfen_1288561 crossref_primary_10_1007_s40998_024_00718_w crossref_primary_10_1108_BFJ_02_2024_0135 crossref_primary_10_1016_j_eswa_2022_118309 crossref_primary_10_1016_j_neucom_2021_02_023 crossref_primary_10_1016_j_patcog_2021_108137 crossref_primary_10_1016_j_asoc_2021_107232 crossref_primary_10_1016_j_neucom_2024_128263 crossref_primary_10_1016_j_asoc_2020_106186 crossref_primary_10_1016_j_jksuci_2024_102035 crossref_primary_10_3390_a16120548 crossref_primary_10_1016_j_geoen_2023_212206 crossref_primary_10_2139_ssrn_4486833 crossref_primary_10_1080_21681015_2023_2260384 crossref_primary_10_1016_j_asoc_2022_108826 crossref_primary_10_1016_j_asoc_2021_107316 crossref_primary_10_1016_j_ins_2021_08_076 crossref_primary_10_1016_j_ipm_2023_103320 crossref_primary_10_1016_j_patcog_2023_109378 crossref_primary_10_1177_02666669241312899 crossref_primary_10_1155_2021_3591894 crossref_primary_10_1109_TMLCN_2024_3439289 crossref_primary_10_1093_comjnl_bxae004 crossref_primary_10_1109_ACCESS_2020_3029429 crossref_primary_10_3390_healthcare8040392 crossref_primary_10_3390_info13020087 crossref_primary_10_1016_j_engappai_2023_107310 crossref_primary_10_2298_FUEE2404703J crossref_primary_10_1016_j_asoc_2024_111957 crossref_primary_10_1016_j_ipm_2020_102410 crossref_primary_10_1016_j_asoc_2022_108870 crossref_primary_10_1002_dac_4943 crossref_primary_10_1016_j_asoc_2020_106995 crossref_primary_10_1016_j_ipm_2024_103952 crossref_primary_10_1016_j_cej_2020_126401 crossref_primary_10_1016_j_asoc_2021_107248 crossref_primary_10_1007_s11063_024_11500_8 crossref_primary_10_1108_BIJ_07_2022_0454 crossref_primary_10_3390_s23020651 crossref_primary_10_1109_TII_2023_3341244 crossref_primary_10_1016_j_cose_2023_103523 crossref_primary_10_1016_j_ins_2021_05_030 crossref_primary_10_1016_j_jmsy_2020_04_016 crossref_primary_10_1016_j_knosys_2021_107980 crossref_primary_10_1016_j_ymssp_2021_107773 crossref_primary_10_1007_s00500_021_05971_3 crossref_primary_10_1007_s13042_022_01692_7 crossref_primary_10_1111_exsy_13153 crossref_primary_10_1017_nlp_2024_51 crossref_primary_10_1016_j_inffus_2023_01_003 crossref_primary_10_32604_cmc_2022_028512 crossref_primary_10_1016_j_jrtpm_2021_100265 crossref_primary_10_3390_app132413117 crossref_primary_10_1016_j_asoc_2020_106167 crossref_primary_10_1016_j_asoc_2021_107975 crossref_primary_10_1007_s13042_020_01156_w crossref_primary_10_1007_s10489_020_01680_w crossref_primary_10_1007_s13042_024_02181_9 crossref_primary_10_1016_j_knosys_2020_105633 crossref_primary_10_1016_j_ins_2022_11_158 crossref_primary_10_1109_TKDE_2023_3248608 crossref_primary_10_1007_s11257_022_09321_2 crossref_primary_10_1016_j_eswa_2020_114285 crossref_primary_10_1109_TNNLS_2021_3105142 crossref_primary_10_3846_jcem_2022_16012 crossref_primary_10_1109_TIM_2022_3176286 crossref_primary_10_3390_electronics13071199 crossref_primary_10_1016_j_asoc_2023_110226 crossref_primary_10_1007_s12650_021_00799_3 crossref_primary_10_1016_j_asoc_2024_111618 crossref_primary_10_1109_ACCESS_2021_3055768 crossref_primary_10_1016_j_artmed_2022_102298 crossref_primary_10_1016_j_asoc_2020_106630 crossref_primary_10_3390_math10162867 |
Cites_doi | 10.1186/s13326-017-0150-0 10.1186/s13326-017-0123-3 10.1137/0205011 10.1093/bioinformatics/btv237 10.1016/j.artmed.2006.04.001 10.1186/s12920-016-0203-8 10.1162/tacl_a_00051 10.1016/j.eswa.2017.03.020 10.1093/bioinformatics/btw294 10.1007/s10618-014-0382-x 10.1016/j.eswa.2018.03.058 10.1016/j.asoc.2018.03.057 10.1007/s11063-017-9636-0 10.1504/IJGUC.2016.081011 10.1016/0041-5553(64)90137-5 10.1186/1471-2105-8-423 10.1016/j.ipm.2009.03.002 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2019.03.041 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 138 |
ExternalDocumentID | 10_1016_j_asoc_2019_03_041 S156849461930167X |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-f13e7709b7e2141f6142892d078d50f1b36ca4d56cbffe9e4029f2de6f3a648b3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:11:26 EDT 2025 Tue Jul 01 01:50:03 EDT 2025 Fri Feb 23 02:24:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning MeSH Extreme multi-label text classification Semantic indexing Semi-supervised word embeddings |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-f13e7709b7e2141f6142892d078d50f1b36ca4d56cbffe9e4029f2de6f3a648b3 |
ORCID | 0000-0003-0400-3332 0000-0002-9890-8409 0000-0002-4675-5957 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2019_03_041 crossref_citationtrail_10_1016_j_asoc_2019_03_041 elsevier_sciencedirect_doi_10_1016_j_asoc_2019_03_041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2019 2019-06-00 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Pavlinek, Podgorelec (b12) 2017; 80 Demsar (b55) 2006; 7 Mikolov, Chen, Corrado, Dean (b45) 2013 Papagiannopoulou, Papanikolaou, Dimitriadis, Lagopoulos, Tsoumakas, Laliotis, Markantonatos, Vlahavas (b30) 2016 Lin, Wilbur (b26) 2007; 8 Mao, Lu (b32) 2017; 8 Baumel, Nassour-Kassis, Cohen, Elhadad, Elhadad (b20) 2018 S. Ramamoorthy, S. Murugan, An Attentive Sequence Model for Adverse Drug Event Extraction from Biomedical Text, CoRR abs/1801.00625. Ilievski, Akhtar, Feng, Shoemaker (b38) 2017 A. Trask, P. Michalak, J. Liu, sense2vec - A fast and accurate method for word sense disambiguation in neural word embeddings, arXiv preprint. Chen, Ye, Xing, Chen, Cambria (b19) 2017 Manning, Surdeanu, Bauer, Finkel, Bethard, McClosky (b56) 2014 Ribadas-Pena, de Campos, Bilbao, Romero (b34) 2015 Hughes, Li, Kotoulas, Suzumura (b14) 2017; 235 D. Yogatama, C. Dyer, W. Ling, P. Blunsom, Generative and Discriminative Text Classification with Recurrent Neural Networks, CoRR abs/1703.01898. I. Pavlopoulos, A. Kosmopoulos, I. Androutsopoulos, Continuous Space Word Vectors Obtained by Applying Word2Vec to Abstracts of Biomedical Articles, Tech. rep., NLP Group, Department of Informatics, Athens University of Economics and Business, Greece Institute of Informatics and Telecommunications, NCRS Demokritos, Greece, 2014. A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, FastText.zip: Compressing text classification models, arXiv preprint Mork, Demner-Fushman, Schmidt, Aronson (b23) 2014 Özgür, Özgür, Güngör (b60) 2005 Nigam (b21) 2017 Řehůřek, Sojka (b57) 2010 Bird, Klein, Loper (b58) 2009 Alicante, Corazza, Isgrò, Silvestri (b43) 2016 . Melamud, Levy, Dagan (b53) 2015 Peng, Li, He, Liu, Bao, Wang, Song, Yang (b22) 2018 Le, Mikolov (b29) 2014 Papanikolaou, Tsoumakas, Laliotis, Markantonatos, Vlahavas (b31) 2017; 8 Tsoumakas, Katakis, Vlahavas (b59) 2010 Holzinger, Kieseberg, Weippl, Tjoa (b9) 2018; vol. 11015 Polyak (b40) 1964; 4 Gargiulo, Silvestri, Ciampi (b54) 2017 Levy, Goldberg (b6) 2014 Nesterov (b41) 1983 Schwenk, Barrault, Conneau, LeCun (b16) 2017 Goebel, Chander, Holzinger, Lécué, Akata, Stumpf, Kieseberg, Holzinger (b10) 2018; vol. 11015 Aho, Hopcroft, Ullman (b66) 1976; 5 Peng, You, Wang, Zhai, Mamitsuka, Zhu (b27) 2016; 32 Liu, Chang, Wu, Yang (b3) 2017 Yan, Wang, Gao, Zhang, Yang, Yin (b17) 2018; 47 Wang, Tian (b18) 2016 Q. Liu, Z. Ling, H. Jiang, Y. Hu, Part-of-Speech Relevance Weights for Learning Word Embeddings, CoRR abs/1603.07695. Gargiulo, Silvestri, Ciampi (b44) 2018; 71 Bojanowski, Grave, Joulin, Mikolov (b51) 2017; 5 Alicante, Benerecetti, Corazza, Silvestri (b2) 2016; 7 Peng, Mamitsuka, Zhu (b28) 2018 Tanenblatt, Coden, Sominsky (b36) 2010 Aronson (b25) 2001 Nentidis, Bougiatiotis, Krithara, Paliouras, Kakadiaris (b8) 2017 Mikolov, Sutskever, Chen, Corrado, Dean (b37) 2013 Sokolova, Lapalme (b62) 2009; 45 Komninos, Manandhar (b5) 2016 Manning, Raghavan, Schütze (b61) 2010 Godbole, Sarawagi (b63) 2004 Nam, Kim, Loza Mencía, Gurevych, Fürnkranz (b13) 2014 Gargiulo, Silvestri, Fontanella, Ciampi, De Pietro (b48) 2017 Zhang, Ma, Wang, Chen (b11) 2017 Zavorin, Mork, Demner-Fushman (b24) 2016 Liu, Peng, Wu, Zhai, Mamitsuka, Zhu (b33) 2015; 31 Mirończuk, Protasiewicz (b1) 2018; 106 Gargiulo, Silvestri, Ciampi (b42) 2018 Joulin, Grave, Bojanowski, Mikolov (b52) 2017 Kosmopoulos, Partalas, Gaussier, Paliouras, Androutsopoulos (b65) 2015; 29 Sutton (b39) 1986 Du, Pan, Ji (b35) 2017 Moskovitch, Cohen-Kashi, Dror, Levy, Maimon, Shahar (b64) 2006; 37 Wang, Zhang, An, Lin, Yang, Zhang, Sun (b4) 2016; 9 S.M. Rezaeinia, A. Ghodsi, R. Rahmani, Improving the Accuracy of Pre-trained Word Embeddings for Sentiment Analysis, CoRR abs/1711.08609. 10.1016/j.asoc.2019.03.041_b7 Aronson (10.1016/j.asoc.2019.03.041_b25) 2001 Wang (10.1016/j.asoc.2019.03.041_b4) 2016; 9 Aho (10.1016/j.asoc.2019.03.041_b66) 1976; 5 Bojanowski (10.1016/j.asoc.2019.03.041_b51) 2017; 5 Özgür (10.1016/j.asoc.2019.03.041_b60) 2005 Levy (10.1016/j.asoc.2019.03.041_b6) 2014 10.1016/j.asoc.2019.03.041_b46 Kosmopoulos (10.1016/j.asoc.2019.03.041_b65) 2015; 29 Godbole (10.1016/j.asoc.2019.03.041_b63) 2004 Manning (10.1016/j.asoc.2019.03.041_b56) 2014 Yan (10.1016/j.asoc.2019.03.041_b17) 2018; 47 Nesterov (10.1016/j.asoc.2019.03.041_b41) 1983 10.1016/j.asoc.2019.03.041_b49 10.1016/j.asoc.2019.03.041_b47 Sokolova (10.1016/j.asoc.2019.03.041_b62) 2009; 45 Zavorin (10.1016/j.asoc.2019.03.041_b24) 2016 Nentidis (10.1016/j.asoc.2019.03.041_b8) 2017 Pavlinek (10.1016/j.asoc.2019.03.041_b12) 2017; 80 Peng (10.1016/j.asoc.2019.03.041_b27) 2016; 32 Joulin (10.1016/j.asoc.2019.03.041_b52) 2017 Alicante (10.1016/j.asoc.2019.03.041_b2) 2016; 7 Bird (10.1016/j.asoc.2019.03.041_b58) 2009 Le (10.1016/j.asoc.2019.03.041_b29) 2014 Řehůřek (10.1016/j.asoc.2019.03.041_b57) 2010 Demsar (10.1016/j.asoc.2019.03.041_b55) 2006; 7 Peng (10.1016/j.asoc.2019.03.041_b22) 2018 Gargiulo (10.1016/j.asoc.2019.03.041_b48) 2017 Sutton (10.1016/j.asoc.2019.03.041_b39) 1986 Baumel (10.1016/j.asoc.2019.03.041_b20) 2018 Tanenblatt (10.1016/j.asoc.2019.03.041_b36) 2010 Alicante (10.1016/j.asoc.2019.03.041_b43) 2016 Liu (10.1016/j.asoc.2019.03.041_b33) 2015; 31 Manning (10.1016/j.asoc.2019.03.041_b61) 2010 10.1016/j.asoc.2019.03.041_b67 Mork (10.1016/j.asoc.2019.03.041_b23) 2014 Mao (10.1016/j.asoc.2019.03.041_b32) 2017; 8 Nigam (10.1016/j.asoc.2019.03.041_b21) 2017 Schwenk (10.1016/j.asoc.2019.03.041_b16) 2017 Gargiulo (10.1016/j.asoc.2019.03.041_b42) 2018 Peng (10.1016/j.asoc.2019.03.041_b28) 2018 Du (10.1016/j.asoc.2019.03.041_b35) 2017 Zhang (10.1016/j.asoc.2019.03.041_b11) 2017 Chen (10.1016/j.asoc.2019.03.041_b19) 2017 Ilievski (10.1016/j.asoc.2019.03.041_b38) 2017 Mikolov (10.1016/j.asoc.2019.03.041_b37) 2013 Polyak (10.1016/j.asoc.2019.03.041_b40) 1964; 4 Gargiulo (10.1016/j.asoc.2019.03.041_b44) 2018; 71 Ribadas-Pena (10.1016/j.asoc.2019.03.041_b34) 2015 Moskovitch (10.1016/j.asoc.2019.03.041_b64) 2006; 37 Mirończuk (10.1016/j.asoc.2019.03.041_b1) 2018; 106 Komninos (10.1016/j.asoc.2019.03.041_b5) 2016 Hughes (10.1016/j.asoc.2019.03.041_b14) 2017; 235 Gargiulo (10.1016/j.asoc.2019.03.041_b54) 2017 Holzinger (10.1016/j.asoc.2019.03.041_b9) 2018; vol. 11015 Goebel (10.1016/j.asoc.2019.03.041_b10) 2018; vol. 11015 Mikolov (10.1016/j.asoc.2019.03.041_b45) 2013 10.1016/j.asoc.2019.03.041_b50 Wang (10.1016/j.asoc.2019.03.041_b18) 2016 Papagiannopoulou (10.1016/j.asoc.2019.03.041_b30) 2016 Papanikolaou (10.1016/j.asoc.2019.03.041_b31) 2017; 8 Liu (10.1016/j.asoc.2019.03.041_b3) 2017 Melamud (10.1016/j.asoc.2019.03.041_b53) 2015 Lin (10.1016/j.asoc.2019.03.041_b26) 2007; 8 Tsoumakas (10.1016/j.asoc.2019.03.041_b59) 2010 Nam (10.1016/j.asoc.2019.03.041_b13) 2014 10.1016/j.asoc.2019.03.041_b15 |
References_xml | – start-page: 17 year: 2001 end-page: 21 ident: b25 article-title: Effective mapping of biomedical text to the UMLS metathesaurus: the metamap program publication-title: AMIA 2001, American Medical Informatics Association Annual Symposium – volume: 29 start-page: 820 year: 2015 end-page: 865 ident: b65 article-title: Evaluation measures for hierarchical classification: a unified view and novel approaches publication-title: Data Min. Knowl. Discov. – volume: 31 start-page: 339 year: 2015 end-page: 347 ident: b33 article-title: MeSHLAbeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence publication-title: Bioinformatics – start-page: 822 year: 2017 end-page: 829 ident: b38 article-title: Efficient hyperparameter optimization for deep learning algorithms using deterministic rbf surrogates publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) – start-page: 1490 year: 2016 end-page: 1500 ident: b5 article-title: Dependency based embeddings for sentence classification tasks publication-title: NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies – start-page: 546 year: 2010 end-page: 551 ident: b36 article-title: The conceptmapper approach to named entity recognition publication-title: Proceedings of the International Conference on Language Resources and Evaluation, LREC 2010 – start-page: 45 year: 2010 end-page: 50 ident: b57 article-title: Software framework for topic modelling with large corpora publication-title: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks – reference: A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, FastText.zip: Compressing text classification models, arXiv preprint – start-page: 533 year: 2017 end-page: 537 ident: b35 article-title: A novel serial deep multi-task learning model for large scale biomedical semantic indexing publication-title: 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM – volume: 71 start-page: 199 year: 2018 end-page: 212 ident: b44 article-title: A clustering based methodology to support the translation of medical specifications to software models publication-title: Appl. Soft Comput. – volume: 106 start-page: 36 year: 2018 end-page: 54 ident: b1 article-title: A recent overview of the state-of-the-art elements of text classification publication-title: Expert Syst. Appl. – volume: 32 start-page: 70 year: 2016 end-page: 79 ident: b27 article-title: Deepmesh: deep semantic representation for improving large-scale mesh indexing publication-title: Bioinformatics – volume: 5 start-page: 135 year: 2017 end-page: 146 ident: b51 article-title: Enriching word vectors with subword information publication-title: Trans. Assoc. Comput. Linguist. – volume: 37 start-page: 177 year: 2006 end-page: 190 ident: b64 article-title: Multiple hierarchical classification of free-text clinical guidelines publication-title: Artif. Intell. Med. – reference: Q. Liu, Z. Ling, H. Jiang, Y. Hu, Part-of-Speech Relevance Weights for Learning Word Embeddings, CoRR abs/1603.07695. – start-page: 8 year: 2016 end-page: 15 ident: b24 article-title: Using learning-to-rank to enhance NLM medical text indexer results publication-title: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics – start-page: 606 year: 2005 end-page: 615 ident: b60 article-title: Text categorization with class-based and corpus-based keyword selection publication-title: Comput. Inf. Sci.-ISCIS 2005 – start-page: 82 year: 2017 end-page: 87 ident: b54 article-title: A big data architecture for knowledge discovery in PubMed articles publication-title: 2017 IEEE Symposium on Computers and Communications, ISCC 2017 – start-page: 22 year: 2004 end-page: 30 ident: b63 article-title: Discriminative methods for multi-labeled classification publication-title: Advances in Knowledge Discovery and Data Mining – volume: 80 start-page: 83 year: 2017 end-page: 93 ident: b12 article-title: Text classification method based on self-training and lda topic models publication-title: Expert Syst. Appl. – start-page: 427 year: 2017 end-page: 431 ident: b52 article-title: Bag of tricks for efficient text classification publication-title: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers – start-page: 115 year: 2017 end-page: 124 ident: b3 article-title: Deep learning for extreme multi-label text classification publication-title: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval – reference: A. Trask, P. Michalak, J. Liu, sense2vec - A fast and accurate method for word sense disambiguation in neural word embeddings, arXiv preprint. – volume: 9 start-page: 45 year: 2016 ident: b4 article-title: Biomedical event trigger detection by dependency-based word embedding publication-title: BMC Med. Genomics – start-page: 2377 year: 2017 end-page: 2383 ident: b19 article-title: Ensemble application of convolutional and recurrent neural networks for multi-label text categorization publication-title: 2017 International Joint Conference on Neural Networks, IJCNN 2017 – volume: 5 start-page: 115 year: 1976 end-page: 132 ident: b66 article-title: On finding lowest common ancestors in trees publication-title: SIAM J. Comput. – reference: D. Yogatama, C. Dyer, W. Ling, P. Blunsom, Generative and Discriminative Text Classification with Recurrent Neural Networks, CoRR abs/1703.01898. – reference: I. Pavlopoulos, A. Kosmopoulos, I. Androutsopoulos, Continuous Space Word Vectors Obtained by Applying Word2Vec to Abstracts of Biomedical Articles, Tech. rep., NLP Group, Department of Informatics, Athens University of Economics and Business, Greece Institute of Informatics and Telecommunications, NCRS Demokritos, Greece, 2014. – reference: S. Ramamoorthy, S. Murugan, An Attentive Sequence Model for Adverse Drug Event Extraction from Biomedical Text, CoRR abs/1801.00625. – volume: 8 start-page: 423 year: 2007 ident: b26 article-title: Pubmed related articles: a probabilistic topic-based model for content similarity publication-title: BMC Bioinformatics – start-page: 1107 year: 2017 end-page: 1116 ident: b16 article-title: Very deep convolutional networks for text classification publication-title: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017, Vol. 1 – volume: 4 start-page: 1 year: 1964 end-page: 17 ident: b40 article-title: Some methods of speeding up the convergence of iteration methods publication-title: USSR Comput. Math. Math. Phys. – year: 2017 ident: b21 article-title: Applying deep learning to ICD-9 multi-label classification from medical records – year: 2015 ident: b34 article-title: CoLe and UTAI at BioASQ 2015: experiments with similarity based descriptor assignment publication-title: Working Notes of CLEF 2015 - Conference and Labs of the Evaluation forum – volume: vol. 11015 start-page: 295 year: 2018 end-page: 303 ident: b10 article-title: Explainable AI: the new 42? publication-title: Machine Learning and Knowledge Extraction - Second IFIP TC 5, TC 8/WG 8.4, 8.9, TC 12/WG 12.9 International Cross-Domain Conference, CD-MAKE 2018 – volume: 8 start-page: 43:1 year: 2017 end-page: 43:13 ident: b31 article-title: Large-scale online semantic indexing of biomedical articles via an ensemble of multi-label classification models publication-title: J. Biomed. Semant. – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b55 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – start-page: 183 year: 2016 end-page: 193 ident: b43 article-title: Semantic cluster labeling for medical relations publication-title: Innovation in Medicine and Healthcare 2016 – start-page: 3111 year: 2013 end-page: 3119 ident: b37 article-title: Distributed representations of words and phrases and their compositionality publication-title: Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. – volume: 235 start-page: 246 year: 2017 end-page: 250 ident: b14 article-title: Medical text classification using convolutional neural networks publication-title: CoRR – start-page: 667 year: 2010 end-page: 685 ident: b59 article-title: Mining multi-label data publication-title: Data Mining and Knowledge Discovery Handbook, 2nd ed. – start-page: 618 year: 2017 end-page: 628 ident: b11 article-title: LF-LDA: a topic model for multi-label classification publication-title: Advances in Internetworking, Data & Web Technologies, The 5th International Conference on Emerging Internetworking, Data & Web Technologies, EIDWT-2017 – start-page: 823 year: 1986 end-page: 831 ident: b39 article-title: Two problems with backpropagation and other steepest-descent learning procedures for networks publication-title: Proceedings of 8th annual conference of cognitive science society – reference: S.M. Rezaeinia, A. Ghodsi, R. Rahmani, Improving the Accuracy of Pre-trained Word Embeddings for Sentiment Analysis, CoRR abs/1711.08609. – volume: vol. 11015 start-page: 1 year: 2018 end-page: 8 ident: b9 article-title: Current advances, trends and challenges of machine learning and knowledge extraction: from machine learning to explainable AI publication-title: Machine Learning and Knowledge Extraction - Second IFIP TC 5, TC 8/WG 8.4, 8.9, TC 12/WG 12.9 International Cross-Domain Conference, CD-MAKE 2018 – volume: 47 start-page: 117 year: 2018 end-page: 138 ident: b17 article-title: LSTM publication-title: Neural Process. Lett. – start-page: 1328 year: 2014 end-page: 1336 ident: b23 article-title: Recent enhancements to the NLM medical text indexer publication-title: Working Notes for CLEF 2014 Conference, Vol. 1180 – volume: 7 start-page: 245 year: 2016 end-page: 256 ident: b2 article-title: A distributed architecture to integrate ontological knowledge into information extraction publication-title: Int. J. Grid Utility Comput. – start-page: 471 year: 2017 end-page: 481 ident: b48 article-title: A deep learning approach for scientific paper semantic ranking publication-title: International Conference on Intelligent Interactive Multimedia Systems and Services – start-page: 543 year: 1983 end-page: 547 ident: b41 article-title: A method for unconstrained convex minimization problem with the rate of convergence O(1/k̂ 2) publication-title: Doklady AN USSR, Vol. 269 – start-page: 203 year: 2018 end-page: 209 ident: b28 article-title: Meshlabeler and DeepMeSH: recent progress in large-scale mesh indexing publication-title: Data Mining for Systems Biology. Methods in Molecular Biology, Vol. 1807 – start-page: 1 year: 2015 end-page: 7 ident: b53 article-title: A simple word embedding model for lexical substitution publication-title: Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing, VS@NAACL-HLT 2015 – start-page: 1063 year: 2018 end-page: 1072 ident: b22 article-title: Large-scale hierarchical text classification with recursively regularized deep graph-cnn publication-title: Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW 2018 – start-page: 437 year: 2014 end-page: 452 ident: b13 article-title: Large-scale multi-label text classification - revisiting neural networks publication-title: Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2014 – start-page: 409 year: 2018 end-page: 416 ident: b20 article-title: Multi-label classification of patient notes: case study on ICD code assignment publication-title: The Workshops of the The Thirty-Second AAAI Conference on Artificial Intelligence. – reference: . – start-page: 938 year: 2016 end-page: 943 ident: b18 article-title: Recurrent residual learning for sequence classification publication-title: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016 – volume: 8 start-page: 15:1 year: 2017 end-page: 15:9 ident: b32 article-title: MeSH Now: automatic MeSH indexing at PubMed scale via learning to rank publication-title: J. Biomed. Semant. – year: 2013 ident: b45 article-title: Efficient estimation of word representations in vector space publication-title: Proceedings of the International Conference on Learning Representations (ICLR 2013) – start-page: 641 year: 2018 end-page: 650 ident: b42 article-title: Deep convolution neural network for extreme multi-label text classification publication-title: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018) - Volume 5: HEALTHINF, Vol. 5 – year: 2009 ident: b58 article-title: Natural Language Processing with Python – start-page: 302 year: 2014 end-page: 308 ident: b6 article-title: Dependency-based word embeddings publication-title: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014, Volume 2: Short Papers – start-page: 48 year: 2017 end-page: 57 ident: b8 article-title: Results of the fifth edition of the BioASQ Challenge publication-title: BioNLP 2017, Vancouver, Canada, August 4, 2017 – start-page: 50 year: 2016 end-page: 54 ident: b30 article-title: Large-scale semantic indexing and question answering in biomedicine publication-title: Proceedings of the Fourth BioASQ workshop – volume: 45 start-page: 427 year: 2009 end-page: 437 ident: b62 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manage. – start-page: 1188 year: 2014 end-page: 1196 ident: b29 article-title: Distributed representations of sentences and documents publication-title: Proceedings of the 31th International Conference on Machine Learning, ICML 2014 – year: 2010 ident: b61 article-title: Introduction to Information Retrieval – start-page: 55 year: 2014 end-page: 60 ident: b56 article-title: The stanford coreNLP natural language processing toolkit publication-title: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014 – start-page: 546 year: 2010 ident: 10.1016/j.asoc.2019.03.041_b36 article-title: The conceptmapper approach to named entity recognition – start-page: 3111 year: 2013 ident: 10.1016/j.asoc.2019.03.041_b37 article-title: Distributed representations of words and phrases and their compositionality – start-page: 8 year: 2016 ident: 10.1016/j.asoc.2019.03.041_b24 article-title: Using learning-to-rank to enhance NLM medical text indexer results – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.asoc.2019.03.041_b55 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – start-page: 50 year: 2016 ident: 10.1016/j.asoc.2019.03.041_b30 article-title: Large-scale semantic indexing and question answering in biomedicine – start-page: 823 year: 1986 ident: 10.1016/j.asoc.2019.03.041_b39 article-title: Two problems with backpropagation and other steepest-descent learning procedures for networks – ident: 10.1016/j.asoc.2019.03.041_b47 – start-page: 82 year: 2017 ident: 10.1016/j.asoc.2019.03.041_b54 article-title: A big data architecture for knowledge discovery in PubMed articles – start-page: 938 year: 2016 ident: 10.1016/j.asoc.2019.03.041_b18 article-title: Recurrent residual learning for sequence classification – start-page: 409 year: 2018 ident: 10.1016/j.asoc.2019.03.041_b20 article-title: Multi-label classification of patient notes: case study on ICD code assignment – start-page: 543 year: 1983 ident: 10.1016/j.asoc.2019.03.041_b41 article-title: A method for unconstrained convex minimization problem with the rate of convergence O(1/k̂ 2) – start-page: 1107 year: 2017 ident: 10.1016/j.asoc.2019.03.041_b16 article-title: Very deep convolutional networks for text classification – volume: 8 start-page: 43:1 issue: 1 year: 2017 ident: 10.1016/j.asoc.2019.03.041_b31 article-title: Large-scale online semantic indexing of biomedical articles via an ensemble of multi-label classification models publication-title: J. Biomed. Semant. doi: 10.1186/s13326-017-0150-0 – volume: 8 start-page: 15:1 issue: 1 year: 2017 ident: 10.1016/j.asoc.2019.03.041_b32 article-title: MeSH Now: automatic MeSH indexing at PubMed scale via learning to rank publication-title: J. Biomed. Semant. doi: 10.1186/s13326-017-0123-3 – start-page: 641 year: 2018 ident: 10.1016/j.asoc.2019.03.041_b42 article-title: Deep convolution neural network for extreme multi-label text classification – volume: 5 start-page: 115 issue: 1 year: 1976 ident: 10.1016/j.asoc.2019.03.041_b66 article-title: On finding lowest common ancestors in trees publication-title: SIAM J. Comput. doi: 10.1137/0205011 – ident: 10.1016/j.asoc.2019.03.041_b15 – start-page: 17 year: 2001 ident: 10.1016/j.asoc.2019.03.041_b25 article-title: Effective mapping of biomedical text to the UMLS metathesaurus: the metamap program – start-page: 1188 year: 2014 ident: 10.1016/j.asoc.2019.03.041_b29 article-title: Distributed representations of sentences and documents – volume: 31 start-page: 339 issue: 12 year: 2015 ident: 10.1016/j.asoc.2019.03.041_b33 article-title: MeSHLAbeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv237 – start-page: 606 year: 2005 ident: 10.1016/j.asoc.2019.03.041_b60 article-title: Text categorization with class-based and corpus-based keyword selection publication-title: Comput. Inf. Sci.-ISCIS 2005 – start-page: 618 year: 2017 ident: 10.1016/j.asoc.2019.03.041_b11 article-title: LF-LDA: a topic model for multi-label classification – ident: 10.1016/j.asoc.2019.03.041_b67 – volume: 37 start-page: 177 issue: 3 year: 2006 ident: 10.1016/j.asoc.2019.03.041_b64 article-title: Multiple hierarchical classification of free-text clinical guidelines publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2006.04.001 – start-page: 471 year: 2017 ident: 10.1016/j.asoc.2019.03.041_b48 article-title: A deep learning approach for scientific paper semantic ranking – volume: 9 start-page: 45 issue: 2 year: 2016 ident: 10.1016/j.asoc.2019.03.041_b4 article-title: Biomedical event trigger detection by dependency-based word embedding publication-title: BMC Med. Genomics doi: 10.1186/s12920-016-0203-8 – start-page: 1490 year: 2016 ident: 10.1016/j.asoc.2019.03.041_b5 article-title: Dependency based embeddings for sentence classification tasks – start-page: 302 year: 2014 ident: 10.1016/j.asoc.2019.03.041_b6 article-title: Dependency-based word embeddings – ident: 10.1016/j.asoc.2019.03.041_b46 – start-page: 183 year: 2016 ident: 10.1016/j.asoc.2019.03.041_b43 article-title: Semantic cluster labeling for medical relations – volume: 5 start-page: 135 year: 2017 ident: 10.1016/j.asoc.2019.03.041_b51 article-title: Enriching word vectors with subword information publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00051 – volume: vol. 11015 start-page: 1 year: 2018 ident: 10.1016/j.asoc.2019.03.041_b9 article-title: Current advances, trends and challenges of machine learning and knowledge extraction: from machine learning to explainable AI – year: 2017 ident: 10.1016/j.asoc.2019.03.041_b21 – ident: 10.1016/j.asoc.2019.03.041_b7 – volume: vol. 11015 start-page: 295 year: 2018 ident: 10.1016/j.asoc.2019.03.041_b10 article-title: Explainable AI: the new 42? – volume: 80 start-page: 83 issue: Supplement C year: 2017 ident: 10.1016/j.asoc.2019.03.041_b12 article-title: Text classification method based on self-training and lda topic models publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.03.020 – start-page: 437 year: 2014 ident: 10.1016/j.asoc.2019.03.041_b13 article-title: Large-scale multi-label text classification - revisiting neural networks – start-page: 1 year: 2015 ident: 10.1016/j.asoc.2019.03.041_b53 article-title: A simple word embedding model for lexical substitution – start-page: 667 year: 2010 ident: 10.1016/j.asoc.2019.03.041_b59 article-title: Mining multi-label data – start-page: 22 year: 2004 ident: 10.1016/j.asoc.2019.03.041_b63 article-title: Discriminative methods for multi-labeled classification – year: 2013 ident: 10.1016/j.asoc.2019.03.041_b45 article-title: Efficient estimation of word representations in vector space – start-page: 45 year: 2010 ident: 10.1016/j.asoc.2019.03.041_b57 article-title: Software framework for topic modelling with large corpora – start-page: 55 year: 2014 ident: 10.1016/j.asoc.2019.03.041_b56 article-title: The stanford coreNLP natural language processing toolkit – start-page: 1063 year: 2018 ident: 10.1016/j.asoc.2019.03.041_b22 article-title: Large-scale hierarchical text classification with recursively regularized deep graph-cnn – ident: 10.1016/j.asoc.2019.03.041_b49 – start-page: 427 year: 2017 ident: 10.1016/j.asoc.2019.03.041_b52 article-title: Bag of tricks for efficient text classification – start-page: 48 year: 2017 ident: 10.1016/j.asoc.2019.03.041_b8 article-title: Results of the fifth edition of the BioASQ Challenge – start-page: 822 year: 2017 ident: 10.1016/j.asoc.2019.03.041_b38 article-title: Efficient hyperparameter optimization for deep learning algorithms using deterministic rbf surrogates – start-page: 2377 year: 2017 ident: 10.1016/j.asoc.2019.03.041_b19 article-title: Ensemble application of convolutional and recurrent neural networks for multi-label text categorization – start-page: 203 year: 2018 ident: 10.1016/j.asoc.2019.03.041_b28 article-title: Meshlabeler and DeepMeSH: recent progress in large-scale mesh indexing – volume: 32 start-page: 70 issue: 12 year: 2016 ident: 10.1016/j.asoc.2019.03.041_b27 article-title: Deepmesh: deep semantic representation for improving large-scale mesh indexing publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw294 – year: 2015 ident: 10.1016/j.asoc.2019.03.041_b34 article-title: CoLe and UTAI at BioASQ 2015: experiments with similarity based descriptor assignment – volume: 29 start-page: 820 issue: 3 year: 2015 ident: 10.1016/j.asoc.2019.03.041_b65 article-title: Evaluation measures for hierarchical classification: a unified view and novel approaches publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-014-0382-x – volume: 106 start-page: 36 year: 2018 ident: 10.1016/j.asoc.2019.03.041_b1 article-title: A recent overview of the state-of-the-art elements of text classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.03.058 – volume: 71 start-page: 199 year: 2018 ident: 10.1016/j.asoc.2019.03.041_b44 article-title: A clustering based methodology to support the translation of medical specifications to software models publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.03.057 – volume: 47 start-page: 117 issue: 1 year: 2018 ident: 10.1016/j.asoc.2019.03.041_b17 article-title: LSTM2 : multi-label ranking for document classification publication-title: Neural Process. Lett. doi: 10.1007/s11063-017-9636-0 – year: 2010 ident: 10.1016/j.asoc.2019.03.041_b61 – start-page: 533 year: 2017 ident: 10.1016/j.asoc.2019.03.041_b35 article-title: A novel serial deep multi-task learning model for large scale biomedical semantic indexing – start-page: 115 year: 2017 ident: 10.1016/j.asoc.2019.03.041_b3 article-title: Deep learning for extreme multi-label text classification – volume: 7 start-page: 245 issue: 4 year: 2016 ident: 10.1016/j.asoc.2019.03.041_b2 article-title: A distributed architecture to integrate ontological knowledge into information extraction publication-title: Int. J. Grid Utility Comput. doi: 10.1504/IJGUC.2016.081011 – start-page: 1328 year: 2014 ident: 10.1016/j.asoc.2019.03.041_b23 article-title: Recent enhancements to the NLM medical text indexer – volume: 4 start-page: 1 issue: 5 year: 1964 ident: 10.1016/j.asoc.2019.03.041_b40 article-title: Some methods of speeding up the convergence of iteration methods publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(64)90137-5 – volume: 8 start-page: 423 issue: 1 year: 2007 ident: 10.1016/j.asoc.2019.03.041_b26 article-title: Pubmed related articles: a probabilistic topic-based model for content similarity publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-423 – ident: 10.1016/j.asoc.2019.03.041_b50 – year: 2009 ident: 10.1016/j.asoc.2019.03.041_b58 – volume: 235 start-page: 246 year: 2017 ident: 10.1016/j.asoc.2019.03.041_b14 article-title: Medical text classification using convolutional neural networks publication-title: CoRR – volume: 45 start-page: 427 issue: 4 year: 2009 ident: 10.1016/j.asoc.2019.03.041_b62 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2009.03.002 |
SSID | ssj0016928 |
Score | 2.561287 |
Snippet | The classification of natural language texts has gained a growing importance in many real world applications due to its significant implications in relation to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 125 |
SubjectTerms | Deep learning Extreme multi-label text classification MeSH Semantic indexing Semi-supervised word embeddings |
Title | Deep neural network for hierarchical extreme multi-label text classification |
URI | https://dx.doi.org/10.1016/j.asoc.2019.03.041 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3WbubfSQ5lmqpWouohd5C9gWVEovUq7_dnTyKgvTgKSTMQvhmM4_NNzMIXUI1j6IuIiyXlIhgDUhqEk4SYWMrTR6r8mjgcaJGU3E_k7MWGjS1MECrrG1_ZdNLa10_6dVo9pbzee8lZB6JSEXIADhw6WdQwS5i2OXXX2uaB1NpOV8VhAlI14UzFccrDwgAvatqdCrY387ph8MZ7qGdOlLE_epl9lHLFQdot5nCgOuP8hCNb5xbYuhLGaSLitWNQyiKYcp1-Z8gqAEHGwwngbgkEJKgerfAQPrABsJn4AuVKjpC0-Ht62BE6hkJxHBKV8Qz7uKYpjp2ERPMK-iglkY2eH4rqWeaK5MLK5XR3rvUhXQx9ZF1yvNciUTzY9Qu3gt3gjCT1hopTKxlBH35NPWWCcm10wljWncQa8DJTN1AHOZYLLKGKfaWAaAZAJpRngVAO-hqvWZZtc_YKC0bzLNfmyAL9n3DutN_rjtD23BXMb_OUXv18ekuQoyx0t1yE3XRVn_wPH6C693DaPINvQTSdA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1Be4ALO2LHB27IahwvSY6IRS20vVCk3qx4iQRCpULl__EkTgUS6oFrMiNFz854xn5-A3CFt3lU4lPKSplQEaIBLWzOaS5c5qQtM1VvDYzGqv8iHqdyuga37V0YpFXG2N_E9Dpaxye9iGZv_vraew6VRy4KESoAjlz66Tp0UZ1KdqB7M3jqj5eHCaqoW6yiPUWHeHemoXmVAQRkeDVap4L9vT79WHMedmArJovkpvmeXVjzsz3YbhsxkPhf7sPwzvs5QWnKYD1riN0kZKMEG13XRwVhJEgIw7gZSGoOIQ2j798J8j6IxQwaKUP1KB3Ay8P95LZPY5sEanmSLGjFuM-ypDCZT5lglUIRtSJ1YfF3MqmY4cqWwkllTVX5woeKsahS51XFSyVyww-hM_uY-SMgTDpnpbCZkSlK85mkckxIbrzJGTPmGFgLjrZRQxxbWbzrliz2phFQjYDqhOsA6DFcL33mjYLGSmvZYq5_zQMdQvwKv5N_-l3CRn8yGurhYPx0Cpv4piGCnUFn8fnlz0PKsTAXcUp9A2e805A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+neural+network+for+hierarchical+extreme+multi-label+text+classification&rft.jtitle=Applied+soft+computing&rft.au=Gargiulo%2C+Francesco&rft.au=Silvestri%2C+Stefano&rft.au=Ciampi%2C+Mario&rft.au=De+Pietro%2C+Giuseppe&rft.date=2019-06-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=79&rft.spage=125&rft.epage=138&rft_id=info:doi/10.1016%2Fj.asoc.2019.03.041&rft.externalDocID=S156849461930167X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |