Deep neural network for hierarchical extreme multi-label text classification

The classification of natural language texts has gained a growing importance in many real world applications due to its significant implications in relation to crucial tasks, such as Information Retrieval, Question Answering, Text Summarization, Natural Language Understanding. In this paper we prese...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 79; pp. 125 - 138
Main Authors Gargiulo, Francesco, Silvestri, Stefano, Ciampi, Mario, De Pietro, Giuseppe
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2019
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2019.03.041

Cover

Loading…
Abstract The classification of natural language texts has gained a growing importance in many real world applications due to its significant implications in relation to crucial tasks, such as Information Retrieval, Question Answering, Text Summarization, Natural Language Understanding. In this paper we present an analysis of a Deep Learning architecture devoted to text classification, considering the extreme multi-class and multi-label text classification problem, when a hierarchical label set is defined. The paper presents a methodology named Hierarchical Label Set Expansion (HLSE), used to regularize the data labels, and an analysis of the impact of different Word Embedding (WE) models that explicitly incorporate grammatical and syntactic features. We evaluate the aforementioned methodologies on the PubMed scientific articles collection, where a multi-class and multi-label text classification problem is defined with the Medical Subject Headings (MeSH) label set, a hierarchical set of 27,775 classes. The experimental assessment proves the usefulness of the proposed HLSE methodology and also provides some interesting results relating to the impact of different uses and combinations of WE models as input to the neural network in this kind of application. [Display omitted] •Deep Neural Network architecture for extreme multilabel text classification.•Multi-label classification problem with a huge label space hierarchically organized.•Comparison among different word-embeddings methods for text representation.•Definition of a method for label set expansion exploiting the label hierarchy.•Experimental assessment based on flat and hierarchical measures.
AbstractList The classification of natural language texts has gained a growing importance in many real world applications due to its significant implications in relation to crucial tasks, such as Information Retrieval, Question Answering, Text Summarization, Natural Language Understanding. In this paper we present an analysis of a Deep Learning architecture devoted to text classification, considering the extreme multi-class and multi-label text classification problem, when a hierarchical label set is defined. The paper presents a methodology named Hierarchical Label Set Expansion (HLSE), used to regularize the data labels, and an analysis of the impact of different Word Embedding (WE) models that explicitly incorporate grammatical and syntactic features. We evaluate the aforementioned methodologies on the PubMed scientific articles collection, where a multi-class and multi-label text classification problem is defined with the Medical Subject Headings (MeSH) label set, a hierarchical set of 27,775 classes. The experimental assessment proves the usefulness of the proposed HLSE methodology and also provides some interesting results relating to the impact of different uses and combinations of WE models as input to the neural network in this kind of application. [Display omitted] •Deep Neural Network architecture for extreme multilabel text classification.•Multi-label classification problem with a huge label space hierarchically organized.•Comparison among different word-embeddings methods for text representation.•Definition of a method for label set expansion exploiting the label hierarchy.•Experimental assessment based on flat and hierarchical measures.
Author Gargiulo, Francesco
Silvestri, Stefano
Ciampi, Mario
De Pietro, Giuseppe
Author_xml – sequence: 1
  givenname: Francesco
  orcidid: 0000-0003-0400-3332
  surname: Gargiulo
  fullname: Gargiulo, Francesco
  email: francesco.gargiulo@icar.cnr.it
  organization: Institute for High Performance Computing and Networking of National Research Council, ICAR-CNR, Via Pietro Castellino 111 - 80131, Naples, Italy
– sequence: 2
  givenname: Stefano
  orcidid: 0000-0002-9890-8409
  surname: Silvestri
  fullname: Silvestri, Stefano
  organization: Institute for High Performance Computing and Networking of National Research Council, ICAR-CNR, Via Pietro Castellino 111 - 80131, Naples, Italy
– sequence: 3
  givenname: Mario
  surname: Ciampi
  fullname: Ciampi, Mario
  organization: Institute for High Performance Computing and Networking of National Research Council, ICAR-CNR, Via Pietro Castellino 111 - 80131, Naples, Italy
– sequence: 4
  givenname: Giuseppe
  orcidid: 0000-0002-4675-5957
  surname: De Pietro
  fullname: De Pietro, Giuseppe
  organization: Institute for High Performance Computing and Networking of National Research Council, ICAR-CNR, Via Pietro Castellino 111 - 80131, Naples, Italy
BookMark eNp9kMlOAzEMQCNUJNrCD3CaH5ghWzOJxAWVVarEBc5RJuOoKdNJlaQsf08KnDj0ZMv2s-w3Q5MxjIDQJcENwURcbRqTgm0oJqrBrMGcnKApkS2tlZBkUvKFkDVXXJyhWUobXCBF5RStbgF21Qj7aIYS8keIb5ULsVp7iCbatbelAZ85whaq7X7Ivh5MB0OVS7Gyg0nJuzKUfRjP0akzQ4KLvzhHr_d3L8vHevX88LS8WdWWYZxrRxi0LVZdC5Rw4gThVCra41b2C-xIx4Q1vF8I2zkHCjimytEehGNGcNmxOaK_e20MKUVwehf91sQvTbA--NAbffChDz40Zrr4KJD8B1mff87O0fjhOHr9i0J56r2I0cl6GC30PoLNug_-GP4NcpZ_OA
CitedBy_id crossref_primary_10_1016_j_neucom_2020_06_117
crossref_primary_10_1016_j_asoc_2022_108839
crossref_primary_10_1080_02664763_2024_2307535
crossref_primary_10_1016_j_asoc_2020_106699
crossref_primary_10_1016_j_jngse_2021_104406
crossref_primary_10_1007_s10618_020_00704_w
crossref_primary_10_1016_j_knosys_2021_106876
crossref_primary_10_1051_e3sconf_202449101014
crossref_primary_10_1109_ACCESS_2021_3103931
crossref_primary_10_1016_j_knosys_2020_106597
crossref_primary_10_1007_s11227_024_06882_4
crossref_primary_10_1016_j_knosys_2021_108012
crossref_primary_10_1007_s00500_021_06645_w
crossref_primary_10_1016_j_tourman_2024_104911
crossref_primary_10_17798_bitlisfen_1288561
crossref_primary_10_1007_s40998_024_00718_w
crossref_primary_10_1108_BFJ_02_2024_0135
crossref_primary_10_1016_j_eswa_2022_118309
crossref_primary_10_1016_j_neucom_2021_02_023
crossref_primary_10_1016_j_patcog_2021_108137
crossref_primary_10_1016_j_asoc_2021_107232
crossref_primary_10_1016_j_neucom_2024_128263
crossref_primary_10_1016_j_asoc_2020_106186
crossref_primary_10_1016_j_jksuci_2024_102035
crossref_primary_10_3390_a16120548
crossref_primary_10_1016_j_geoen_2023_212206
crossref_primary_10_2139_ssrn_4486833
crossref_primary_10_1080_21681015_2023_2260384
crossref_primary_10_1016_j_asoc_2022_108826
crossref_primary_10_1016_j_asoc_2021_107316
crossref_primary_10_1016_j_ins_2021_08_076
crossref_primary_10_1016_j_ipm_2023_103320
crossref_primary_10_1016_j_patcog_2023_109378
crossref_primary_10_1177_02666669241312899
crossref_primary_10_1155_2021_3591894
crossref_primary_10_1109_TMLCN_2024_3439289
crossref_primary_10_1093_comjnl_bxae004
crossref_primary_10_1109_ACCESS_2020_3029429
crossref_primary_10_3390_healthcare8040392
crossref_primary_10_3390_info13020087
crossref_primary_10_1016_j_engappai_2023_107310
crossref_primary_10_2298_FUEE2404703J
crossref_primary_10_1016_j_asoc_2024_111957
crossref_primary_10_1016_j_ipm_2020_102410
crossref_primary_10_1016_j_asoc_2022_108870
crossref_primary_10_1002_dac_4943
crossref_primary_10_1016_j_asoc_2020_106995
crossref_primary_10_1016_j_ipm_2024_103952
crossref_primary_10_1016_j_cej_2020_126401
crossref_primary_10_1016_j_asoc_2021_107248
crossref_primary_10_1007_s11063_024_11500_8
crossref_primary_10_1108_BIJ_07_2022_0454
crossref_primary_10_3390_s23020651
crossref_primary_10_1109_TII_2023_3341244
crossref_primary_10_1016_j_cose_2023_103523
crossref_primary_10_1016_j_ins_2021_05_030
crossref_primary_10_1016_j_jmsy_2020_04_016
crossref_primary_10_1016_j_knosys_2021_107980
crossref_primary_10_1016_j_ymssp_2021_107773
crossref_primary_10_1007_s00500_021_05971_3
crossref_primary_10_1007_s13042_022_01692_7
crossref_primary_10_1111_exsy_13153
crossref_primary_10_1017_nlp_2024_51
crossref_primary_10_1016_j_inffus_2023_01_003
crossref_primary_10_32604_cmc_2022_028512
crossref_primary_10_1016_j_jrtpm_2021_100265
crossref_primary_10_3390_app132413117
crossref_primary_10_1016_j_asoc_2020_106167
crossref_primary_10_1016_j_asoc_2021_107975
crossref_primary_10_1007_s13042_020_01156_w
crossref_primary_10_1007_s10489_020_01680_w
crossref_primary_10_1007_s13042_024_02181_9
crossref_primary_10_1016_j_knosys_2020_105633
crossref_primary_10_1016_j_ins_2022_11_158
crossref_primary_10_1109_TKDE_2023_3248608
crossref_primary_10_1007_s11257_022_09321_2
crossref_primary_10_1016_j_eswa_2020_114285
crossref_primary_10_1109_TNNLS_2021_3105142
crossref_primary_10_3846_jcem_2022_16012
crossref_primary_10_1109_TIM_2022_3176286
crossref_primary_10_3390_electronics13071199
crossref_primary_10_1016_j_asoc_2023_110226
crossref_primary_10_1007_s12650_021_00799_3
crossref_primary_10_1016_j_asoc_2024_111618
crossref_primary_10_1109_ACCESS_2021_3055768
crossref_primary_10_1016_j_artmed_2022_102298
crossref_primary_10_1016_j_asoc_2020_106630
crossref_primary_10_3390_math10162867
Cites_doi 10.1186/s13326-017-0150-0
10.1186/s13326-017-0123-3
10.1137/0205011
10.1093/bioinformatics/btv237
10.1016/j.artmed.2006.04.001
10.1186/s12920-016-0203-8
10.1162/tacl_a_00051
10.1016/j.eswa.2017.03.020
10.1093/bioinformatics/btw294
10.1007/s10618-014-0382-x
10.1016/j.eswa.2018.03.058
10.1016/j.asoc.2018.03.057
10.1007/s11063-017-9636-0
10.1504/IJGUC.2016.081011
10.1016/0041-5553(64)90137-5
10.1186/1471-2105-8-423
10.1016/j.ipm.2009.03.002
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2019.03.041
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 138
ExternalDocumentID 10_1016_j_asoc_2019_03_041
S156849461930167X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-f13e7709b7e2141f6142892d078d50f1b36ca4d56cbffe9e4029f2de6f3a648b3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:11:26 EDT 2025
Tue Jul 01 01:50:03 EDT 2025
Fri Feb 23 02:24:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
MeSH
Extreme multi-label text classification
Semantic indexing
Semi-supervised word embeddings
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-f13e7709b7e2141f6142892d078d50f1b36ca4d56cbffe9e4029f2de6f3a648b3
ORCID 0000-0003-0400-3332
0000-0002-9890-8409
0000-0002-4675-5957
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_asoc_2019_03_041
crossref_citationtrail_10_1016_j_asoc_2019_03_041
elsevier_sciencedirect_doi_10_1016_j_asoc_2019_03_041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2019
2019-06-00
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pavlinek, Podgorelec (b12) 2017; 80
Demsar (b55) 2006; 7
Mikolov, Chen, Corrado, Dean (b45) 2013
Papagiannopoulou, Papanikolaou, Dimitriadis, Lagopoulos, Tsoumakas, Laliotis, Markantonatos, Vlahavas (b30) 2016
Lin, Wilbur (b26) 2007; 8
Mao, Lu (b32) 2017; 8
Baumel, Nassour-Kassis, Cohen, Elhadad, Elhadad (b20) 2018
S. Ramamoorthy, S. Murugan, An Attentive Sequence Model for Adverse Drug Event Extraction from Biomedical Text, CoRR abs/1801.00625.
Ilievski, Akhtar, Feng, Shoemaker (b38) 2017
A. Trask, P. Michalak, J. Liu, sense2vec - A fast and accurate method for word sense disambiguation in neural word embeddings, arXiv preprint.
Chen, Ye, Xing, Chen, Cambria (b19) 2017
Manning, Surdeanu, Bauer, Finkel, Bethard, McClosky (b56) 2014
Ribadas-Pena, de Campos, Bilbao, Romero (b34) 2015
Hughes, Li, Kotoulas, Suzumura (b14) 2017; 235
D. Yogatama, C. Dyer, W. Ling, P. Blunsom, Generative and Discriminative Text Classification with Recurrent Neural Networks, CoRR abs/1703.01898.
I. Pavlopoulos, A. Kosmopoulos, I. Androutsopoulos, Continuous Space Word Vectors Obtained by Applying Word2Vec to Abstracts of Biomedical Articles, Tech. rep., NLP Group, Department of Informatics, Athens University of Economics and Business, Greece Institute of Informatics and Telecommunications, NCRS Demokritos, Greece, 2014.
A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, FastText.zip: Compressing text classification models, arXiv preprint
Mork, Demner-Fushman, Schmidt, Aronson (b23) 2014
Özgür, Özgür, Güngör (b60) 2005
Nigam (b21) 2017
Řehůřek, Sojka (b57) 2010
Bird, Klein, Loper (b58) 2009
Alicante, Corazza, Isgrò, Silvestri (b43) 2016
.
Melamud, Levy, Dagan (b53) 2015
Peng, Li, He, Liu, Bao, Wang, Song, Yang (b22) 2018
Le, Mikolov (b29) 2014
Papanikolaou, Tsoumakas, Laliotis, Markantonatos, Vlahavas (b31) 2017; 8
Tsoumakas, Katakis, Vlahavas (b59) 2010
Holzinger, Kieseberg, Weippl, Tjoa (b9) 2018; vol. 11015
Polyak (b40) 1964; 4
Gargiulo, Silvestri, Ciampi (b54) 2017
Levy, Goldberg (b6) 2014
Nesterov (b41) 1983
Schwenk, Barrault, Conneau, LeCun (b16) 2017
Goebel, Chander, Holzinger, Lécué, Akata, Stumpf, Kieseberg, Holzinger (b10) 2018; vol. 11015
Aho, Hopcroft, Ullman (b66) 1976; 5
Peng, You, Wang, Zhai, Mamitsuka, Zhu (b27) 2016; 32
Liu, Chang, Wu, Yang (b3) 2017
Yan, Wang, Gao, Zhang, Yang, Yin (b17) 2018; 47
Wang, Tian (b18) 2016
Q. Liu, Z. Ling, H. Jiang, Y. Hu, Part-of-Speech Relevance Weights for Learning Word Embeddings, CoRR abs/1603.07695.
Gargiulo, Silvestri, Ciampi (b44) 2018; 71
Bojanowski, Grave, Joulin, Mikolov (b51) 2017; 5
Alicante, Benerecetti, Corazza, Silvestri (b2) 2016; 7
Peng, Mamitsuka, Zhu (b28) 2018
Tanenblatt, Coden, Sominsky (b36) 2010
Aronson (b25) 2001
Nentidis, Bougiatiotis, Krithara, Paliouras, Kakadiaris (b8) 2017
Mikolov, Sutskever, Chen, Corrado, Dean (b37) 2013
Sokolova, Lapalme (b62) 2009; 45
Komninos, Manandhar (b5) 2016
Manning, Raghavan, Schütze (b61) 2010
Godbole, Sarawagi (b63) 2004
Nam, Kim, Loza Mencía, Gurevych, Fürnkranz (b13) 2014
Gargiulo, Silvestri, Fontanella, Ciampi, De Pietro (b48) 2017
Zhang, Ma, Wang, Chen (b11) 2017
Zavorin, Mork, Demner-Fushman (b24) 2016
Liu, Peng, Wu, Zhai, Mamitsuka, Zhu (b33) 2015; 31
Mirończuk, Protasiewicz (b1) 2018; 106
Gargiulo, Silvestri, Ciampi (b42) 2018
Joulin, Grave, Bojanowski, Mikolov (b52) 2017
Kosmopoulos, Partalas, Gaussier, Paliouras, Androutsopoulos (b65) 2015; 29
Sutton (b39) 1986
Du, Pan, Ji (b35) 2017
Moskovitch, Cohen-Kashi, Dror, Levy, Maimon, Shahar (b64) 2006; 37
Wang, Zhang, An, Lin, Yang, Zhang, Sun (b4) 2016; 9
S.M. Rezaeinia, A. Ghodsi, R. Rahmani, Improving the Accuracy of Pre-trained Word Embeddings for Sentiment Analysis, CoRR abs/1711.08609.
10.1016/j.asoc.2019.03.041_b7
Aronson (10.1016/j.asoc.2019.03.041_b25) 2001
Wang (10.1016/j.asoc.2019.03.041_b4) 2016; 9
Aho (10.1016/j.asoc.2019.03.041_b66) 1976; 5
Bojanowski (10.1016/j.asoc.2019.03.041_b51) 2017; 5
Özgür (10.1016/j.asoc.2019.03.041_b60) 2005
Levy (10.1016/j.asoc.2019.03.041_b6) 2014
10.1016/j.asoc.2019.03.041_b46
Kosmopoulos (10.1016/j.asoc.2019.03.041_b65) 2015; 29
Godbole (10.1016/j.asoc.2019.03.041_b63) 2004
Manning (10.1016/j.asoc.2019.03.041_b56) 2014
Yan (10.1016/j.asoc.2019.03.041_b17) 2018; 47
Nesterov (10.1016/j.asoc.2019.03.041_b41) 1983
10.1016/j.asoc.2019.03.041_b49
10.1016/j.asoc.2019.03.041_b47
Sokolova (10.1016/j.asoc.2019.03.041_b62) 2009; 45
Zavorin (10.1016/j.asoc.2019.03.041_b24) 2016
Nentidis (10.1016/j.asoc.2019.03.041_b8) 2017
Pavlinek (10.1016/j.asoc.2019.03.041_b12) 2017; 80
Peng (10.1016/j.asoc.2019.03.041_b27) 2016; 32
Joulin (10.1016/j.asoc.2019.03.041_b52) 2017
Alicante (10.1016/j.asoc.2019.03.041_b2) 2016; 7
Bird (10.1016/j.asoc.2019.03.041_b58) 2009
Le (10.1016/j.asoc.2019.03.041_b29) 2014
Řehůřek (10.1016/j.asoc.2019.03.041_b57) 2010
Demsar (10.1016/j.asoc.2019.03.041_b55) 2006; 7
Peng (10.1016/j.asoc.2019.03.041_b22) 2018
Gargiulo (10.1016/j.asoc.2019.03.041_b48) 2017
Sutton (10.1016/j.asoc.2019.03.041_b39) 1986
Baumel (10.1016/j.asoc.2019.03.041_b20) 2018
Tanenblatt (10.1016/j.asoc.2019.03.041_b36) 2010
Alicante (10.1016/j.asoc.2019.03.041_b43) 2016
Liu (10.1016/j.asoc.2019.03.041_b33) 2015; 31
Manning (10.1016/j.asoc.2019.03.041_b61) 2010
10.1016/j.asoc.2019.03.041_b67
Mork (10.1016/j.asoc.2019.03.041_b23) 2014
Mao (10.1016/j.asoc.2019.03.041_b32) 2017; 8
Nigam (10.1016/j.asoc.2019.03.041_b21) 2017
Schwenk (10.1016/j.asoc.2019.03.041_b16) 2017
Gargiulo (10.1016/j.asoc.2019.03.041_b42) 2018
Peng (10.1016/j.asoc.2019.03.041_b28) 2018
Du (10.1016/j.asoc.2019.03.041_b35) 2017
Zhang (10.1016/j.asoc.2019.03.041_b11) 2017
Chen (10.1016/j.asoc.2019.03.041_b19) 2017
Ilievski (10.1016/j.asoc.2019.03.041_b38) 2017
Mikolov (10.1016/j.asoc.2019.03.041_b37) 2013
Polyak (10.1016/j.asoc.2019.03.041_b40) 1964; 4
Gargiulo (10.1016/j.asoc.2019.03.041_b44) 2018; 71
Ribadas-Pena (10.1016/j.asoc.2019.03.041_b34) 2015
Moskovitch (10.1016/j.asoc.2019.03.041_b64) 2006; 37
Mirończuk (10.1016/j.asoc.2019.03.041_b1) 2018; 106
Komninos (10.1016/j.asoc.2019.03.041_b5) 2016
Hughes (10.1016/j.asoc.2019.03.041_b14) 2017; 235
Gargiulo (10.1016/j.asoc.2019.03.041_b54) 2017
Holzinger (10.1016/j.asoc.2019.03.041_b9) 2018; vol. 11015
Goebel (10.1016/j.asoc.2019.03.041_b10) 2018; vol. 11015
Mikolov (10.1016/j.asoc.2019.03.041_b45) 2013
10.1016/j.asoc.2019.03.041_b50
Wang (10.1016/j.asoc.2019.03.041_b18) 2016
Papagiannopoulou (10.1016/j.asoc.2019.03.041_b30) 2016
Papanikolaou (10.1016/j.asoc.2019.03.041_b31) 2017; 8
Liu (10.1016/j.asoc.2019.03.041_b3) 2017
Melamud (10.1016/j.asoc.2019.03.041_b53) 2015
Lin (10.1016/j.asoc.2019.03.041_b26) 2007; 8
Tsoumakas (10.1016/j.asoc.2019.03.041_b59) 2010
Nam (10.1016/j.asoc.2019.03.041_b13) 2014
10.1016/j.asoc.2019.03.041_b15
References_xml – start-page: 17
  year: 2001
  end-page: 21
  ident: b25
  article-title: Effective mapping of biomedical text to the UMLS metathesaurus: the metamap program
  publication-title: AMIA 2001, American Medical Informatics Association Annual Symposium
– volume: 29
  start-page: 820
  year: 2015
  end-page: 865
  ident: b65
  article-title: Evaluation measures for hierarchical classification: a unified view and novel approaches
  publication-title: Data Min. Knowl. Discov.
– volume: 31
  start-page: 339
  year: 2015
  end-page: 347
  ident: b33
  article-title: MeSHLAbeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence
  publication-title: Bioinformatics
– start-page: 822
  year: 2017
  end-page: 829
  ident: b38
  article-title: Efficient hyperparameter optimization for deep learning algorithms using deterministic rbf surrogates
  publication-title: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)
– start-page: 1490
  year: 2016
  end-page: 1500
  ident: b5
  article-title: Dependency based embeddings for sentence classification tasks
  publication-title: NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
– start-page: 546
  year: 2010
  end-page: 551
  ident: b36
  article-title: The conceptmapper approach to named entity recognition
  publication-title: Proceedings of the International Conference on Language Resources and Evaluation, LREC 2010
– start-page: 45
  year: 2010
  end-page: 50
  ident: b57
  article-title: Software framework for topic modelling with large corpora
  publication-title: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks
– reference: A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, FastText.zip: Compressing text classification models, arXiv preprint
– start-page: 533
  year: 2017
  end-page: 537
  ident: b35
  article-title: A novel serial deep multi-task learning model for large scale biomedical semantic indexing
  publication-title: 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM
– volume: 71
  start-page: 199
  year: 2018
  end-page: 212
  ident: b44
  article-title: A clustering based methodology to support the translation of medical specifications to software models
  publication-title: Appl. Soft Comput.
– volume: 106
  start-page: 36
  year: 2018
  end-page: 54
  ident: b1
  article-title: A recent overview of the state-of-the-art elements of text classification
  publication-title: Expert Syst. Appl.
– volume: 32
  start-page: 70
  year: 2016
  end-page: 79
  ident: b27
  article-title: Deepmesh: deep semantic representation for improving large-scale mesh indexing
  publication-title: Bioinformatics
– volume: 5
  start-page: 135
  year: 2017
  end-page: 146
  ident: b51
  article-title: Enriching word vectors with subword information
  publication-title: Trans. Assoc. Comput. Linguist.
– volume: 37
  start-page: 177
  year: 2006
  end-page: 190
  ident: b64
  article-title: Multiple hierarchical classification of free-text clinical guidelines
  publication-title: Artif. Intell. Med.
– reference: Q. Liu, Z. Ling, H. Jiang, Y. Hu, Part-of-Speech Relevance Weights for Learning Word Embeddings, CoRR abs/1603.07695.
– start-page: 8
  year: 2016
  end-page: 15
  ident: b24
  article-title: Using learning-to-rank to enhance NLM medical text indexer results
  publication-title: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
– start-page: 606
  year: 2005
  end-page: 615
  ident: b60
  article-title: Text categorization with class-based and corpus-based keyword selection
  publication-title: Comput. Inf. Sci.-ISCIS 2005
– start-page: 82
  year: 2017
  end-page: 87
  ident: b54
  article-title: A big data architecture for knowledge discovery in PubMed articles
  publication-title: 2017 IEEE Symposium on Computers and Communications, ISCC 2017
– start-page: 22
  year: 2004
  end-page: 30
  ident: b63
  article-title: Discriminative methods for multi-labeled classification
  publication-title: Advances in Knowledge Discovery and Data Mining
– volume: 80
  start-page: 83
  year: 2017
  end-page: 93
  ident: b12
  article-title: Text classification method based on self-training and lda topic models
  publication-title: Expert Syst. Appl.
– start-page: 427
  year: 2017
  end-page: 431
  ident: b52
  article-title: Bag of tricks for efficient text classification
  publication-title: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
– start-page: 115
  year: 2017
  end-page: 124
  ident: b3
  article-title: Deep learning for extreme multi-label text classification
  publication-title: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval
– reference: A. Trask, P. Michalak, J. Liu, sense2vec - A fast and accurate method for word sense disambiguation in neural word embeddings, arXiv preprint.
– volume: 9
  start-page: 45
  year: 2016
  ident: b4
  article-title: Biomedical event trigger detection by dependency-based word embedding
  publication-title: BMC Med. Genomics
– start-page: 2377
  year: 2017
  end-page: 2383
  ident: b19
  article-title: Ensemble application of convolutional and recurrent neural networks for multi-label text categorization
  publication-title: 2017 International Joint Conference on Neural Networks, IJCNN 2017
– volume: 5
  start-page: 115
  year: 1976
  end-page: 132
  ident: b66
  article-title: On finding lowest common ancestors in trees
  publication-title: SIAM J. Comput.
– reference: D. Yogatama, C. Dyer, W. Ling, P. Blunsom, Generative and Discriminative Text Classification with Recurrent Neural Networks, CoRR abs/1703.01898.
– reference: I. Pavlopoulos, A. Kosmopoulos, I. Androutsopoulos, Continuous Space Word Vectors Obtained by Applying Word2Vec to Abstracts of Biomedical Articles, Tech. rep., NLP Group, Department of Informatics, Athens University of Economics and Business, Greece Institute of Informatics and Telecommunications, NCRS Demokritos, Greece, 2014.
– reference: S. Ramamoorthy, S. Murugan, An Attentive Sequence Model for Adverse Drug Event Extraction from Biomedical Text, CoRR abs/1801.00625.
– volume: 8
  start-page: 423
  year: 2007
  ident: b26
  article-title: Pubmed related articles: a probabilistic topic-based model for content similarity
  publication-title: BMC Bioinformatics
– start-page: 1107
  year: 2017
  end-page: 1116
  ident: b16
  article-title: Very deep convolutional networks for text classification
  publication-title: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017, Vol. 1
– volume: 4
  start-page: 1
  year: 1964
  end-page: 17
  ident: b40
  article-title: Some methods of speeding up the convergence of iteration methods
  publication-title: USSR Comput. Math. Math. Phys.
– year: 2017
  ident: b21
  article-title: Applying deep learning to ICD-9 multi-label classification from medical records
– year: 2015
  ident: b34
  article-title: CoLe and UTAI at BioASQ 2015: experiments with similarity based descriptor assignment
  publication-title: Working Notes of CLEF 2015 - Conference and Labs of the Evaluation forum
– volume: vol. 11015
  start-page: 295
  year: 2018
  end-page: 303
  ident: b10
  article-title: Explainable AI: the new 42?
  publication-title: Machine Learning and Knowledge Extraction - Second IFIP TC 5, TC 8/WG 8.4, 8.9, TC 12/WG 12.9 International Cross-Domain Conference, CD-MAKE 2018
– volume: 8
  start-page: 43:1
  year: 2017
  end-page: 43:13
  ident: b31
  article-title: Large-scale online semantic indexing of biomedical articles via an ensemble of multi-label classification models
  publication-title: J. Biomed. Semant.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b55
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– start-page: 183
  year: 2016
  end-page: 193
  ident: b43
  article-title: Semantic cluster labeling for medical relations
  publication-title: Innovation in Medicine and Healthcare 2016
– start-page: 3111
  year: 2013
  end-page: 3119
  ident: b37
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013.
– volume: 235
  start-page: 246
  year: 2017
  end-page: 250
  ident: b14
  article-title: Medical text classification using convolutional neural networks
  publication-title: CoRR
– start-page: 667
  year: 2010
  end-page: 685
  ident: b59
  article-title: Mining multi-label data
  publication-title: Data Mining and Knowledge Discovery Handbook, 2nd ed.
– start-page: 618
  year: 2017
  end-page: 628
  ident: b11
  article-title: LF-LDA: a topic model for multi-label classification
  publication-title: Advances in Internetworking, Data & Web Technologies, The 5th International Conference on Emerging Internetworking, Data & Web Technologies, EIDWT-2017
– start-page: 823
  year: 1986
  end-page: 831
  ident: b39
  article-title: Two problems with backpropagation and other steepest-descent learning procedures for networks
  publication-title: Proceedings of 8th annual conference of cognitive science society
– reference: S.M. Rezaeinia, A. Ghodsi, R. Rahmani, Improving the Accuracy of Pre-trained Word Embeddings for Sentiment Analysis, CoRR abs/1711.08609.
– volume: vol. 11015
  start-page: 1
  year: 2018
  end-page: 8
  ident: b9
  article-title: Current advances, trends and challenges of machine learning and knowledge extraction: from machine learning to explainable AI
  publication-title: Machine Learning and Knowledge Extraction - Second IFIP TC 5, TC 8/WG 8.4, 8.9, TC 12/WG 12.9 International Cross-Domain Conference, CD-MAKE 2018
– volume: 47
  start-page: 117
  year: 2018
  end-page: 138
  ident: b17
  article-title: LSTM
  publication-title: Neural Process. Lett.
– start-page: 1328
  year: 2014
  end-page: 1336
  ident: b23
  article-title: Recent enhancements to the NLM medical text indexer
  publication-title: Working Notes for CLEF 2014 Conference, Vol. 1180
– volume: 7
  start-page: 245
  year: 2016
  end-page: 256
  ident: b2
  article-title: A distributed architecture to integrate ontological knowledge into information extraction
  publication-title: Int. J. Grid Utility Comput.
– start-page: 471
  year: 2017
  end-page: 481
  ident: b48
  article-title: A deep learning approach for scientific paper semantic ranking
  publication-title: International Conference on Intelligent Interactive Multimedia Systems and Services
– start-page: 543
  year: 1983
  end-page: 547
  ident: b41
  article-title: A method for unconstrained convex minimization problem with the rate of convergence O(1/k̂ 2)
  publication-title: Doklady AN USSR, Vol. 269
– start-page: 203
  year: 2018
  end-page: 209
  ident: b28
  article-title: Meshlabeler and DeepMeSH: recent progress in large-scale mesh indexing
  publication-title: Data Mining for Systems Biology. Methods in Molecular Biology, Vol. 1807
– start-page: 1
  year: 2015
  end-page: 7
  ident: b53
  article-title: A simple word embedding model for lexical substitution
  publication-title: Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing, VS@NAACL-HLT 2015
– start-page: 1063
  year: 2018
  end-page: 1072
  ident: b22
  article-title: Large-scale hierarchical text classification with recursively regularized deep graph-cnn
  publication-title: Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW 2018
– start-page: 437
  year: 2014
  end-page: 452
  ident: b13
  article-title: Large-scale multi-label text classification - revisiting neural networks
  publication-title: Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2014
– start-page: 409
  year: 2018
  end-page: 416
  ident: b20
  article-title: Multi-label classification of patient notes: case study on ICD code assignment
  publication-title: The Workshops of the The Thirty-Second AAAI Conference on Artificial Intelligence.
– reference: .
– start-page: 938
  year: 2016
  end-page: 943
  ident: b18
  article-title: Recurrent residual learning for sequence classification
  publication-title: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016
– volume: 8
  start-page: 15:1
  year: 2017
  end-page: 15:9
  ident: b32
  article-title: MeSH Now: automatic MeSH indexing at PubMed scale via learning to rank
  publication-title: J. Biomed. Semant.
– year: 2013
  ident: b45
  article-title: Efficient estimation of word representations in vector space
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR 2013)
– start-page: 641
  year: 2018
  end-page: 650
  ident: b42
  article-title: Deep convolution neural network for extreme multi-label text classification
  publication-title: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018) - Volume 5: HEALTHINF, Vol. 5
– year: 2009
  ident: b58
  article-title: Natural Language Processing with Python
– start-page: 302
  year: 2014
  end-page: 308
  ident: b6
  article-title: Dependency-based word embeddings
  publication-title: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014, Volume 2: Short Papers
– start-page: 48
  year: 2017
  end-page: 57
  ident: b8
  article-title: Results of the fifth edition of the BioASQ Challenge
  publication-title: BioNLP 2017, Vancouver, Canada, August 4, 2017
– start-page: 50
  year: 2016
  end-page: 54
  ident: b30
  article-title: Large-scale semantic indexing and question answering in biomedicine
  publication-title: Proceedings of the Fourth BioASQ workshop
– volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  ident: b62
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manage.
– start-page: 1188
  year: 2014
  end-page: 1196
  ident: b29
  article-title: Distributed representations of sentences and documents
  publication-title: Proceedings of the 31th International Conference on Machine Learning, ICML 2014
– year: 2010
  ident: b61
  article-title: Introduction to Information Retrieval
– start-page: 55
  year: 2014
  end-page: 60
  ident: b56
  article-title: The stanford coreNLP natural language processing toolkit
  publication-title: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014
– start-page: 546
  year: 2010
  ident: 10.1016/j.asoc.2019.03.041_b36
  article-title: The conceptmapper approach to named entity recognition
– start-page: 3111
  year: 2013
  ident: 10.1016/j.asoc.2019.03.041_b37
  article-title: Distributed representations of words and phrases and their compositionality
– start-page: 8
  year: 2016
  ident: 10.1016/j.asoc.2019.03.041_b24
  article-title: Using learning-to-rank to enhance NLM medical text indexer results
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.asoc.2019.03.041_b55
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– start-page: 50
  year: 2016
  ident: 10.1016/j.asoc.2019.03.041_b30
  article-title: Large-scale semantic indexing and question answering in biomedicine
– start-page: 823
  year: 1986
  ident: 10.1016/j.asoc.2019.03.041_b39
  article-title: Two problems with backpropagation and other steepest-descent learning procedures for networks
– ident: 10.1016/j.asoc.2019.03.041_b47
– start-page: 82
  year: 2017
  ident: 10.1016/j.asoc.2019.03.041_b54
  article-title: A big data architecture for knowledge discovery in PubMed articles
– start-page: 938
  year: 2016
  ident: 10.1016/j.asoc.2019.03.041_b18
  article-title: Recurrent residual learning for sequence classification
– start-page: 409
  year: 2018
  ident: 10.1016/j.asoc.2019.03.041_b20
  article-title: Multi-label classification of patient notes: case study on ICD code assignment
– start-page: 543
  year: 1983
  ident: 10.1016/j.asoc.2019.03.041_b41
  article-title: A method for unconstrained convex minimization problem with the rate of convergence O(1/k̂ 2)
– start-page: 1107
  year: 2017
  ident: 10.1016/j.asoc.2019.03.041_b16
  article-title: Very deep convolutional networks for text classification
– volume: 8
  start-page: 43:1
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2019.03.041_b31
  article-title: Large-scale online semantic indexing of biomedical articles via an ensemble of multi-label classification models
  publication-title: J. Biomed. Semant.
  doi: 10.1186/s13326-017-0150-0
– volume: 8
  start-page: 15:1
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2019.03.041_b32
  article-title: MeSH Now: automatic MeSH indexing at PubMed scale via learning to rank
  publication-title: J. Biomed. Semant.
  doi: 10.1186/s13326-017-0123-3
– start-page: 641
  year: 2018
  ident: 10.1016/j.asoc.2019.03.041_b42
  article-title: Deep convolution neural network for extreme multi-label text classification
– volume: 5
  start-page: 115
  issue: 1
  year: 1976
  ident: 10.1016/j.asoc.2019.03.041_b66
  article-title: On finding lowest common ancestors in trees
  publication-title: SIAM J. Comput.
  doi: 10.1137/0205011
– ident: 10.1016/j.asoc.2019.03.041_b15
– start-page: 17
  year: 2001
  ident: 10.1016/j.asoc.2019.03.041_b25
  article-title: Effective mapping of biomedical text to the UMLS metathesaurus: the metamap program
– start-page: 1188
  year: 2014
  ident: 10.1016/j.asoc.2019.03.041_b29
  article-title: Distributed representations of sentences and documents
– volume: 31
  start-page: 339
  issue: 12
  year: 2015
  ident: 10.1016/j.asoc.2019.03.041_b33
  article-title: MeSHLAbeler: improving the accuracy of large-scale MeSH indexing by integrating diverse evidence
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv237
– start-page: 606
  year: 2005
  ident: 10.1016/j.asoc.2019.03.041_b60
  article-title: Text categorization with class-based and corpus-based keyword selection
  publication-title: Comput. Inf. Sci.-ISCIS 2005
– start-page: 618
  year: 2017
  ident: 10.1016/j.asoc.2019.03.041_b11
  article-title: LF-LDA: a topic model for multi-label classification
– ident: 10.1016/j.asoc.2019.03.041_b67
– volume: 37
  start-page: 177
  issue: 3
  year: 2006
  ident: 10.1016/j.asoc.2019.03.041_b64
  article-title: Multiple hierarchical classification of free-text clinical guidelines
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2006.04.001
– start-page: 471
  year: 2017
  ident: 10.1016/j.asoc.2019.03.041_b48
  article-title: A deep learning approach for scientific paper semantic ranking
– volume: 9
  start-page: 45
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2019.03.041_b4
  article-title: Biomedical event trigger detection by dependency-based word embedding
  publication-title: BMC Med. Genomics
  doi: 10.1186/s12920-016-0203-8
– start-page: 1490
  year: 2016
  ident: 10.1016/j.asoc.2019.03.041_b5
  article-title: Dependency based embeddings for sentence classification tasks
– start-page: 302
  year: 2014
  ident: 10.1016/j.asoc.2019.03.041_b6
  article-title: Dependency-based word embeddings
– ident: 10.1016/j.asoc.2019.03.041_b46
– start-page: 183
  year: 2016
  ident: 10.1016/j.asoc.2019.03.041_b43
  article-title: Semantic cluster labeling for medical relations
– volume: 5
  start-page: 135
  year: 2017
  ident: 10.1016/j.asoc.2019.03.041_b51
  article-title: Enriching word vectors with subword information
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00051
– volume: vol. 11015
  start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2019.03.041_b9
  article-title: Current advances, trends and challenges of machine learning and knowledge extraction: from machine learning to explainable AI
– year: 2017
  ident: 10.1016/j.asoc.2019.03.041_b21
– ident: 10.1016/j.asoc.2019.03.041_b7
– volume: vol. 11015
  start-page: 295
  year: 2018
  ident: 10.1016/j.asoc.2019.03.041_b10
  article-title: Explainable AI: the new 42?
– volume: 80
  start-page: 83
  issue: Supplement C
  year: 2017
  ident: 10.1016/j.asoc.2019.03.041_b12
  article-title: Text classification method based on self-training and lda topic models
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.03.020
– start-page: 437
  year: 2014
  ident: 10.1016/j.asoc.2019.03.041_b13
  article-title: Large-scale multi-label text classification - revisiting neural networks
– start-page: 1
  year: 2015
  ident: 10.1016/j.asoc.2019.03.041_b53
  article-title: A simple word embedding model for lexical substitution
– start-page: 667
  year: 2010
  ident: 10.1016/j.asoc.2019.03.041_b59
  article-title: Mining multi-label data
– start-page: 22
  year: 2004
  ident: 10.1016/j.asoc.2019.03.041_b63
  article-title: Discriminative methods for multi-labeled classification
– year: 2013
  ident: 10.1016/j.asoc.2019.03.041_b45
  article-title: Efficient estimation of word representations in vector space
– start-page: 45
  year: 2010
  ident: 10.1016/j.asoc.2019.03.041_b57
  article-title: Software framework for topic modelling with large corpora
– start-page: 55
  year: 2014
  ident: 10.1016/j.asoc.2019.03.041_b56
  article-title: The stanford coreNLP natural language processing toolkit
– start-page: 1063
  year: 2018
  ident: 10.1016/j.asoc.2019.03.041_b22
  article-title: Large-scale hierarchical text classification with recursively regularized deep graph-cnn
– ident: 10.1016/j.asoc.2019.03.041_b49
– start-page: 427
  year: 2017
  ident: 10.1016/j.asoc.2019.03.041_b52
  article-title: Bag of tricks for efficient text classification
– start-page: 48
  year: 2017
  ident: 10.1016/j.asoc.2019.03.041_b8
  article-title: Results of the fifth edition of the BioASQ Challenge
– start-page: 822
  year: 2017
  ident: 10.1016/j.asoc.2019.03.041_b38
  article-title: Efficient hyperparameter optimization for deep learning algorithms using deterministic rbf surrogates
– start-page: 2377
  year: 2017
  ident: 10.1016/j.asoc.2019.03.041_b19
  article-title: Ensemble application of convolutional and recurrent neural networks for multi-label text categorization
– start-page: 203
  year: 2018
  ident: 10.1016/j.asoc.2019.03.041_b28
  article-title: Meshlabeler and DeepMeSH: recent progress in large-scale mesh indexing
– volume: 32
  start-page: 70
  issue: 12
  year: 2016
  ident: 10.1016/j.asoc.2019.03.041_b27
  article-title: Deepmesh: deep semantic representation for improving large-scale mesh indexing
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw294
– year: 2015
  ident: 10.1016/j.asoc.2019.03.041_b34
  article-title: CoLe and UTAI at BioASQ 2015: experiments with similarity based descriptor assignment
– volume: 29
  start-page: 820
  issue: 3
  year: 2015
  ident: 10.1016/j.asoc.2019.03.041_b65
  article-title: Evaluation measures for hierarchical classification: a unified view and novel approaches
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-014-0382-x
– volume: 106
  start-page: 36
  year: 2018
  ident: 10.1016/j.asoc.2019.03.041_b1
  article-title: A recent overview of the state-of-the-art elements of text classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.03.058
– volume: 71
  start-page: 199
  year: 2018
  ident: 10.1016/j.asoc.2019.03.041_b44
  article-title: A clustering based methodology to support the translation of medical specifications to software models
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.03.057
– volume: 47
  start-page: 117
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2019.03.041_b17
  article-title: LSTM2 : multi-label ranking for document classification
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-017-9636-0
– year: 2010
  ident: 10.1016/j.asoc.2019.03.041_b61
– start-page: 533
  year: 2017
  ident: 10.1016/j.asoc.2019.03.041_b35
  article-title: A novel serial deep multi-task learning model for large scale biomedical semantic indexing
– start-page: 115
  year: 2017
  ident: 10.1016/j.asoc.2019.03.041_b3
  article-title: Deep learning for extreme multi-label text classification
– volume: 7
  start-page: 245
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2019.03.041_b2
  article-title: A distributed architecture to integrate ontological knowledge into information extraction
  publication-title: Int. J. Grid Utility Comput.
  doi: 10.1504/IJGUC.2016.081011
– start-page: 1328
  year: 2014
  ident: 10.1016/j.asoc.2019.03.041_b23
  article-title: Recent enhancements to the NLM medical text indexer
– volume: 4
  start-page: 1
  issue: 5
  year: 1964
  ident: 10.1016/j.asoc.2019.03.041_b40
  article-title: Some methods of speeding up the convergence of iteration methods
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– volume: 8
  start-page: 423
  issue: 1
  year: 2007
  ident: 10.1016/j.asoc.2019.03.041_b26
  article-title: Pubmed related articles: a probabilistic topic-based model for content similarity
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-423
– ident: 10.1016/j.asoc.2019.03.041_b50
– year: 2009
  ident: 10.1016/j.asoc.2019.03.041_b58
– volume: 235
  start-page: 246
  year: 2017
  ident: 10.1016/j.asoc.2019.03.041_b14
  article-title: Medical text classification using convolutional neural networks
  publication-title: CoRR
– volume: 45
  start-page: 427
  issue: 4
  year: 2009
  ident: 10.1016/j.asoc.2019.03.041_b62
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2009.03.002
SSID ssj0016928
Score 2.561287
Snippet The classification of natural language texts has gained a growing importance in many real world applications due to its significant implications in relation to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 125
SubjectTerms Deep learning
Extreme multi-label text classification
MeSH
Semantic indexing
Semi-supervised word embeddings
Title Deep neural network for hierarchical extreme multi-label text classification
URI https://dx.doi.org/10.1016/j.asoc.2019.03.041
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3WbubfSQ5lmqpWouohd5C9gWVEovUq7_dnTyKgvTgKSTMQvhmM4_NNzMIXUI1j6IuIiyXlIhgDUhqEk4SYWMrTR6r8mjgcaJGU3E_k7MWGjS1MECrrG1_ZdNLa10_6dVo9pbzee8lZB6JSEXIADhw6WdQwS5i2OXXX2uaB1NpOV8VhAlI14UzFccrDwgAvatqdCrY387ph8MZ7qGdOlLE_epl9lHLFQdot5nCgOuP8hCNb5xbYuhLGaSLitWNQyiKYcp1-Z8gqAEHGwwngbgkEJKgerfAQPrABsJn4AuVKjpC0-Ht62BE6hkJxHBKV8Qz7uKYpjp2ERPMK-iglkY2eH4rqWeaK5MLK5XR3rvUhXQx9ZF1yvNciUTzY9Qu3gt3gjCT1hopTKxlBH35NPWWCcm10wljWncQa8DJTN1AHOZYLLKGKfaWAaAZAJpRngVAO-hqvWZZtc_YKC0bzLNfmyAL9n3DutN_rjtD23BXMb_OUXv18ekuQoyx0t1yE3XRVn_wPH6C693DaPINvQTSdA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1Be4ALO2LHB27IahwvSY6IRS20vVCk3qx4iQRCpULl__EkTgUS6oFrMiNFz854xn5-A3CFt3lU4lPKSplQEaIBLWzOaS5c5qQtM1VvDYzGqv8iHqdyuga37V0YpFXG2N_E9Dpaxye9iGZv_vraew6VRy4KESoAjlz66Tp0UZ1KdqB7M3jqj5eHCaqoW6yiPUWHeHemoXmVAQRkeDVap4L9vT79WHMedmArJovkpvmeXVjzsz3YbhsxkPhf7sPwzvs5QWnKYD1riN0kZKMEG13XRwVhJEgIw7gZSGoOIQ2j798J8j6IxQwaKUP1KB3Ay8P95LZPY5sEanmSLGjFuM-ypDCZT5lglUIRtSJ1YfF3MqmY4cqWwkllTVX5woeKsahS51XFSyVyww-hM_uY-SMgTDpnpbCZkSlK85mkckxIbrzJGTPmGFgLjrZRQxxbWbzrliz2phFQjYDqhOsA6DFcL33mjYLGSmvZYq5_zQMdQvwKv5N_-l3CRn8yGurhYPx0Cpv4piGCnUFn8fnlz0PKsTAXcUp9A2e805A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+neural+network+for+hierarchical+extreme+multi-label+text+classification&rft.jtitle=Applied+soft+computing&rft.au=Gargiulo%2C+Francesco&rft.au=Silvestri%2C+Stefano&rft.au=Ciampi%2C+Mario&rft.au=De+Pietro%2C+Giuseppe&rft.date=2019-06-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=79&rft.spage=125&rft.epage=138&rft_id=info:doi/10.1016%2Fj.asoc.2019.03.041&rft.externalDocID=S156849461930167X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon