An integrated framework of deep learning and knowledge graph for prediction of stock price trend: An application in Chinese stock exchange market
Many studies have been carried out on stock price trend prediction, but most of them focused on the public market data and did not utilize the trading behaviors owing to the unavailability of real transaction records data. In fact, trading behaviors can better reflect the market movements, and the f...
Saved in:
Published in | Applied soft computing Vol. 91; p. 106205 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many studies have been carried out on stock price trend prediction, but most of them focused on the public market data and did not utilize the trading behaviors owing to the unavailability of real transaction records data. In fact, trading behaviors can better reflect the market movements, and the fusion of trading information and market information can further improve the prediction accuracy. In this paper, we propose a deep neural network model using the desensitized transaction records and public market information to predict stock price trend. Considering the correlation between stocks, our method utilizes the knowledge graph and graph embeddings techniques to select the relevant stocks of the target for constructing the market and trading information. Given the considerable number of investors and the complexity of transaction records data, the investors are clustered to reduce the dimensions of the trading feature matrices, and then the matrices are fed into the convolutional neural network to unearth the investment patterns. Eventually, the attention-based bidirectional long short-term memory network can predict the stock price trends for financial decision support. The experiments on the price movement direction and trend prediction show that our method achieves the best performance in comparison with other prediction baselines.
•A framework fusing trading and market information is proposed to stock prediction.•Technical indicators on relevant stocks are combined in forecasting price trends.•The relevant stocks of the target stock are selected by knowledge graph methods.•The trading features on stocks of trader clusters ensure the robustness.•The proposed model outperforms other baseline models on real world dataset. |
---|---|
AbstractList | Many studies have been carried out on stock price trend prediction, but most of them focused on the public market data and did not utilize the trading behaviors owing to the unavailability of real transaction records data. In fact, trading behaviors can better reflect the market movements, and the fusion of trading information and market information can further improve the prediction accuracy. In this paper, we propose a deep neural network model using the desensitized transaction records and public market information to predict stock price trend. Considering the correlation between stocks, our method utilizes the knowledge graph and graph embeddings techniques to select the relevant stocks of the target for constructing the market and trading information. Given the considerable number of investors and the complexity of transaction records data, the investors are clustered to reduce the dimensions of the trading feature matrices, and then the matrices are fed into the convolutional neural network to unearth the investment patterns. Eventually, the attention-based bidirectional long short-term memory network can predict the stock price trends for financial decision support. The experiments on the price movement direction and trend prediction show that our method achieves the best performance in comparison with other prediction baselines.
•A framework fusing trading and market information is proposed to stock prediction.•Technical indicators on relevant stocks are combined in forecasting price trends.•The relevant stocks of the target stock are selected by knowledge graph methods.•The trading features on stocks of trader clusters ensure the robustness.•The proposed model outperforms other baseline models on real world dataset. |
ArticleNumber | 106205 |
Author | Wu, Taiyu Chen, Zhaopeng He, Weibing Long, Jiawei Ren, Jiangtao |
Author_xml | – sequence: 1 givenname: Jiawei orcidid: 0000-0001-8273-3280 surname: Long fullname: Long, Jiawei organization: School of Data and Computer Science, Guangdong Province Key Lab of Computational Science, Sun Yat-sen University, Guangzhou, 510275, People’s Republic of China – sequence: 2 givenname: Zhaopeng surname: Chen fullname: Chen, Zhaopeng organization: School of Data and Computer Science, Guangdong Province Key Lab of Computational Science, Sun Yat-sen University, Guangzhou, 510275, People’s Republic of China – sequence: 3 givenname: Weibing surname: He fullname: He, Weibing organization: GF Securities, 26 Machang Road, Tianhe District, Guangzhou, 510627, People’s Republic of China – sequence: 4 givenname: Taiyu surname: Wu fullname: Wu, Taiyu organization: GF Securities, 26 Machang Road, Tianhe District, Guangzhou, 510627, People’s Republic of China – sequence: 5 givenname: Jiangtao orcidid: 0000-0003-2827-8322 surname: Ren fullname: Ren, Jiangtao email: issrjt@mail.sysu.edu.cn organization: School of Data and Computer Science, Guangdong Province Key Lab of Computational Science, Sun Yat-sen University, Guangzhou, 510275, People’s Republic of China |
BookMark | eNp9kEtOwzAQhi1UJJ4XYOULpMRp7CaIDap4SUhsYG0543HrNrUj26JwDG6MQ1mx6Mqj0f-NZ74zMnHeISFXrJyykonr9VRFD9OqrMaGqEp-RE5ZM6-KVjRskmsumqJua3FCzmJclxlqq-aUfN85al3CZVAJNTVBbXHnw4Z6QzXiQHtUwVm3pMppunF-16NeIs35YUWND3QIqC0k693IxORhk3sWkKaATt_Q_IMaht6C-g1ZRxcr6zDiXxg_YaVcnrlVYYPpghwb1Ue8_HvPyfvD_dviqXh5fXxe3L0UMCvLVCDOZ1wLY1SHXPMKutY08zmAEDOueFMbFHXHlFaMc14zozsuODdtawR0UM3OSbWfC8HHGNDIvHVe4UuyUo5S5VqOUuUoVe6lZqj5B4FNv3eloGx_GL3do5iP-rAYZASLDrK9gJCk9vYQ_gNxvJh9 |
CitedBy_id | crossref_primary_10_1007_s11042_023_14587_8 crossref_primary_10_3233_IDT_220184 crossref_primary_10_32604_cmes_2023_031388 crossref_primary_10_1007_s13042_024_02304_2 crossref_primary_10_1016_j_omega_2024_103193 crossref_primary_10_1016_j_engappai_2023_106244 crossref_primary_10_1007_s11042_024_18610_4 crossref_primary_10_1109_JIOT_2021_3085714 crossref_primary_10_1007_s11135_024_01964_0 crossref_primary_10_4018_JOEUC_344454 crossref_primary_10_1002_cpe_8276 crossref_primary_10_1016_j_dss_2023_113955 crossref_primary_10_3390_math9243268 crossref_primary_10_1016_j_procs_2023_10_081 crossref_primary_10_1016_j_eswa_2021_115022 crossref_primary_10_1016_j_eswa_2023_120902 crossref_primary_10_1016_j_asoc_2025_112978 crossref_primary_10_1109_ACCESS_2020_3021097 crossref_primary_10_1016_j_matpr_2021_06_153 crossref_primary_10_1007_s00521_022_07234_0 crossref_primary_10_3233_JIFS_234292 crossref_primary_10_1016_j_jksuci_2022_05_014 crossref_primary_10_1016_j_aej_2024_03_107 crossref_primary_10_1016_j_future_2021_07_017 crossref_primary_10_1016_j_ipm_2020_102452 crossref_primary_10_1145_3643806 crossref_primary_10_1007_s00500_023_09231_4 crossref_primary_10_1080_17517575_2025_2472303 crossref_primary_10_1016_j_eswa_2023_119640 crossref_primary_10_3390_asi4010009 crossref_primary_10_37394_23207_2023_20_101 crossref_primary_10_4018_IJERTCS_311464 crossref_primary_10_1007_s00500_022_07451_8 crossref_primary_10_1016_j_aei_2021_101494 crossref_primary_10_1145_3592599 crossref_primary_10_1186_s12859_022_05102_1 crossref_primary_10_1016_j_eswa_2024_123476 crossref_primary_10_1016_j_knosys_2023_111326 crossref_primary_10_1016_j_patcog_2023_109920 crossref_primary_10_3390_electronics12030722 crossref_primary_10_3390_electronics13010214 crossref_primary_10_1016_j_compind_2021_103449 crossref_primary_10_1007_s10489_024_06107_4 crossref_primary_10_1007_s00500_022_07630_7 crossref_primary_10_1049_cit2_12052 crossref_primary_10_3390_econometrics12020016 crossref_primary_10_1142_S0218126624502621 crossref_primary_10_1088_1757_899X_966_1_012001 crossref_primary_10_1016_j_eswa_2022_116506 crossref_primary_10_1016_j_asoc_2022_109118 crossref_primary_10_1016_j_asoc_2024_111629 crossref_primary_10_1016_j_asoc_2022_109876 crossref_primary_10_1142_S021812662450261X crossref_primary_10_3390_risks11020027 crossref_primary_10_1007_s12583_023_1808_4 crossref_primary_10_1155_2021_2446543 crossref_primary_10_1016_j_inffus_2023_102165 crossref_primary_10_3389_fdata_2023_1278153 crossref_primary_10_1016_j_inffus_2023_102049 crossref_primary_10_1016_j_aei_2023_102329 crossref_primary_10_1080_03081079_2023_2294132 crossref_primary_10_1080_1331677X_2022_2043762 crossref_primary_10_3934_DSFE_2023014 crossref_primary_10_1016_j_engappai_2024_108680 crossref_primary_10_1016_j_ins_2022_07_159 crossref_primary_10_1631_FITEE_2300720 crossref_primary_10_1109_TIT_2024_3376751 crossref_primary_10_2174_1872212118666230303154251 crossref_primary_10_1016_j_asoc_2023_110626 crossref_primary_10_1007_s10462_022_10291_5 crossref_primary_10_1109_ACCESS_2020_3015966 crossref_primary_10_3390_math10193447 crossref_primary_10_1080_07421222_2023_2196771 crossref_primary_10_1155_2022_4698656 crossref_primary_10_1016_j_ssaho_2024_101232 crossref_primary_10_1016_j_eswa_2024_123538 crossref_primary_10_1007_s41060_021_00306_9 crossref_primary_10_1371_journal_pone_0281670 crossref_primary_10_1016_j_eswa_2022_118581 crossref_primary_10_1016_j_procs_2021_09_147 crossref_primary_10_1016_j_najef_2024_102261 crossref_primary_10_1002_adfm_202201437 crossref_primary_10_1016_j_asoc_2023_110595 crossref_primary_10_1142_S2424786322500256 crossref_primary_10_1007_s10258_023_00246_1 crossref_primary_10_1016_j_neucom_2021_10_092 crossref_primary_10_1016_j_asoc_2024_111847 crossref_primary_10_1007_s10618_021_00760_w crossref_primary_10_3390_systems10020024 crossref_primary_10_1016_j_procs_2022_11_240 crossref_primary_10_1109_TKDE_2025_3527480 crossref_primary_10_3233_HIS_230002 crossref_primary_10_3390_app14198747 crossref_primary_10_1016_j_measurement_2023_114032 crossref_primary_10_3390_bdcc8060056 crossref_primary_10_1007_s11042_022_13067_9 crossref_primary_10_3390_app11146594 crossref_primary_10_35551_PFQ_2023_2_7 crossref_primary_10_1007_s11042_022_13963_0 crossref_primary_10_1111_eufm_12326 crossref_primary_10_1016_j_eswa_2022_119020 crossref_primary_10_1016_j_asoc_2020_106806 crossref_primary_10_3390_info13100466 crossref_primary_10_1016_j_procs_2023_01_086 crossref_primary_10_1016_j_engappai_2022_105626 crossref_primary_10_1007_s11042_023_17686_8 crossref_primary_10_1016_j_compeleceng_2024_109302 crossref_primary_10_1016_j_asoc_2023_111213 crossref_primary_10_1371_journal_pone_0287754 crossref_primary_10_1016_j_asoc_2021_107760 crossref_primary_10_3233_IDA_220414 crossref_primary_10_1007_s10614_024_10664_8 crossref_primary_10_1016_j_asoc_2023_110409 crossref_primary_10_3390_computers12050090 crossref_primary_10_1007_s10489_024_05377_2 crossref_primary_10_1016_j_engappai_2022_105452 crossref_primary_10_1016_j_irfa_2023_102657 crossref_primary_10_1007_s40745_023_00489_x crossref_primary_10_1007_s40747_022_00658_0 crossref_primary_10_52396_JUSTC_2023_0066 crossref_primary_10_1016_j_eswa_2022_117595 crossref_primary_10_2139_ssrn_4628576 crossref_primary_10_1016_j_eswa_2022_116941 crossref_primary_10_1016_j_jnca_2021_103076 crossref_primary_10_1016_j_procs_2022_11_301 crossref_primary_10_1016_j_jii_2024_100759 crossref_primary_10_7717_peerj_cs_1057 crossref_primary_10_1016_j_ins_2020_12_068 crossref_primary_10_3390_e22080840 crossref_primary_10_3390_computation11050099 crossref_primary_10_3390_electronics11213443 crossref_primary_10_1007_s11042_023_15353_6 crossref_primary_10_1016_j_eswa_2021_115716 crossref_primary_10_1016_j_inffus_2020_08_019 crossref_primary_10_3390_app11146251 crossref_primary_10_1016_j_procs_2023_12_193 crossref_primary_10_1111_exsy_13364 crossref_primary_10_1007_s11356_022_22769_4 crossref_primary_10_1016_j_ins_2022_11_077 crossref_primary_10_1016_j_eswa_2025_127243 crossref_primary_10_1371_journal_pone_0294460 crossref_primary_10_1007_s10489_023_05016_2 crossref_primary_10_3390_healthcare11121762 |
Cites_doi | 10.1016/j.eswa.2011.04.222 10.1016/S0169-2070(98)00053-3 10.1016/S0925-2312(03)00372-2 10.1016/j.dss.2018.06.002 10.1109/ICPR.2010.764 10.1016/S0169-2070(01)00093-0 10.1016/j.neunet.2005.06.042 10.1609/aaai.v33i01.33013656 10.1016/j.eswa.2014.10.031 10.1016/j.eswa.2015.05.013 10.1016/j.asoc.2019.105551 10.1016/j.dss.2018.06.008 10.1016/j.asoc.2018.11.008 10.1016/j.dss.2017.10.001 10.1016/j.eswa.2018.07.065 10.1016/j.eswa.2017.12.026 10.1016/j.asoc.2017.09.029 10.1016/S0167-9236(03)00089-7 10.1016/j.dss.2018.11.004 10.1016/j.eswa.2005.09.002 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2020.106205 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
ExternalDocumentID | 10_1016_j_asoc_2020_106205 S1568494620301459 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-ee735d6ffabe5d52cb9f877cc6635a584fe64b1ada155541fdb5655f99f6cbc23 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 22:52:26 EDT 2025 Tue Jul 01 01:50:05 EDT 2025 Fri Feb 23 02:47:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stock trend prediction Deep neural network Knowledge graph |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-ee735d6ffabe5d52cb9f877cc6635a584fe64b1ada155541fdb5655f99f6cbc23 |
ORCID | 0000-0001-8273-3280 0000-0003-2827-8322 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2020_106205 crossref_citationtrail_10_1016_j_asoc_2020_106205 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106205 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Patel, Shah, Thakkar, Kotecha (b19) 2015; 42 Sarantis (b14) 2001; 17 Nam, Seong (b7) 2019; 117 X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, Y. Liu, Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting, in: 2019 AAAI Conference on Artificial Intelligence, AAAI’19, 2019. Lei (b10) 2018; 62 K.H. Brodersen, S.O. Cheng, K.E. Stephan, J.M. Buhmann, The Balanced accuracy and its posterior distribution, in: International Conference on Pattern Recognition, 2010. Zhao, Rao, Tu, Shi (b26) 2017 Feuerriegel, Gordon (b4) 2018; 112 Lin, Feng, Santos, Yu, Xiang, Zhou, Bengio (b29) 2017 Agrawal, Chourasia, Mittra (b1) 2013; 2 Yao, Luo, Peng (b32) 2018 Wang, Zhang, Xie, Guo (b9) 2018 Bisoi, Dash, Parida (b24) 2019; 74 Chen, Zhou, Dai (b21) 2015 Mahmoudi, Docherty, Moscato (b6) 2018; 112 Ture, Kurt (b15) 2006; 31 Zhou, min Zhou, Yang, Yang (b23) 2019; 115 Graves, Schmidhuber (b28) 2005; 18 Wang, Wang, Zhang, Guo (b18) 2011; 38 Kim (b27) 2014 Ramezanian, Peymanfar, Ebrahimi (b25) 2019 Kraus, Feuerriegel (b5) 2017; 104 Grover, Leskovec (b11) 2016 Palumbo, Rizzo, Troncy, Baralis, Osella, Ferro (b12) 2018 Franses, Ghijsels (b13) 1999; 15 J. Si, A. Mukherjee, B. Liu, Q. Li, H. Li, X. Deng, Exploiting topic based twitter sentiment for stock prediction, in: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Vol. 2, 2013, pp. 24–29. X. Ding, Y. Zhang, T. Liu, J. Duan, Deep learning for event-driven stock prediction, in: Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015. Zhang, Cui, Xu, Li, Li (b31) 2018; 97 Di Persio, Honchar (b22) 2017; 11 Ballings, Van den Poel, Hespeels, Gryp (b2) 2015; 42 jae Kim (b16) 2003; 55 Shen, Loh (b17) 2004; 37 Ballings (10.1016/j.asoc.2020.106205_b2) 2015; 42 Zhao (10.1016/j.asoc.2020.106205_b26) 2017 Zhang (10.1016/j.asoc.2020.106205_b31) 2018; 97 Chen (10.1016/j.asoc.2020.106205_b21) 2015 Agrawal (10.1016/j.asoc.2020.106205_b1) 2013; 2 Franses (10.1016/j.asoc.2020.106205_b13) 1999; 15 Wang (10.1016/j.asoc.2020.106205_b18) 2011; 38 Kraus (10.1016/j.asoc.2020.106205_b5) 2017; 104 Graves (10.1016/j.asoc.2020.106205_b28) 2005; 18 Wang (10.1016/j.asoc.2020.106205_b9) 2018 Shen (10.1016/j.asoc.2020.106205_b17) 2004; 37 10.1016/j.asoc.2020.106205_b20 Bisoi (10.1016/j.asoc.2020.106205_b24) 2019; 74 Yao (10.1016/j.asoc.2020.106205_b32) 2018 Feuerriegel (10.1016/j.asoc.2020.106205_b4) 2018; 112 Ture (10.1016/j.asoc.2020.106205_b15) 2006; 31 Palumbo (10.1016/j.asoc.2020.106205_b12) 2018 Lin (10.1016/j.asoc.2020.106205_b29) 2017 Sarantis (10.1016/j.asoc.2020.106205_b14) 2001; 17 Patel (10.1016/j.asoc.2020.106205_b19) 2015; 42 Mahmoudi (10.1016/j.asoc.2020.106205_b6) 2018; 112 Lei (10.1016/j.asoc.2020.106205_b10) 2018; 62 Zhou (10.1016/j.asoc.2020.106205_b23) 2019; 115 Di Persio (10.1016/j.asoc.2020.106205_b22) 2017; 11 Kim (10.1016/j.asoc.2020.106205_b27) 2014 10.1016/j.asoc.2020.106205_b8 10.1016/j.asoc.2020.106205_b3 Grover (10.1016/j.asoc.2020.106205_b11) 2016 Ramezanian (10.1016/j.asoc.2020.106205_b25) 2019 10.1016/j.asoc.2020.106205_b30 Nam (10.1016/j.asoc.2020.106205_b7) 2019; 117 jae Kim (10.1016/j.asoc.2020.106205_b16) 2003; 55 |
References_xml | – start-page: 1 year: 2018 end-page: 4 ident: b32 article-title: High-frequency stock trend forecast using LSTM model publication-title: 2018 13th International Conference on Computer Science & Education – start-page: 1210 year: 2017 end-page: 1217 ident: b26 article-title: Time-weighted LSTM model with redefined labeling for stock trend prediction publication-title: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence – volume: 104 start-page: 38 year: 2017 end-page: 48 ident: b5 article-title: Decision support from financial disclosures with deep neural networks and transfer learning publication-title: Decis. Support Syst. – volume: 31 start-page: 41 year: 2006 end-page: 46 ident: b15 article-title: Comparison of four different time series methods to forecast hepatitis A virus infection publication-title: Expert Syst. Appl. – volume: 97 start-page: 60 year: 2018 end-page: 69 ident: b31 article-title: A novel data-driven stock price trend prediction system publication-title: Expert Syst. Appl. – reference: X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, Y. Liu, Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting, in: 2019 AAAI Conference on Artificial Intelligence, AAAI’19, 2019. – volume: 42 start-page: 7046 year: 2015 end-page: 7056 ident: b2 article-title: Evaluating multiple classifiers for stock price direction prediction publication-title: Expert Syst. Appl. – volume: 117 start-page: 100 year: 2019 end-page: 112 ident: b7 article-title: Financial news-based stock movement prediction using causality analysis of influence in the Korean stock market publication-title: Decis. Support Syst. – volume: 62 start-page: 923 year: 2018 end-page: 932 ident: b10 article-title: Wavelet neural network prediction method of stock price trend based on rough set attribute reduction publication-title: Appl. Soft Comput. – volume: 55 start-page: 307 year: 2003 end-page: 319 ident: b16 article-title: Financial time series forecasting using support vector machines publication-title: Neurocomputing – volume: 115 start-page: 136 year: 2019 end-page: 151 ident: b23 article-title: EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction publication-title: Expert Syst. Appl. – year: 2017 ident: b29 article-title: A structured self-attentive sentence embedding – volume: 18 start-page: 602 year: 2005 end-page: 610 ident: b28 article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures publication-title: Neural Netw. – start-page: 117 year: 2018 end-page: 120 ident: b12 article-title: Knowledge graph embeddings with node2vec for item recommendation publication-title: European Semantic Web Conference – volume: 42 start-page: 2162 year: 2015 end-page: 2172 ident: b19 article-title: Predicting stock market index using fusion of machine learning techniques publication-title: Expert Syst. Appl. – volume: 112 start-page: 88 year: 2018 end-page: 97 ident: b4 article-title: Long-term stock index forecasting based on text mining of regulatory disclosures publication-title: Decis. Support Syst. – volume: 112 start-page: 23 year: 2018 end-page: 34 ident: b6 article-title: Deep neural networks understand investors better publication-title: Decis. Support Syst. – volume: 37 start-page: 583 year: 2004 end-page: 597 ident: b17 article-title: Applying rough sets to market timing decisions publication-title: Decis. Support Syst. – start-page: 1835 year: 2018 end-page: 1844 ident: b9 article-title: Dkn: Deep knowledge-aware network for news recommendation publication-title: Proceedings of the 2018 World Wide Web Conference on World Wide Web – year: 2014 ident: b27 article-title: Convolutional neural networks for sentence classification – volume: 17 start-page: 459 year: 2001 end-page: 482 ident: b14 article-title: Nonlinearities, cyclical behaviour and predictability in stock markets: international evidence publication-title: Int. J. Forecast. – reference: X. Ding, Y. Zhang, T. Liu, J. Duan, Deep learning for event-driven stock prediction, in: Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015. – volume: 15 start-page: 1 year: 1999 end-page: 9 ident: b13 article-title: Additive outliers, GARCH and forecasting volatility publication-title: Int. J. Forecast. – reference: K.H. Brodersen, S.O. Cheng, K.E. Stephan, J.M. Buhmann, The Balanced accuracy and its posterior distribution, in: International Conference on Pattern Recognition, 2010. – start-page: 855 year: 2016 end-page: 864 ident: b11 article-title: Node2vec: Scalable feature learning for networks publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – reference: J. Si, A. Mukherjee, B. Liu, Q. Li, H. Li, X. Deng, Exploiting topic based twitter sentiment for stock prediction, in: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Vol. 2, 2013, pp. 24–29. – year: 2019 ident: b25 article-title: An integrated framework of genetic network programming and multi-layer perceptron neural network for prediction of daily stock return: An application in Tehran stock exchange market publication-title: Appl. Soft Comput. – volume: 11 year: 2017 ident: b22 article-title: Recurrent neural networks approach to the financial forecast of Google assets publication-title: Int. J. Math. Comput. Simul. – volume: 74 start-page: 652 year: 2019 end-page: 678 ident: b24 article-title: Hybrid Variational Mode Decomposition and evolutionary robust kernel extreme learning machine for stock price and movement prediction on daily basis publication-title: Appl. Soft Comput. – volume: 38 start-page: 14346 year: 2011 end-page: 14355 ident: b18 article-title: Forecasting stock indices with back propagation neural network publication-title: Expert Syst. Appl. – volume: 2 start-page: 1360 year: 2013 end-page: 1366 ident: b1 article-title: State-of-the-art in stock prediction techniques publication-title: Int. J. Adv. Res. Electr. Electron. Instrum. Eng. – start-page: 2823 year: 2015 end-page: 2824 ident: b21 article-title: A LSTM-based method for stock returns prediction: A case study of China stock market publication-title: 2015 IEEE International Conference on Big Data – volume: 38 start-page: 14346 issue: 11 year: 2011 ident: 10.1016/j.asoc.2020.106205_b18 article-title: Forecasting stock indices with back propagation neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.222 – ident: 10.1016/j.asoc.2020.106205_b20 – volume: 15 start-page: 1 issue: 1 year: 1999 ident: 10.1016/j.asoc.2020.106205_b13 article-title: Additive outliers, GARCH and forecasting volatility publication-title: Int. J. Forecast. doi: 10.1016/S0169-2070(98)00053-3 – volume: 2 start-page: 1360 issue: 4 year: 2013 ident: 10.1016/j.asoc.2020.106205_b1 article-title: State-of-the-art in stock prediction techniques publication-title: Int. J. Adv. Res. Electr. Electron. Instrum. Eng. – volume: 55 start-page: 307 issue: 1 year: 2003 ident: 10.1016/j.asoc.2020.106205_b16 article-title: Financial time series forecasting using support vector machines publication-title: Neurocomputing doi: 10.1016/S0925-2312(03)00372-2 – volume: 112 start-page: 23 year: 2018 ident: 10.1016/j.asoc.2020.106205_b6 article-title: Deep neural networks understand investors better publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2018.06.002 – year: 2014 ident: 10.1016/j.asoc.2020.106205_b27 – start-page: 1835 year: 2018 ident: 10.1016/j.asoc.2020.106205_b9 article-title: Dkn: Deep knowledge-aware network for news recommendation – volume: 11 year: 2017 ident: 10.1016/j.asoc.2020.106205_b22 article-title: Recurrent neural networks approach to the financial forecast of Google assets publication-title: Int. J. Math. Comput. Simul. – ident: 10.1016/j.asoc.2020.106205_b30 doi: 10.1109/ICPR.2010.764 – start-page: 117 year: 2018 ident: 10.1016/j.asoc.2020.106205_b12 article-title: Knowledge graph embeddings with node2vec for item recommendation – volume: 17 start-page: 459 issue: 3 year: 2001 ident: 10.1016/j.asoc.2020.106205_b14 article-title: Nonlinearities, cyclical behaviour and predictability in stock markets: international evidence publication-title: Int. J. Forecast. doi: 10.1016/S0169-2070(01)00093-0 – volume: 18 start-page: 602 issue: 5 year: 2005 ident: 10.1016/j.asoc.2020.106205_b28 article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures publication-title: Neural Netw. doi: 10.1016/j.neunet.2005.06.042 – ident: 10.1016/j.asoc.2020.106205_b8 doi: 10.1609/aaai.v33i01.33013656 – start-page: 855 year: 2016 ident: 10.1016/j.asoc.2020.106205_b11 article-title: Node2vec: Scalable feature learning for networks – volume: 42 start-page: 2162 issue: 4 year: 2015 ident: 10.1016/j.asoc.2020.106205_b19 article-title: Predicting stock market index using fusion of machine learning techniques publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.10.031 – ident: 10.1016/j.asoc.2020.106205_b3 – volume: 42 start-page: 7046 issue: 20 year: 2015 ident: 10.1016/j.asoc.2020.106205_b2 article-title: Evaluating multiple classifiers for stock price direction prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.05.013 – year: 2019 ident: 10.1016/j.asoc.2020.106205_b25 article-title: An integrated framework of genetic network programming and multi-layer perceptron neural network for prediction of daily stock return: An application in Tehran stock exchange market publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105551 – volume: 112 start-page: 88 year: 2018 ident: 10.1016/j.asoc.2020.106205_b4 article-title: Long-term stock index forecasting based on text mining of regulatory disclosures publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2018.06.008 – year: 2017 ident: 10.1016/j.asoc.2020.106205_b29 – start-page: 2823 year: 2015 ident: 10.1016/j.asoc.2020.106205_b21 article-title: A LSTM-based method for stock returns prediction: A case study of China stock market – volume: 74 start-page: 652 year: 2019 ident: 10.1016/j.asoc.2020.106205_b24 article-title: Hybrid Variational Mode Decomposition and evolutionary robust kernel extreme learning machine for stock price and movement prediction on daily basis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.11.008 – volume: 104 start-page: 38 year: 2017 ident: 10.1016/j.asoc.2020.106205_b5 article-title: Decision support from financial disclosures with deep neural networks and transfer learning publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2017.10.001 – volume: 115 start-page: 136 year: 2019 ident: 10.1016/j.asoc.2020.106205_b23 article-title: EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.07.065 – volume: 97 start-page: 60 year: 2018 ident: 10.1016/j.asoc.2020.106205_b31 article-title: A novel data-driven stock price trend prediction system publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.12.026 – volume: 62 start-page: 923 year: 2018 ident: 10.1016/j.asoc.2020.106205_b10 article-title: Wavelet neural network prediction method of stock price trend based on rough set attribute reduction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.09.029 – start-page: 1210 year: 2017 ident: 10.1016/j.asoc.2020.106205_b26 article-title: Time-weighted LSTM model with redefined labeling for stock trend prediction – volume: 37 start-page: 583 issue: 4 year: 2004 ident: 10.1016/j.asoc.2020.106205_b17 article-title: Applying rough sets to market timing decisions publication-title: Decis. Support Syst. doi: 10.1016/S0167-9236(03)00089-7 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2020.106205_b32 article-title: High-frequency stock trend forecast using LSTM model – volume: 117 start-page: 100 year: 2019 ident: 10.1016/j.asoc.2020.106205_b7 article-title: Financial news-based stock movement prediction using causality analysis of influence in the Korean stock market publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2018.11.004 – volume: 31 start-page: 41 issue: 1 year: 2006 ident: 10.1016/j.asoc.2020.106205_b15 article-title: Comparison of four different time series methods to forecast hepatitis A virus infection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.09.002 |
SSID | ssj0016928 |
Score | 2.645254 |
Snippet | Many studies have been carried out on stock price trend prediction, but most of them focused on the public market data and did not utilize the trading... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106205 |
SubjectTerms | Deep neural network Knowledge graph Stock trend prediction |
Title | An integrated framework of deep learning and knowledge graph for prediction of stock price trend: An application in Chinese stock exchange market |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106205 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL158i_XFHLxJbJPs5uGtFKU-ER_QW9in1EcsWsGT_8F_7EyyKQrSg6eQZSYbZjaz32TnwdgebhJSoWcVGCpWyUUWBllsZJAIGWcuShNjKVH44jLp3_HTgRjMsF6TC0Nhld721za9stZ-pO2l2R4Nh-0b9DwynvMkqtwCQUl8nKe0yg8-J2EeYZJX_VWJOCBqnzhTx3hJlAD6iBEN4HPE35vTjw3neIkteKQI3fplltmMLVfYYtOFAfxHucq-uiVMij4YcE20Fbw4QBGMwDeGuAdZGpj8Q4OqVDUgZoXRK53WkIaIB9GgfsQxtCAwpojZQ8AZfhx042xAbbftm_XE9qPOH4bnKod6jd0dH932-oFvtBDouNMZB9amsTCJc1JZYUSkVe6yNNWa4IhEiOJswlUojUT0IXjojEIcKFyeu0QrHcXrbLZ8Ke0GA_S2XS7SWJlUckQP0oS5E1GadTTaZKFaLGwkXGhfhZyaYTwVTbjZQ0FaKUgrRa2VFtuf8IzqGhxTqUWjuOLXSipwk5jCt_lPvi02T3d1-Ng2mx2_vtsdBCpjtVutxF021-1dn1_R9eSsf_kNv5vq_A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwELUQFNBwI26mgAqF3RzOgUSx4tByNoBEF3wirrBiFwEN_8C38IPMJM4KJESBROt4ZGfGmTcTz8HYKoKEkOhZeZqKVUY89b001MKLuQhTGySxNpQofHwSt8-jgwt-McA-6lwYCqt0ur_S6aW2diMNx81G5_q6cYqeRxplURyUbgHPXGTloXl9Rr-tu7W_g0JeC4K93bPttudaC3gqbDZ7njFJyHVsrZCGax4omdk0SZQiABYIytbEkfSFFoi3PPKtlmj5cJtlNlZSUbUD1PtDEaoLapuw8daPK_HjrGzoSrvzaHsuU6cKKhPIcnRKAxrAjfOf0fALwu2Ns1FnmkKrevsJNmCKSTZWt30ApwWm2HurgH6VCQ22Du-CBwvI8w64ThRXIAoN_Z92UNbGBjSSofNI10N0JIgGzU91i2OosqBHIbqbgCt8uVnH1YD6fJuucZPNS5WwDPdl0vY0O_8X9s-wweKhMLMM0L23GU9CqRMRobkitJ9ZHiRpUyEIcDnH_JrDuXJlz6n7xl1ex7fd5CSVnKSSV1KZY-t9mk5V9OPX2bwWXP7t6OaISr_Qzf-RboUNt8-Oj_Kj_ZPDBTZCT6rYtUU22Ht8MktoJfXkcnkqgV3-92fwCfR8Jt4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+framework+of+deep+learning+and+knowledge+graph+for+prediction+of+stock+price+trend%3A+An+application+in+Chinese+stock+exchange+market&rft.jtitle=Applied+soft+computing&rft.au=Long%2C+Jiawei&rft.au=Chen%2C+Zhaopeng&rft.au=He%2C+Weibing&rft.au=Wu%2C+Taiyu&rft.date=2020-06-01&rft.issn=1568-4946&rft.volume=91&rft.spage=106205&rft_id=info:doi/10.1016%2Fj.asoc.2020.106205&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106205 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |