An integrated framework of deep learning and knowledge graph for prediction of stock price trend: An application in Chinese stock exchange market

Many studies have been carried out on stock price trend prediction, but most of them focused on the public market data and did not utilize the trading behaviors owing to the unavailability of real transaction records data. In fact, trading behaviors can better reflect the market movements, and the f...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 91; p. 106205
Main Authors Long, Jiawei, Chen, Zhaopeng, He, Weibing, Wu, Taiyu, Ren, Jiangtao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many studies have been carried out on stock price trend prediction, but most of them focused on the public market data and did not utilize the trading behaviors owing to the unavailability of real transaction records data. In fact, trading behaviors can better reflect the market movements, and the fusion of trading information and market information can further improve the prediction accuracy. In this paper, we propose a deep neural network model using the desensitized transaction records and public market information to predict stock price trend. Considering the correlation between stocks, our method utilizes the knowledge graph and graph embeddings techniques to select the relevant stocks of the target for constructing the market and trading information. Given the considerable number of investors and the complexity of transaction records data, the investors are clustered to reduce the dimensions of the trading feature matrices, and then the matrices are fed into the convolutional neural network to unearth the investment patterns. Eventually, the attention-based bidirectional long short-term memory network can predict the stock price trends for financial decision support. The experiments on the price movement direction and trend prediction show that our method achieves the best performance in comparison with other prediction baselines. •A framework fusing trading and market information is proposed to stock prediction.•Technical indicators on relevant stocks are combined in forecasting price trends.•The relevant stocks of the target stock are selected by knowledge graph methods.•The trading features on stocks of trader clusters ensure the robustness.•The proposed model outperforms other baseline models on real world dataset.
AbstractList Many studies have been carried out on stock price trend prediction, but most of them focused on the public market data and did not utilize the trading behaviors owing to the unavailability of real transaction records data. In fact, trading behaviors can better reflect the market movements, and the fusion of trading information and market information can further improve the prediction accuracy. In this paper, we propose a deep neural network model using the desensitized transaction records and public market information to predict stock price trend. Considering the correlation between stocks, our method utilizes the knowledge graph and graph embeddings techniques to select the relevant stocks of the target for constructing the market and trading information. Given the considerable number of investors and the complexity of transaction records data, the investors are clustered to reduce the dimensions of the trading feature matrices, and then the matrices are fed into the convolutional neural network to unearth the investment patterns. Eventually, the attention-based bidirectional long short-term memory network can predict the stock price trends for financial decision support. The experiments on the price movement direction and trend prediction show that our method achieves the best performance in comparison with other prediction baselines. •A framework fusing trading and market information is proposed to stock prediction.•Technical indicators on relevant stocks are combined in forecasting price trends.•The relevant stocks of the target stock are selected by knowledge graph methods.•The trading features on stocks of trader clusters ensure the robustness.•The proposed model outperforms other baseline models on real world dataset.
ArticleNumber 106205
Author Wu, Taiyu
Chen, Zhaopeng
He, Weibing
Long, Jiawei
Ren, Jiangtao
Author_xml – sequence: 1
  givenname: Jiawei
  orcidid: 0000-0001-8273-3280
  surname: Long
  fullname: Long, Jiawei
  organization: School of Data and Computer Science, Guangdong Province Key Lab of Computational Science, Sun Yat-sen University, Guangzhou, 510275, People’s Republic of China
– sequence: 2
  givenname: Zhaopeng
  surname: Chen
  fullname: Chen, Zhaopeng
  organization: School of Data and Computer Science, Guangdong Province Key Lab of Computational Science, Sun Yat-sen University, Guangzhou, 510275, People’s Republic of China
– sequence: 3
  givenname: Weibing
  surname: He
  fullname: He, Weibing
  organization: GF Securities, 26 Machang Road, Tianhe District, Guangzhou, 510627, People’s Republic of China
– sequence: 4
  givenname: Taiyu
  surname: Wu
  fullname: Wu, Taiyu
  organization: GF Securities, 26 Machang Road, Tianhe District, Guangzhou, 510627, People’s Republic of China
– sequence: 5
  givenname: Jiangtao
  orcidid: 0000-0003-2827-8322
  surname: Ren
  fullname: Ren, Jiangtao
  email: issrjt@mail.sysu.edu.cn
  organization: School of Data and Computer Science, Guangdong Province Key Lab of Computational Science, Sun Yat-sen University, Guangzhou, 510275, People’s Republic of China
BookMark eNp9kEtOwzAQhi1UJJ4XYOULpMRp7CaIDap4SUhsYG0543HrNrUj26JwDG6MQ1mx6Mqj0f-NZ74zMnHeISFXrJyykonr9VRFD9OqrMaGqEp-RE5ZM6-KVjRskmsumqJua3FCzmJclxlqq-aUfN85al3CZVAJNTVBbXHnw4Z6QzXiQHtUwVm3pMppunF-16NeIs35YUWND3QIqC0k693IxORhk3sWkKaATt_Q_IMaht6C-g1ZRxcr6zDiXxg_YaVcnrlVYYPpghwb1Ue8_HvPyfvD_dviqXh5fXxe3L0UMCvLVCDOZ1wLY1SHXPMKutY08zmAEDOueFMbFHXHlFaMc14zozsuODdtawR0UM3OSbWfC8HHGNDIvHVe4UuyUo5S5VqOUuUoVe6lZqj5B4FNv3eloGx_GL3do5iP-rAYZASLDrK9gJCk9vYQ_gNxvJh9
CitedBy_id crossref_primary_10_1007_s11042_023_14587_8
crossref_primary_10_3233_IDT_220184
crossref_primary_10_32604_cmes_2023_031388
crossref_primary_10_1007_s13042_024_02304_2
crossref_primary_10_1016_j_omega_2024_103193
crossref_primary_10_1016_j_engappai_2023_106244
crossref_primary_10_1007_s11042_024_18610_4
crossref_primary_10_1109_JIOT_2021_3085714
crossref_primary_10_1007_s11135_024_01964_0
crossref_primary_10_4018_JOEUC_344454
crossref_primary_10_1002_cpe_8276
crossref_primary_10_1016_j_dss_2023_113955
crossref_primary_10_3390_math9243268
crossref_primary_10_1016_j_procs_2023_10_081
crossref_primary_10_1016_j_eswa_2021_115022
crossref_primary_10_1016_j_eswa_2023_120902
crossref_primary_10_1016_j_asoc_2025_112978
crossref_primary_10_1109_ACCESS_2020_3021097
crossref_primary_10_1016_j_matpr_2021_06_153
crossref_primary_10_1007_s00521_022_07234_0
crossref_primary_10_3233_JIFS_234292
crossref_primary_10_1016_j_jksuci_2022_05_014
crossref_primary_10_1016_j_aej_2024_03_107
crossref_primary_10_1016_j_future_2021_07_017
crossref_primary_10_1016_j_ipm_2020_102452
crossref_primary_10_1145_3643806
crossref_primary_10_1007_s00500_023_09231_4
crossref_primary_10_1080_17517575_2025_2472303
crossref_primary_10_1016_j_eswa_2023_119640
crossref_primary_10_3390_asi4010009
crossref_primary_10_37394_23207_2023_20_101
crossref_primary_10_4018_IJERTCS_311464
crossref_primary_10_1007_s00500_022_07451_8
crossref_primary_10_1016_j_aei_2021_101494
crossref_primary_10_1145_3592599
crossref_primary_10_1186_s12859_022_05102_1
crossref_primary_10_1016_j_eswa_2024_123476
crossref_primary_10_1016_j_knosys_2023_111326
crossref_primary_10_1016_j_patcog_2023_109920
crossref_primary_10_3390_electronics12030722
crossref_primary_10_3390_electronics13010214
crossref_primary_10_1016_j_compind_2021_103449
crossref_primary_10_1007_s10489_024_06107_4
crossref_primary_10_1007_s00500_022_07630_7
crossref_primary_10_1049_cit2_12052
crossref_primary_10_3390_econometrics12020016
crossref_primary_10_1142_S0218126624502621
crossref_primary_10_1088_1757_899X_966_1_012001
crossref_primary_10_1016_j_eswa_2022_116506
crossref_primary_10_1016_j_asoc_2022_109118
crossref_primary_10_1016_j_asoc_2024_111629
crossref_primary_10_1016_j_asoc_2022_109876
crossref_primary_10_1142_S021812662450261X
crossref_primary_10_3390_risks11020027
crossref_primary_10_1007_s12583_023_1808_4
crossref_primary_10_1155_2021_2446543
crossref_primary_10_1016_j_inffus_2023_102165
crossref_primary_10_3389_fdata_2023_1278153
crossref_primary_10_1016_j_inffus_2023_102049
crossref_primary_10_1016_j_aei_2023_102329
crossref_primary_10_1080_03081079_2023_2294132
crossref_primary_10_1080_1331677X_2022_2043762
crossref_primary_10_3934_DSFE_2023014
crossref_primary_10_1016_j_engappai_2024_108680
crossref_primary_10_1016_j_ins_2022_07_159
crossref_primary_10_1631_FITEE_2300720
crossref_primary_10_1109_TIT_2024_3376751
crossref_primary_10_2174_1872212118666230303154251
crossref_primary_10_1016_j_asoc_2023_110626
crossref_primary_10_1007_s10462_022_10291_5
crossref_primary_10_1109_ACCESS_2020_3015966
crossref_primary_10_3390_math10193447
crossref_primary_10_1080_07421222_2023_2196771
crossref_primary_10_1155_2022_4698656
crossref_primary_10_1016_j_ssaho_2024_101232
crossref_primary_10_1016_j_eswa_2024_123538
crossref_primary_10_1007_s41060_021_00306_9
crossref_primary_10_1371_journal_pone_0281670
crossref_primary_10_1016_j_eswa_2022_118581
crossref_primary_10_1016_j_procs_2021_09_147
crossref_primary_10_1016_j_najef_2024_102261
crossref_primary_10_1002_adfm_202201437
crossref_primary_10_1016_j_asoc_2023_110595
crossref_primary_10_1142_S2424786322500256
crossref_primary_10_1007_s10258_023_00246_1
crossref_primary_10_1016_j_neucom_2021_10_092
crossref_primary_10_1016_j_asoc_2024_111847
crossref_primary_10_1007_s10618_021_00760_w
crossref_primary_10_3390_systems10020024
crossref_primary_10_1016_j_procs_2022_11_240
crossref_primary_10_1109_TKDE_2025_3527480
crossref_primary_10_3233_HIS_230002
crossref_primary_10_3390_app14198747
crossref_primary_10_1016_j_measurement_2023_114032
crossref_primary_10_3390_bdcc8060056
crossref_primary_10_1007_s11042_022_13067_9
crossref_primary_10_3390_app11146594
crossref_primary_10_35551_PFQ_2023_2_7
crossref_primary_10_1007_s11042_022_13963_0
crossref_primary_10_1111_eufm_12326
crossref_primary_10_1016_j_eswa_2022_119020
crossref_primary_10_1016_j_asoc_2020_106806
crossref_primary_10_3390_info13100466
crossref_primary_10_1016_j_procs_2023_01_086
crossref_primary_10_1016_j_engappai_2022_105626
crossref_primary_10_1007_s11042_023_17686_8
crossref_primary_10_1016_j_compeleceng_2024_109302
crossref_primary_10_1016_j_asoc_2023_111213
crossref_primary_10_1371_journal_pone_0287754
crossref_primary_10_1016_j_asoc_2021_107760
crossref_primary_10_3233_IDA_220414
crossref_primary_10_1007_s10614_024_10664_8
crossref_primary_10_1016_j_asoc_2023_110409
crossref_primary_10_3390_computers12050090
crossref_primary_10_1007_s10489_024_05377_2
crossref_primary_10_1016_j_engappai_2022_105452
crossref_primary_10_1016_j_irfa_2023_102657
crossref_primary_10_1007_s40745_023_00489_x
crossref_primary_10_1007_s40747_022_00658_0
crossref_primary_10_52396_JUSTC_2023_0066
crossref_primary_10_1016_j_eswa_2022_117595
crossref_primary_10_2139_ssrn_4628576
crossref_primary_10_1016_j_eswa_2022_116941
crossref_primary_10_1016_j_jnca_2021_103076
crossref_primary_10_1016_j_procs_2022_11_301
crossref_primary_10_1016_j_jii_2024_100759
crossref_primary_10_7717_peerj_cs_1057
crossref_primary_10_1016_j_ins_2020_12_068
crossref_primary_10_3390_e22080840
crossref_primary_10_3390_computation11050099
crossref_primary_10_3390_electronics11213443
crossref_primary_10_1007_s11042_023_15353_6
crossref_primary_10_1016_j_eswa_2021_115716
crossref_primary_10_1016_j_inffus_2020_08_019
crossref_primary_10_3390_app11146251
crossref_primary_10_1016_j_procs_2023_12_193
crossref_primary_10_1111_exsy_13364
crossref_primary_10_1007_s11356_022_22769_4
crossref_primary_10_1016_j_ins_2022_11_077
crossref_primary_10_1016_j_eswa_2025_127243
crossref_primary_10_1371_journal_pone_0294460
crossref_primary_10_1007_s10489_023_05016_2
crossref_primary_10_3390_healthcare11121762
Cites_doi 10.1016/j.eswa.2011.04.222
10.1016/S0169-2070(98)00053-3
10.1016/S0925-2312(03)00372-2
10.1016/j.dss.2018.06.002
10.1109/ICPR.2010.764
10.1016/S0169-2070(01)00093-0
10.1016/j.neunet.2005.06.042
10.1609/aaai.v33i01.33013656
10.1016/j.eswa.2014.10.031
10.1016/j.eswa.2015.05.013
10.1016/j.asoc.2019.105551
10.1016/j.dss.2018.06.008
10.1016/j.asoc.2018.11.008
10.1016/j.dss.2017.10.001
10.1016/j.eswa.2018.07.065
10.1016/j.eswa.2017.12.026
10.1016/j.asoc.2017.09.029
10.1016/S0167-9236(03)00089-7
10.1016/j.dss.2018.11.004
10.1016/j.eswa.2005.09.002
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2020.106205
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2020_106205
S1568494620301459
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-ee735d6ffabe5d52cb9f877cc6635a584fe64b1ada155541fdb5655f99f6cbc23
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 22:52:26 EDT 2025
Tue Jul 01 01:50:05 EDT 2025
Fri Feb 23 02:47:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stock trend prediction
Deep neural network
Knowledge graph
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-ee735d6ffabe5d52cb9f877cc6635a584fe64b1ada155541fdb5655f99f6cbc23
ORCID 0000-0001-8273-3280
0000-0003-2827-8322
ParticipantIDs crossref_primary_10_1016_j_asoc_2020_106205
crossref_citationtrail_10_1016_j_asoc_2020_106205
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106205
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Patel, Shah, Thakkar, Kotecha (b19) 2015; 42
Sarantis (b14) 2001; 17
Nam, Seong (b7) 2019; 117
X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, Y. Liu, Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting, in: 2019 AAAI Conference on Artificial Intelligence, AAAI’19, 2019.
Lei (b10) 2018; 62
K.H. Brodersen, S.O. Cheng, K.E. Stephan, J.M. Buhmann, The Balanced accuracy and its posterior distribution, in: International Conference on Pattern Recognition, 2010.
Zhao, Rao, Tu, Shi (b26) 2017
Feuerriegel, Gordon (b4) 2018; 112
Lin, Feng, Santos, Yu, Xiang, Zhou, Bengio (b29) 2017
Agrawal, Chourasia, Mittra (b1) 2013; 2
Yao, Luo, Peng (b32) 2018
Wang, Zhang, Xie, Guo (b9) 2018
Bisoi, Dash, Parida (b24) 2019; 74
Chen, Zhou, Dai (b21) 2015
Mahmoudi, Docherty, Moscato (b6) 2018; 112
Ture, Kurt (b15) 2006; 31
Zhou, min Zhou, Yang, Yang (b23) 2019; 115
Graves, Schmidhuber (b28) 2005; 18
Wang, Wang, Zhang, Guo (b18) 2011; 38
Kim (b27) 2014
Ramezanian, Peymanfar, Ebrahimi (b25) 2019
Kraus, Feuerriegel (b5) 2017; 104
Grover, Leskovec (b11) 2016
Palumbo, Rizzo, Troncy, Baralis, Osella, Ferro (b12) 2018
Franses, Ghijsels (b13) 1999; 15
J. Si, A. Mukherjee, B. Liu, Q. Li, H. Li, X. Deng, Exploiting topic based twitter sentiment for stock prediction, in: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Vol. 2, 2013, pp. 24–29.
X. Ding, Y. Zhang, T. Liu, J. Duan, Deep learning for event-driven stock prediction, in: Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.
Zhang, Cui, Xu, Li, Li (b31) 2018; 97
Di Persio, Honchar (b22) 2017; 11
Ballings, Van den Poel, Hespeels, Gryp (b2) 2015; 42
jae Kim (b16) 2003; 55
Shen, Loh (b17) 2004; 37
Ballings (10.1016/j.asoc.2020.106205_b2) 2015; 42
Zhao (10.1016/j.asoc.2020.106205_b26) 2017
Zhang (10.1016/j.asoc.2020.106205_b31) 2018; 97
Chen (10.1016/j.asoc.2020.106205_b21) 2015
Agrawal (10.1016/j.asoc.2020.106205_b1) 2013; 2
Franses (10.1016/j.asoc.2020.106205_b13) 1999; 15
Wang (10.1016/j.asoc.2020.106205_b18) 2011; 38
Kraus (10.1016/j.asoc.2020.106205_b5) 2017; 104
Graves (10.1016/j.asoc.2020.106205_b28) 2005; 18
Wang (10.1016/j.asoc.2020.106205_b9) 2018
Shen (10.1016/j.asoc.2020.106205_b17) 2004; 37
10.1016/j.asoc.2020.106205_b20
Bisoi (10.1016/j.asoc.2020.106205_b24) 2019; 74
Yao (10.1016/j.asoc.2020.106205_b32) 2018
Feuerriegel (10.1016/j.asoc.2020.106205_b4) 2018; 112
Ture (10.1016/j.asoc.2020.106205_b15) 2006; 31
Palumbo (10.1016/j.asoc.2020.106205_b12) 2018
Lin (10.1016/j.asoc.2020.106205_b29) 2017
Sarantis (10.1016/j.asoc.2020.106205_b14) 2001; 17
Patel (10.1016/j.asoc.2020.106205_b19) 2015; 42
Mahmoudi (10.1016/j.asoc.2020.106205_b6) 2018; 112
Lei (10.1016/j.asoc.2020.106205_b10) 2018; 62
Zhou (10.1016/j.asoc.2020.106205_b23) 2019; 115
Di Persio (10.1016/j.asoc.2020.106205_b22) 2017; 11
Kim (10.1016/j.asoc.2020.106205_b27) 2014
10.1016/j.asoc.2020.106205_b8
10.1016/j.asoc.2020.106205_b3
Grover (10.1016/j.asoc.2020.106205_b11) 2016
Ramezanian (10.1016/j.asoc.2020.106205_b25) 2019
10.1016/j.asoc.2020.106205_b30
Nam (10.1016/j.asoc.2020.106205_b7) 2019; 117
jae Kim (10.1016/j.asoc.2020.106205_b16) 2003; 55
References_xml – start-page: 1
  year: 2018
  end-page: 4
  ident: b32
  article-title: High-frequency stock trend forecast using LSTM model
  publication-title: 2018 13th International Conference on Computer Science & Education
– start-page: 1210
  year: 2017
  end-page: 1217
  ident: b26
  article-title: Time-weighted LSTM model with redefined labeling for stock trend prediction
  publication-title: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence
– volume: 104
  start-page: 38
  year: 2017
  end-page: 48
  ident: b5
  article-title: Decision support from financial disclosures with deep neural networks and transfer learning
  publication-title: Decis. Support Syst.
– volume: 31
  start-page: 41
  year: 2006
  end-page: 46
  ident: b15
  article-title: Comparison of four different time series methods to forecast hepatitis A virus infection
  publication-title: Expert Syst. Appl.
– volume: 97
  start-page: 60
  year: 2018
  end-page: 69
  ident: b31
  article-title: A novel data-driven stock price trend prediction system
  publication-title: Expert Syst. Appl.
– reference: X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, Y. Liu, Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting, in: 2019 AAAI Conference on Artificial Intelligence, AAAI’19, 2019.
– volume: 42
  start-page: 7046
  year: 2015
  end-page: 7056
  ident: b2
  article-title: Evaluating multiple classifiers for stock price direction prediction
  publication-title: Expert Syst. Appl.
– volume: 117
  start-page: 100
  year: 2019
  end-page: 112
  ident: b7
  article-title: Financial news-based stock movement prediction using causality analysis of influence in the Korean stock market
  publication-title: Decis. Support Syst.
– volume: 62
  start-page: 923
  year: 2018
  end-page: 932
  ident: b10
  article-title: Wavelet neural network prediction method of stock price trend based on rough set attribute reduction
  publication-title: Appl. Soft Comput.
– volume: 55
  start-page: 307
  year: 2003
  end-page: 319
  ident: b16
  article-title: Financial time series forecasting using support vector machines
  publication-title: Neurocomputing
– volume: 115
  start-page: 136
  year: 2019
  end-page: 151
  ident: b23
  article-title: EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction
  publication-title: Expert Syst. Appl.
– year: 2017
  ident: b29
  article-title: A structured self-attentive sentence embedding
– volume: 18
  start-page: 602
  year: 2005
  end-page: 610
  ident: b28
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Netw.
– start-page: 117
  year: 2018
  end-page: 120
  ident: b12
  article-title: Knowledge graph embeddings with node2vec for item recommendation
  publication-title: European Semantic Web Conference
– volume: 42
  start-page: 2162
  year: 2015
  end-page: 2172
  ident: b19
  article-title: Predicting stock market index using fusion of machine learning techniques
  publication-title: Expert Syst. Appl.
– volume: 112
  start-page: 88
  year: 2018
  end-page: 97
  ident: b4
  article-title: Long-term stock index forecasting based on text mining of regulatory disclosures
  publication-title: Decis. Support Syst.
– volume: 112
  start-page: 23
  year: 2018
  end-page: 34
  ident: b6
  article-title: Deep neural networks understand investors better
  publication-title: Decis. Support Syst.
– volume: 37
  start-page: 583
  year: 2004
  end-page: 597
  ident: b17
  article-title: Applying rough sets to market timing decisions
  publication-title: Decis. Support Syst.
– start-page: 1835
  year: 2018
  end-page: 1844
  ident: b9
  article-title: Dkn: Deep knowledge-aware network for news recommendation
  publication-title: Proceedings of the 2018 World Wide Web Conference on World Wide Web
– year: 2014
  ident: b27
  article-title: Convolutional neural networks for sentence classification
– volume: 17
  start-page: 459
  year: 2001
  end-page: 482
  ident: b14
  article-title: Nonlinearities, cyclical behaviour and predictability in stock markets: international evidence
  publication-title: Int. J. Forecast.
– reference: X. Ding, Y. Zhang, T. Liu, J. Duan, Deep learning for event-driven stock prediction, in: Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.
– volume: 15
  start-page: 1
  year: 1999
  end-page: 9
  ident: b13
  article-title: Additive outliers, GARCH and forecasting volatility
  publication-title: Int. J. Forecast.
– reference: K.H. Brodersen, S.O. Cheng, K.E. Stephan, J.M. Buhmann, The Balanced accuracy and its posterior distribution, in: International Conference on Pattern Recognition, 2010.
– start-page: 855
  year: 2016
  end-page: 864
  ident: b11
  article-title: Node2vec: Scalable feature learning for networks
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– reference: J. Si, A. Mukherjee, B. Liu, Q. Li, H. Li, X. Deng, Exploiting topic based twitter sentiment for stock prediction, in: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Vol. 2, 2013, pp. 24–29.
– year: 2019
  ident: b25
  article-title: An integrated framework of genetic network programming and multi-layer perceptron neural network for prediction of daily stock return: An application in Tehran stock exchange market
  publication-title: Appl. Soft Comput.
– volume: 11
  year: 2017
  ident: b22
  article-title: Recurrent neural networks approach to the financial forecast of Google assets
  publication-title: Int. J. Math. Comput. Simul.
– volume: 74
  start-page: 652
  year: 2019
  end-page: 678
  ident: b24
  article-title: Hybrid Variational Mode Decomposition and evolutionary robust kernel extreme learning machine for stock price and movement prediction on daily basis
  publication-title: Appl. Soft Comput.
– volume: 38
  start-page: 14346
  year: 2011
  end-page: 14355
  ident: b18
  article-title: Forecasting stock indices with back propagation neural network
  publication-title: Expert Syst. Appl.
– volume: 2
  start-page: 1360
  year: 2013
  end-page: 1366
  ident: b1
  article-title: State-of-the-art in stock prediction techniques
  publication-title: Int. J. Adv. Res. Electr. Electron. Instrum. Eng.
– start-page: 2823
  year: 2015
  end-page: 2824
  ident: b21
  article-title: A LSTM-based method for stock returns prediction: A case study of China stock market
  publication-title: 2015 IEEE International Conference on Big Data
– volume: 38
  start-page: 14346
  issue: 11
  year: 2011
  ident: 10.1016/j.asoc.2020.106205_b18
  article-title: Forecasting stock indices with back propagation neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.222
– ident: 10.1016/j.asoc.2020.106205_b20
– volume: 15
  start-page: 1
  issue: 1
  year: 1999
  ident: 10.1016/j.asoc.2020.106205_b13
  article-title: Additive outliers, GARCH and forecasting volatility
  publication-title: Int. J. Forecast.
  doi: 10.1016/S0169-2070(98)00053-3
– volume: 2
  start-page: 1360
  issue: 4
  year: 2013
  ident: 10.1016/j.asoc.2020.106205_b1
  article-title: State-of-the-art in stock prediction techniques
  publication-title: Int. J. Adv. Res. Electr. Electron. Instrum. Eng.
– volume: 55
  start-page: 307
  issue: 1
  year: 2003
  ident: 10.1016/j.asoc.2020.106205_b16
  article-title: Financial time series forecasting using support vector machines
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(03)00372-2
– volume: 112
  start-page: 23
  year: 2018
  ident: 10.1016/j.asoc.2020.106205_b6
  article-title: Deep neural networks understand investors better
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2018.06.002
– year: 2014
  ident: 10.1016/j.asoc.2020.106205_b27
– start-page: 1835
  year: 2018
  ident: 10.1016/j.asoc.2020.106205_b9
  article-title: Dkn: Deep knowledge-aware network for news recommendation
– volume: 11
  year: 2017
  ident: 10.1016/j.asoc.2020.106205_b22
  article-title: Recurrent neural networks approach to the financial forecast of Google assets
  publication-title: Int. J. Math. Comput. Simul.
– ident: 10.1016/j.asoc.2020.106205_b30
  doi: 10.1109/ICPR.2010.764
– start-page: 117
  year: 2018
  ident: 10.1016/j.asoc.2020.106205_b12
  article-title: Knowledge graph embeddings with node2vec for item recommendation
– volume: 17
  start-page: 459
  issue: 3
  year: 2001
  ident: 10.1016/j.asoc.2020.106205_b14
  article-title: Nonlinearities, cyclical behaviour and predictability in stock markets: international evidence
  publication-title: Int. J. Forecast.
  doi: 10.1016/S0169-2070(01)00093-0
– volume: 18
  start-page: 602
  issue: 5
  year: 2005
  ident: 10.1016/j.asoc.2020.106205_b28
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2005.06.042
– ident: 10.1016/j.asoc.2020.106205_b8
  doi: 10.1609/aaai.v33i01.33013656
– start-page: 855
  year: 2016
  ident: 10.1016/j.asoc.2020.106205_b11
  article-title: Node2vec: Scalable feature learning for networks
– volume: 42
  start-page: 2162
  issue: 4
  year: 2015
  ident: 10.1016/j.asoc.2020.106205_b19
  article-title: Predicting stock market index using fusion of machine learning techniques
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.10.031
– ident: 10.1016/j.asoc.2020.106205_b3
– volume: 42
  start-page: 7046
  issue: 20
  year: 2015
  ident: 10.1016/j.asoc.2020.106205_b2
  article-title: Evaluating multiple classifiers for stock price direction prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.05.013
– year: 2019
  ident: 10.1016/j.asoc.2020.106205_b25
  article-title: An integrated framework of genetic network programming and multi-layer perceptron neural network for prediction of daily stock return: An application in Tehran stock exchange market
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105551
– volume: 112
  start-page: 88
  year: 2018
  ident: 10.1016/j.asoc.2020.106205_b4
  article-title: Long-term stock index forecasting based on text mining of regulatory disclosures
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2018.06.008
– year: 2017
  ident: 10.1016/j.asoc.2020.106205_b29
– start-page: 2823
  year: 2015
  ident: 10.1016/j.asoc.2020.106205_b21
  article-title: A LSTM-based method for stock returns prediction: A case study of China stock market
– volume: 74
  start-page: 652
  year: 2019
  ident: 10.1016/j.asoc.2020.106205_b24
  article-title: Hybrid Variational Mode Decomposition and evolutionary robust kernel extreme learning machine for stock price and movement prediction on daily basis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.11.008
– volume: 104
  start-page: 38
  year: 2017
  ident: 10.1016/j.asoc.2020.106205_b5
  article-title: Decision support from financial disclosures with deep neural networks and transfer learning
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2017.10.001
– volume: 115
  start-page: 136
  year: 2019
  ident: 10.1016/j.asoc.2020.106205_b23
  article-title: EMD2FNN: A strategy combining empirical mode decomposition and factorization machine based neural network for stock market trend prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.07.065
– volume: 97
  start-page: 60
  year: 2018
  ident: 10.1016/j.asoc.2020.106205_b31
  article-title: A novel data-driven stock price trend prediction system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.12.026
– volume: 62
  start-page: 923
  year: 2018
  ident: 10.1016/j.asoc.2020.106205_b10
  article-title: Wavelet neural network prediction method of stock price trend based on rough set attribute reduction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.09.029
– start-page: 1210
  year: 2017
  ident: 10.1016/j.asoc.2020.106205_b26
  article-title: Time-weighted LSTM model with redefined labeling for stock trend prediction
– volume: 37
  start-page: 583
  issue: 4
  year: 2004
  ident: 10.1016/j.asoc.2020.106205_b17
  article-title: Applying rough sets to market timing decisions
  publication-title: Decis. Support Syst.
  doi: 10.1016/S0167-9236(03)00089-7
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2020.106205_b32
  article-title: High-frequency stock trend forecast using LSTM model
– volume: 117
  start-page: 100
  year: 2019
  ident: 10.1016/j.asoc.2020.106205_b7
  article-title: Financial news-based stock movement prediction using causality analysis of influence in the Korean stock market
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2018.11.004
– volume: 31
  start-page: 41
  issue: 1
  year: 2006
  ident: 10.1016/j.asoc.2020.106205_b15
  article-title: Comparison of four different time series methods to forecast hepatitis A virus infection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.09.002
SSID ssj0016928
Score 2.645254
Snippet Many studies have been carried out on stock price trend prediction, but most of them focused on the public market data and did not utilize the trading...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106205
SubjectTerms Deep neural network
Knowledge graph
Stock trend prediction
Title An integrated framework of deep learning and knowledge graph for prediction of stock price trend: An application in Chinese stock exchange market
URI https://dx.doi.org/10.1016/j.asoc.2020.106205
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL158i_XFHLxJbJPs5uGtFKU-ER_QW9in1EcsWsGT_8F_7EyyKQrSg6eQZSYbZjaz32TnwdgebhJSoWcVGCpWyUUWBllsZJAIGWcuShNjKVH44jLp3_HTgRjMsF6TC0Nhld721za9stZ-pO2l2R4Nh-0b9DwynvMkqtwCQUl8nKe0yg8-J2EeYZJX_VWJOCBqnzhTx3hJlAD6iBEN4HPE35vTjw3neIkteKQI3fplltmMLVfYYtOFAfxHucq-uiVMij4YcE20Fbw4QBGMwDeGuAdZGpj8Q4OqVDUgZoXRK53WkIaIB9GgfsQxtCAwpojZQ8AZfhx042xAbbftm_XE9qPOH4bnKod6jd0dH932-oFvtBDouNMZB9amsTCJc1JZYUSkVe6yNNWa4IhEiOJswlUojUT0IXjojEIcKFyeu0QrHcXrbLZ8Ke0GA_S2XS7SWJlUckQP0oS5E1GadTTaZKFaLGwkXGhfhZyaYTwVTbjZQ0FaKUgrRa2VFtuf8IzqGhxTqUWjuOLXSipwk5jCt_lPvi02T3d1-Ng2mx2_vtsdBCpjtVutxF021-1dn1_R9eSsf_kNv5vq_A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwELUQFNBwI26mgAqF3RzOgUSx4tByNoBEF3wirrBiFwEN_8C38IPMJM4KJESBROt4ZGfGmTcTz8HYKoKEkOhZeZqKVUY89b001MKLuQhTGySxNpQofHwSt8-jgwt-McA-6lwYCqt0ur_S6aW2diMNx81G5_q6cYqeRxplURyUbgHPXGTloXl9Rr-tu7W_g0JeC4K93bPttudaC3gqbDZ7njFJyHVsrZCGax4omdk0SZQiABYIytbEkfSFFoi3PPKtlmj5cJtlNlZSUbUD1PtDEaoLapuw8daPK_HjrGzoSrvzaHsuU6cKKhPIcnRKAxrAjfOf0fALwu2Ns1FnmkKrevsJNmCKSTZWt30ApwWm2HurgH6VCQ22Du-CBwvI8w64ThRXIAoN_Z92UNbGBjSSofNI10N0JIgGzU91i2OosqBHIbqbgCt8uVnH1YD6fJuucZPNS5WwDPdl0vY0O_8X9s-wweKhMLMM0L23GU9CqRMRobkitJ9ZHiRpUyEIcDnH_JrDuXJlz6n7xl1ex7fd5CSVnKSSV1KZY-t9mk5V9OPX2bwWXP7t6OaISr_Qzf-RboUNt8-Oj_Kj_ZPDBTZCT6rYtUU22Ht8MktoJfXkcnkqgV3-92fwCfR8Jt4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+framework+of+deep+learning+and+knowledge+graph+for+prediction+of+stock+price+trend%3A+An+application+in+Chinese+stock+exchange+market&rft.jtitle=Applied+soft+computing&rft.au=Long%2C+Jiawei&rft.au=Chen%2C+Zhaopeng&rft.au=He%2C+Weibing&rft.au=Wu%2C+Taiyu&rft.date=2020-06-01&rft.issn=1568-4946&rft.volume=91&rft.spage=106205&rft_id=info:doi/10.1016%2Fj.asoc.2020.106205&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2020_106205
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon