A bat-neural network multi-agent system (BNNMAS) for stock price prediction: Case study of DAX stock price

Creating an intelligent system that can accurately predict stock price in a robust way has always been a subject of great interest for many investors and financial analysts. Predicting future trends of financial markets is more remarkable these days especially after the recent global financial crisi...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 29; pp. 196 - 210
Main Authors Hafezi, Reza, Shahrabi, Jamal, Hadavandi, Esmaeil
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Creating an intelligent system that can accurately predict stock price in a robust way has always been a subject of great interest for many investors and financial analysts. Predicting future trends of financial markets is more remarkable these days especially after the recent global financial crisis. So traders who access to a powerful engine for extracting helpful information throw raw data can meet the success. In this paper we propose a new intelligent model in a multi-agent framework called bat-neural network multi-agent system (BNNMAS) to predict stock price. The model performs in a four layer multi-agent framework to predict eight years of DAX stock price in quarterly periods. The capability of BNNMAS is evaluated by applying both on fundamental and technical DAX stock price data and comparing the outcomes with the results of other methods such as genetic algorithm neural network (GANN) and some standard models like generalized regression neural network (GRNN), etc. The model tested for predicting DAX stock price a period of time that global financial crisis was faced to economics. The results show that BNNMAS significantly performs accurate and reliable, so it can be considered as a suitable tool for predicting stock price specially in a long term periods.
AbstractList Creating an intelligent system that can accurately predict stock price in a robust way has always been a subject of great interest for many investors and financial analysts. Predicting future trends of financial markets is more remarkable these days especially after the recent global financial crisis. So traders who access to a powerful engine for extracting helpful information throw raw data can meet the success. In this paper we propose a new intelligent model in a multi-agent framework called bat-neural network multi-agent system (BNNMAS) to predict stock price. The model performs in a four layer multi-agent framework to predict eight years of DAX stock price in quarterly periods. The capability of BNNMAS is evaluated by applying both on fundamental and technical DAX stock price data and comparing the outcomes with the results of other methods such as genetic algorithm neural network (GANN) and some standard models like generalized regression neural network (GRNN), etc. The model tested for predicting DAX stock price a period of time that global financial crisis was faced to economics. The results show that BNNMAS significantly performs accurate and reliable, so it can be considered as a suitable tool for predicting stock price specially in a long term periods.
Author Hafezi, Reza
Shahrabi, Jamal
Hadavandi, Esmaeil
Author_xml – sequence: 1
  givenname: Reza
  orcidid: 0000-0003-0070-3737
  surname: Hafezi
  fullname: Hafezi, Reza
  email: r.hafezi@aut.ac.ir
  organization: Technology Foresight Group, Department of Management, Science and Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
– sequence: 2
  givenname: Jamal
  surname: Shahrabi
  fullname: Shahrabi, Jamal
  email: jamalshahrabi@aut.ac.ir
  organization: Department of Industrial Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
– sequence: 3
  givenname: Esmaeil
  surname: Hadavandi
  fullname: Hadavandi, Esmaeil
  email: es.hadavandi@aut.ac.ir
  organization: Department of Industrial Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
BookMark eNp9kD1PwzAQQC1UJNrCH2DyCEOC7aSpjVhK-ZRKGQCJzXKcC3Kaxsh2Qf33OCoDYuhyd9LdO929ERp0tgOETilJKaHFRZMqb3XKCM1TylLC-AEaUj5liSg4HcR6UvAkF3lxhEbeNyRCgvEhama4VCHpYONUizsI39at8HrTBpOoD-gC9lsfYI3PrpfLp9nLOa6twz5YvcKfzmiIESqjg7HdJZ4rD7G5qbbY1vhm9v538hgd1qr1cPKbx-jt7vZ1_pAsnu8f57NFojNCQgKQg1B5xZTgkGegBBSQVUxQLXTFCuD5VGldMiA8E6Wo1YQxWlakzLma1DQbI77bq5313kEttQmqPzA4ZVpJieydyUb2zmTvTFImo7OIsn9ovHyt3HY_dLWDID71ZcBJrw10OmpxoIOsrNmH_wBccYjj
CitedBy_id crossref_primary_10_1016_j_patrec_2021_03_030
crossref_primary_10_1016_j_eswa_2016_02_006
crossref_primary_10_3846_tede_2024_20488
crossref_primary_10_1007_s12597_016_0289_y
crossref_primary_10_1016_j_jbef_2020_100447
crossref_primary_10_1016_j_eswa_2021_115384
crossref_primary_10_1155_2021_5663302
crossref_primary_10_1016_j_asoc_2025_112978
crossref_primary_10_1016_j_eswa_2015_07_063
crossref_primary_10_1016_j_eswa_2023_122245
crossref_primary_10_1016_j_enconman_2015_08_025
crossref_primary_10_3390_bdcc9010005
crossref_primary_10_1007_s42786_018_00006_2
crossref_primary_10_1016_j_asoc_2021_107277
crossref_primary_10_1016_j_physa_2022_127173
crossref_primary_10_3390_en11051188
crossref_primary_10_1016_j_asoc_2016_10_016
crossref_primary_10_11118_actaun201866061573
crossref_primary_10_1155_2022_4808088
crossref_primary_10_1016_j_asoc_2018_07_004
crossref_primary_10_1007_s12559_023_10125_8
crossref_primary_10_3390_app9245574
crossref_primary_10_1016_j_econlet_2021_109917
crossref_primary_10_21511_imfi_17_3__2020_22
crossref_primary_10_3390_en9040261
crossref_primary_10_20965_jaciii_2015_p0593
crossref_primary_10_1002_int_22495
crossref_primary_10_1007_s00500_020_05176_0
crossref_primary_10_3390_en81212428
crossref_primary_10_1007_s10614_021_10176_9
crossref_primary_10_1016_j_frl_2023_104181
crossref_primary_10_1016_j_jcde_2019_02_002
crossref_primary_10_3390_data4020075
crossref_primary_10_1007_s44196_025_00768_w
crossref_primary_10_1016_j_knosys_2016_05_031
crossref_primary_10_38124_ijisrt_IJISRT24APR1602
crossref_primary_10_1016_j_resourpol_2022_102778
crossref_primary_10_1155_2021_8850600
crossref_primary_10_1016_j_asoc_2017_12_013
crossref_primary_10_1002_spy2_181
crossref_primary_10_3390_software3040027
crossref_primary_10_1007_s11063_021_10732_2
crossref_primary_10_3390_a12040084
crossref_primary_10_3390_a14100299
crossref_primary_10_1080_17517575_2018_1493145
crossref_primary_10_1016_j_eswa_2022_119203
crossref_primary_10_1016_j_asoc_2017_08_008
crossref_primary_10_1007_s41870_023_01343_2
crossref_primary_10_1007_s10489_018_1351_7
crossref_primary_10_3390_ai4040054
crossref_primary_10_1016_j_asoc_2015_08_010
crossref_primary_10_3233_JIFS_179681
crossref_primary_10_1186_s40537_020_00333_6
crossref_primary_10_1016_j_asoc_2015_06_005
crossref_primary_10_1016_j_eswa_2021_114892
crossref_primary_10_1051_itmconf_20257001022
crossref_primary_10_3846_mla_2017_1023
crossref_primary_10_1016_j_eswa_2015_05_013
crossref_primary_10_1016_j_eswa_2018_11_005
crossref_primary_10_1016_j_energy_2021_120167
crossref_primary_10_1109_ACCESS_2022_3229314
crossref_primary_10_1007_s10614_024_10671_9
crossref_primary_10_3390_en12214124
crossref_primary_10_1016_j_asoc_2016_12_003
crossref_primary_10_3390_computation7040067
crossref_primary_10_3390_e22111239
crossref_primary_10_3233_JIFS_152073
crossref_primary_10_1155_2018_5014859
crossref_primary_10_1002_cpe_6282
crossref_primary_10_1007_s11831_020_09413_5
crossref_primary_10_1007_s00500_021_05775_5
crossref_primary_10_3390_a17060234
crossref_primary_10_1016_j_eswa_2022_117763
crossref_primary_10_1016_j_neucom_2018_11_052
crossref_primary_10_3390_jrfm14110526
crossref_primary_10_3934_QFE_2020027
crossref_primary_10_1016_j_asoc_2021_107488
crossref_primary_10_1177_1946756719880539
crossref_primary_10_1016_j_bspc_2018_02_003
crossref_primary_10_1016_j_eswa_2015_08_010
crossref_primary_10_4018_IJORIS_2020040102
crossref_primary_10_1109_ACCESS_2021_3077067
crossref_primary_10_1007_s41060_021_00245_5
crossref_primary_10_1016_j_measurement_2019_01_074
crossref_primary_10_3390_app13148124
crossref_primary_10_1007_s00500_019_03863_1
crossref_primary_10_3390_math11132883
crossref_primary_10_1016_j_eswa_2021_115201
crossref_primary_10_4018_IJIIT_2018100101
crossref_primary_10_1007_s11063_021_10508_8
crossref_primary_10_1007_s00500_022_06941_z
crossref_primary_10_3390_a16020071
crossref_primary_10_1016_j_dche_2022_100043
crossref_primary_10_1002_er_3723
crossref_primary_10_1515_remav_2016_0028
crossref_primary_10_1007_s12145_021_00664_9
crossref_primary_10_1007_s10614_022_10273_3
crossref_primary_10_1016_j_asoc_2015_09_040
crossref_primary_10_1007_s00521_021_06403_x
crossref_primary_10_1109_ACCESS_2020_3008717
crossref_primary_10_1016_j_asoc_2017_01_033
crossref_primary_10_1088_1742_6596_2146_1_012031
crossref_primary_10_3390_en8076585
Cites_doi 10.1016/j.datak.2012.03.001
10.1016/j.eswa.2012.04.037
10.1016/j.dss.2009.05.012
10.1016/j.nonrwa.2010.09.018
10.1016/j.jebo.2011.01.032
10.1016/j.ins.2012.06.019
10.1016/j.eswa.2007.09.034
10.1016/j.protcy.2012.09.049
10.1016/j.physleta.2013.06.026
10.1002/int.20471
10.1016/j.engappai.2005.06.004
10.1007/s00500-002-0193-7
10.1016/j.neucom.2013.08.023
10.1016/j.eswa.2010.03.012
10.1016/j.neucom.2008.09.029
10.1016/j.knosys.2008.10.009
10.1016/j.engappai.2010.07.003
10.1016/j.eswa.2010.10.027
10.1016/j.eswa.2012.02.018
10.1016/j.eswa.2008.07.006
10.1007/978-3-642-11161-7
10.1016/j.eswa.2011.09.037
10.1016/j.eswa.2011.01.009
10.1007/s00170-007-1087-8
10.1177/0049124104268644
10.1023/A:1008757620685
10.1016/j.eswa.2011.05.063
10.7763/IJTEF.2011.V2.87
10.1016/j.eswa.2011.11.112
10.2469/faj.v61.n2.2718
10.1016/j.eswa.2011.07.051
10.1016/j.eswa.2006.08.020
10.1162/neco.1991.3.2.246
10.1016/j.eswa.2010.04.045
10.1016/j.physa.2013.02.011
10.1016/j.knosys.2013.01.014
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2014.12.028
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 210
ExternalDocumentID 10_1016_j_asoc_2014_12_028
S1568494614006723
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-ee4e9a4d2a98e43ea9e6e3d291c9cd26e847accb2e0839b9fa5221bd0b48a5f13
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:49:53 EDT 2025
Thu Apr 24 23:11:26 EDT 2025
Fri Feb 23 02:23:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords DAX stock price
Bat algorithm
Artificial neural network
Multi-agent system
Stock price prediction
Fundamental analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-ee4e9a4d2a98e43ea9e6e3d291c9cd26e847accb2e0839b9fa5221bd0b48a5f13
ORCID 0000-0003-0070-3737
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2014_12_028
crossref_primary_10_1016_j_asoc_2014_12_028
elsevier_sciencedirect_doi_10_1016_j_asoc_2014_12_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Feng, Chou (bib0410) 2011; 38
Fazel Zarandi, Hadavandi, Turksen (bib0285) 2012; 27
Shukla, Tiwari, Son (bib0355) 2008; 38
Li, Zhang, Zhang, Zhang, Xiong (bib0450) 2012; 256
Yang (bib0515) 2010
Ponta, Pastore, Cincotti (bib0460) 2011; 12
Haleh, Akbari Moghaddam, Ebrahimijam (bib0280) 2011; 2
Khan, Sahai (bib0295) 2012; 7
Ayodele, Charles, Marion, Sunday (bib0270) 2012; 3
Park, Sandberg (bib0505) 1991; 3
Sokolova, Fernández-Caballero (bib0475) 2012; 39
Yang, Tao, Xu, ZiliZhang (bib0325) 2009
Teixeira, Fernandesa (bib0500) 2012; 5
Zghal, Faiz, Ghezala (bib0365) 2007; vol. 5
Zhang, Akkaladevi, Vachtsevanos, Lin (bib0310) 2002; 6
Raudys, Zliobaite (bib0435) 2006
Ali Albashiri, Coenen, Leng (bib0315) 2009; 22
Jumadinova, Dasgupta (bib0380) 2011; 26
Yang, Wang, Hu (bib0465) 2013; 377
Zarandi, Rezaee, Turksen, Neshat (bib0390) 2009; 36
Hassan (bib0530) 2009; 72
Ralha, Silva (bib0335) 2012; 39
Chang, Wang, Zhou (bib0425) 2012; 39
Klusch, Lodi, Moro (bib0345) 2003
Chang, Liu (bib0385) 2008; 34
Kara, Boyacioglu, Baykan (bib0405) 2011; 38
Padgham, Winikoff (bib0470) 2004
Gao, Denzinger, James (bib0350) 2005
Parras-Gutierrez, Rivas, Garcia-Arenas, Jesus (bib0480) 2014; 128
Atsalakis, Valavanis (bib0510) 2009; 36
Gryc (bib0525) 2010
Kluger, McBride (bib0455) 2011; 79
Kettera, Collinsb, Ginib, Guptac, Schraterb (bib0430) 2009; 47
Cendón, Marcos, Limas, Meré (bib0370) 2010; 85
Lee, Liu (bib0375) 2004
Chang (bib0420) 2011; 38
Lu (bib0395) 2010; 37
Shahrabi, Hadavandi, Asadi (bib0490) 2013; 43
Silva, Giannella, Bhargava, Karguptab, Klusch (bib0360) 2005; 18
Vanstone, Finnie, Tan (bib0300) 2004
Boyacioglu, Avci (bib0400) 2010; 37
Tsai, Wang (bib0305) 2009
Wardeh, Coenen, Capon (bib0330) 2012; 75
Wei, Huang, Hui (bib0440) 2013; 392
Cui, Wang, Ye, Yan (bib0445) 2012; 39
Winker (bib0485) 2000; 16
Giannella, Bhargava, Kargupta (bib0340) 2004
Burnham, Anderson (bib0495) 2004; 33
Arnott, Hsu, Moore (bib0520) 2005; 61
Khadjeh Nassirtoussi, Wah, Ling (bib0275) 2011; 5
Zhang, Cheng, Wang (bib0290) 2012; 39
Hsu (bib0415) 2011; 38
Czarnowski, Jedrzejowicz (bib0320) 2011; 24
Wardeh (10.1016/j.asoc.2014.12.028_bib0330) 2012; 75
Lee (10.1016/j.asoc.2014.12.028_bib0375) 2004
Winker (10.1016/j.asoc.2014.12.028_bib0485) 2000; 16
Atsalakis (10.1016/j.asoc.2014.12.028_bib0510) 2009; 36
Giannella (10.1016/j.asoc.2014.12.028_bib0340) 2004
Gao (10.1016/j.asoc.2014.12.028_bib0350) 2005
Li (10.1016/j.asoc.2014.12.028_bib0450) 2012; 256
Arnott (10.1016/j.asoc.2014.12.028_bib0520) 2005; 61
Kara (10.1016/j.asoc.2014.12.028_bib0405) 2011; 38
Chang (10.1016/j.asoc.2014.12.028_bib0385) 2008; 34
Haleh (10.1016/j.asoc.2014.12.028_bib0280) 2011; 2
Shukla (10.1016/j.asoc.2014.12.028_bib0355) 2008; 38
Sokolova (10.1016/j.asoc.2014.12.028_bib0475) 2012; 39
Ayodele (10.1016/j.asoc.2014.12.028_bib0270) 2012; 3
Jumadinova (10.1016/j.asoc.2014.12.028_bib0380) 2011; 26
Boyacioglu (10.1016/j.asoc.2014.12.028_bib0400) 2010; 37
Park (10.1016/j.asoc.2014.12.028_bib0505) 1991; 3
Vanstone (10.1016/j.asoc.2014.12.028_bib0300) 2004
Hsu (10.1016/j.asoc.2014.12.028_bib0415) 2011; 38
Lu (10.1016/j.asoc.2014.12.028_bib0395) 2010; 37
Cui (10.1016/j.asoc.2014.12.028_bib0445) 2012; 39
Fazel Zarandi (10.1016/j.asoc.2014.12.028_bib0285) 2012; 27
Zhang (10.1016/j.asoc.2014.12.028_bib0290) 2012; 39
Klusch (10.1016/j.asoc.2014.12.028_bib0345) 2003
Czarnowski (10.1016/j.asoc.2014.12.028_bib0320) 2011; 24
Silva (10.1016/j.asoc.2014.12.028_bib0360) 2005; 18
Khadjeh Nassirtoussi (10.1016/j.asoc.2014.12.028_bib0275) 2011; 5
Shahrabi (10.1016/j.asoc.2014.12.028_bib0490) 2013; 43
Chang (10.1016/j.asoc.2014.12.028_bib0425) 2012; 39
Padgham (10.1016/j.asoc.2014.12.028_bib0470) 2004
Ralha (10.1016/j.asoc.2014.12.028_bib0335) 2012; 39
Yang (10.1016/j.asoc.2014.12.028_bib0465) 2013; 377
Wei (10.1016/j.asoc.2014.12.028_bib0440) 2013; 392
Khan (10.1016/j.asoc.2014.12.028_bib0295) 2012; 7
Ali Albashiri (10.1016/j.asoc.2014.12.028_bib0315) 2009; 22
Kettera (10.1016/j.asoc.2014.12.028_bib0430) 2009; 47
Kluger (10.1016/j.asoc.2014.12.028_bib0455) 2011; 79
Yang (10.1016/j.asoc.2014.12.028_bib0515) 2010
Tsai (10.1016/j.asoc.2014.12.028_bib0305) 2009
Hassan (10.1016/j.asoc.2014.12.028_bib0530) 2009; 72
Zhang (10.1016/j.asoc.2014.12.028_bib0310) 2002; 6
Feng (10.1016/j.asoc.2014.12.028_bib0410) 2011; 38
Chang (10.1016/j.asoc.2014.12.028_bib0420) 2011; 38
Ponta (10.1016/j.asoc.2014.12.028_bib0460) 2011; 12
Raudys (10.1016/j.asoc.2014.12.028_bib0435) 2006
Cendón (10.1016/j.asoc.2014.12.028_bib0370) 2010; 85
Zghal (10.1016/j.asoc.2014.12.028_bib0365) 2007; vol. 5
Zarandi (10.1016/j.asoc.2014.12.028_bib0390) 2009; 36
Parras-Gutierrez (10.1016/j.asoc.2014.12.028_bib0480) 2014; 128
Teixeira (10.1016/j.asoc.2014.12.028_bib0500) 2012; 5
Burnham (10.1016/j.asoc.2014.12.028_bib0495) 2004; 33
Gryc (10.1016/j.asoc.2014.12.028_bib0525) 2010
Yang (10.1016/j.asoc.2014.12.028_bib0325) 2009
References_xml – volume: 18
  start-page: 791
  year: 2005
  end-page: 807
  ident: bib0360
  article-title: Distributed data mining and agents
  publication-title: Eng. Appl. Artif. Intell.
– volume: 39
  start-page: 611
  year: 2012
  end-page: 620
  ident: bib0425
  article-title: A novel model by evolving partially connected neural network for stock price trend forecasting
  publication-title: Expert Syst. Appl.
– volume: 256
  start-page: 46
  year: 2012
  end-page: 56
  ident: bib0450
  article-title: Calibration of the agent-based continuous double auction stock market by scaling analysis
  publication-title: Inf. Sci.
– start-page: 653
  year: 2006
  end-page: 662
  ident: bib0435
  article-title: The multi-agent system for prediction of financial time series
  publication-title: Artificial Intelligence and Soft Computing – ICAISC 2006
– volume: 79
  start-page: 226
  year: 2011
  end-page: 245
  ident: bib0455
  article-title: Intraday trading patterns in an intelligent autonomous agent-based stock market
  publication-title: J. Econ. Behav. Organ.
– volume: 34
  start-page: 135
  year: 2008
  end-page: 144
  ident: bib0385
  article-title: A TSK type fuzzy rule based system for stock price prediction
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2004
  end-page: 15
  ident: bib0340
  article-title: Multi-agent systems and distributed data mining
  publication-title: Cooperative Information Agents VIII
– volume: 24
  start-page: 93
  year: 2011
  end-page: 102
  ident: bib0320
  article-title: An agent-based framework for distributed learning
  publication-title: Eng. Appl. Artif. Intell.
– volume: 39
  start-page: 5920
  year: 2012
  end-page: 5934
  ident: bib0290
  article-title: A multi-agent-based decision support system for bankruptcy contagion effects
  publication-title: Expert Syst. Appl.
– volume: 2
  start-page: 109
  year: 2011
  end-page: 114
  ident: bib0280
  article-title: A new approach to forecasting stock price with EKF data fusion
  publication-title: Int. J. Trade Econ. Finance
– start-page: 65
  year: 2010
  end-page: 74
  ident: bib0515
  article-title: A new metaheuristic bat-inspired algorithm
  publication-title: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010)
– volume: 3
  start-page: 1
  year: 2012
  end-page: 9
  ident: bib0270
  article-title: Stock price prediction using neural network with hybridized market indicators
  publication-title: J. Emerg. Trends Comput. Inf. Sci.
– volume: 36
  start-page: 139
  year: 2009
  end-page: 154
  ident: bib0390
  article-title: A type-2 fuzzy rule-based expert system model for stock price analysis
  publication-title: Expert Syst. Appl.
– volume: 39
  start-page: 11642
  year: 2012
  end-page: 11656
  ident: bib0335
  article-title: A multi-agent data mining system for cartel detection in Brazilian government procurement
  publication-title: Expert Syst. Appl.
– volume: vol. 5
  year: 2007
  ident: bib0365
  publication-title: A Framework for Data Mining Based Multi-Agent: An Application to Spatial Data
– volume: 38
  start-page: 163
  year: 2008
  end-page: 175
  ident: bib0355
  article-title: Bidding-based multi-agent system for integrated process planning and scheduling: a data-mining and hybrid tabu-SA algorithm-oriented approach
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 39
  start-page: 8890
  year: 2012
  end-page: 8898
  ident: bib0445
  article-title: Intelligent agent-assisted adaptive order simulation system in the artificial stock market
  publication-title: Expert Syst. Appl.
– volume: 377
  start-page: 2041
  year: 2013
  end-page: 2046
  ident: bib0465
  article-title: Modeling and analysis of an agent-based model for Chinese stock market
  publication-title: Phys. Lett. A
– year: 2004
  ident: bib0470
  article-title: Developing Intelligent Agent Systems: A Practical Guide
– volume: 12
  start-page: 1235
  year: 2011
  end-page: 1242
  ident: bib0460
  article-title: Information-based multi-assets artificial stock market with heterogeneous agents
  publication-title: Nonlinear Anal.: Real World Appl.
– volume: 5
  start-page: 8322
  year: 2011
  end-page: 8330
  ident: bib0275
  article-title: A novel FOREX prediction methodology based on fundamental data
  publication-title: Afr. J. Bus. Manage.
– volume: 27
  start-page: 1
  year: 2012
  end-page: 23
  ident: bib0285
  article-title: A hybrid fuzzy intelligent agent-based system for stock price prediction
  publication-title: Int. J. Intell. Syst.
– volume: 85
  start-page: 43
  year: 2010
  end-page: 50
  ident: bib0370
  article-title: A multi-agent data mining system for defect forecasting in a decentralized manufacturing environment
  publication-title: Comput. Intell. Secur. Inf. Syst.
– volume: 26
  start-page: 383
  year: 2011
  end-page: 409
  ident: bib0380
  article-title: A multi-agent system for analyzing the effect of information on prediction markets
  publication-title: Int. J. Intell. Syst.
– volume: 128
  start-page: 433
  year: 2014
  end-page: 446
  ident: bib0480
  article-title: Short, medium and long term forecasting of time series using the L-Co-R algorithm
  publication-title: Neurocomputing
– year: 2010
  ident: bib0525
  article-title: Neural Network predictions of Stock Price Fluctuations, Technical Report
– volume: 61
  start-page: 83
  year: 2005
  end-page: 99
  ident: bib0520
  article-title: Fundamental indexation
  publication-title: Financ. Anal. J.
– volume: 37
  start-page: 7908
  year: 2010
  end-page: 7912
  ident: bib0400
  article-title: An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the Istanbul stock exchange
  publication-title: Expert Syst. Appl.
– volume: 47
  start-page: 307
  year: 2009
  end-page: 318
  ident: bib0430
  article-title: Detecting and forecasting economic regimes in multi-agent automated exchanges
  publication-title: Decis. Support Syst.
– volume: 43
  start-page: 112
  year: 2013
  end-page: 122
  ident: bib0490
  article-title: Developing a hybrid intelligent model for forecasting problems: case study of tourism demand time series
  publication-title: Knowl.-Based Syst.
– volume: 39
  start-page: 3469
  year: 2012
  end-page: 3483
  ident: bib0475
  article-title: Evaluation of environmental impact upon human health with DeciMaS framework
  publication-title: Expert Syst. Appl.
– year: 2009
  ident: bib0305
  article-title: Stock price forecasting by hybrid machine learning techniques
  publication-title: Proceedings of the International Multiconference of Engineers and Computer Scientists
– year: 2004
  ident: bib0300
  article-title: Applying fundamental analysis and neural networks in the Australian stockmarket
  publication-title: Information Technology Papers
– volume: 38
  start-page: 5311
  year: 2011
  end-page: 5319
  ident: bib0405
  article-title: Predicting direction of stock price index movement using artificial neural networks and support vector machines: the sample of the Istanbul stock exchange
  publication-title: Expert Syst. Appl.
– volume: 38
  start-page: 14846
  year: 2011
  end-page: 14851
  ident: bib0420
  article-title: A comparative study of artificial neural networks, and decision trees for digital game content stocks price prediction
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 23
  year: 2012
  end-page: 29
  ident: bib0295
  article-title: A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context
  publication-title: Intell. Syst. Appl.
– volume: 16
  start-page: 87
  year: 2000
  end-page: 103
  ident: bib0485
  article-title: Optimized multivariate lag structure selection
  publication-title: Comput. Econ.
– volume: 5
  start-page: 445
  year: 2012
  end-page: 454
  ident: bib0500
  article-title: Tourism time series forecast – different ANN architectures with time index input
  publication-title: Procedia Technol.
– volume: 38
  start-page: 14026
  year: 2011
  end-page: 14036
  ident: bib0415
  article-title: A hybrid procedure for stock price prediction by integrating self-organizing map and genetic programming
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 406
  year: 2002
  end-page: 413
  ident: bib0310
  article-title: Granular neural web agents for stock prediction
  publication-title: Soft Comput.
– volume: 38
  start-page: 8285
  year: 2011
  end-page: 8292
  ident: bib0410
  article-title: Evolutional RBFNs prediction systems generation in the applications of financial time series data
  publication-title: Expert Syst. Appl.
– volume: 72
  start-page: 3439
  year: 2009
  end-page: 3446
  ident: bib0530
  article-title: A combination of hidden Markov model and fuzzy model for stock market forecasting
  publication-title: Neurocomputing
– volume: 75
  start-page: 34
  year: 2012
  end-page: 57
  ident: bib0330
  article-title: PISA: a framework for multiagent classification using argumentation
  publication-title: Data Knowl. Eng.
– volume: 3
  start-page: 246
  year: 1991
  end-page: 257
  ident: bib0505
  article-title: Universal approximation using radial-basis-function networks
  publication-title: Neural Comput.
– start-page: 369
  year: 2004
  end-page: 377
  ident: bib0375
  article-title: iJADE Weather MAN: a weather forecasting system using intelligent multiagent-based fuzzy neuro network
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 34
– volume: 392
  start-page: 2728
  year: 2013
  end-page: 2735
  ident: bib0440
  article-title: An agent-based model of stock markets incorporating momentum investors
  publication-title: Physica A: Stat. Mech. Appl.
– start-page: 104
  year: 2003
  end-page: 122
  ident: bib0345
  article-title: Agent-based distributed data mining: the KDEC scheme
  publication-title: Intelligent Information Agents
– volume: 37
  start-page: 7056
  year: 2010
  end-page: 7064
  ident: bib0395
  article-title: Integrating independent component analysis-based denoising scheme with neural network for stock price prediction
  publication-title: Expert Syst. Appl.
– volume: 33
  start-page: 261
  year: 2004
  end-page: 304
  ident: bib0495
  article-title: Multimodel inference: understanding AIC and BIC in model selection
  publication-title: Sociol. Methods Res.
– volume: 36
  start-page: 5932
  year: 2009
  end-page: 5941
  ident: bib0510
  article-title: Surveying stock market forecasting techniques – Part II: Soft computing methods
  publication-title: Expert Syst. Appl.
– start-page: 93
  year: 2005
  end-page: 107
  ident: bib0350
  article-title: A cooperative multi-agent data mining model and its application to medical data on diabetes
  publication-title: Autonomous Intelligent Systems: Agents and Data Mining
– volume: 22
  start-page: 523
  year: 2009
  end-page: 528
  ident: bib0315
  article-title: Emads: an extendible multi-agent data miner
  publication-title: Knowl. Based Syst.
– start-page: 200
  year: 2009
  end-page: 207
  ident: bib0325
  article-title: Multi agent framework for bio-data mining
  publication-title: Lecture Notes in Computer Sciences
– volume: 3
  start-page: 1
  year: 2012
  ident: 10.1016/j.asoc.2014.12.028_bib0270
  article-title: Stock price prediction using neural network with hybridized market indicators
  publication-title: J. Emerg. Trends Comput. Inf. Sci.
– volume: 75
  start-page: 34
  year: 2012
  ident: 10.1016/j.asoc.2014.12.028_bib0330
  article-title: PISA: a framework for multiagent classification using argumentation
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2012.03.001
– volume: 38
  start-page: 14026
  year: 2011
  ident: 10.1016/j.asoc.2014.12.028_bib0415
  article-title: A hybrid procedure for stock price prediction by integrating self-organizing map and genetic programming
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 23
  year: 2012
  ident: 10.1016/j.asoc.2014.12.028_bib0295
  article-title: A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context
  publication-title: Intell. Syst. Appl.
– volume: 39
  start-page: 11642
  year: 2012
  ident: 10.1016/j.asoc.2014.12.028_bib0335
  article-title: A multi-agent data mining system for cartel detection in Brazilian government procurement
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.04.037
– volume: 47
  start-page: 307
  year: 2009
  ident: 10.1016/j.asoc.2014.12.028_bib0430
  article-title: Detecting and forecasting economic regimes in multi-agent automated exchanges
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2009.05.012
– start-page: 65
  year: 2010
  ident: 10.1016/j.asoc.2014.12.028_bib0515
  article-title: A new metaheuristic bat-inspired algorithm
– volume: 12
  start-page: 1235
  year: 2011
  ident: 10.1016/j.asoc.2014.12.028_bib0460
  article-title: Information-based multi-assets artificial stock market with heterogeneous agents
  publication-title: Nonlinear Anal.: Real World Appl.
  doi: 10.1016/j.nonrwa.2010.09.018
– volume: vol. 5
  year: 2007
  ident: 10.1016/j.asoc.2014.12.028_bib0365
– volume: 79
  start-page: 226
  year: 2011
  ident: 10.1016/j.asoc.2014.12.028_bib0455
  article-title: Intraday trading patterns in an intelligent autonomous agent-based stock market
  publication-title: J. Econ. Behav. Organ.
  doi: 10.1016/j.jebo.2011.01.032
– start-page: 653
  year: 2006
  ident: 10.1016/j.asoc.2014.12.028_bib0435
  article-title: The multi-agent system for prediction of financial time series
– volume: 256
  start-page: 46
  year: 2012
  ident: 10.1016/j.asoc.2014.12.028_bib0450
  article-title: Calibration of the agent-based continuous double auction stock market by scaling analysis
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.06.019
– volume: 36
  start-page: 139
  year: 2009
  ident: 10.1016/j.asoc.2014.12.028_bib0390
  article-title: A type-2 fuzzy rule-based expert system model for stock price analysis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.09.034
– volume: 5
  start-page: 445
  year: 2012
  ident: 10.1016/j.asoc.2014.12.028_bib0500
  article-title: Tourism time series forecast – different ANN architectures with time index input
  publication-title: Procedia Technol.
  doi: 10.1016/j.protcy.2012.09.049
– volume: 377
  start-page: 2041
  year: 2013
  ident: 10.1016/j.asoc.2014.12.028_bib0465
  article-title: Modeling and analysis of an agent-based model for Chinese stock market
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2013.06.026
– volume: 26
  start-page: 383
  year: 2011
  ident: 10.1016/j.asoc.2014.12.028_bib0380
  article-title: A multi-agent system for analyzing the effect of information on prediction markets
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.20471
– year: 2004
  ident: 10.1016/j.asoc.2014.12.028_bib0470
– volume: 18
  start-page: 791
  year: 2005
  ident: 10.1016/j.asoc.2014.12.028_bib0360
  article-title: Distributed data mining and agents
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2005.06.004
– volume: 6
  start-page: 406
  year: 2002
  ident: 10.1016/j.asoc.2014.12.028_bib0310
  article-title: Granular neural web agents for stock prediction
  publication-title: Soft Comput.
  doi: 10.1007/s00500-002-0193-7
– volume: 27
  start-page: 1
  year: 2012
  ident: 10.1016/j.asoc.2014.12.028_bib0285
  article-title: A hybrid fuzzy intelligent agent-based system for stock price prediction
  publication-title: Int. J. Intell. Syst.
– start-page: 1
  year: 2004
  ident: 10.1016/j.asoc.2014.12.028_bib0340
  article-title: Multi-agent systems and distributed data mining
– volume: 128
  start-page: 433
  year: 2014
  ident: 10.1016/j.asoc.2014.12.028_bib0480
  article-title: Short, medium and long term forecasting of time series using the L-Co-R algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.08.023
– start-page: 104
  year: 2003
  ident: 10.1016/j.asoc.2014.12.028_bib0345
  article-title: Agent-based distributed data mining: the KDEC scheme
– volume: 37
  start-page: 7056
  year: 2010
  ident: 10.1016/j.asoc.2014.12.028_bib0395
  article-title: Integrating independent component analysis-based denoising scheme with neural network for stock price prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.03.012
– volume: 72
  start-page: 3439
  year: 2009
  ident: 10.1016/j.asoc.2014.12.028_bib0530
  article-title: A combination of hidden Markov model and fuzzy model for stock market forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.09.029
– volume: 22
  start-page: 523
  year: 2009
  ident: 10.1016/j.asoc.2014.12.028_bib0315
  article-title: Emads: an extendible multi-agent data miner
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2008.10.009
– volume: 24
  start-page: 93
  year: 2011
  ident: 10.1016/j.asoc.2014.12.028_bib0320
  article-title: An agent-based framework for distributed learning
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2010.07.003
– volume: 38
  start-page: 5311
  year: 2011
  ident: 10.1016/j.asoc.2014.12.028_bib0405
  article-title: Predicting direction of stock price index movement using artificial neural networks and support vector machines: the sample of the Istanbul stock exchange
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.10.027
– volume: 39
  start-page: 8890
  year: 2012
  ident: 10.1016/j.asoc.2014.12.028_bib0445
  article-title: Intelligent agent-assisted adaptive order simulation system in the artificial stock market
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.02.018
– volume: 36
  start-page: 5932
  year: 2009
  ident: 10.1016/j.asoc.2014.12.028_bib0510
  article-title: Surveying stock market forecasting techniques – Part II: Soft computing methods
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.07.006
– start-page: 200
  year: 2009
  ident: 10.1016/j.asoc.2014.12.028_bib0325
  article-title: Multi agent framework for bio-data mining
  doi: 10.1007/978-3-642-11161-7
– start-page: 369
  year: 2004
  ident: 10.1016/j.asoc.2014.12.028_bib0375
  article-title: iJADE Weather MAN: a weather forecasting system using intelligent multiagent-based fuzzy neuro network
– volume: 39
  start-page: 3469
  year: 2012
  ident: 10.1016/j.asoc.2014.12.028_bib0475
  article-title: Evaluation of environmental impact upon human health with DeciMaS framework
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.037
– volume: 85
  start-page: 43
  year: 2010
  ident: 10.1016/j.asoc.2014.12.028_bib0370
  article-title: A multi-agent data mining system for defect forecasting in a decentralized manufacturing environment
  publication-title: Comput. Intell. Secur. Inf. Syst.
– volume: 38
  start-page: 8285
  year: 2011
  ident: 10.1016/j.asoc.2014.12.028_bib0410
  article-title: Evolutional RBFNs prediction systems generation in the applications of financial time series data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.01.009
– volume: 38
  start-page: 163
  year: 2008
  ident: 10.1016/j.asoc.2014.12.028_bib0355
  article-title: Bidding-based multi-agent system for integrated process planning and scheduling: a data-mining and hybrid tabu-SA algorithm-oriented approach
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-007-1087-8
– volume: 33
  start-page: 261
  year: 2004
  ident: 10.1016/j.asoc.2014.12.028_bib0495
  article-title: Multimodel inference: understanding AIC and BIC in model selection
  publication-title: Sociol. Methods Res.
  doi: 10.1177/0049124104268644
– volume: 16
  start-page: 87
  year: 2000
  ident: 10.1016/j.asoc.2014.12.028_bib0485
  article-title: Optimized multivariate lag structure selection
  publication-title: Comput. Econ.
  doi: 10.1023/A:1008757620685
– volume: 38
  start-page: 14846
  year: 2011
  ident: 10.1016/j.asoc.2014.12.028_bib0420
  article-title: A comparative study of artificial neural networks, and decision trees for digital game content stocks price prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.05.063
– volume: 2
  start-page: 109
  year: 2011
  ident: 10.1016/j.asoc.2014.12.028_bib0280
  article-title: A new approach to forecasting stock price with EKF data fusion
  publication-title: Int. J. Trade Econ. Finance
  doi: 10.7763/IJTEF.2011.V2.87
– year: 2009
  ident: 10.1016/j.asoc.2014.12.028_bib0305
  article-title: Stock price forecasting by hybrid machine learning techniques
– volume: 5
  start-page: 8322
  year: 2011
  ident: 10.1016/j.asoc.2014.12.028_bib0275
  article-title: A novel FOREX prediction methodology based on fundamental data
  publication-title: Afr. J. Bus. Manage.
– volume: 39
  start-page: 5920
  year: 2012
  ident: 10.1016/j.asoc.2014.12.028_bib0290
  article-title: A multi-agent-based decision support system for bankruptcy contagion effects
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.11.112
– volume: 61
  start-page: 83
  year: 2005
  ident: 10.1016/j.asoc.2014.12.028_bib0520
  article-title: Fundamental indexation
  publication-title: Financ. Anal. J.
  doi: 10.2469/faj.v61.n2.2718
– start-page: 93
  year: 2005
  ident: 10.1016/j.asoc.2014.12.028_bib0350
  article-title: A cooperative multi-agent data mining model and its application to medical data on diabetes
– volume: 39
  start-page: 611
  year: 2012
  ident: 10.1016/j.asoc.2014.12.028_bib0425
  article-title: A novel model by evolving partially connected neural network for stock price trend forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.051
– volume: 34
  start-page: 135
  year: 2008
  ident: 10.1016/j.asoc.2014.12.028_bib0385
  article-title: A TSK type fuzzy rule based system for stock price prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.08.020
– volume: 3
  start-page: 246
  year: 1991
  ident: 10.1016/j.asoc.2014.12.028_bib0505
  article-title: Universal approximation using radial-basis-function networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.2.246
– year: 2004
  ident: 10.1016/j.asoc.2014.12.028_bib0300
  article-title: Applying fundamental analysis and neural networks in the Australian stockmarket
– volume: 37
  start-page: 7908
  year: 2010
  ident: 10.1016/j.asoc.2014.12.028_bib0400
  article-title: An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the Istanbul stock exchange
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.04.045
– year: 2010
  ident: 10.1016/j.asoc.2014.12.028_bib0525
– volume: 392
  start-page: 2728
  year: 2013
  ident: 10.1016/j.asoc.2014.12.028_bib0440
  article-title: An agent-based model of stock markets incorporating momentum investors
  publication-title: Physica A: Stat. Mech. Appl.
  doi: 10.1016/j.physa.2013.02.011
– volume: 43
  start-page: 112
  year: 2013
  ident: 10.1016/j.asoc.2014.12.028_bib0490
  article-title: Developing a hybrid intelligent model for forecasting problems: case study of tourism demand time series
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.01.014
SSID ssj0016928
Score 2.4534802
Snippet Creating an intelligent system that can accurately predict stock price in a robust way has always been a subject of great interest for many investors and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 196
SubjectTerms Artificial neural network
Bat algorithm
DAX stock price
Fundamental analysis
Multi-agent system
Stock price prediction
Title A bat-neural network multi-agent system (BNNMAS) for stock price prediction: Case study of DAX stock price
URI https://dx.doi.org/10.1016/j.asoc.2014.12.028
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEeUw4cQCisTdOs4VYG03hNiDFptypJXWkDbRMaV347cR_TkBAHLq1aOVLluLaTfP5MyGlkpBHCLXIk94CJTKbM6CxkVmmeBQG3VmJx8lNf9obifhSOaqRT1cIgrLL0_YVPz711-aZVarM1H49bA7fyiIQSLr7k54nI-ClEG6388msJ8_ClyvurojBD6bJwpsB4aacBhHeJfEsQO7L_FpxWAk53i2yUmSKNi4_ZJjWY7pDNqgsDLX_KXTKJqdELhsSUTnxawLppDhRkGgunaMHWTM-u-_2neHBOXZ5KXc5n3-gcKYXcFU9rcIauaMdFNZpzztJZRm_i0arkHhl2b187PVZ2UGA28LwFAxCgtEi5VhGIALQCCUHKlW-VTbkEF5u0tYaDy8SUUZl26ZhvUs-ISIeZH-yT-nQ2hQNCrY48aT2ThZAKxXlkPPAVZLptJKTcbxC_Ul1iS3px7HLxnlQ4skmC6k5Q3YnPE6fuBrlYjpkX5Bp_SofVjCQ_TCRx3v-PcYf_HHdE1t1TWMB0jkl98fEJJy4DWZhmbmJNshZ3Xh6f8X730Ot_A7QO3Uo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DLDwRpSnBwYQMk0cx8RspYAKtF3aSt0s27lILahUqKz8ds55VEVCDCwZnDspOtt3n-Pv7gg5T6y0QuAhR_IAmMhkyqzJYuaU4VkUceekT07udGVrIJ6H8XCJNKtcGE-rLH1_4dNzb12O1Etr1qejUb2HJ49EKIHxJb9PjJbJqsDt69sYXH_NeR6hVHmDVS_NvHiZOVOQvAyawPO7RP5P0Ldk_y06LUScxy2yUUJF2ii-ZpsswWSHbFZtGGi5K3fJuEGtmTFfmRLFJwWvm-ZMQWZ85hQtyjXTi7tut9PoXVIEqhRBn3ulU19TCJ_-usZP0S1tYlijedFZ-p7R-8ZwUXKPDB4f-s0WK1soMBcFwYwBCFBGpNyoBEQERoGEKOUqdMqlXAIGJ-Oc5YBQTFmVGcRjoU0DKxITZ2G0T1Ym7xM4INSZJJAusFkMqVCcJzaAUEFmbqyElIc1Elam066sL-7bXLzpikg21t7c2ptbh1yjuWvkaq4zLapr_CkdVzOif6wRje7_D73Df-qdkbVWv9PW7afuyxFZxzdxwdk5Jiuzj084QTgys6f5cvsG9ILdQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bat-neural+network+multi-agent+system+%28BNNMAS%29+for+stock+price+prediction%3A+Case+study+of+DAX+stock+price&rft.jtitle=Applied+soft+computing&rft.au=Hafezi%2C+Reza&rft.au=Shahrabi%2C+Jamal&rft.au=Hadavandi%2C+Esmaeil&rft.date=2015-04-01&rft.issn=1568-4946&rft.volume=29&rft.spage=196&rft.epage=210&rft_id=info:doi/10.1016%2Fj.asoc.2014.12.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2014_12_028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon