A bat-neural network multi-agent system (BNNMAS) for stock price prediction: Case study of DAX stock price
Creating an intelligent system that can accurately predict stock price in a robust way has always been a subject of great interest for many investors and financial analysts. Predicting future trends of financial markets is more remarkable these days especially after the recent global financial crisi...
Saved in:
Published in | Applied soft computing Vol. 29; pp. 196 - 210 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Creating an intelligent system that can accurately predict stock price in a robust way has always been a subject of great interest for many investors and financial analysts. Predicting future trends of financial markets is more remarkable these days especially after the recent global financial crisis. So traders who access to a powerful engine for extracting helpful information throw raw data can meet the success. In this paper we propose a new intelligent model in a multi-agent framework called bat-neural network multi-agent system (BNNMAS) to predict stock price. The model performs in a four layer multi-agent framework to predict eight years of DAX stock price in quarterly periods. The capability of BNNMAS is evaluated by applying both on fundamental and technical DAX stock price data and comparing the outcomes with the results of other methods such as genetic algorithm neural network (GANN) and some standard models like generalized regression neural network (GRNN), etc. The model tested for predicting DAX stock price a period of time that global financial crisis was faced to economics. The results show that BNNMAS significantly performs accurate and reliable, so it can be considered as a suitable tool for predicting stock price specially in a long term periods. |
---|---|
AbstractList | Creating an intelligent system that can accurately predict stock price in a robust way has always been a subject of great interest for many investors and financial analysts. Predicting future trends of financial markets is more remarkable these days especially after the recent global financial crisis. So traders who access to a powerful engine for extracting helpful information throw raw data can meet the success. In this paper we propose a new intelligent model in a multi-agent framework called bat-neural network multi-agent system (BNNMAS) to predict stock price. The model performs in a four layer multi-agent framework to predict eight years of DAX stock price in quarterly periods. The capability of BNNMAS is evaluated by applying both on fundamental and technical DAX stock price data and comparing the outcomes with the results of other methods such as genetic algorithm neural network (GANN) and some standard models like generalized regression neural network (GRNN), etc. The model tested for predicting DAX stock price a period of time that global financial crisis was faced to economics. The results show that BNNMAS significantly performs accurate and reliable, so it can be considered as a suitable tool for predicting stock price specially in a long term periods. |
Author | Hafezi, Reza Shahrabi, Jamal Hadavandi, Esmaeil |
Author_xml | – sequence: 1 givenname: Reza orcidid: 0000-0003-0070-3737 surname: Hafezi fullname: Hafezi, Reza email: r.hafezi@aut.ac.ir organization: Technology Foresight Group, Department of Management, Science and Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran – sequence: 2 givenname: Jamal surname: Shahrabi fullname: Shahrabi, Jamal email: jamalshahrabi@aut.ac.ir organization: Department of Industrial Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran – sequence: 3 givenname: Esmaeil surname: Hadavandi fullname: Hadavandi, Esmaeil email: es.hadavandi@aut.ac.ir organization: Department of Industrial Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran |
BookMark | eNp9kD1PwzAQQC1UJNrCH2DyCEOC7aSpjVhK-ZRKGQCJzXKcC3Kaxsh2Qf33OCoDYuhyd9LdO929ERp0tgOETilJKaHFRZMqb3XKCM1TylLC-AEaUj5liSg4HcR6UvAkF3lxhEbeNyRCgvEhama4VCHpYONUizsI39at8HrTBpOoD-gC9lsfYI3PrpfLp9nLOa6twz5YvcKfzmiIESqjg7HdJZ4rD7G5qbbY1vhm9v538hgd1qr1cPKbx-jt7vZ1_pAsnu8f57NFojNCQgKQg1B5xZTgkGegBBSQVUxQLXTFCuD5VGldMiA8E6Wo1YQxWlakzLma1DQbI77bq5313kEttQmqPzA4ZVpJieydyUb2zmTvTFImo7OIsn9ovHyt3HY_dLWDID71ZcBJrw10OmpxoIOsrNmH_wBccYjj |
CitedBy_id | crossref_primary_10_1016_j_patrec_2021_03_030 crossref_primary_10_1016_j_eswa_2016_02_006 crossref_primary_10_3846_tede_2024_20488 crossref_primary_10_1007_s12597_016_0289_y crossref_primary_10_1016_j_jbef_2020_100447 crossref_primary_10_1016_j_eswa_2021_115384 crossref_primary_10_1155_2021_5663302 crossref_primary_10_1016_j_asoc_2025_112978 crossref_primary_10_1016_j_eswa_2015_07_063 crossref_primary_10_1016_j_eswa_2023_122245 crossref_primary_10_1016_j_enconman_2015_08_025 crossref_primary_10_3390_bdcc9010005 crossref_primary_10_1007_s42786_018_00006_2 crossref_primary_10_1016_j_asoc_2021_107277 crossref_primary_10_1016_j_physa_2022_127173 crossref_primary_10_3390_en11051188 crossref_primary_10_1016_j_asoc_2016_10_016 crossref_primary_10_11118_actaun201866061573 crossref_primary_10_1155_2022_4808088 crossref_primary_10_1016_j_asoc_2018_07_004 crossref_primary_10_1007_s12559_023_10125_8 crossref_primary_10_3390_app9245574 crossref_primary_10_1016_j_econlet_2021_109917 crossref_primary_10_21511_imfi_17_3__2020_22 crossref_primary_10_3390_en9040261 crossref_primary_10_20965_jaciii_2015_p0593 crossref_primary_10_1002_int_22495 crossref_primary_10_1007_s00500_020_05176_0 crossref_primary_10_3390_en81212428 crossref_primary_10_1007_s10614_021_10176_9 crossref_primary_10_1016_j_frl_2023_104181 crossref_primary_10_1016_j_jcde_2019_02_002 crossref_primary_10_3390_data4020075 crossref_primary_10_1007_s44196_025_00768_w crossref_primary_10_1016_j_knosys_2016_05_031 crossref_primary_10_38124_ijisrt_IJISRT24APR1602 crossref_primary_10_1016_j_resourpol_2022_102778 crossref_primary_10_1155_2021_8850600 crossref_primary_10_1016_j_asoc_2017_12_013 crossref_primary_10_1002_spy2_181 crossref_primary_10_3390_software3040027 crossref_primary_10_1007_s11063_021_10732_2 crossref_primary_10_3390_a12040084 crossref_primary_10_3390_a14100299 crossref_primary_10_1080_17517575_2018_1493145 crossref_primary_10_1016_j_eswa_2022_119203 crossref_primary_10_1016_j_asoc_2017_08_008 crossref_primary_10_1007_s41870_023_01343_2 crossref_primary_10_1007_s10489_018_1351_7 crossref_primary_10_3390_ai4040054 crossref_primary_10_1016_j_asoc_2015_08_010 crossref_primary_10_3233_JIFS_179681 crossref_primary_10_1186_s40537_020_00333_6 crossref_primary_10_1016_j_asoc_2015_06_005 crossref_primary_10_1016_j_eswa_2021_114892 crossref_primary_10_1051_itmconf_20257001022 crossref_primary_10_3846_mla_2017_1023 crossref_primary_10_1016_j_eswa_2015_05_013 crossref_primary_10_1016_j_eswa_2018_11_005 crossref_primary_10_1016_j_energy_2021_120167 crossref_primary_10_1109_ACCESS_2022_3229314 crossref_primary_10_1007_s10614_024_10671_9 crossref_primary_10_3390_en12214124 crossref_primary_10_1016_j_asoc_2016_12_003 crossref_primary_10_3390_computation7040067 crossref_primary_10_3390_e22111239 crossref_primary_10_3233_JIFS_152073 crossref_primary_10_1155_2018_5014859 crossref_primary_10_1002_cpe_6282 crossref_primary_10_1007_s11831_020_09413_5 crossref_primary_10_1007_s00500_021_05775_5 crossref_primary_10_3390_a17060234 crossref_primary_10_1016_j_eswa_2022_117763 crossref_primary_10_1016_j_neucom_2018_11_052 crossref_primary_10_3390_jrfm14110526 crossref_primary_10_3934_QFE_2020027 crossref_primary_10_1016_j_asoc_2021_107488 crossref_primary_10_1177_1946756719880539 crossref_primary_10_1016_j_bspc_2018_02_003 crossref_primary_10_1016_j_eswa_2015_08_010 crossref_primary_10_4018_IJORIS_2020040102 crossref_primary_10_1109_ACCESS_2021_3077067 crossref_primary_10_1007_s41060_021_00245_5 crossref_primary_10_1016_j_measurement_2019_01_074 crossref_primary_10_3390_app13148124 crossref_primary_10_1007_s00500_019_03863_1 crossref_primary_10_3390_math11132883 crossref_primary_10_1016_j_eswa_2021_115201 crossref_primary_10_4018_IJIIT_2018100101 crossref_primary_10_1007_s11063_021_10508_8 crossref_primary_10_1007_s00500_022_06941_z crossref_primary_10_3390_a16020071 crossref_primary_10_1016_j_dche_2022_100043 crossref_primary_10_1002_er_3723 crossref_primary_10_1515_remav_2016_0028 crossref_primary_10_1007_s12145_021_00664_9 crossref_primary_10_1007_s10614_022_10273_3 crossref_primary_10_1016_j_asoc_2015_09_040 crossref_primary_10_1007_s00521_021_06403_x crossref_primary_10_1109_ACCESS_2020_3008717 crossref_primary_10_1016_j_asoc_2017_01_033 crossref_primary_10_1088_1742_6596_2146_1_012031 crossref_primary_10_3390_en8076585 |
Cites_doi | 10.1016/j.datak.2012.03.001 10.1016/j.eswa.2012.04.037 10.1016/j.dss.2009.05.012 10.1016/j.nonrwa.2010.09.018 10.1016/j.jebo.2011.01.032 10.1016/j.ins.2012.06.019 10.1016/j.eswa.2007.09.034 10.1016/j.protcy.2012.09.049 10.1016/j.physleta.2013.06.026 10.1002/int.20471 10.1016/j.engappai.2005.06.004 10.1007/s00500-002-0193-7 10.1016/j.neucom.2013.08.023 10.1016/j.eswa.2010.03.012 10.1016/j.neucom.2008.09.029 10.1016/j.knosys.2008.10.009 10.1016/j.engappai.2010.07.003 10.1016/j.eswa.2010.10.027 10.1016/j.eswa.2012.02.018 10.1016/j.eswa.2008.07.006 10.1007/978-3-642-11161-7 10.1016/j.eswa.2011.09.037 10.1016/j.eswa.2011.01.009 10.1007/s00170-007-1087-8 10.1177/0049124104268644 10.1023/A:1008757620685 10.1016/j.eswa.2011.05.063 10.7763/IJTEF.2011.V2.87 10.1016/j.eswa.2011.11.112 10.2469/faj.v61.n2.2718 10.1016/j.eswa.2011.07.051 10.1016/j.eswa.2006.08.020 10.1162/neco.1991.3.2.246 10.1016/j.eswa.2010.04.045 10.1016/j.physa.2013.02.011 10.1016/j.knosys.2013.01.014 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. |
Copyright_xml | – notice: 2015 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2014.12.028 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 210 |
ExternalDocumentID | 10_1016_j_asoc_2014_12_028 S1568494614006723 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-ee4e9a4d2a98e43ea9e6e3d291c9cd26e847accb2e0839b9fa5221bd0b48a5f13 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:49:53 EDT 2025 Thu Apr 24 23:11:26 EDT 2025 Fri Feb 23 02:23:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | DAX stock price Bat algorithm Artificial neural network Multi-agent system Stock price prediction Fundamental analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-ee4e9a4d2a98e43ea9e6e3d291c9cd26e847accb2e0839b9fa5221bd0b48a5f13 |
ORCID | 0000-0003-0070-3737 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2014_12_028 crossref_primary_10_1016_j_asoc_2014_12_028 elsevier_sciencedirect_doi_10_1016_j_asoc_2014_12_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Feng, Chou (bib0410) 2011; 38 Fazel Zarandi, Hadavandi, Turksen (bib0285) 2012; 27 Shukla, Tiwari, Son (bib0355) 2008; 38 Li, Zhang, Zhang, Zhang, Xiong (bib0450) 2012; 256 Yang (bib0515) 2010 Ponta, Pastore, Cincotti (bib0460) 2011; 12 Haleh, Akbari Moghaddam, Ebrahimijam (bib0280) 2011; 2 Khan, Sahai (bib0295) 2012; 7 Ayodele, Charles, Marion, Sunday (bib0270) 2012; 3 Park, Sandberg (bib0505) 1991; 3 Sokolova, Fernández-Caballero (bib0475) 2012; 39 Yang, Tao, Xu, ZiliZhang (bib0325) 2009 Teixeira, Fernandesa (bib0500) 2012; 5 Zghal, Faiz, Ghezala (bib0365) 2007; vol. 5 Zhang, Akkaladevi, Vachtsevanos, Lin (bib0310) 2002; 6 Raudys, Zliobaite (bib0435) 2006 Ali Albashiri, Coenen, Leng (bib0315) 2009; 22 Jumadinova, Dasgupta (bib0380) 2011; 26 Yang, Wang, Hu (bib0465) 2013; 377 Zarandi, Rezaee, Turksen, Neshat (bib0390) 2009; 36 Hassan (bib0530) 2009; 72 Ralha, Silva (bib0335) 2012; 39 Chang, Wang, Zhou (bib0425) 2012; 39 Klusch, Lodi, Moro (bib0345) 2003 Chang, Liu (bib0385) 2008; 34 Kara, Boyacioglu, Baykan (bib0405) 2011; 38 Padgham, Winikoff (bib0470) 2004 Gao, Denzinger, James (bib0350) 2005 Parras-Gutierrez, Rivas, Garcia-Arenas, Jesus (bib0480) 2014; 128 Atsalakis, Valavanis (bib0510) 2009; 36 Gryc (bib0525) 2010 Kluger, McBride (bib0455) 2011; 79 Kettera, Collinsb, Ginib, Guptac, Schraterb (bib0430) 2009; 47 Cendón, Marcos, Limas, Meré (bib0370) 2010; 85 Lee, Liu (bib0375) 2004 Chang (bib0420) 2011; 38 Lu (bib0395) 2010; 37 Shahrabi, Hadavandi, Asadi (bib0490) 2013; 43 Silva, Giannella, Bhargava, Karguptab, Klusch (bib0360) 2005; 18 Vanstone, Finnie, Tan (bib0300) 2004 Boyacioglu, Avci (bib0400) 2010; 37 Tsai, Wang (bib0305) 2009 Wardeh, Coenen, Capon (bib0330) 2012; 75 Wei, Huang, Hui (bib0440) 2013; 392 Cui, Wang, Ye, Yan (bib0445) 2012; 39 Winker (bib0485) 2000; 16 Giannella, Bhargava, Kargupta (bib0340) 2004 Burnham, Anderson (bib0495) 2004; 33 Arnott, Hsu, Moore (bib0520) 2005; 61 Khadjeh Nassirtoussi, Wah, Ling (bib0275) 2011; 5 Zhang, Cheng, Wang (bib0290) 2012; 39 Hsu (bib0415) 2011; 38 Czarnowski, Jedrzejowicz (bib0320) 2011; 24 Wardeh (10.1016/j.asoc.2014.12.028_bib0330) 2012; 75 Lee (10.1016/j.asoc.2014.12.028_bib0375) 2004 Winker (10.1016/j.asoc.2014.12.028_bib0485) 2000; 16 Atsalakis (10.1016/j.asoc.2014.12.028_bib0510) 2009; 36 Giannella (10.1016/j.asoc.2014.12.028_bib0340) 2004 Gao (10.1016/j.asoc.2014.12.028_bib0350) 2005 Li (10.1016/j.asoc.2014.12.028_bib0450) 2012; 256 Arnott (10.1016/j.asoc.2014.12.028_bib0520) 2005; 61 Kara (10.1016/j.asoc.2014.12.028_bib0405) 2011; 38 Chang (10.1016/j.asoc.2014.12.028_bib0385) 2008; 34 Haleh (10.1016/j.asoc.2014.12.028_bib0280) 2011; 2 Shukla (10.1016/j.asoc.2014.12.028_bib0355) 2008; 38 Sokolova (10.1016/j.asoc.2014.12.028_bib0475) 2012; 39 Ayodele (10.1016/j.asoc.2014.12.028_bib0270) 2012; 3 Jumadinova (10.1016/j.asoc.2014.12.028_bib0380) 2011; 26 Boyacioglu (10.1016/j.asoc.2014.12.028_bib0400) 2010; 37 Park (10.1016/j.asoc.2014.12.028_bib0505) 1991; 3 Vanstone (10.1016/j.asoc.2014.12.028_bib0300) 2004 Hsu (10.1016/j.asoc.2014.12.028_bib0415) 2011; 38 Lu (10.1016/j.asoc.2014.12.028_bib0395) 2010; 37 Cui (10.1016/j.asoc.2014.12.028_bib0445) 2012; 39 Fazel Zarandi (10.1016/j.asoc.2014.12.028_bib0285) 2012; 27 Zhang (10.1016/j.asoc.2014.12.028_bib0290) 2012; 39 Klusch (10.1016/j.asoc.2014.12.028_bib0345) 2003 Czarnowski (10.1016/j.asoc.2014.12.028_bib0320) 2011; 24 Silva (10.1016/j.asoc.2014.12.028_bib0360) 2005; 18 Khadjeh Nassirtoussi (10.1016/j.asoc.2014.12.028_bib0275) 2011; 5 Shahrabi (10.1016/j.asoc.2014.12.028_bib0490) 2013; 43 Chang (10.1016/j.asoc.2014.12.028_bib0425) 2012; 39 Padgham (10.1016/j.asoc.2014.12.028_bib0470) 2004 Ralha (10.1016/j.asoc.2014.12.028_bib0335) 2012; 39 Yang (10.1016/j.asoc.2014.12.028_bib0465) 2013; 377 Wei (10.1016/j.asoc.2014.12.028_bib0440) 2013; 392 Khan (10.1016/j.asoc.2014.12.028_bib0295) 2012; 7 Ali Albashiri (10.1016/j.asoc.2014.12.028_bib0315) 2009; 22 Kettera (10.1016/j.asoc.2014.12.028_bib0430) 2009; 47 Kluger (10.1016/j.asoc.2014.12.028_bib0455) 2011; 79 Yang (10.1016/j.asoc.2014.12.028_bib0515) 2010 Tsai (10.1016/j.asoc.2014.12.028_bib0305) 2009 Hassan (10.1016/j.asoc.2014.12.028_bib0530) 2009; 72 Zhang (10.1016/j.asoc.2014.12.028_bib0310) 2002; 6 Feng (10.1016/j.asoc.2014.12.028_bib0410) 2011; 38 Chang (10.1016/j.asoc.2014.12.028_bib0420) 2011; 38 Ponta (10.1016/j.asoc.2014.12.028_bib0460) 2011; 12 Raudys (10.1016/j.asoc.2014.12.028_bib0435) 2006 Cendón (10.1016/j.asoc.2014.12.028_bib0370) 2010; 85 Zghal (10.1016/j.asoc.2014.12.028_bib0365) 2007; vol. 5 Zarandi (10.1016/j.asoc.2014.12.028_bib0390) 2009; 36 Parras-Gutierrez (10.1016/j.asoc.2014.12.028_bib0480) 2014; 128 Teixeira (10.1016/j.asoc.2014.12.028_bib0500) 2012; 5 Burnham (10.1016/j.asoc.2014.12.028_bib0495) 2004; 33 Gryc (10.1016/j.asoc.2014.12.028_bib0525) 2010 Yang (10.1016/j.asoc.2014.12.028_bib0325) 2009 |
References_xml | – volume: 18 start-page: 791 year: 2005 end-page: 807 ident: bib0360 article-title: Distributed data mining and agents publication-title: Eng. Appl. Artif. Intell. – volume: 39 start-page: 611 year: 2012 end-page: 620 ident: bib0425 article-title: A novel model by evolving partially connected neural network for stock price trend forecasting publication-title: Expert Syst. Appl. – volume: 256 start-page: 46 year: 2012 end-page: 56 ident: bib0450 article-title: Calibration of the agent-based continuous double auction stock market by scaling analysis publication-title: Inf. Sci. – start-page: 653 year: 2006 end-page: 662 ident: bib0435 article-title: The multi-agent system for prediction of financial time series publication-title: Artificial Intelligence and Soft Computing – ICAISC 2006 – volume: 79 start-page: 226 year: 2011 end-page: 245 ident: bib0455 article-title: Intraday trading patterns in an intelligent autonomous agent-based stock market publication-title: J. Econ. Behav. Organ. – volume: 34 start-page: 135 year: 2008 end-page: 144 ident: bib0385 article-title: A TSK type fuzzy rule based system for stock price prediction publication-title: Expert Syst. Appl. – start-page: 1 year: 2004 end-page: 15 ident: bib0340 article-title: Multi-agent systems and distributed data mining publication-title: Cooperative Information Agents VIII – volume: 24 start-page: 93 year: 2011 end-page: 102 ident: bib0320 article-title: An agent-based framework for distributed learning publication-title: Eng. Appl. Artif. Intell. – volume: 39 start-page: 5920 year: 2012 end-page: 5934 ident: bib0290 article-title: A multi-agent-based decision support system for bankruptcy contagion effects publication-title: Expert Syst. Appl. – volume: 2 start-page: 109 year: 2011 end-page: 114 ident: bib0280 article-title: A new approach to forecasting stock price with EKF data fusion publication-title: Int. J. Trade Econ. Finance – start-page: 65 year: 2010 end-page: 74 ident: bib0515 article-title: A new metaheuristic bat-inspired algorithm publication-title: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010) – volume: 3 start-page: 1 year: 2012 end-page: 9 ident: bib0270 article-title: Stock price prediction using neural network with hybridized market indicators publication-title: J. Emerg. Trends Comput. Inf. Sci. – volume: 36 start-page: 139 year: 2009 end-page: 154 ident: bib0390 article-title: A type-2 fuzzy rule-based expert system model for stock price analysis publication-title: Expert Syst. Appl. – volume: 39 start-page: 11642 year: 2012 end-page: 11656 ident: bib0335 article-title: A multi-agent data mining system for cartel detection in Brazilian government procurement publication-title: Expert Syst. Appl. – volume: vol. 5 year: 2007 ident: bib0365 publication-title: A Framework for Data Mining Based Multi-Agent: An Application to Spatial Data – volume: 38 start-page: 163 year: 2008 end-page: 175 ident: bib0355 article-title: Bidding-based multi-agent system for integrated process planning and scheduling: a data-mining and hybrid tabu-SA algorithm-oriented approach publication-title: Int. J. Adv. Manuf. Technol. – volume: 39 start-page: 8890 year: 2012 end-page: 8898 ident: bib0445 article-title: Intelligent agent-assisted adaptive order simulation system in the artificial stock market publication-title: Expert Syst. Appl. – volume: 377 start-page: 2041 year: 2013 end-page: 2046 ident: bib0465 article-title: Modeling and analysis of an agent-based model for Chinese stock market publication-title: Phys. Lett. A – year: 2004 ident: bib0470 article-title: Developing Intelligent Agent Systems: A Practical Guide – volume: 12 start-page: 1235 year: 2011 end-page: 1242 ident: bib0460 article-title: Information-based multi-assets artificial stock market with heterogeneous agents publication-title: Nonlinear Anal.: Real World Appl. – volume: 5 start-page: 8322 year: 2011 end-page: 8330 ident: bib0275 article-title: A novel FOREX prediction methodology based on fundamental data publication-title: Afr. J. Bus. Manage. – volume: 27 start-page: 1 year: 2012 end-page: 23 ident: bib0285 article-title: A hybrid fuzzy intelligent agent-based system for stock price prediction publication-title: Int. J. Intell. Syst. – volume: 85 start-page: 43 year: 2010 end-page: 50 ident: bib0370 article-title: A multi-agent data mining system for defect forecasting in a decentralized manufacturing environment publication-title: Comput. Intell. Secur. Inf. Syst. – volume: 26 start-page: 383 year: 2011 end-page: 409 ident: bib0380 article-title: A multi-agent system for analyzing the effect of information on prediction markets publication-title: Int. J. Intell. Syst. – volume: 128 start-page: 433 year: 2014 end-page: 446 ident: bib0480 article-title: Short, medium and long term forecasting of time series using the L-Co-R algorithm publication-title: Neurocomputing – year: 2010 ident: bib0525 article-title: Neural Network predictions of Stock Price Fluctuations, Technical Report – volume: 61 start-page: 83 year: 2005 end-page: 99 ident: bib0520 article-title: Fundamental indexation publication-title: Financ. Anal. J. – volume: 37 start-page: 7908 year: 2010 end-page: 7912 ident: bib0400 article-title: An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the Istanbul stock exchange publication-title: Expert Syst. Appl. – volume: 47 start-page: 307 year: 2009 end-page: 318 ident: bib0430 article-title: Detecting and forecasting economic regimes in multi-agent automated exchanges publication-title: Decis. Support Syst. – volume: 43 start-page: 112 year: 2013 end-page: 122 ident: bib0490 article-title: Developing a hybrid intelligent model for forecasting problems: case study of tourism demand time series publication-title: Knowl.-Based Syst. – volume: 39 start-page: 3469 year: 2012 end-page: 3483 ident: bib0475 article-title: Evaluation of environmental impact upon human health with DeciMaS framework publication-title: Expert Syst. Appl. – year: 2009 ident: bib0305 article-title: Stock price forecasting by hybrid machine learning techniques publication-title: Proceedings of the International Multiconference of Engineers and Computer Scientists – year: 2004 ident: bib0300 article-title: Applying fundamental analysis and neural networks in the Australian stockmarket publication-title: Information Technology Papers – volume: 38 start-page: 5311 year: 2011 end-page: 5319 ident: bib0405 article-title: Predicting direction of stock price index movement using artificial neural networks and support vector machines: the sample of the Istanbul stock exchange publication-title: Expert Syst. Appl. – volume: 38 start-page: 14846 year: 2011 end-page: 14851 ident: bib0420 article-title: A comparative study of artificial neural networks, and decision trees for digital game content stocks price prediction publication-title: Expert Syst. Appl. – volume: 7 start-page: 23 year: 2012 end-page: 29 ident: bib0295 article-title: A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context publication-title: Intell. Syst. Appl. – volume: 16 start-page: 87 year: 2000 end-page: 103 ident: bib0485 article-title: Optimized multivariate lag structure selection publication-title: Comput. Econ. – volume: 5 start-page: 445 year: 2012 end-page: 454 ident: bib0500 article-title: Tourism time series forecast – different ANN architectures with time index input publication-title: Procedia Technol. – volume: 38 start-page: 14026 year: 2011 end-page: 14036 ident: bib0415 article-title: A hybrid procedure for stock price prediction by integrating self-organizing map and genetic programming publication-title: Expert Syst. Appl. – volume: 6 start-page: 406 year: 2002 end-page: 413 ident: bib0310 article-title: Granular neural web agents for stock prediction publication-title: Soft Comput. – volume: 38 start-page: 8285 year: 2011 end-page: 8292 ident: bib0410 article-title: Evolutional RBFNs prediction systems generation in the applications of financial time series data publication-title: Expert Syst. Appl. – volume: 72 start-page: 3439 year: 2009 end-page: 3446 ident: bib0530 article-title: A combination of hidden Markov model and fuzzy model for stock market forecasting publication-title: Neurocomputing – volume: 75 start-page: 34 year: 2012 end-page: 57 ident: bib0330 article-title: PISA: a framework for multiagent classification using argumentation publication-title: Data Knowl. Eng. – volume: 3 start-page: 246 year: 1991 end-page: 257 ident: bib0505 article-title: Universal approximation using radial-basis-function networks publication-title: Neural Comput. – start-page: 369 year: 2004 end-page: 377 ident: bib0375 article-title: iJADE Weather MAN: a weather forecasting system using intelligent multiagent-based fuzzy neuro network publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 34 – volume: 392 start-page: 2728 year: 2013 end-page: 2735 ident: bib0440 article-title: An agent-based model of stock markets incorporating momentum investors publication-title: Physica A: Stat. Mech. Appl. – start-page: 104 year: 2003 end-page: 122 ident: bib0345 article-title: Agent-based distributed data mining: the KDEC scheme publication-title: Intelligent Information Agents – volume: 37 start-page: 7056 year: 2010 end-page: 7064 ident: bib0395 article-title: Integrating independent component analysis-based denoising scheme with neural network for stock price prediction publication-title: Expert Syst. Appl. – volume: 33 start-page: 261 year: 2004 end-page: 304 ident: bib0495 article-title: Multimodel inference: understanding AIC and BIC in model selection publication-title: Sociol. Methods Res. – volume: 36 start-page: 5932 year: 2009 end-page: 5941 ident: bib0510 article-title: Surveying stock market forecasting techniques – Part II: Soft computing methods publication-title: Expert Syst. Appl. – start-page: 93 year: 2005 end-page: 107 ident: bib0350 article-title: A cooperative multi-agent data mining model and its application to medical data on diabetes publication-title: Autonomous Intelligent Systems: Agents and Data Mining – volume: 22 start-page: 523 year: 2009 end-page: 528 ident: bib0315 article-title: Emads: an extendible multi-agent data miner publication-title: Knowl. Based Syst. – start-page: 200 year: 2009 end-page: 207 ident: bib0325 article-title: Multi agent framework for bio-data mining publication-title: Lecture Notes in Computer Sciences – volume: 3 start-page: 1 year: 2012 ident: 10.1016/j.asoc.2014.12.028_bib0270 article-title: Stock price prediction using neural network with hybridized market indicators publication-title: J. Emerg. Trends Comput. Inf. Sci. – volume: 75 start-page: 34 year: 2012 ident: 10.1016/j.asoc.2014.12.028_bib0330 article-title: PISA: a framework for multiagent classification using argumentation publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2012.03.001 – volume: 38 start-page: 14026 year: 2011 ident: 10.1016/j.asoc.2014.12.028_bib0415 article-title: A hybrid procedure for stock price prediction by integrating self-organizing map and genetic programming publication-title: Expert Syst. Appl. – volume: 7 start-page: 23 year: 2012 ident: 10.1016/j.asoc.2014.12.028_bib0295 article-title: A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context publication-title: Intell. Syst. Appl. – volume: 39 start-page: 11642 year: 2012 ident: 10.1016/j.asoc.2014.12.028_bib0335 article-title: A multi-agent data mining system for cartel detection in Brazilian government procurement publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.04.037 – volume: 47 start-page: 307 year: 2009 ident: 10.1016/j.asoc.2014.12.028_bib0430 article-title: Detecting and forecasting economic regimes in multi-agent automated exchanges publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2009.05.012 – start-page: 65 year: 2010 ident: 10.1016/j.asoc.2014.12.028_bib0515 article-title: A new metaheuristic bat-inspired algorithm – volume: 12 start-page: 1235 year: 2011 ident: 10.1016/j.asoc.2014.12.028_bib0460 article-title: Information-based multi-assets artificial stock market with heterogeneous agents publication-title: Nonlinear Anal.: Real World Appl. doi: 10.1016/j.nonrwa.2010.09.018 – volume: vol. 5 year: 2007 ident: 10.1016/j.asoc.2014.12.028_bib0365 – volume: 79 start-page: 226 year: 2011 ident: 10.1016/j.asoc.2014.12.028_bib0455 article-title: Intraday trading patterns in an intelligent autonomous agent-based stock market publication-title: J. Econ. Behav. Organ. doi: 10.1016/j.jebo.2011.01.032 – start-page: 653 year: 2006 ident: 10.1016/j.asoc.2014.12.028_bib0435 article-title: The multi-agent system for prediction of financial time series – volume: 256 start-page: 46 year: 2012 ident: 10.1016/j.asoc.2014.12.028_bib0450 article-title: Calibration of the agent-based continuous double auction stock market by scaling analysis publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.06.019 – volume: 36 start-page: 139 year: 2009 ident: 10.1016/j.asoc.2014.12.028_bib0390 article-title: A type-2 fuzzy rule-based expert system model for stock price analysis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.09.034 – volume: 5 start-page: 445 year: 2012 ident: 10.1016/j.asoc.2014.12.028_bib0500 article-title: Tourism time series forecast – different ANN architectures with time index input publication-title: Procedia Technol. doi: 10.1016/j.protcy.2012.09.049 – volume: 377 start-page: 2041 year: 2013 ident: 10.1016/j.asoc.2014.12.028_bib0465 article-title: Modeling and analysis of an agent-based model for Chinese stock market publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2013.06.026 – volume: 26 start-page: 383 year: 2011 ident: 10.1016/j.asoc.2014.12.028_bib0380 article-title: A multi-agent system for analyzing the effect of information on prediction markets publication-title: Int. J. Intell. Syst. doi: 10.1002/int.20471 – year: 2004 ident: 10.1016/j.asoc.2014.12.028_bib0470 – volume: 18 start-page: 791 year: 2005 ident: 10.1016/j.asoc.2014.12.028_bib0360 article-title: Distributed data mining and agents publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2005.06.004 – volume: 6 start-page: 406 year: 2002 ident: 10.1016/j.asoc.2014.12.028_bib0310 article-title: Granular neural web agents for stock prediction publication-title: Soft Comput. doi: 10.1007/s00500-002-0193-7 – volume: 27 start-page: 1 year: 2012 ident: 10.1016/j.asoc.2014.12.028_bib0285 article-title: A hybrid fuzzy intelligent agent-based system for stock price prediction publication-title: Int. J. Intell. Syst. – start-page: 1 year: 2004 ident: 10.1016/j.asoc.2014.12.028_bib0340 article-title: Multi-agent systems and distributed data mining – volume: 128 start-page: 433 year: 2014 ident: 10.1016/j.asoc.2014.12.028_bib0480 article-title: Short, medium and long term forecasting of time series using the L-Co-R algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.08.023 – start-page: 104 year: 2003 ident: 10.1016/j.asoc.2014.12.028_bib0345 article-title: Agent-based distributed data mining: the KDEC scheme – volume: 37 start-page: 7056 year: 2010 ident: 10.1016/j.asoc.2014.12.028_bib0395 article-title: Integrating independent component analysis-based denoising scheme with neural network for stock price prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.03.012 – volume: 72 start-page: 3439 year: 2009 ident: 10.1016/j.asoc.2014.12.028_bib0530 article-title: A combination of hidden Markov model and fuzzy model for stock market forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.09.029 – volume: 22 start-page: 523 year: 2009 ident: 10.1016/j.asoc.2014.12.028_bib0315 article-title: Emads: an extendible multi-agent data miner publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2008.10.009 – volume: 24 start-page: 93 year: 2011 ident: 10.1016/j.asoc.2014.12.028_bib0320 article-title: An agent-based framework for distributed learning publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2010.07.003 – volume: 38 start-page: 5311 year: 2011 ident: 10.1016/j.asoc.2014.12.028_bib0405 article-title: Predicting direction of stock price index movement using artificial neural networks and support vector machines: the sample of the Istanbul stock exchange publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.10.027 – volume: 39 start-page: 8890 year: 2012 ident: 10.1016/j.asoc.2014.12.028_bib0445 article-title: Intelligent agent-assisted adaptive order simulation system in the artificial stock market publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.02.018 – volume: 36 start-page: 5932 year: 2009 ident: 10.1016/j.asoc.2014.12.028_bib0510 article-title: Surveying stock market forecasting techniques – Part II: Soft computing methods publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.07.006 – start-page: 200 year: 2009 ident: 10.1016/j.asoc.2014.12.028_bib0325 article-title: Multi agent framework for bio-data mining doi: 10.1007/978-3-642-11161-7 – start-page: 369 year: 2004 ident: 10.1016/j.asoc.2014.12.028_bib0375 article-title: iJADE Weather MAN: a weather forecasting system using intelligent multiagent-based fuzzy neuro network – volume: 39 start-page: 3469 year: 2012 ident: 10.1016/j.asoc.2014.12.028_bib0475 article-title: Evaluation of environmental impact upon human health with DeciMaS framework publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.037 – volume: 85 start-page: 43 year: 2010 ident: 10.1016/j.asoc.2014.12.028_bib0370 article-title: A multi-agent data mining system for defect forecasting in a decentralized manufacturing environment publication-title: Comput. Intell. Secur. Inf. Syst. – volume: 38 start-page: 8285 year: 2011 ident: 10.1016/j.asoc.2014.12.028_bib0410 article-title: Evolutional RBFNs prediction systems generation in the applications of financial time series data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.01.009 – volume: 38 start-page: 163 year: 2008 ident: 10.1016/j.asoc.2014.12.028_bib0355 article-title: Bidding-based multi-agent system for integrated process planning and scheduling: a data-mining and hybrid tabu-SA algorithm-oriented approach publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-007-1087-8 – volume: 33 start-page: 261 year: 2004 ident: 10.1016/j.asoc.2014.12.028_bib0495 article-title: Multimodel inference: understanding AIC and BIC in model selection publication-title: Sociol. Methods Res. doi: 10.1177/0049124104268644 – volume: 16 start-page: 87 year: 2000 ident: 10.1016/j.asoc.2014.12.028_bib0485 article-title: Optimized multivariate lag structure selection publication-title: Comput. Econ. doi: 10.1023/A:1008757620685 – volume: 38 start-page: 14846 year: 2011 ident: 10.1016/j.asoc.2014.12.028_bib0420 article-title: A comparative study of artificial neural networks, and decision trees for digital game content stocks price prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.05.063 – volume: 2 start-page: 109 year: 2011 ident: 10.1016/j.asoc.2014.12.028_bib0280 article-title: A new approach to forecasting stock price with EKF data fusion publication-title: Int. J. Trade Econ. Finance doi: 10.7763/IJTEF.2011.V2.87 – year: 2009 ident: 10.1016/j.asoc.2014.12.028_bib0305 article-title: Stock price forecasting by hybrid machine learning techniques – volume: 5 start-page: 8322 year: 2011 ident: 10.1016/j.asoc.2014.12.028_bib0275 article-title: A novel FOREX prediction methodology based on fundamental data publication-title: Afr. J. Bus. Manage. – volume: 39 start-page: 5920 year: 2012 ident: 10.1016/j.asoc.2014.12.028_bib0290 article-title: A multi-agent-based decision support system for bankruptcy contagion effects publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.11.112 – volume: 61 start-page: 83 year: 2005 ident: 10.1016/j.asoc.2014.12.028_bib0520 article-title: Fundamental indexation publication-title: Financ. Anal. J. doi: 10.2469/faj.v61.n2.2718 – start-page: 93 year: 2005 ident: 10.1016/j.asoc.2014.12.028_bib0350 article-title: A cooperative multi-agent data mining model and its application to medical data on diabetes – volume: 39 start-page: 611 year: 2012 ident: 10.1016/j.asoc.2014.12.028_bib0425 article-title: A novel model by evolving partially connected neural network for stock price trend forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.07.051 – volume: 34 start-page: 135 year: 2008 ident: 10.1016/j.asoc.2014.12.028_bib0385 article-title: A TSK type fuzzy rule based system for stock price prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.08.020 – volume: 3 start-page: 246 year: 1991 ident: 10.1016/j.asoc.2014.12.028_bib0505 article-title: Universal approximation using radial-basis-function networks publication-title: Neural Comput. doi: 10.1162/neco.1991.3.2.246 – year: 2004 ident: 10.1016/j.asoc.2014.12.028_bib0300 article-title: Applying fundamental analysis and neural networks in the Australian stockmarket – volume: 37 start-page: 7908 year: 2010 ident: 10.1016/j.asoc.2014.12.028_bib0400 article-title: An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the Istanbul stock exchange publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.04.045 – year: 2010 ident: 10.1016/j.asoc.2014.12.028_bib0525 – volume: 392 start-page: 2728 year: 2013 ident: 10.1016/j.asoc.2014.12.028_bib0440 article-title: An agent-based model of stock markets incorporating momentum investors publication-title: Physica A: Stat. Mech. Appl. doi: 10.1016/j.physa.2013.02.011 – volume: 43 start-page: 112 year: 2013 ident: 10.1016/j.asoc.2014.12.028_bib0490 article-title: Developing a hybrid intelligent model for forecasting problems: case study of tourism demand time series publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2013.01.014 |
SSID | ssj0016928 |
Score | 2.4534802 |
Snippet | Creating an intelligent system that can accurately predict stock price in a robust way has always been a subject of great interest for many investors and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 196 |
SubjectTerms | Artificial neural network Bat algorithm DAX stock price Fundamental analysis Multi-agent system Stock price prediction |
Title | A bat-neural network multi-agent system (BNNMAS) for stock price prediction: Case study of DAX stock price |
URI | https://dx.doi.org/10.1016/j.asoc.2014.12.028 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEeUw4cQCisTdOs4VYG03hNiDFptypJXWkDbRMaV347cR_TkBAHLq1aOVLluLaTfP5MyGlkpBHCLXIk94CJTKbM6CxkVmmeBQG3VmJx8lNf9obifhSOaqRT1cIgrLL0_YVPz711-aZVarM1H49bA7fyiIQSLr7k54nI-ClEG6388msJ8_ClyvurojBD6bJwpsB4aacBhHeJfEsQO7L_FpxWAk53i2yUmSKNi4_ZJjWY7pDNqgsDLX_KXTKJqdELhsSUTnxawLppDhRkGgunaMHWTM-u-_2neHBOXZ5KXc5n3-gcKYXcFU9rcIauaMdFNZpzztJZRm_i0arkHhl2b187PVZ2UGA28LwFAxCgtEi5VhGIALQCCUHKlW-VTbkEF5u0tYaDy8SUUZl26ZhvUs-ISIeZH-yT-nQ2hQNCrY48aT2ThZAKxXlkPPAVZLptJKTcbxC_Ul1iS3px7HLxnlQ4skmC6k5Q3YnPE6fuBrlYjpkX5Bp_SofVjCQ_TCRx3v-PcYf_HHdE1t1TWMB0jkl98fEJJy4DWZhmbmJNshZ3Xh6f8X730Ot_A7QO3Uo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DLDwRpSnBwYQMk0cx8RspYAKtF3aSt0s27lILahUqKz8ds55VEVCDCwZnDspOtt3n-Pv7gg5T6y0QuAhR_IAmMhkyqzJYuaU4VkUceekT07udGVrIJ6H8XCJNKtcGE-rLH1_4dNzb12O1Etr1qejUb2HJ49EKIHxJb9PjJbJqsDt69sYXH_NeR6hVHmDVS_NvHiZOVOQvAyawPO7RP5P0Ldk_y06LUScxy2yUUJF2ii-ZpsswWSHbFZtGGi5K3fJuEGtmTFfmRLFJwWvm-ZMQWZ85hQtyjXTi7tut9PoXVIEqhRBn3ulU19TCJ_-usZP0S1tYlijedFZ-p7R-8ZwUXKPDB4f-s0WK1soMBcFwYwBCFBGpNyoBEQERoGEKOUqdMqlXAIGJ-Oc5YBQTFmVGcRjoU0DKxITZ2G0T1Ym7xM4INSZJJAusFkMqVCcJzaAUEFmbqyElIc1Elam066sL-7bXLzpikg21t7c2ptbh1yjuWvkaq4zLapr_CkdVzOif6wRje7_D73Df-qdkbVWv9PW7afuyxFZxzdxwdk5Jiuzj084QTgys6f5cvsG9ILdQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bat-neural+network+multi-agent+system+%28BNNMAS%29+for+stock+price+prediction%3A+Case+study+of+DAX+stock+price&rft.jtitle=Applied+soft+computing&rft.au=Hafezi%2C+Reza&rft.au=Shahrabi%2C+Jamal&rft.au=Hadavandi%2C+Esmaeil&rft.date=2015-04-01&rft.issn=1568-4946&rft.volume=29&rft.spage=196&rft.epage=210&rft_id=info:doi/10.1016%2Fj.asoc.2014.12.028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2014_12_028 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |