Cu doped NiO thin film photocathodes for enhanced PEC performance
The present report describes the fabrication of undoped NiO and Cu doped NiO based photocathodes synthesized by sol gel spin coating technique. Mott-Schottky, LSV and EIS measurements have been carried out to investigate the PEC properties of these photocathodes. 3% Cu doped NiO film exhibits the hi...
Saved in:
Published in | Superlattices and microstructures Vol. 159; p. 107050 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The present report describes the fabrication of undoped NiO and Cu doped NiO based photocathodes synthesized by sol gel spin coating technique. Mott-Schottky, LSV and EIS measurements have been carried out to investigate the PEC properties of these photocathodes. 3% Cu doped NiO film exhibits the highest PEC performance among all photocathodes. The p-type semiconducting nature of all thin film samples has been confirmed from the M-S plots. Also, the values of carrier density have been tuned from 1.18 × 1020 to 1.36 × 1020 cm−3 for undoped NiO and 3% Cu doped NiO thin films. VB CB levels of the as-prepared photocathodes have been calculated from absorption spectra. 3Cu:NiO exhibits a significantly higher photocurrent density of −6.97 mA/cm2 at −1.5 V vs. Ag/AgCl in 0.1M NaOH solution under UV illumination. The superior PEC performance is due to efficient charge transport and reduced recombination rate of the photogenerated electron-hole pairs. These findings demonstrate the potential of Cu doped NiO photocathodes in water splitting applications.
[Display omitted]
•NiO and Cu doped NiO thi films fabrication was carried out via sol-gel, spin coating technique.•3Cu:NiO exhibited the highest photocurrent denisty of -6.97 mA/cm2 at -1.5V vs Ag/AgCl under UV light.•Carrier density of 1.36 x 1020 cm-3 was estimated for 3Cu:NiO from Mott-Schottky Analysis. |
---|---|
AbstractList | The present report describes the fabrication of undoped NiO and Cu doped NiO based photocathodes synthesized by sol gel spin coating technique. Mott-Schottky, LSV and EIS measurements have been carried out to investigate the PEC properties of these photocathodes. 3% Cu doped NiO film exhibits the highest PEC performance among all photocathodes. The p-type semiconducting nature of all thin film samples has been confirmed from the M-S plots. Also, the values of carrier density have been tuned from 1.18 × 1020 to 1.36 × 1020 cm−3 for undoped NiO and 3% Cu doped NiO thin films. VB CB levels of the as-prepared photocathodes have been calculated from absorption spectra. 3Cu:NiO exhibits a significantly higher photocurrent density of −6.97 mA/cm2 at −1.5 V vs. Ag/AgCl in 0.1M NaOH solution under UV illumination. The superior PEC performance is due to efficient charge transport and reduced recombination rate of the photogenerated electron-hole pairs. These findings demonstrate the potential of Cu doped NiO photocathodes in water splitting applications.
[Display omitted]
•NiO and Cu doped NiO thi films fabrication was carried out via sol-gel, spin coating technique.•3Cu:NiO exhibited the highest photocurrent denisty of -6.97 mA/cm2 at -1.5V vs Ag/AgCl under UV light.•Carrier density of 1.36 x 1020 cm-3 was estimated for 3Cu:NiO from Mott-Schottky Analysis. |
ArticleNumber | 107050 |
Author | Thangavel, R. Sahoo, Pooja Sharma, Akash Padhan, Subash |
Author_xml | – sequence: 1 givenname: Pooja surname: Sahoo fullname: Sahoo, Pooja organization: Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India – sequence: 2 givenname: Akash surname: Sharma fullname: Sharma, Akash organization: Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India – sequence: 3 givenname: Subash surname: Padhan fullname: Padhan, Subash organization: Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India – sequence: 4 givenname: R. surname: Thangavel fullname: Thangavel, R. email: rthangavel@iitism.ac.in organization: Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India |
BookMark | eNp9kMtqwzAQAEVJoUnaH-hJP-B0FT9kQy_BpA8ITQ_tWSjyCsvYlpHUQv--Mumph5wEg2bZnRVZjHZEQu4ZbBiw4qHb-Gkwmy1sWQQccrgiSwZVkaQF5wuyBJ5VSQFpcUNW3ncAUGWML8mu_qKNnbChb-ZIQ2tGqk0_0Km1wSoZWtugp9o6imMrRxU_vu9rOqGLbJjBLbnWsvd49_euyefT_qN-SQ7H59d6d0hUChASlKzUFaoGFWqda6kQSpmfGECuMSIVN1Wa5w3kXGKmsZQlMlZkiHgCnq7J9jxXOeu9Qy0mZwbpfgQDMUcQnZgjiDmCOEeIUvlPUibIYOwYnDT9ZfXxrGI86tugE14ZnAsYhyqIxppL-i9pnXug |
CitedBy_id | crossref_primary_10_1016_j_coche_2024_101000 crossref_primary_10_1039_D4CP03362K crossref_primary_10_1051_matecconf_202439703001 crossref_primary_10_1002_smll_202406715 crossref_primary_10_1016_j_pmatsci_2023_101073 crossref_primary_10_1039_D4SE01276C crossref_primary_10_1088_1402_4896_ad36ec crossref_primary_10_3390_en15197399 crossref_primary_10_1016_j_apsadv_2022_100293 crossref_primary_10_1016_j_fuel_2023_129805 crossref_primary_10_1016_j_ijhydene_2023_01_083 crossref_primary_10_1016_j_optmat_2024_115595 crossref_primary_10_1016_j_physb_2024_416129 crossref_primary_10_1016_j_ijhydene_2023_07_116 crossref_primary_10_1088_1402_4896_ad2c4a crossref_primary_10_1039_D3RA02502K crossref_primary_10_3390_ma15051742 crossref_primary_10_1007_s11082_023_05254_1 crossref_primary_10_1016_j_jacomc_2024_100028 crossref_primary_10_1016_j_tsf_2023_139935 |
Cites_doi | 10.1002/cssc.201802596 10.1039/C2CS35266D 10.1016/j.apsusc.2010.11.160 10.1016/j.scib.2019.07.017 10.1021/acssuschemeng.9b05936 10.1021/acs.jpcc.1c03553 10.1016/j.solener.2019.09.045 10.1016/j.cplett.2019.136884 10.1039/D0DT04129G 10.1039/c0jm03132a 10.1016/j.ijhydene.2018.06.088 10.1016/j.physe.2013.09.014 10.1016/j.jallcom.2017.12.144 10.1002/adma.201701599 10.1016/j.ijleo.2013.11.074 10.1039/c4ta01659a 10.1038/srep43901 10.1016/j.nanoen.2020.105485 10.1021/acs.jpclett.7b01911 10.1016/j.ceramint.2020.09.209 10.1021/am502827z 10.1021/jz400861v 10.1039/C5CE00818B 10.1016/j.mssp.2017.04.009 10.1016/j.apcatb.2019.118213 10.1016/j.electacta.2011.01.078 10.1007/s10854-017-8024-x 10.1016/j.electacta.2018.10.166 10.1016/j.ijhydene.2018.01.099 10.1007/s10971-017-4536-3 10.1021/acsenergylett.9b00414 10.1002/adfm.201202269 10.1016/j.ijleo.2016.06.005 10.1002/aenm.201700555 10.1039/C8CS00997J 10.1016/j.solener.2020.04.027 10.1002/cssc.201801554 10.1038/238037a0 10.1016/j.apsusc.2020.146095 10.1039/C8CS00699G 10.1021/jp405291g 10.1021/am507138b 10.1016/j.electacta.2014.05.097 10.1039/C9TA01489F 10.1021/acsami.0c15923 10.1039/D0SE01515F 10.1021/acsami.7b13621 10.1016/j.tsf.2011.01.058 10.1002/cctc.201600767 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.spmi.2021.107050 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-3677 |
ExternalDocumentID | 10_1016_j_spmi_2021_107050 S0749603621002482 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM LG5 M24 M37 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-ea18f9ecdeceff5face08a5b1005feeffc367cf75d057ae4fe8a8e1164eeeb073 |
IEDL.DBID | .~1 |
ISSN | 0749-6036 |
IngestDate | Tue Jul 01 01:35:17 EDT 2025 Thu Apr 24 23:01:58 EDT 2025 Fri Feb 23 02:47:16 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Sol-gel processes Water splitting Photocurrent density Cu doped NiO |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-ea18f9ecdeceff5face08a5b1005feeffc367cf75d057ae4fe8a8e1164eeeb073 |
ParticipantIDs | crossref_primary_10_1016_j_spmi_2021_107050 crossref_citationtrail_10_1016_j_spmi_2021_107050 elsevier_sciencedirect_doi_10_1016_j_spmi_2021_107050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Superlattices and microstructures |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Osterloh (bib3) 2013; 42 He, Yao, Wang, Xia, Leng, Li (bib30) 2017; 9 Fujishima, Honda (bib4) 1972; 238 Yang, Moon (bib12) 2019; 12 Peiris, Sagu, Wijayantha, García-Cañadas (bib25) 2014; 6 Xing, Ren, Wu, Wu, Wang, Wang, Wan, Zhang, Jiang (bib47) 2017; 7 Fang, Liu, Han (bib11) 2020; 515 Liu, Wang, Liu, Qiao, Ahn (bib21) 2011; 21 Kim, Hansora, Sharma, Jang, Lee (bib15) 2019; 48 Sharma, Sahoo, Singha, Padhan, Udayabhanu, Thangavel (bib45) 2020; 203 Jang, Lee (bib13) 2019; 12 Gupta, Hendi, Cavas, Al-Ghamdi, Al-Hartomy, Aloraini, El-Tantawy, Yakuphanoglu (bib40) 2014; 56 Ma, Yin, Ge (bib27) 2015; 17 Liang, Sun, Lei, Gao, Xie (bib19) 2014; 2 Hu, Chu, Zhao, Teoh (bib8) 2014; 6 Das, Mukherjee, Mitra (bib32) 2018; 29 Varunkumar, Hussain, Hegde, Ethiraj (bib35) 2017; 66 Su, Liu, Liu, Li, Zhou (bib48) 2016; 8 Guo, Liu (bib6) 2021; 50 Firat, Peksoz (bib42) 2019; 295 Manders, Tsang, Hartel, Lai, Chen, Amb, Reynolds, So (bib33) 2013; 23 Yang, Prabhakar, Tan, Tilley, Moon (bib17) 2019; 48 Shan, Sherman, Klug, Nayak, Marquard, Liu, Bullock, Meyer (bib24) 2017; 8 Emamdoust, Farjami Shayesteh (bib29) 2018; 738 Han, Zhang, Song, Yan, Kang, Guo, Liu (bib10) 2021; 5 Sharma, Chakraborty, Thangavel, Udayabhanu (bib41) 2018; 85 Odobel, Pellegrin (bib22) 2013; 4 Chen, Kuo, Lin, Lin (bib26) 2011; 519 Song, Plate, Chemseddine, Wang, Abdi, Wollgarten, van de Krol, Berglund (bib44) 2019; 7 Zhu, Frehan, Jaros, O'Neill, Korterik, Wenderich, Mul, Huijser (bib49) 2021; 125 Çayir Taşdemi̇rci̇ (bib39) 2020; 738 Joy, Mathew, George (bib5) 2018; 43 Huang, Tian, Zhang, Gan, Tao, Xia, Tu (bib20) 2011; 56 Liu, Zhu, Guo, Meng, Liu, Fortunato, Martins, Shan (bib28) 2017; 29 Feng, Wang, Zhou, Li, Wang, Zang, Chen (bib34) 2020; 12 Liu, Zhou (bib1) 2020; 8 Zhang, Zhang, Chen, Guo, Ruan, Liu (bib9) 2021; 79 Qiu, Pan, Chen, Ye, Guo, Fan, Yang (bib7) 2019; 64 Manouchehri, Mehrparvar, Moradian, Gholami, Osati (bib37) 2016; 127 Suzuki, Xie, Lu, Cheng, Amal, Ng (bib23) 2019; 44 Yang, Niu, Han, Liu, Wang, Li (bib18) 2017; 7 Sahoo, Sharma, Padhan, Udayabhanu, Thangavel (bib43) 2019; 193 Zhou, Guo, Liu (bib16) 2020; 260 Kim, Takahashi, Abe, Kawamura (bib38) 2014; 125 Krol, Grätzel (bib2) 2012 Bashir, Khalid, Aadil, Zulfiqar, Warsi, Agboola, Shakir (bib36) 2021; 47 Prévot, Sivula (bib14) 2013; 117 Zhao, Su, Liu, Cao, Wang, Dong, Song (bib31) 2011; 257 Lee, Yang, Tan, Oh, Park, Moon (bib50) 2019; 4 Freitas, Santanna, Pereira (bib46) 2014; 136 Kim (10.1016/j.spmi.2021.107050_bib38) 2014; 125 Zhao (10.1016/j.spmi.2021.107050_bib31) 2011; 257 Sharma (10.1016/j.spmi.2021.107050_bib41) 2018; 85 Emamdoust (10.1016/j.spmi.2021.107050_bib29) 2018; 738 Feng (10.1016/j.spmi.2021.107050_bib34) 2020; 12 Sahoo (10.1016/j.spmi.2021.107050_bib43) 2019; 193 Fujishima (10.1016/j.spmi.2021.107050_bib4) 1972; 238 Huang (10.1016/j.spmi.2021.107050_bib20) 2011; 56 Yang (10.1016/j.spmi.2021.107050_bib18) 2017; 7 Zhang (10.1016/j.spmi.2021.107050_bib9) 2021; 79 Varunkumar (10.1016/j.spmi.2021.107050_bib35) 2017; 66 Firat (10.1016/j.spmi.2021.107050_bib42) 2019; 295 Manders (10.1016/j.spmi.2021.107050_bib33) 2013; 23 Joy (10.1016/j.spmi.2021.107050_bib5) 2018; 43 Gupta (10.1016/j.spmi.2021.107050_bib40) 2014; 56 Sharma (10.1016/j.spmi.2021.107050_bib45) 2020; 203 Yang (10.1016/j.spmi.2021.107050_bib17) 2019; 48 Liu (10.1016/j.spmi.2021.107050_bib21) 2011; 21 He (10.1016/j.spmi.2021.107050_bib30) 2017; 9 Osterloh (10.1016/j.spmi.2021.107050_bib3) 2013; 42 Zhu (10.1016/j.spmi.2021.107050_bib49) 2021; 125 Manouchehri (10.1016/j.spmi.2021.107050_bib37) 2016; 127 Song (10.1016/j.spmi.2021.107050_bib44) 2019; 7 Lee (10.1016/j.spmi.2021.107050_bib50) 2019; 4 Jang (10.1016/j.spmi.2021.107050_bib13) 2019; 12 Zhou (10.1016/j.spmi.2021.107050_bib16) 2020; 260 Freitas (10.1016/j.spmi.2021.107050_bib46) 2014; 136 Hu (10.1016/j.spmi.2021.107050_bib8) 2014; 6 Peiris (10.1016/j.spmi.2021.107050_bib25) 2014; 6 Bashir (10.1016/j.spmi.2021.107050_bib36) 2021; 47 Liang (10.1016/j.spmi.2021.107050_bib19) 2014; 2 Prévot (10.1016/j.spmi.2021.107050_bib14) 2013; 117 Kim (10.1016/j.spmi.2021.107050_bib15) 2019; 48 Xing (10.1016/j.spmi.2021.107050_bib47) 2017; 7 Odobel (10.1016/j.spmi.2021.107050_bib22) 2013; 4 Das (10.1016/j.spmi.2021.107050_bib32) 2018; 29 Çayir Taşdemi̇rci̇ (10.1016/j.spmi.2021.107050_bib39) 2020; 738 Su (10.1016/j.spmi.2021.107050_bib48) 2016; 8 Liu (10.1016/j.spmi.2021.107050_bib28) 2017; 29 Yang (10.1016/j.spmi.2021.107050_bib12) 2019; 12 Ma (10.1016/j.spmi.2021.107050_bib27) 2015; 17 Chen (10.1016/j.spmi.2021.107050_bib26) 2011; 519 Guo (10.1016/j.spmi.2021.107050_bib6) 2021; 50 Krol (10.1016/j.spmi.2021.107050_bib2) 2012 Shan (10.1016/j.spmi.2021.107050_bib24) 2017; 8 Qiu (10.1016/j.spmi.2021.107050_bib7) 2019; 64 Fang (10.1016/j.spmi.2021.107050_bib11) 2020; 515 Liu (10.1016/j.spmi.2021.107050_bib1) 2020; 8 Suzuki (10.1016/j.spmi.2021.107050_bib23) 2019; 44 Han (10.1016/j.spmi.2021.107050_bib10) 2021; 5 |
References_xml | – start-page: 3 year: 2012 end-page: 11 ident: bib2 article-title: Introduction publication-title: J. Am. Chem. Soc. – volume: 64 start-page: 1348 year: 2019 end-page: 1380 ident: bib7 article-title: Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting publication-title: Sci. Bull. – volume: 12 start-page: 50684 year: 2020 end-page: 50691 ident: bib34 article-title: High-efficiency and stable inverted planar perovskite solar cells with pulsed laser deposited Cu-doped NiO x hole-transport layers publication-title: ACS Appl. Mater. Interfaces – volume: 85 start-page: 1 year: 2018 end-page: 11 ident: bib41 article-title: Hydrothermal growth of undoped and boron doped ZnO nanorods as a photoelectrode for solar water splitting applications publication-title: J. Sol. Gel Sci. Technol. – volume: 295 start-page: 645 year: 2019 end-page: 654 ident: bib42 article-title: Efficiency enhancement of electrochromic performance in NiO thin film via Cu doping for energy-saving potential publication-title: Electrochim. Acta – volume: 4 start-page: 2551 year: 2013 end-page: 2564 ident: bib22 article-title: Recent advances in the sensitization of wide-band-gap nanostructured p-type semiconductors. Photovoltaic and photocatalytic applications publication-title: J. Phys. Chem. Lett. – volume: 203 start-page: 284 year: 2020 end-page: 295 ident: bib45 article-title: Efficient visible-light-driven water splitting performance of sulfidation-free, solution processed Cu2MgSnS4 thin films: role of post-drying temperature publication-title: Sol. Energy – volume: 17 start-page: 9336 year: 2015 end-page: 9347 ident: bib27 article-title: 3D hierarchically mesoporous Cu-doped NiO nanostructures as high-performance anode materials for lithium ion batteries publication-title: CrystEngComm – volume: 6 start-page: 18558 year: 2014 end-page: 18568 ident: bib8 article-title: Efficient photoelectrochemical water splitting over anodized p -type NiO porous films publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 1835 year: 2019 end-page: 1845 ident: bib13 article-title: Photoelectrochemical water splitting with p‐type metal oxide semiconductor photocathodes publication-title: ChemSusChem – volume: 4 start-page: 995 year: 2019 end-page: 1003 ident: bib50 article-title: Cu-doped NiO x as an effective hole-selective layer for a high-performance Sb 2 Se 3 photocathode for photoelectrochemical water splitting publication-title: ACS Energy Lett – volume: 79 start-page: 105485 year: 2021 ident: bib9 article-title: Promising pyro-photo-electric catalysis in NaNbO3 via integrating solar and cold-hot alternation energy in pyroelectric-assisted photoelectrochemical system publication-title: Nano Energy – volume: 7 start-page: 1700555 year: 2017 ident: bib18 article-title: Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting publication-title: Adv. Energy Mater. – volume: 56 start-page: 4281 year: 2011 end-page: 4286 ident: bib20 article-title: Electrochromic properties of porous NiO thin film as a counter electrode for NiO/WO3 complementary electrochromic window publication-title: Electrochim. Acta – volume: 56 start-page: 288 year: 2014 end-page: 295 ident: bib40 article-title: Improvement of photoresponse properties of NiO/p-Si photodiodes by copper dopant publication-title: Phys. E Low-Dimensional Syst. Nanostructures – volume: 193 start-page: 148 year: 2019 end-page: 163 ident: bib43 article-title: UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications publication-title: Sol. Energy – volume: 47 start-page: 3603 year: 2021 end-page: 3613 ident: bib36 article-title: CuxNi1-xO nanostructures and their nanocomposites with reduced graphene oxide: synthesis, characterization, and photocatalytic applications publication-title: Ceram. Int. – volume: 257 start-page: 3974 year: 2011 end-page: 3979 ident: bib31 article-title: Optical and electrochemical properties of Cu-doped NiO films prepared by electrochemical deposition publication-title: Appl. Surf. Sci. – volume: 125 start-page: 2899 year: 2014 end-page: 2901 ident: bib38 article-title: Effects of Cu doping on nickel oxide thin film prepared by sol–gel solution process publication-title: Optik – volume: 515 start-page: 146095 year: 2020 ident: bib11 article-title: Enhancing the PEC water splitting performance of BiVO4 co-modifying with NiFeOOH and Co-Pi double layer cocatalysts publication-title: Appl. Surf. Sci. – volume: 260 start-page: 118213 year: 2020 ident: bib16 article-title: FeOOH as hole transfer layer to retard the photocorrosion of Cu2O for enhanced photoelectrochemical performance publication-title: Appl. Catal. B Environ. – volume: 5 start-page: 509 year: 2021 end-page: 517 ident: bib10 article-title: The synergistic effect with S-vacancies and built-in electric field on a TiO 2/MoS 2 photoanode for enhanced photoelectrochemical performance publication-title: Sustain. Energy Fuels – volume: 42 start-page: 2294 year: 2013 end-page: 2320 ident: bib3 article-title: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting publication-title: Chem. Soc. Rev. – volume: 29 start-page: 1701599 year: 2017 ident: bib28 article-title: Solution combustion synthesis: low-temperature processing for p-type Cu:NiO thin films for transparent electronics publication-title: Adv. Mater. – volume: 2 start-page: 10647 year: 2014 ident: bib19 article-title: Free-floating ultrathin tin monoxide sheets for solar-driven photoelectrochemical water splitting publication-title: J. Mater. Chem. A. – volume: 66 start-page: 149 year: 2017 end-page: 156 ident: bib35 article-title: Effect of calcination temperature on Cu doped NiO nanoparticles prepared via wet-chemical method: structural, optical and morphological studies publication-title: Mater. Sci. Semicond. Process. – volume: 43 start-page: 4804 year: 2018 end-page: 4817 ident: bib5 article-title: Nanomaterials for photoelectrochemical water splitting – review publication-title: Int. J. Hydrogen Energy – volume: 23 start-page: 2993 year: 2013 end-page: 3001 ident: bib33 article-title: Solution-Processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells publication-title: Adv. Funct. Mater. – volume: 738 start-page: 432 year: 2018 end-page: 439 ident: bib29 article-title: Surface and electrochemical properties of flower-like Cu-NiO compounds publication-title: J. Alloys Compd. – volume: 238 start-page: 37 year: 1972 end-page: 38 ident: bib4 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature – volume: 48 start-page: 4979 year: 2019 end-page: 5015 ident: bib17 article-title: Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting publication-title: Chem. Soc. Rev. – volume: 127 start-page: 8124 year: 2016 end-page: 8129 ident: bib37 article-title: Investigation of structural and optical properties of copper doped NiO thin films deposited by RF magnetron reactive sputtering publication-title: Optik – volume: 8 start-page: 3279 year: 2016 end-page: 3286 ident: bib48 article-title: Enhanced photoelectrochemical performance of the BiVO 4/Zn:BiVO 4 homojunction for water oxidation publication-title: ChemCatChem – volume: 7 start-page: 43901 year: 2017 ident: bib47 article-title: Enhanced PEC performance of nanoporous Si photoelectrodes by covering HfO2 and TiO2 passivation layers publication-title: Sci. Rep. – volume: 12 start-page: 1889 year: 2019 end-page: 1899 ident: bib12 article-title: Recent advances in earth‐abundant photocathodes for photoelectrochemical water splitting publication-title: ChemSusChem – volume: 21 start-page: 3046 year: 2011 ident: bib21 article-title: Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance publication-title: J. Mater. Chem. – volume: 8 start-page: 512 year: 2020 end-page: 519 ident: bib1 article-title: Co-modification with cost-effective nickel oxides and nickel sulfides on CuInS 2 nanosheets photocathode for enhanced photoelectrochemical performance publication-title: ACS Sustain. Chem. Eng. – volume: 44 start-page: 20851 year: 2019 end-page: 20856 ident: bib23 article-title: Cadmium sulfide Co-catalyst reveals the crystallinity impact of nickel oxide photocathode in photoelectrochemical water splitting publication-title: Int. J. Hydrogen Energy – volume: 50 start-page: 1983 year: 2021 end-page: 1989 ident: bib6 article-title: Synthesis and control strategies of nanomaterials for photoelectrochemical water splitting publication-title: Dalton Trans. – volume: 48 start-page: 1908 year: 2019 end-page: 1971 ident: bib15 article-title: Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge publication-title: Chem. Soc. Rev. – volume: 738 start-page: 136884 year: 2020 ident: bib39 article-title: Synthesis of copper-doped nickel oxide thin films: structural and optical studies publication-title: Chem. Phys. Lett. – volume: 125 start-page: 16049 year: 2021 end-page: 16058 ident: bib49 article-title: Unraveling the mechanisms of beneficial Cu-doping of NiO-based photocathodes publication-title: J. Phys. Chem. C – volume: 519 start-page: 4944 year: 2011 end-page: 4947 ident: bib26 article-title: Preparation and properties of p-type transparent conductive Cu-doped NiO films publication-title: Thin Solid Films – volume: 7 start-page: 9183 year: 2019 end-page: 9194 ident: bib44 article-title: Cu:NiO as a hole-selective back contact to improve the photoelectrochemical performance of CuBi 2 O 4 thin film photocathodes publication-title: J. Mater. Chem. A. – volume: 6 start-page: 14988 year: 2014 end-page: 14993 ident: bib25 article-title: Electrochemical determination of the density of states of nanostructured NiO films publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 1216 year: 2018 end-page: 1231 ident: bib32 article-title: Influence of Cu incorporation on ionic conductivity and dielectric relaxation mechanism in NiO thin films synthesized by CBD publication-title: J. Mater. Sci. Mater. Electron. – volume: 117 start-page: 17879 year: 2013 end-page: 17893 ident: bib14 article-title: Photoelectrochemical tandem cells for solar water splitting publication-title: J. Phys. Chem. C – volume: 8 start-page: 4374 year: 2017 end-page: 4379 ident: bib24 article-title: Modulating hole transport in multilayered photocathodes with derivatized p-type nickel oxide and molecular assemblies for solar-driven water splitting publication-title: J. Phys. Chem. Lett. – volume: 9 start-page: 41887 year: 2017 end-page: 41897 ident: bib30 article-title: Room-temperature and solution-processable Cu-doped nickel oxide nanoparticles for efficient hole-transport layers of flexible large-area perovskite solar cells publication-title: ACS Appl. Mater. Interfaces – volume: 136 start-page: 404 year: 2014 end-page: 411 ident: bib46 article-title: Preparation and characterization of TiO2 nanotube Arrays in ionic liquid for water splitting publication-title: Electrochim. Acta – volume: 12 start-page: 1835 year: 2019 ident: 10.1016/j.spmi.2021.107050_bib13 article-title: Photoelectrochemical water splitting with p‐type metal oxide semiconductor photocathodes publication-title: ChemSusChem doi: 10.1002/cssc.201802596 – volume: 42 start-page: 2294 year: 2013 ident: 10.1016/j.spmi.2021.107050_bib3 article-title: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35266D – volume: 257 start-page: 3974 year: 2011 ident: 10.1016/j.spmi.2021.107050_bib31 article-title: Optical and electrochemical properties of Cu-doped NiO films prepared by electrochemical deposition publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.11.160 – volume: 64 start-page: 1348 year: 2019 ident: 10.1016/j.spmi.2021.107050_bib7 article-title: Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.07.017 – volume: 8 start-page: 512 year: 2020 ident: 10.1016/j.spmi.2021.107050_bib1 article-title: Co-modification with cost-effective nickel oxides and nickel sulfides on CuInS 2 nanosheets photocathode for enhanced photoelectrochemical performance publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b05936 – volume: 125 start-page: 16049 year: 2021 ident: 10.1016/j.spmi.2021.107050_bib49 article-title: Unraveling the mechanisms of beneficial Cu-doping of NiO-based photocathodes publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c03553 – volume: 193 start-page: 148 year: 2019 ident: 10.1016/j.spmi.2021.107050_bib43 article-title: UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications publication-title: Sol. Energy doi: 10.1016/j.solener.2019.09.045 – volume: 738 start-page: 136884 year: 2020 ident: 10.1016/j.spmi.2021.107050_bib39 article-title: Synthesis of copper-doped nickel oxide thin films: structural and optical studies publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2019.136884 – volume: 50 start-page: 1983 year: 2021 ident: 10.1016/j.spmi.2021.107050_bib6 article-title: Synthesis and control strategies of nanomaterials for photoelectrochemical water splitting publication-title: Dalton Trans. doi: 10.1039/D0DT04129G – volume: 21 start-page: 3046 year: 2011 ident: 10.1016/j.spmi.2021.107050_bib21 article-title: Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance publication-title: J. Mater. Chem. doi: 10.1039/c0jm03132a – volume: 44 start-page: 20851 year: 2019 ident: 10.1016/j.spmi.2021.107050_bib23 article-title: Cadmium sulfide Co-catalyst reveals the crystallinity impact of nickel oxide photocathode in photoelectrochemical water splitting publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.06.088 – volume: 56 start-page: 288 year: 2014 ident: 10.1016/j.spmi.2021.107050_bib40 article-title: Improvement of photoresponse properties of NiO/p-Si photodiodes by copper dopant publication-title: Phys. E Low-Dimensional Syst. Nanostructures doi: 10.1016/j.physe.2013.09.014 – volume: 738 start-page: 432 year: 2018 ident: 10.1016/j.spmi.2021.107050_bib29 article-title: Surface and electrochemical properties of flower-like Cu-NiO compounds publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.12.144 – volume: 29 start-page: 1701599 year: 2017 ident: 10.1016/j.spmi.2021.107050_bib28 article-title: Solution combustion synthesis: low-temperature processing for p-type Cu:NiO thin films for transparent electronics publication-title: Adv. Mater. doi: 10.1002/adma.201701599 – volume: 125 start-page: 2899 year: 2014 ident: 10.1016/j.spmi.2021.107050_bib38 article-title: Effects of Cu doping on nickel oxide thin film prepared by sol–gel solution process publication-title: Optik doi: 10.1016/j.ijleo.2013.11.074 – volume: 2 start-page: 10647 year: 2014 ident: 10.1016/j.spmi.2021.107050_bib19 article-title: Free-floating ultrathin tin monoxide sheets for solar-driven photoelectrochemical water splitting publication-title: J. Mater. Chem. A. doi: 10.1039/c4ta01659a – volume: 7 start-page: 43901 year: 2017 ident: 10.1016/j.spmi.2021.107050_bib47 article-title: Enhanced PEC performance of nanoporous Si photoelectrodes by covering HfO2 and TiO2 passivation layers publication-title: Sci. Rep. doi: 10.1038/srep43901 – volume: 79 start-page: 105485 year: 2021 ident: 10.1016/j.spmi.2021.107050_bib9 article-title: Promising pyro-photo-electric catalysis in NaNbO3 via integrating solar and cold-hot alternation energy in pyroelectric-assisted photoelectrochemical system publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105485 – volume: 8 start-page: 4374 year: 2017 ident: 10.1016/j.spmi.2021.107050_bib24 article-title: Modulating hole transport in multilayered photocathodes with derivatized p-type nickel oxide and molecular assemblies for solar-driven water splitting publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b01911 – volume: 47 start-page: 3603 year: 2021 ident: 10.1016/j.spmi.2021.107050_bib36 article-title: CuxNi1-xO nanostructures and their nanocomposites with reduced graphene oxide: synthesis, characterization, and photocatalytic applications publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.09.209 – volume: 6 start-page: 14988 year: 2014 ident: 10.1016/j.spmi.2021.107050_bib25 article-title: Electrochemical determination of the density of states of nanostructured NiO films publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am502827z – volume: 4 start-page: 2551 year: 2013 ident: 10.1016/j.spmi.2021.107050_bib22 article-title: Recent advances in the sensitization of wide-band-gap nanostructured p-type semiconductors. Photovoltaic and photocatalytic applications publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz400861v – volume: 17 start-page: 9336 year: 2015 ident: 10.1016/j.spmi.2021.107050_bib27 article-title: 3D hierarchically mesoporous Cu-doped NiO nanostructures as high-performance anode materials for lithium ion batteries publication-title: CrystEngComm doi: 10.1039/C5CE00818B – volume: 66 start-page: 149 year: 2017 ident: 10.1016/j.spmi.2021.107050_bib35 article-title: Effect of calcination temperature on Cu doped NiO nanoparticles prepared via wet-chemical method: structural, optical and morphological studies publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2017.04.009 – volume: 260 start-page: 118213 year: 2020 ident: 10.1016/j.spmi.2021.107050_bib16 article-title: FeOOH as hole transfer layer to retard the photocorrosion of Cu2O for enhanced photoelectrochemical performance publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118213 – volume: 56 start-page: 4281 year: 2011 ident: 10.1016/j.spmi.2021.107050_bib20 article-title: Electrochromic properties of porous NiO thin film as a counter electrode for NiO/WO3 complementary electrochromic window publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.01.078 – volume: 29 start-page: 1216 year: 2018 ident: 10.1016/j.spmi.2021.107050_bib32 article-title: Influence of Cu incorporation on ionic conductivity and dielectric relaxation mechanism in NiO thin films synthesized by CBD publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-017-8024-x – volume: 295 start-page: 645 year: 2019 ident: 10.1016/j.spmi.2021.107050_bib42 article-title: Efficiency enhancement of electrochromic performance in NiO thin film via Cu doping for energy-saving potential publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.10.166 – start-page: 3 year: 2012 ident: 10.1016/j.spmi.2021.107050_bib2 article-title: Introduction – volume: 43 start-page: 4804 year: 2018 ident: 10.1016/j.spmi.2021.107050_bib5 article-title: Nanomaterials for photoelectrochemical water splitting – review publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.01.099 – volume: 85 start-page: 1 year: 2018 ident: 10.1016/j.spmi.2021.107050_bib41 article-title: Hydrothermal growth of undoped and boron doped ZnO nanorods as a photoelectrode for solar water splitting applications publication-title: J. Sol. Gel Sci. Technol. doi: 10.1007/s10971-017-4536-3 – volume: 4 start-page: 995 year: 2019 ident: 10.1016/j.spmi.2021.107050_bib50 article-title: Cu-doped NiO x as an effective hole-selective layer for a high-performance Sb 2 Se 3 photocathode for photoelectrochemical water splitting publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.9b00414 – volume: 23 start-page: 2993 year: 2013 ident: 10.1016/j.spmi.2021.107050_bib33 article-title: Solution-Processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202269 – volume: 127 start-page: 8124 year: 2016 ident: 10.1016/j.spmi.2021.107050_bib37 article-title: Investigation of structural and optical properties of copper doped NiO thin films deposited by RF magnetron reactive sputtering publication-title: Optik doi: 10.1016/j.ijleo.2016.06.005 – volume: 7 start-page: 1700555 year: 2017 ident: 10.1016/j.spmi.2021.107050_bib18 article-title: Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700555 – volume: 48 start-page: 4979 year: 2019 ident: 10.1016/j.spmi.2021.107050_bib17 article-title: Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00997J – volume: 203 start-page: 284 year: 2020 ident: 10.1016/j.spmi.2021.107050_bib45 article-title: Efficient visible-light-driven water splitting performance of sulfidation-free, solution processed Cu2MgSnS4 thin films: role of post-drying temperature publication-title: Sol. Energy doi: 10.1016/j.solener.2020.04.027 – volume: 12 start-page: 1889 year: 2019 ident: 10.1016/j.spmi.2021.107050_bib12 article-title: Recent advances in earth‐abundant photocathodes for photoelectrochemical water splitting publication-title: ChemSusChem doi: 10.1002/cssc.201801554 – volume: 238 start-page: 37 year: 1972 ident: 10.1016/j.spmi.2021.107050_bib4 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature doi: 10.1038/238037a0 – volume: 515 start-page: 146095 year: 2020 ident: 10.1016/j.spmi.2021.107050_bib11 article-title: Enhancing the PEC water splitting performance of BiVO4 co-modifying with NiFeOOH and Co-Pi double layer cocatalysts publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146095 – volume: 48 start-page: 1908 year: 2019 ident: 10.1016/j.spmi.2021.107050_bib15 article-title: Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00699G – volume: 117 start-page: 17879 year: 2013 ident: 10.1016/j.spmi.2021.107050_bib14 article-title: Photoelectrochemical tandem cells for solar water splitting publication-title: J. Phys. Chem. C doi: 10.1021/jp405291g – volume: 6 start-page: 18558 year: 2014 ident: 10.1016/j.spmi.2021.107050_bib8 article-title: Efficient photoelectrochemical water splitting over anodized p -type NiO porous films publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am507138b – volume: 136 start-page: 404 year: 2014 ident: 10.1016/j.spmi.2021.107050_bib46 article-title: Preparation and characterization of TiO2 nanotube Arrays in ionic liquid for water splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.05.097 – volume: 7 start-page: 9183 year: 2019 ident: 10.1016/j.spmi.2021.107050_bib44 article-title: Cu:NiO as a hole-selective back contact to improve the photoelectrochemical performance of CuBi 2 O 4 thin film photocathodes publication-title: J. Mater. Chem. A. doi: 10.1039/C9TA01489F – volume: 12 start-page: 50684 year: 2020 ident: 10.1016/j.spmi.2021.107050_bib34 article-title: High-efficiency and stable inverted planar perovskite solar cells with pulsed laser deposited Cu-doped NiO x hole-transport layers publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c15923 – volume: 5 start-page: 509 year: 2021 ident: 10.1016/j.spmi.2021.107050_bib10 article-title: The synergistic effect with S-vacancies and built-in electric field on a TiO 2/MoS 2 photoanode for enhanced photoelectrochemical performance publication-title: Sustain. Energy Fuels doi: 10.1039/D0SE01515F – volume: 9 start-page: 41887 year: 2017 ident: 10.1016/j.spmi.2021.107050_bib30 article-title: Room-temperature and solution-processable Cu-doped nickel oxide nanoparticles for efficient hole-transport layers of flexible large-area perovskite solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13621 – volume: 519 start-page: 4944 year: 2011 ident: 10.1016/j.spmi.2021.107050_bib26 article-title: Preparation and properties of p-type transparent conductive Cu-doped NiO films publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.01.058 – volume: 8 start-page: 3279 year: 2016 ident: 10.1016/j.spmi.2021.107050_bib48 article-title: Enhanced photoelectrochemical performance of the BiVO 4/Zn:BiVO 4 homojunction for water oxidation publication-title: ChemCatChem doi: 10.1002/cctc.201600767 |
SSID | ssj0009417 |
Score | 2.0499644 |
Snippet | The present report describes the fabrication of undoped NiO and Cu doped NiO based photocathodes synthesized by sol gel spin coating technique. Mott-Schottky,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107050 |
SubjectTerms | Cu doped NiO Photocurrent density Sol-gel processes Water splitting |
Title | Cu doped NiO thin film photocathodes for enhanced PEC performance |
URI | https://dx.doi.org/10.1016/j.spmi.2021.107050 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiWhXro-zBm6xN2t0kPZZgqYpV0EJvIbuZpZE2CTa9-tudzcMqSA8eM8xA-LI78w2ZByHXLgcHabRm2uKacYxpTFraY1Hogaul40Cxi-Bp4oyn_GEmZg3i170wpqyy8v2lTy-8dSXpVmh2szjuvmLwQ_qNDtguBnMZP8y5a0757eemzGPAi627RpkZ7apxpqzxWmXLGHPEno0C1zK9938Fpx8BZ3RIDiqmSIflyxyRBiQtsufXC9paZLeo3lSrYzL01zRKM4joJH6m-TxOqI4XS5rN0zw1g1nTCFYU6SmFZF788qcvdz7NNk0DJ2Q6unvzx6zajcBU37JyBqHt6QGoCBRoLXSowPJCIRELoQFFqu-YiUMiQkIWAtfgIfo2JkcAIPFen5JmkiZwRqgSGMgwa0Aig7mR4FL2JBIrwJupNOYTbWLXoASqGhxu9lcsgrpC7D0wQAYGyKAEsk1uvm2ycmzGVm1RYx38-vgB-vUtduf_tLsg--apbCm8JM38Yw1XyC1y2SkOT4fsDO8fx5MviD_NGA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60IvUiPrE-96AniU3SJI0HD1Itra1VsIXeYrKZpZE2CTYiXvxT_kFn87AK4kHodZNdNt9uZr6Bb2YAjusGWkSjhSJUQygG-TTFU4Wt-K6NdeFZFqa9CG57Vmtg3AzN4QJ8FLkwUlaZ2_7MpqfWOh-p5mhW4yCoPpDzI_pNBlhLC3PpubKyg2-vFLdNL9pXdMgnut687jdaSt5aQOE1VU0UdDVbnCP3kaMQpnA5qrZrerSUKZCGeM2SBXtMn_iMi4ZAmzavUWyBiB79FrTuIiwZZC5k24Sz95mu5NxI2_zK3Slye3mmTiYqm8aTgIJSXaOBuiqT_X_zht88XHMNVnNqyi6zr1-HBQw3oNwoOsJtwHIqF-XTTbhsvDA_itFnveCOJaMgZCIYT1g8ipJIVoKNfJwy4sMMw1GqMWD31w0Wz7IUtmAwF8S2oRRGIe4A4yZ5TgpTiDlRMGYanqd7xOSQTAEXFMBUQCtAcXheqVw2zBg7hSTtyZFAOhJIJwOyAqdfc-KsTsefb5sF1s6P2-aQI_lj3u4_5x1BudW_7Trddq-zByvySZbPuA-l5PkFD4jYJN5hepEYPM775n4Cr1wNEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cu+doped+NiO+thin+film+photocathodes+for+enhanced+PEC+performance&rft.jtitle=Superlattices+and+microstructures&rft.au=Sahoo%2C+Pooja&rft.au=Sharma%2C+Akash&rft.au=Padhan%2C+Subash&rft.au=Thangavel%2C+R.&rft.date=2021-11-01&rft.issn=0749-6036&rft.volume=159&rft.spage=107050&rft_id=info:doi/10.1016%2Fj.spmi.2021.107050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2021_107050 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon |