Cu doped NiO thin film photocathodes for enhanced PEC performance

The present report describes the fabrication of undoped NiO and Cu doped NiO based photocathodes synthesized by sol gel spin coating technique. Mott-Schottky, LSV and EIS measurements have been carried out to investigate the PEC properties of these photocathodes. 3% Cu doped NiO film exhibits the hi...

Full description

Saved in:
Bibliographic Details
Published inSuperlattices and microstructures Vol. 159; p. 107050
Main Authors Sahoo, Pooja, Sharma, Akash, Padhan, Subash, Thangavel, R.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present report describes the fabrication of undoped NiO and Cu doped NiO based photocathodes synthesized by sol gel spin coating technique. Mott-Schottky, LSV and EIS measurements have been carried out to investigate the PEC properties of these photocathodes. 3% Cu doped NiO film exhibits the highest PEC performance among all photocathodes. The p-type semiconducting nature of all thin film samples has been confirmed from the M-S plots. Also, the values of carrier density have been tuned from 1.18 × 1020 to 1.36 × 1020 cm−3 for undoped NiO and 3% Cu doped NiO thin films. VB CB levels of the as-prepared photocathodes have been calculated from absorption spectra. 3Cu:NiO exhibits a significantly higher photocurrent density of −6.97 mA/cm2 at −1.5 V vs. Ag/AgCl in 0.1M NaOH solution under UV illumination. The superior PEC performance is due to efficient charge transport and reduced recombination rate of the photogenerated electron-hole pairs. These findings demonstrate the potential of Cu doped NiO photocathodes in water splitting applications. [Display omitted] •NiO and Cu doped NiO thi films fabrication was carried out via sol-gel, spin coating technique.•3Cu:NiO exhibited the highest photocurrent denisty of -6.97 mA/cm2 at -1.5V vs Ag/AgCl under UV light.•Carrier density of 1.36 x 1020 cm-3 was estimated for 3Cu:NiO from Mott-Schottky Analysis.
AbstractList The present report describes the fabrication of undoped NiO and Cu doped NiO based photocathodes synthesized by sol gel spin coating technique. Mott-Schottky, LSV and EIS measurements have been carried out to investigate the PEC properties of these photocathodes. 3% Cu doped NiO film exhibits the highest PEC performance among all photocathodes. The p-type semiconducting nature of all thin film samples has been confirmed from the M-S plots. Also, the values of carrier density have been tuned from 1.18 × 1020 to 1.36 × 1020 cm−3 for undoped NiO and 3% Cu doped NiO thin films. VB CB levels of the as-prepared photocathodes have been calculated from absorption spectra. 3Cu:NiO exhibits a significantly higher photocurrent density of −6.97 mA/cm2 at −1.5 V vs. Ag/AgCl in 0.1M NaOH solution under UV illumination. The superior PEC performance is due to efficient charge transport and reduced recombination rate of the photogenerated electron-hole pairs. These findings demonstrate the potential of Cu doped NiO photocathodes in water splitting applications. [Display omitted] •NiO and Cu doped NiO thi films fabrication was carried out via sol-gel, spin coating technique.•3Cu:NiO exhibited the highest photocurrent denisty of -6.97 mA/cm2 at -1.5V vs Ag/AgCl under UV light.•Carrier density of 1.36 x 1020 cm-3 was estimated for 3Cu:NiO from Mott-Schottky Analysis.
ArticleNumber 107050
Author Thangavel, R.
Sahoo, Pooja
Sharma, Akash
Padhan, Subash
Author_xml – sequence: 1
  givenname: Pooja
  surname: Sahoo
  fullname: Sahoo, Pooja
  organization: Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
– sequence: 2
  givenname: Akash
  surname: Sharma
  fullname: Sharma, Akash
  organization: Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
– sequence: 3
  givenname: Subash
  surname: Padhan
  fullname: Padhan, Subash
  organization: Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
– sequence: 4
  givenname: R.
  surname: Thangavel
  fullname: Thangavel, R.
  email: rthangavel@iitism.ac.in
  organization: Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
BookMark eNp9kMtqwzAQAEVJoUnaH-hJP-B0FT9kQy_BpA8ITQ_tWSjyCsvYlpHUQv--Mumph5wEg2bZnRVZjHZEQu4ZbBiw4qHb-Gkwmy1sWQQccrgiSwZVkaQF5wuyBJ5VSQFpcUNW3ncAUGWML8mu_qKNnbChb-ZIQ2tGqk0_0Km1wSoZWtugp9o6imMrRxU_vu9rOqGLbJjBLbnWsvd49_euyefT_qN-SQ7H59d6d0hUChASlKzUFaoGFWqda6kQSpmfGECuMSIVN1Wa5w3kXGKmsZQlMlZkiHgCnq7J9jxXOeu9Qy0mZwbpfgQDMUcQnZgjiDmCOEeIUvlPUibIYOwYnDT9ZfXxrGI86tugE14ZnAsYhyqIxppL-i9pnXug
CitedBy_id crossref_primary_10_1016_j_coche_2024_101000
crossref_primary_10_1039_D4CP03362K
crossref_primary_10_1051_matecconf_202439703001
crossref_primary_10_1002_smll_202406715
crossref_primary_10_1016_j_pmatsci_2023_101073
crossref_primary_10_1039_D4SE01276C
crossref_primary_10_1088_1402_4896_ad36ec
crossref_primary_10_3390_en15197399
crossref_primary_10_1016_j_apsadv_2022_100293
crossref_primary_10_1016_j_fuel_2023_129805
crossref_primary_10_1016_j_ijhydene_2023_01_083
crossref_primary_10_1016_j_optmat_2024_115595
crossref_primary_10_1016_j_physb_2024_416129
crossref_primary_10_1016_j_ijhydene_2023_07_116
crossref_primary_10_1088_1402_4896_ad2c4a
crossref_primary_10_1039_D3RA02502K
crossref_primary_10_3390_ma15051742
crossref_primary_10_1007_s11082_023_05254_1
crossref_primary_10_1016_j_jacomc_2024_100028
crossref_primary_10_1016_j_tsf_2023_139935
Cites_doi 10.1002/cssc.201802596
10.1039/C2CS35266D
10.1016/j.apsusc.2010.11.160
10.1016/j.scib.2019.07.017
10.1021/acssuschemeng.9b05936
10.1021/acs.jpcc.1c03553
10.1016/j.solener.2019.09.045
10.1016/j.cplett.2019.136884
10.1039/D0DT04129G
10.1039/c0jm03132a
10.1016/j.ijhydene.2018.06.088
10.1016/j.physe.2013.09.014
10.1016/j.jallcom.2017.12.144
10.1002/adma.201701599
10.1016/j.ijleo.2013.11.074
10.1039/c4ta01659a
10.1038/srep43901
10.1016/j.nanoen.2020.105485
10.1021/acs.jpclett.7b01911
10.1016/j.ceramint.2020.09.209
10.1021/am502827z
10.1021/jz400861v
10.1039/C5CE00818B
10.1016/j.mssp.2017.04.009
10.1016/j.apcatb.2019.118213
10.1016/j.electacta.2011.01.078
10.1007/s10854-017-8024-x
10.1016/j.electacta.2018.10.166
10.1016/j.ijhydene.2018.01.099
10.1007/s10971-017-4536-3
10.1021/acsenergylett.9b00414
10.1002/adfm.201202269
10.1016/j.ijleo.2016.06.005
10.1002/aenm.201700555
10.1039/C8CS00997J
10.1016/j.solener.2020.04.027
10.1002/cssc.201801554
10.1038/238037a0
10.1016/j.apsusc.2020.146095
10.1039/C8CS00699G
10.1021/jp405291g
10.1021/am507138b
10.1016/j.electacta.2014.05.097
10.1039/C9TA01489F
10.1021/acsami.0c15923
10.1039/D0SE01515F
10.1021/acsami.7b13621
10.1016/j.tsf.2011.01.058
10.1002/cctc.201600767
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.spmi.2021.107050
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-3677
ExternalDocumentID 10_1016_j_spmi_2021_107050
S0749603621002482
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG5
M24
M37
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-ea18f9ecdeceff5face08a5b1005feeffc367cf75d057ae4fe8a8e1164eeeb073
IEDL.DBID .~1
ISSN 0749-6036
IngestDate Tue Jul 01 01:35:17 EDT 2025
Thu Apr 24 23:01:58 EDT 2025
Fri Feb 23 02:47:16 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords Sol-gel processes
Water splitting
Photocurrent density
Cu doped NiO
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-ea18f9ecdeceff5face08a5b1005feeffc367cf75d057ae4fe8a8e1164eeeb073
ParticipantIDs crossref_primary_10_1016_j_spmi_2021_107050
crossref_citationtrail_10_1016_j_spmi_2021_107050
elsevier_sciencedirect_doi_10_1016_j_spmi_2021_107050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Superlattices and microstructures
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Osterloh (bib3) 2013; 42
He, Yao, Wang, Xia, Leng, Li (bib30) 2017; 9
Fujishima, Honda (bib4) 1972; 238
Yang, Moon (bib12) 2019; 12
Peiris, Sagu, Wijayantha, García-Cañadas (bib25) 2014; 6
Xing, Ren, Wu, Wu, Wang, Wang, Wan, Zhang, Jiang (bib47) 2017; 7
Fang, Liu, Han (bib11) 2020; 515
Liu, Wang, Liu, Qiao, Ahn (bib21) 2011; 21
Kim, Hansora, Sharma, Jang, Lee (bib15) 2019; 48
Sharma, Sahoo, Singha, Padhan, Udayabhanu, Thangavel (bib45) 2020; 203
Jang, Lee (bib13) 2019; 12
Gupta, Hendi, Cavas, Al-Ghamdi, Al-Hartomy, Aloraini, El-Tantawy, Yakuphanoglu (bib40) 2014; 56
Ma, Yin, Ge (bib27) 2015; 17
Liang, Sun, Lei, Gao, Xie (bib19) 2014; 2
Hu, Chu, Zhao, Teoh (bib8) 2014; 6
Das, Mukherjee, Mitra (bib32) 2018; 29
Varunkumar, Hussain, Hegde, Ethiraj (bib35) 2017; 66
Su, Liu, Liu, Li, Zhou (bib48) 2016; 8
Guo, Liu (bib6) 2021; 50
Firat, Peksoz (bib42) 2019; 295
Manders, Tsang, Hartel, Lai, Chen, Amb, Reynolds, So (bib33) 2013; 23
Yang, Prabhakar, Tan, Tilley, Moon (bib17) 2019; 48
Shan, Sherman, Klug, Nayak, Marquard, Liu, Bullock, Meyer (bib24) 2017; 8
Emamdoust, Farjami Shayesteh (bib29) 2018; 738
Han, Zhang, Song, Yan, Kang, Guo, Liu (bib10) 2021; 5
Sharma, Chakraborty, Thangavel, Udayabhanu (bib41) 2018; 85
Odobel, Pellegrin (bib22) 2013; 4
Chen, Kuo, Lin, Lin (bib26) 2011; 519
Song, Plate, Chemseddine, Wang, Abdi, Wollgarten, van de Krol, Berglund (bib44) 2019; 7
Zhu, Frehan, Jaros, O'Neill, Korterik, Wenderich, Mul, Huijser (bib49) 2021; 125
Çayir Taşdemi̇rci̇ (bib39) 2020; 738
Joy, Mathew, George (bib5) 2018; 43
Huang, Tian, Zhang, Gan, Tao, Xia, Tu (bib20) 2011; 56
Liu, Zhu, Guo, Meng, Liu, Fortunato, Martins, Shan (bib28) 2017; 29
Feng, Wang, Zhou, Li, Wang, Zang, Chen (bib34) 2020; 12
Liu, Zhou (bib1) 2020; 8
Zhang, Zhang, Chen, Guo, Ruan, Liu (bib9) 2021; 79
Qiu, Pan, Chen, Ye, Guo, Fan, Yang (bib7) 2019; 64
Manouchehri, Mehrparvar, Moradian, Gholami, Osati (bib37) 2016; 127
Suzuki, Xie, Lu, Cheng, Amal, Ng (bib23) 2019; 44
Yang, Niu, Han, Liu, Wang, Li (bib18) 2017; 7
Sahoo, Sharma, Padhan, Udayabhanu, Thangavel (bib43) 2019; 193
Zhou, Guo, Liu (bib16) 2020; 260
Kim, Takahashi, Abe, Kawamura (bib38) 2014; 125
Krol, Grätzel (bib2) 2012
Bashir, Khalid, Aadil, Zulfiqar, Warsi, Agboola, Shakir (bib36) 2021; 47
Prévot, Sivula (bib14) 2013; 117
Zhao, Su, Liu, Cao, Wang, Dong, Song (bib31) 2011; 257
Lee, Yang, Tan, Oh, Park, Moon (bib50) 2019; 4
Freitas, Santanna, Pereira (bib46) 2014; 136
Kim (10.1016/j.spmi.2021.107050_bib38) 2014; 125
Zhao (10.1016/j.spmi.2021.107050_bib31) 2011; 257
Sharma (10.1016/j.spmi.2021.107050_bib41) 2018; 85
Emamdoust (10.1016/j.spmi.2021.107050_bib29) 2018; 738
Feng (10.1016/j.spmi.2021.107050_bib34) 2020; 12
Sahoo (10.1016/j.spmi.2021.107050_bib43) 2019; 193
Fujishima (10.1016/j.spmi.2021.107050_bib4) 1972; 238
Huang (10.1016/j.spmi.2021.107050_bib20) 2011; 56
Yang (10.1016/j.spmi.2021.107050_bib18) 2017; 7
Zhang (10.1016/j.spmi.2021.107050_bib9) 2021; 79
Varunkumar (10.1016/j.spmi.2021.107050_bib35) 2017; 66
Firat (10.1016/j.spmi.2021.107050_bib42) 2019; 295
Manders (10.1016/j.spmi.2021.107050_bib33) 2013; 23
Joy (10.1016/j.spmi.2021.107050_bib5) 2018; 43
Gupta (10.1016/j.spmi.2021.107050_bib40) 2014; 56
Sharma (10.1016/j.spmi.2021.107050_bib45) 2020; 203
Yang (10.1016/j.spmi.2021.107050_bib17) 2019; 48
Liu (10.1016/j.spmi.2021.107050_bib21) 2011; 21
He (10.1016/j.spmi.2021.107050_bib30) 2017; 9
Osterloh (10.1016/j.spmi.2021.107050_bib3) 2013; 42
Zhu (10.1016/j.spmi.2021.107050_bib49) 2021; 125
Manouchehri (10.1016/j.spmi.2021.107050_bib37) 2016; 127
Song (10.1016/j.spmi.2021.107050_bib44) 2019; 7
Lee (10.1016/j.spmi.2021.107050_bib50) 2019; 4
Jang (10.1016/j.spmi.2021.107050_bib13) 2019; 12
Zhou (10.1016/j.spmi.2021.107050_bib16) 2020; 260
Freitas (10.1016/j.spmi.2021.107050_bib46) 2014; 136
Hu (10.1016/j.spmi.2021.107050_bib8) 2014; 6
Peiris (10.1016/j.spmi.2021.107050_bib25) 2014; 6
Bashir (10.1016/j.spmi.2021.107050_bib36) 2021; 47
Liang (10.1016/j.spmi.2021.107050_bib19) 2014; 2
Prévot (10.1016/j.spmi.2021.107050_bib14) 2013; 117
Kim (10.1016/j.spmi.2021.107050_bib15) 2019; 48
Xing (10.1016/j.spmi.2021.107050_bib47) 2017; 7
Odobel (10.1016/j.spmi.2021.107050_bib22) 2013; 4
Das (10.1016/j.spmi.2021.107050_bib32) 2018; 29
Çayir Taşdemi̇rci̇ (10.1016/j.spmi.2021.107050_bib39) 2020; 738
Su (10.1016/j.spmi.2021.107050_bib48) 2016; 8
Liu (10.1016/j.spmi.2021.107050_bib28) 2017; 29
Yang (10.1016/j.spmi.2021.107050_bib12) 2019; 12
Ma (10.1016/j.spmi.2021.107050_bib27) 2015; 17
Chen (10.1016/j.spmi.2021.107050_bib26) 2011; 519
Guo (10.1016/j.spmi.2021.107050_bib6) 2021; 50
Krol (10.1016/j.spmi.2021.107050_bib2) 2012
Shan (10.1016/j.spmi.2021.107050_bib24) 2017; 8
Qiu (10.1016/j.spmi.2021.107050_bib7) 2019; 64
Fang (10.1016/j.spmi.2021.107050_bib11) 2020; 515
Liu (10.1016/j.spmi.2021.107050_bib1) 2020; 8
Suzuki (10.1016/j.spmi.2021.107050_bib23) 2019; 44
Han (10.1016/j.spmi.2021.107050_bib10) 2021; 5
References_xml – start-page: 3
  year: 2012
  end-page: 11
  ident: bib2
  article-title: Introduction
  publication-title: J. Am. Chem. Soc.
– volume: 64
  start-page: 1348
  year: 2019
  end-page: 1380
  ident: bib7
  article-title: Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting
  publication-title: Sci. Bull.
– volume: 12
  start-page: 50684
  year: 2020
  end-page: 50691
  ident: bib34
  article-title: High-efficiency and stable inverted planar perovskite solar cells with pulsed laser deposited Cu-doped NiO x hole-transport layers
  publication-title: ACS Appl. Mater. Interfaces
– volume: 85
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib41
  article-title: Hydrothermal growth of undoped and boron doped ZnO nanorods as a photoelectrode for solar water splitting applications
  publication-title: J. Sol. Gel Sci. Technol.
– volume: 295
  start-page: 645
  year: 2019
  end-page: 654
  ident: bib42
  article-title: Efficiency enhancement of electrochromic performance in NiO thin film via Cu doping for energy-saving potential
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 2551
  year: 2013
  end-page: 2564
  ident: bib22
  article-title: Recent advances in the sensitization of wide-band-gap nanostructured p-type semiconductors. Photovoltaic and photocatalytic applications
  publication-title: J. Phys. Chem. Lett.
– volume: 203
  start-page: 284
  year: 2020
  end-page: 295
  ident: bib45
  article-title: Efficient visible-light-driven water splitting performance of sulfidation-free, solution processed Cu2MgSnS4 thin films: role of post-drying temperature
  publication-title: Sol. Energy
– volume: 17
  start-page: 9336
  year: 2015
  end-page: 9347
  ident: bib27
  article-title: 3D hierarchically mesoporous Cu-doped NiO nanostructures as high-performance anode materials for lithium ion batteries
  publication-title: CrystEngComm
– volume: 6
  start-page: 18558
  year: 2014
  end-page: 18568
  ident: bib8
  article-title: Efficient photoelectrochemical water splitting over anodized p -type NiO porous films
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 1835
  year: 2019
  end-page: 1845
  ident: bib13
  article-title: Photoelectrochemical water splitting with p‐type metal oxide semiconductor photocathodes
  publication-title: ChemSusChem
– volume: 4
  start-page: 995
  year: 2019
  end-page: 1003
  ident: bib50
  article-title: Cu-doped NiO x as an effective hole-selective layer for a high-performance Sb 2 Se 3 photocathode for photoelectrochemical water splitting
  publication-title: ACS Energy Lett
– volume: 79
  start-page: 105485
  year: 2021
  ident: bib9
  article-title: Promising pyro-photo-electric catalysis in NaNbO3 via integrating solar and cold-hot alternation energy in pyroelectric-assisted photoelectrochemical system
  publication-title: Nano Energy
– volume: 7
  start-page: 1700555
  year: 2017
  ident: bib18
  article-title: Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting
  publication-title: Adv. Energy Mater.
– volume: 56
  start-page: 4281
  year: 2011
  end-page: 4286
  ident: bib20
  article-title: Electrochromic properties of porous NiO thin film as a counter electrode for NiO/WO3 complementary electrochromic window
  publication-title: Electrochim. Acta
– volume: 56
  start-page: 288
  year: 2014
  end-page: 295
  ident: bib40
  article-title: Improvement of photoresponse properties of NiO/p-Si photodiodes by copper dopant
  publication-title: Phys. E Low-Dimensional Syst. Nanostructures
– volume: 193
  start-page: 148
  year: 2019
  end-page: 163
  ident: bib43
  article-title: UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications
  publication-title: Sol. Energy
– volume: 47
  start-page: 3603
  year: 2021
  end-page: 3613
  ident: bib36
  article-title: CuxNi1-xO nanostructures and their nanocomposites with reduced graphene oxide: synthesis, characterization, and photocatalytic applications
  publication-title: Ceram. Int.
– volume: 257
  start-page: 3974
  year: 2011
  end-page: 3979
  ident: bib31
  article-title: Optical and electrochemical properties of Cu-doped NiO films prepared by electrochemical deposition
  publication-title: Appl. Surf. Sci.
– volume: 125
  start-page: 2899
  year: 2014
  end-page: 2901
  ident: bib38
  article-title: Effects of Cu doping on nickel oxide thin film prepared by sol–gel solution process
  publication-title: Optik
– volume: 515
  start-page: 146095
  year: 2020
  ident: bib11
  article-title: Enhancing the PEC water splitting performance of BiVO4 co-modifying with NiFeOOH and Co-Pi double layer cocatalysts
  publication-title: Appl. Surf. Sci.
– volume: 260
  start-page: 118213
  year: 2020
  ident: bib16
  article-title: FeOOH as hole transfer layer to retard the photocorrosion of Cu2O for enhanced photoelectrochemical performance
  publication-title: Appl. Catal. B Environ.
– volume: 5
  start-page: 509
  year: 2021
  end-page: 517
  ident: bib10
  article-title: The synergistic effect with S-vacancies and built-in electric field on a TiO 2/MoS 2 photoanode for enhanced photoelectrochemical performance
  publication-title: Sustain. Energy Fuels
– volume: 42
  start-page: 2294
  year: 2013
  end-page: 2320
  ident: bib3
  article-title: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 1701599
  year: 2017
  ident: bib28
  article-title: Solution combustion synthesis: low-temperature processing for p-type Cu:NiO thin films for transparent electronics
  publication-title: Adv. Mater.
– volume: 2
  start-page: 10647
  year: 2014
  ident: bib19
  article-title: Free-floating ultrathin tin monoxide sheets for solar-driven photoelectrochemical water splitting
  publication-title: J. Mater. Chem. A.
– volume: 66
  start-page: 149
  year: 2017
  end-page: 156
  ident: bib35
  article-title: Effect of calcination temperature on Cu doped NiO nanoparticles prepared via wet-chemical method: structural, optical and morphological studies
  publication-title: Mater. Sci. Semicond. Process.
– volume: 43
  start-page: 4804
  year: 2018
  end-page: 4817
  ident: bib5
  article-title: Nanomaterials for photoelectrochemical water splitting – review
  publication-title: Int. J. Hydrogen Energy
– volume: 23
  start-page: 2993
  year: 2013
  end-page: 3001
  ident: bib33
  article-title: Solution-Processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells
  publication-title: Adv. Funct. Mater.
– volume: 738
  start-page: 432
  year: 2018
  end-page: 439
  ident: bib29
  article-title: Surface and electrochemical properties of flower-like Cu-NiO compounds
  publication-title: J. Alloys Compd.
– volume: 238
  start-page: 37
  year: 1972
  end-page: 38
  ident: bib4
  article-title: Electrochemical photolysis of water at a semiconductor electrode
  publication-title: Nature
– volume: 48
  start-page: 4979
  year: 2019
  end-page: 5015
  ident: bib17
  article-title: Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting
  publication-title: Chem. Soc. Rev.
– volume: 127
  start-page: 8124
  year: 2016
  end-page: 8129
  ident: bib37
  article-title: Investigation of structural and optical properties of copper doped NiO thin films deposited by RF magnetron reactive sputtering
  publication-title: Optik
– volume: 8
  start-page: 3279
  year: 2016
  end-page: 3286
  ident: bib48
  article-title: Enhanced photoelectrochemical performance of the BiVO 4/Zn:BiVO 4 homojunction for water oxidation
  publication-title: ChemCatChem
– volume: 7
  start-page: 43901
  year: 2017
  ident: bib47
  article-title: Enhanced PEC performance of nanoporous Si photoelectrodes by covering HfO2 and TiO2 passivation layers
  publication-title: Sci. Rep.
– volume: 12
  start-page: 1889
  year: 2019
  end-page: 1899
  ident: bib12
  article-title: Recent advances in earth‐abundant photocathodes for photoelectrochemical water splitting
  publication-title: ChemSusChem
– volume: 21
  start-page: 3046
  year: 2011
  ident: bib21
  article-title: Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance
  publication-title: J. Mater. Chem.
– volume: 8
  start-page: 512
  year: 2020
  end-page: 519
  ident: bib1
  article-title: Co-modification with cost-effective nickel oxides and nickel sulfides on CuInS 2 nanosheets photocathode for enhanced photoelectrochemical performance
  publication-title: ACS Sustain. Chem. Eng.
– volume: 44
  start-page: 20851
  year: 2019
  end-page: 20856
  ident: bib23
  article-title: Cadmium sulfide Co-catalyst reveals the crystallinity impact of nickel oxide photocathode in photoelectrochemical water splitting
  publication-title: Int. J. Hydrogen Energy
– volume: 50
  start-page: 1983
  year: 2021
  end-page: 1989
  ident: bib6
  article-title: Synthesis and control strategies of nanomaterials for photoelectrochemical water splitting
  publication-title: Dalton Trans.
– volume: 48
  start-page: 1908
  year: 2019
  end-page: 1971
  ident: bib15
  article-title: Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge
  publication-title: Chem. Soc. Rev.
– volume: 738
  start-page: 136884
  year: 2020
  ident: bib39
  article-title: Synthesis of copper-doped nickel oxide thin films: structural and optical studies
  publication-title: Chem. Phys. Lett.
– volume: 125
  start-page: 16049
  year: 2021
  end-page: 16058
  ident: bib49
  article-title: Unraveling the mechanisms of beneficial Cu-doping of NiO-based photocathodes
  publication-title: J. Phys. Chem. C
– volume: 519
  start-page: 4944
  year: 2011
  end-page: 4947
  ident: bib26
  article-title: Preparation and properties of p-type transparent conductive Cu-doped NiO films
  publication-title: Thin Solid Films
– volume: 7
  start-page: 9183
  year: 2019
  end-page: 9194
  ident: bib44
  article-title: Cu:NiO as a hole-selective back contact to improve the photoelectrochemical performance of CuBi 2 O 4 thin film photocathodes
  publication-title: J. Mater. Chem. A.
– volume: 6
  start-page: 14988
  year: 2014
  end-page: 14993
  ident: bib25
  article-title: Electrochemical determination of the density of states of nanostructured NiO films
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 1216
  year: 2018
  end-page: 1231
  ident: bib32
  article-title: Influence of Cu incorporation on ionic conductivity and dielectric relaxation mechanism in NiO thin films synthesized by CBD
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 117
  start-page: 17879
  year: 2013
  end-page: 17893
  ident: bib14
  article-title: Photoelectrochemical tandem cells for solar water splitting
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 4374
  year: 2017
  end-page: 4379
  ident: bib24
  article-title: Modulating hole transport in multilayered photocathodes with derivatized p-type nickel oxide and molecular assemblies for solar-driven water splitting
  publication-title: J. Phys. Chem. Lett.
– volume: 9
  start-page: 41887
  year: 2017
  end-page: 41897
  ident: bib30
  article-title: Room-temperature and solution-processable Cu-doped nickel oxide nanoparticles for efficient hole-transport layers of flexible large-area perovskite solar cells
  publication-title: ACS Appl. Mater. Interfaces
– volume: 136
  start-page: 404
  year: 2014
  end-page: 411
  ident: bib46
  article-title: Preparation and characterization of TiO2 nanotube Arrays in ionic liquid for water splitting
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 1835
  year: 2019
  ident: 10.1016/j.spmi.2021.107050_bib13
  article-title: Photoelectrochemical water splitting with p‐type metal oxide semiconductor photocathodes
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201802596
– volume: 42
  start-page: 2294
  year: 2013
  ident: 10.1016/j.spmi.2021.107050_bib3
  article-title: Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35266D
– volume: 257
  start-page: 3974
  year: 2011
  ident: 10.1016/j.spmi.2021.107050_bib31
  article-title: Optical and electrochemical properties of Cu-doped NiO films prepared by electrochemical deposition
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.11.160
– volume: 64
  start-page: 1348
  year: 2019
  ident: 10.1016/j.spmi.2021.107050_bib7
  article-title: Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.07.017
– volume: 8
  start-page: 512
  year: 2020
  ident: 10.1016/j.spmi.2021.107050_bib1
  article-title: Co-modification with cost-effective nickel oxides and nickel sulfides on CuInS 2 nanosheets photocathode for enhanced photoelectrochemical performance
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b05936
– volume: 125
  start-page: 16049
  year: 2021
  ident: 10.1016/j.spmi.2021.107050_bib49
  article-title: Unraveling the mechanisms of beneficial Cu-doping of NiO-based photocathodes
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c03553
– volume: 193
  start-page: 148
  year: 2019
  ident: 10.1016/j.spmi.2021.107050_bib43
  article-title: UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.09.045
– volume: 738
  start-page: 136884
  year: 2020
  ident: 10.1016/j.spmi.2021.107050_bib39
  article-title: Synthesis of copper-doped nickel oxide thin films: structural and optical studies
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2019.136884
– volume: 50
  start-page: 1983
  year: 2021
  ident: 10.1016/j.spmi.2021.107050_bib6
  article-title: Synthesis and control strategies of nanomaterials for photoelectrochemical water splitting
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT04129G
– volume: 21
  start-page: 3046
  year: 2011
  ident: 10.1016/j.spmi.2021.107050_bib21
  article-title: Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm03132a
– volume: 44
  start-page: 20851
  year: 2019
  ident: 10.1016/j.spmi.2021.107050_bib23
  article-title: Cadmium sulfide Co-catalyst reveals the crystallinity impact of nickel oxide photocathode in photoelectrochemical water splitting
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.06.088
– volume: 56
  start-page: 288
  year: 2014
  ident: 10.1016/j.spmi.2021.107050_bib40
  article-title: Improvement of photoresponse properties of NiO/p-Si photodiodes by copper dopant
  publication-title: Phys. E Low-Dimensional Syst. Nanostructures
  doi: 10.1016/j.physe.2013.09.014
– volume: 738
  start-page: 432
  year: 2018
  ident: 10.1016/j.spmi.2021.107050_bib29
  article-title: Surface and electrochemical properties of flower-like Cu-NiO compounds
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.12.144
– volume: 29
  start-page: 1701599
  year: 2017
  ident: 10.1016/j.spmi.2021.107050_bib28
  article-title: Solution combustion synthesis: low-temperature processing for p-type Cu:NiO thin films for transparent electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701599
– volume: 125
  start-page: 2899
  year: 2014
  ident: 10.1016/j.spmi.2021.107050_bib38
  article-title: Effects of Cu doping on nickel oxide thin film prepared by sol–gel solution process
  publication-title: Optik
  doi: 10.1016/j.ijleo.2013.11.074
– volume: 2
  start-page: 10647
  year: 2014
  ident: 10.1016/j.spmi.2021.107050_bib19
  article-title: Free-floating ultrathin tin monoxide sheets for solar-driven photoelectrochemical water splitting
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/c4ta01659a
– volume: 7
  start-page: 43901
  year: 2017
  ident: 10.1016/j.spmi.2021.107050_bib47
  article-title: Enhanced PEC performance of nanoporous Si photoelectrodes by covering HfO2 and TiO2 passivation layers
  publication-title: Sci. Rep.
  doi: 10.1038/srep43901
– volume: 79
  start-page: 105485
  year: 2021
  ident: 10.1016/j.spmi.2021.107050_bib9
  article-title: Promising pyro-photo-electric catalysis in NaNbO3 via integrating solar and cold-hot alternation energy in pyroelectric-assisted photoelectrochemical system
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105485
– volume: 8
  start-page: 4374
  year: 2017
  ident: 10.1016/j.spmi.2021.107050_bib24
  article-title: Modulating hole transport in multilayered photocathodes with derivatized p-type nickel oxide and molecular assemblies for solar-driven water splitting
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b01911
– volume: 47
  start-page: 3603
  year: 2021
  ident: 10.1016/j.spmi.2021.107050_bib36
  article-title: CuxNi1-xO nanostructures and their nanocomposites with reduced graphene oxide: synthesis, characterization, and photocatalytic applications
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.09.209
– volume: 6
  start-page: 14988
  year: 2014
  ident: 10.1016/j.spmi.2021.107050_bib25
  article-title: Electrochemical determination of the density of states of nanostructured NiO films
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am502827z
– volume: 4
  start-page: 2551
  year: 2013
  ident: 10.1016/j.spmi.2021.107050_bib22
  article-title: Recent advances in the sensitization of wide-band-gap nanostructured p-type semiconductors. Photovoltaic and photocatalytic applications
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz400861v
– volume: 17
  start-page: 9336
  year: 2015
  ident: 10.1016/j.spmi.2021.107050_bib27
  article-title: 3D hierarchically mesoporous Cu-doped NiO nanostructures as high-performance anode materials for lithium ion batteries
  publication-title: CrystEngComm
  doi: 10.1039/C5CE00818B
– volume: 66
  start-page: 149
  year: 2017
  ident: 10.1016/j.spmi.2021.107050_bib35
  article-title: Effect of calcination temperature on Cu doped NiO nanoparticles prepared via wet-chemical method: structural, optical and morphological studies
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2017.04.009
– volume: 260
  start-page: 118213
  year: 2020
  ident: 10.1016/j.spmi.2021.107050_bib16
  article-title: FeOOH as hole transfer layer to retard the photocorrosion of Cu2O for enhanced photoelectrochemical performance
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118213
– volume: 56
  start-page: 4281
  year: 2011
  ident: 10.1016/j.spmi.2021.107050_bib20
  article-title: Electrochromic properties of porous NiO thin film as a counter electrode for NiO/WO3 complementary electrochromic window
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.01.078
– volume: 29
  start-page: 1216
  year: 2018
  ident: 10.1016/j.spmi.2021.107050_bib32
  article-title: Influence of Cu incorporation on ionic conductivity and dielectric relaxation mechanism in NiO thin films synthesized by CBD
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-017-8024-x
– volume: 295
  start-page: 645
  year: 2019
  ident: 10.1016/j.spmi.2021.107050_bib42
  article-title: Efficiency enhancement of electrochromic performance in NiO thin film via Cu doping for energy-saving potential
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.10.166
– start-page: 3
  year: 2012
  ident: 10.1016/j.spmi.2021.107050_bib2
  article-title: Introduction
– volume: 43
  start-page: 4804
  year: 2018
  ident: 10.1016/j.spmi.2021.107050_bib5
  article-title: Nanomaterials for photoelectrochemical water splitting – review
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.01.099
– volume: 85
  start-page: 1
  year: 2018
  ident: 10.1016/j.spmi.2021.107050_bib41
  article-title: Hydrothermal growth of undoped and boron doped ZnO nanorods as a photoelectrode for solar water splitting applications
  publication-title: J. Sol. Gel Sci. Technol.
  doi: 10.1007/s10971-017-4536-3
– volume: 4
  start-page: 995
  year: 2019
  ident: 10.1016/j.spmi.2021.107050_bib50
  article-title: Cu-doped NiO x as an effective hole-selective layer for a high-performance Sb 2 Se 3 photocathode for photoelectrochemical water splitting
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.9b00414
– volume: 23
  start-page: 2993
  year: 2013
  ident: 10.1016/j.spmi.2021.107050_bib33
  article-title: Solution-Processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202269
– volume: 127
  start-page: 8124
  year: 2016
  ident: 10.1016/j.spmi.2021.107050_bib37
  article-title: Investigation of structural and optical properties of copper doped NiO thin films deposited by RF magnetron reactive sputtering
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.06.005
– volume: 7
  start-page: 1700555
  year: 2017
  ident: 10.1016/j.spmi.2021.107050_bib18
  article-title: Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700555
– volume: 48
  start-page: 4979
  year: 2019
  ident: 10.1016/j.spmi.2021.107050_bib17
  article-title: Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00997J
– volume: 203
  start-page: 284
  year: 2020
  ident: 10.1016/j.spmi.2021.107050_bib45
  article-title: Efficient visible-light-driven water splitting performance of sulfidation-free, solution processed Cu2MgSnS4 thin films: role of post-drying temperature
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.04.027
– volume: 12
  start-page: 1889
  year: 2019
  ident: 10.1016/j.spmi.2021.107050_bib12
  article-title: Recent advances in earth‐abundant photocathodes for photoelectrochemical water splitting
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201801554
– volume: 238
  start-page: 37
  year: 1972
  ident: 10.1016/j.spmi.2021.107050_bib4
  article-title: Electrochemical photolysis of water at a semiconductor electrode
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 515
  start-page: 146095
  year: 2020
  ident: 10.1016/j.spmi.2021.107050_bib11
  article-title: Enhancing the PEC water splitting performance of BiVO4 co-modifying with NiFeOOH and Co-Pi double layer cocatalysts
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146095
– volume: 48
  start-page: 1908
  year: 2019
  ident: 10.1016/j.spmi.2021.107050_bib15
  article-title: Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00699G
– volume: 117
  start-page: 17879
  year: 2013
  ident: 10.1016/j.spmi.2021.107050_bib14
  article-title: Photoelectrochemical tandem cells for solar water splitting
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp405291g
– volume: 6
  start-page: 18558
  year: 2014
  ident: 10.1016/j.spmi.2021.107050_bib8
  article-title: Efficient photoelectrochemical water splitting over anodized p -type NiO porous films
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am507138b
– volume: 136
  start-page: 404
  year: 2014
  ident: 10.1016/j.spmi.2021.107050_bib46
  article-title: Preparation and characterization of TiO2 nanotube Arrays in ionic liquid for water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.05.097
– volume: 7
  start-page: 9183
  year: 2019
  ident: 10.1016/j.spmi.2021.107050_bib44
  article-title: Cu:NiO as a hole-selective back contact to improve the photoelectrochemical performance of CuBi 2 O 4 thin film photocathodes
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C9TA01489F
– volume: 12
  start-page: 50684
  year: 2020
  ident: 10.1016/j.spmi.2021.107050_bib34
  article-title: High-efficiency and stable inverted planar perovskite solar cells with pulsed laser deposited Cu-doped NiO x hole-transport layers
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c15923
– volume: 5
  start-page: 509
  year: 2021
  ident: 10.1016/j.spmi.2021.107050_bib10
  article-title: The synergistic effect with S-vacancies and built-in electric field on a TiO 2/MoS 2 photoanode for enhanced photoelectrochemical performance
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/D0SE01515F
– volume: 9
  start-page: 41887
  year: 2017
  ident: 10.1016/j.spmi.2021.107050_bib30
  article-title: Room-temperature and solution-processable Cu-doped nickel oxide nanoparticles for efficient hole-transport layers of flexible large-area perovskite solar cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13621
– volume: 519
  start-page: 4944
  year: 2011
  ident: 10.1016/j.spmi.2021.107050_bib26
  article-title: Preparation and properties of p-type transparent conductive Cu-doped NiO films
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2011.01.058
– volume: 8
  start-page: 3279
  year: 2016
  ident: 10.1016/j.spmi.2021.107050_bib48
  article-title: Enhanced photoelectrochemical performance of the BiVO 4/Zn:BiVO 4 homojunction for water oxidation
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201600767
SSID ssj0009417
Score 2.0499644
Snippet The present report describes the fabrication of undoped NiO and Cu doped NiO based photocathodes synthesized by sol gel spin coating technique. Mott-Schottky,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107050
SubjectTerms Cu doped NiO
Photocurrent density
Sol-gel processes
Water splitting
Title Cu doped NiO thin film photocathodes for enhanced PEC performance
URI https://dx.doi.org/10.1016/j.spmi.2021.107050
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfQiWhXro-zBm6xN2t0kPZZgqYpV0EJvIbuZpZE2CTa9-tudzcMqSA8eM8xA-LI78w2ZByHXLgcHabRm2uKacYxpTFraY1Hogaul40Cxi-Bp4oyn_GEmZg3i170wpqyy8v2lTy-8dSXpVmh2szjuvmLwQ_qNDtguBnMZP8y5a0757eemzGPAi627RpkZ7apxpqzxWmXLGHPEno0C1zK9938Fpx8BZ3RIDiqmSIflyxyRBiQtsufXC9paZLeo3lSrYzL01zRKM4joJH6m-TxOqI4XS5rN0zw1g1nTCFYU6SmFZF788qcvdz7NNk0DJ2Q6unvzx6zajcBU37JyBqHt6QGoCBRoLXSowPJCIRELoQFFqu-YiUMiQkIWAtfgIfo2JkcAIPFen5JmkiZwRqgSGMgwa0Aig7mR4FL2JBIrwJupNOYTbWLXoASqGhxu9lcsgrpC7D0wQAYGyKAEsk1uvm2ycmzGVm1RYx38-vgB-vUtduf_tLsg--apbCm8JM38Yw1XyC1y2SkOT4fsDO8fx5MviD_NGA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60IvUiPrE-96AniU3SJI0HD1Itra1VsIXeYrKZpZE2CTYiXvxT_kFn87AK4kHodZNdNt9uZr6Bb2YAjusGWkSjhSJUQygG-TTFU4Wt-K6NdeFZFqa9CG57Vmtg3AzN4QJ8FLkwUlaZ2_7MpqfWOh-p5mhW4yCoPpDzI_pNBlhLC3PpubKyg2-vFLdNL9pXdMgnut687jdaSt5aQOE1VU0UdDVbnCP3kaMQpnA5qrZrerSUKZCGeM2SBXtMn_iMi4ZAmzavUWyBiB79FrTuIiwZZC5k24Sz95mu5NxI2_zK3Slye3mmTiYqm8aTgIJSXaOBuiqT_X_zht88XHMNVnNqyi6zr1-HBQw3oNwoOsJtwHIqF-XTTbhsvDA_itFnveCOJaMgZCIYT1g8ipJIVoKNfJwy4sMMw1GqMWD31w0Wz7IUtmAwF8S2oRRGIe4A4yZ5TgpTiDlRMGYanqd7xOSQTAEXFMBUQCtAcXheqVw2zBg7hSTtyZFAOhJIJwOyAqdfc-KsTsefb5sF1s6P2-aQI_lj3u4_5x1BudW_7Trddq-zByvySZbPuA-l5PkFD4jYJN5hepEYPM775n4Cr1wNEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cu+doped+NiO+thin+film+photocathodes+for+enhanced+PEC+performance&rft.jtitle=Superlattices+and+microstructures&rft.au=Sahoo%2C+Pooja&rft.au=Sharma%2C+Akash&rft.au=Padhan%2C+Subash&rft.au=Thangavel%2C+R.&rft.date=2021-11-01&rft.issn=0749-6036&rft.volume=159&rft.spage=107050&rft_id=info:doi/10.1016%2Fj.spmi.2021.107050&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_spmi_2021_107050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6036&client=summon