Time window and frequency band optimization using regularized neighbourhood component analysis for Multi-View Motor Imagery EEG classification
•A novel multi-view feature selection to optimize time windows and frequency bands.•Proposed method preserves structure of multi-view EEG.•Neural response to motor imagery task is subject-specific.•Obtained classification accuracy 82.1 %, 91.7 %, and 84.5 % for three BCI datasets. Spatial features o...
Saved in:
Published in | Biomedical signal processing and control Vol. 67; p. 102550 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 1746-8108 |
DOI | 10.1016/j.bspc.2021.102550 |
Cover
Loading…
Abstract | •A novel multi-view feature selection to optimize time windows and frequency bands.•Proposed method preserves structure of multi-view EEG.•Neural response to motor imagery task is subject-specific.•Obtained classification accuracy 82.1 %, 91.7 %, and 84.5 % for three BCI datasets.
Spatial features optimized at frequency bands have been widely used in motor imagery (MI) based brain-computer interface (BCI) systems. However, using a fixed time window of electroencephalogram (EEG) to extract discriminatory features results in suboptimal MI classification performance because time latency during MI tasks is inconsistent between different subjects. Thus, apart from frequency band optimization, time window optimization is equally important to develop a subject-specific MI-BCI. With time windows, extracted feature space becomes a higher-order tensor problem that requires multi-view learning approaches to optimize features. This study proposes a novel multi-view feature selection method based on regularized neighbourhood component analysis to simultaneously optimize time windows and frequency bands. In the experiment, we extracted spatial features using common spatial patterns (CSP) from MI related EEG data at multiple time windows and frequency bands and optimized them using the proposed feature selection method. A support vector machine is trained to classify optimized CSP features to identify MI tasks. The proposed method achieved classification accuracies on three public BCI datasets (BCI competition IV dataset 2a, BCI competition III dataset IIIa, and BCI competition IV dataset 2b), which are 82.1 %, 91.7 %, and 84.5 %, respectively. Obtained results are superior to those obtained using standard competing algorithms. Hence, the proposed multi-view learning approach for simultaneous optimization of time windows and frequency bands of MI signals shows the potential to enhance a practical MI BCI device's performance. |
---|---|
AbstractList | •A novel multi-view feature selection to optimize time windows and frequency bands.•Proposed method preserves structure of multi-view EEG.•Neural response to motor imagery task is subject-specific.•Obtained classification accuracy 82.1 %, 91.7 %, and 84.5 % for three BCI datasets.
Spatial features optimized at frequency bands have been widely used in motor imagery (MI) based brain-computer interface (BCI) systems. However, using a fixed time window of electroencephalogram (EEG) to extract discriminatory features results in suboptimal MI classification performance because time latency during MI tasks is inconsistent between different subjects. Thus, apart from frequency band optimization, time window optimization is equally important to develop a subject-specific MI-BCI. With time windows, extracted feature space becomes a higher-order tensor problem that requires multi-view learning approaches to optimize features. This study proposes a novel multi-view feature selection method based on regularized neighbourhood component analysis to simultaneously optimize time windows and frequency bands. In the experiment, we extracted spatial features using common spatial patterns (CSP) from MI related EEG data at multiple time windows and frequency bands and optimized them using the proposed feature selection method. A support vector machine is trained to classify optimized CSP features to identify MI tasks. The proposed method achieved classification accuracies on three public BCI datasets (BCI competition IV dataset 2a, BCI competition III dataset IIIa, and BCI competition IV dataset 2b), which are 82.1 %, 91.7 %, and 84.5 %, respectively. Obtained results are superior to those obtained using standard competing algorithms. Hence, the proposed multi-view learning approach for simultaneous optimization of time windows and frequency bands of MI signals shows the potential to enhance a practical MI BCI device's performance. |
ArticleNumber | 102550 |
Author | Sharma, Shiru Singh Malan, Nitesh |
Author_xml | – sequence: 1 givenname: Nitesh surname: Singh Malan fullname: Singh Malan, Nitesh email: niteshsm.rs.bme16@itbhu.ac.in – sequence: 2 givenname: Shiru surname: Sharma fullname: Sharma, Shiru email: shiru.bme@itbhu.ac.in |
BookMark | eNp9kEtu2zAQQInCARq7uUBXvIDcob4M0E1huGmABN243RIUOXLGkEiXpGo4h8iZK8fpJguv5gO8-bw5mznvkLHPApYCRP1lt2zj3ixzyMXUyKsKPrBr0ZR1JgXI2f8cbsuPbB7jDqCUjSiv2cuGBuQHctYfuHaWdwH_jOjMkben0u8TDfSsE3nHx0huywNux14HekbLHdL2qfVjePLecuOH_XSXS9Mk3R8jRd75wB_HPlH2m_DAH32aGveD3mI48vX6jptex0gdmdcVn9hVp_uIN29xwX59X29WP7KHn3f3q28PmSkAUoa5hPa2rUpZ2bbooIG6RmsqKWoNpi21NEXZ1baxOrdNAW0nKisAK5B5LiUWC5af55rgYwzYqX2gQYejEqBORtVOnYyqk1F1NjpB8h1kKL2enYKm_jL69Yzi9NRfwqCiockyWgpokrKeLuH_AGCUl5w |
CitedBy_id | crossref_primary_10_1088_1741_2552_ac74e0 crossref_primary_10_2139_ssrn_4068457 crossref_primary_10_1109_JIOT_2023_3312407 crossref_primary_10_1109_ACCESS_2024_3410036 crossref_primary_10_1088_1741_2552_ad0a01 crossref_primary_10_1007_s11517_024_03103_1 crossref_primary_10_1080_10255842_2023_2301421 crossref_primary_10_1002_asjc_3267 crossref_primary_10_3390_bdcc8120169 crossref_primary_10_1007_s10548_021_00883_9 crossref_primary_10_1016_j_brainres_2025_149484 crossref_primary_10_1007_s44174_023_00082_z crossref_primary_10_1016_j_bspc_2021_103327 crossref_primary_10_1016_j_bspc_2022_103825 crossref_primary_10_1016_j_bspc_2022_103835 crossref_primary_10_1016_j_engappai_2024_109256 crossref_primary_10_1016_j_jneumeth_2021_109378 crossref_primary_10_1109_TNSRE_2023_3299355 crossref_primary_10_1016_j_bspc_2022_103618 crossref_primary_10_1088_1741_2552_ac9338 crossref_primary_10_4103_2773_2398_348253 crossref_primary_10_1145_3663669 |
Cites_doi | 10.1088/1741-2560/8/2/025002 10.1016/j.neunet.2018.02.011 10.1109/IEMBS.1997.756888 10.1109/86.895946 10.1109/TBME.2018.2814538 10.1109/TKDE.2018.2872063 10.1016/j.eswa.2010.11.050 10.1016/j.bspc.2017.06.016 10.1109/IBIOMED.2018.8534915 10.3389/fnins.2012.00055 10.1016/S1388-2457(99)00141-8 10.1155/2013/537218 10.1016/j.patcog.2011.04.018 10.1109/TNSRE.2006.875567 10.1109/TNNLS.2016.2521602 10.1109/TBME.2006.883649 10.1109/TCYB.2017.2786161 10.1109/SMC.2019.8914076 10.1016/j.patcog.2015.03.008 10.1016/j.neucom.2011.06.026 10.1109/TBME.2012.2215960 10.1016/j.jneumeth.2015.08.004 10.1186/s12859-017-1964-6 10.1007/s00702-007-0763-z 10.1186/1753-4631-3-2 10.1109/TBME.2014.2312397 10.1142/S0129065717500393 10.1109/TCYB.2018.2841847 10.3390/s17112576 10.1109/TNSRE.2006.875642 10.1109/TNSRE.2013.2253801 10.1155/2007/57180 10.1038/nrneurol.2016.113 10.3389/fnhum.2020.00231 10.1016/j.neucom.2016.11.008 10.3389/fnhum.2018.00312 10.1007/BF02584453 10.1016/j.compbiomed.2019.02.009 10.1109/5.939829 10.1109/TCYB.2015.2403356 10.3389/fneng.2012.00014 10.1142/S0129065716500325 10.1155/2018/7957408 10.1109/TCYB.2015.2401733 10.3389/fnins.2012.00039 10.1109/MSP.2008.4408441 10.1109/TBME.2009.2026181 10.1109/TCYB.2018.2797905 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2021.102550 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2021_102550 S1746809421001476 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-e280b9b5485db3f07066edc5816a0cb4a8c34f6d7da2d730bf15d10e5082288e3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Apr 24 23:03:08 EDT 2025 Tue Jul 01 01:34:09 EDT 2025 Fri Feb 23 02:43:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Brain-computer interface Motor imagery Electroencephalogram Neighbourhood component analysis Dual-tree complex wavelet transform |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-e280b9b5485db3f07066edc5816a0cb4a8c34f6d7da2d730bf15d10e5082288e3 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2021_102550 crossref_citationtrail_10_1016_j_bspc_2021_102550 elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102550 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 2021-05-00 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Krusienski, Grosse-Wentrup, Galán, Coyle, Miller, Forney, Anderson (bib0060) 2011; 8 Feng, Yin, Jin, Saab, Daly, Wang, Hu, Cichocki (bib0245) 2018; 102 Zhou, Zhao, Zhang, Adalı, Xie, Cichocki (bib0125) 2016; 104 Akay, Mello (bib0170) 1997; vol. 6 Zhang, Nam, Zhou, Jin, Wang, Cichocki (bib0240) 2019; 49 Zhu, Li, Zhang, Ju, Wu (bib0250) 2017; 28 Higashi, Tanaka (bib0105) 2013; 2013 Zhang, Zhou, Jin, Zhang, Wang, Cichocki (bib0295) 2017; 225 Velásquez-Martínez, Álvarez-Meza, Castellanos-Domínguez (bib0225) 2013 Chaudhary, Birbaumer, Ramos-Murguialday (bib0005) 2016; 12 Wei, Wan, Lu (bib0140) 2013 Pfurtscheller, Neuper (bib0030) 2001; 89 Jiang, Wang, Wu, Qin, Xu, Yin (bib0150) 2020; 14 Zhang, Zhou, Jin, Wang, Cichocki (bib0095) 2015; 255 Lv, Kang, Wang, Ji, Xu (bib0280) 2019 Rafiee, Rafiee, Prause, Schoen (bib0175) 2011; 38 Tan, Sun, Zhang, Liu, Liu (bib0230) 2018 Mulder (bib0035) 2007; 114 Blankertz, Tomioka, Lemm, Kawanabe, Muller (bib0065) 2008; 25 Liu, Zhang (bib0260) 2016; 46 Xygonakis, Athanasiou, Pandria, Kugiumtzis, Bamidis (bib0220) 2018; 2018 Jiao, Zhang, Wang, Wang, Jin, Wang (bib0305) 2018; 28 Tariq, Trivailo, Simic (bib0235) 2018; 12 Malan, Sharma (bib0025) 2020 Ang, Chin, Zhang, Guan (bib0115) 2012; 45 Liu, Chen, Liu, Ai, Xie, Chen (bib0050) 2017; 17 Blankertz, Muller, Krusienski, Schalk, Wolpaw, Schlogl, Pfurtscheller, Millan, Schroder, Birbaumer (bib0195) 2006; 14 Malan, Sharma (bib0135) 2021 Zhu, Li, Zhang (bib0255) 2016; 46 Malan, Sharma (bib0130) 2019; 107 Zhang, Wang, Jin, Wang (bib0075) 2017; 27 Nie, Wang, Adeli, Lao, Lin, Shen (bib0265) 2019; 49 Zhou, He, Xie, Fu, Zhang, Yang (bib0275) 2015; 48 Li, Yang, Zhang (bib0290) 2019; 31 Malan, Sharma (bib0180) 2018 Song, Epps (bib0100) 2007; 2007 Akay (bib0165) 1995; 23 Feng, Yin, Jin, Saab, Daly, Wang, Hu, Cichocki (bib0185) 2018; 102 Thomas, Guan, Lau, Vinod, Ang (bib0090) 2009; 56 Kumar, Sharma, Tsunoda (bib0145) 2017; 18 Higashi, Tanaka (bib0215) 2013; 60 Klonowski (bib0160) 2009; 3 Dornhege, Blankertz, Krauledat, Losch, Curio, Muller (bib0210) 2006; 53 Fazel-Rezai, Allison, Guger, Sellers, Kleih, Kübler (bib0010) 2012; 5 Müller, Krauledat, Dornhege, Curio, Blankertz (bib0070) 2007 Yuan, He (bib0045) 2014; 61 Cao, Prasad, Tanveer, Lin (bib0310) 2019 Zhang, Shi, Cheng, Wang, Yap, Shen (bib0270) 2019; 49 Fu, Cao, Guo, Huang (bib0285) 2008 Nie, Trullo, Lian, Wang, Petitjean, Ruan, Wang, Shen (bib0300) 2018; 65 Tangermann, Müller, Aertsen, Birbaumer, Braun, Brunner, Leeb, Mehring, Miller, Mueller-Putz (bib0200) 2012; 6 Pan, Li, Zhang, Gu, Li (bib0015) 2013; 21 Shawe-Taylor, Sun (bib0190) 2011; 74 Ramoser, Muller-Gerking, Pfurtscheller (bib0205) 2000; 8 Ang, Chin, Wang, Guan, Zhang (bib0085) 2012; 6 Yamawaki, Wilke, Liu, He (bib0120) 2006; 14 Yang, Chevallier, Wiart, Bloch (bib0110) 2017; 38 Novi, Guan, Dat, Xue (bib0080) 2007 Zhang, Nam, Zhou, Jin, Wang, Cichocki (bib0055) 2018 Soni, Malan, Sharma (bib0020) 2019 Pfurtscheller, Da Silva (bib0040) 1999; 110 Yang, Wang, Zuo (bib0155) 2012; 7 Zhang (10.1016/j.bspc.2021.102550_bib0295) 2017; 225 Fu (10.1016/j.bspc.2021.102550_bib0285) 2008 Jiao (10.1016/j.bspc.2021.102550_bib0305) 2018; 28 Ang (10.1016/j.bspc.2021.102550_bib0115) 2012; 45 Malan (10.1016/j.bspc.2021.102550_bib0130) 2019; 107 Xygonakis (10.1016/j.bspc.2021.102550_bib0220) 2018; 2018 Mulder (10.1016/j.bspc.2021.102550_bib0035) 2007; 114 Higashi (10.1016/j.bspc.2021.102550_bib0105) 2013; 2013 Malan (10.1016/j.bspc.2021.102550_bib0135) 2021 Yang (10.1016/j.bspc.2021.102550_bib0110) 2017; 38 Zhou (10.1016/j.bspc.2021.102550_bib0125) 2016; 104 Tariq (10.1016/j.bspc.2021.102550_bib0235) 2018; 12 Zhu (10.1016/j.bspc.2021.102550_bib0250) 2017; 28 Krusienski (10.1016/j.bspc.2021.102550_bib0060) 2011; 8 Zhu (10.1016/j.bspc.2021.102550_bib0255) 2016; 46 Ramoser (10.1016/j.bspc.2021.102550_bib0205) 2000; 8 Liu (10.1016/j.bspc.2021.102550_bib0050) 2017; 17 Higashi (10.1016/j.bspc.2021.102550_bib0215) 2013; 60 Zhang (10.1016/j.bspc.2021.102550_bib0055) 2018 Novi (10.1016/j.bspc.2021.102550_bib0080) 2007 Dornhege (10.1016/j.bspc.2021.102550_bib0210) 2006; 53 Nie (10.1016/j.bspc.2021.102550_bib0300) 2018; 65 Feng (10.1016/j.bspc.2021.102550_bib0245) 2018; 102 Chaudhary (10.1016/j.bspc.2021.102550_bib0005) 2016; 12 Yuan (10.1016/j.bspc.2021.102550_bib0045) 2014; 61 Rafiee (10.1016/j.bspc.2021.102550_bib0175) 2011; 38 Feng (10.1016/j.bspc.2021.102550_bib0185) 2018; 102 Velásquez-Martínez (10.1016/j.bspc.2021.102550_bib0225) 2013 Zhang (10.1016/j.bspc.2021.102550_bib0240) 2019; 49 Pan (10.1016/j.bspc.2021.102550_bib0015) 2013; 21 Yamawaki (10.1016/j.bspc.2021.102550_bib0120) 2006; 14 Malan (10.1016/j.bspc.2021.102550_bib0180) 2018 Zhang (10.1016/j.bspc.2021.102550_bib0075) 2017; 27 Kumar (10.1016/j.bspc.2021.102550_bib0145) 2017; 18 Nie (10.1016/j.bspc.2021.102550_bib0265) 2019; 49 Klonowski (10.1016/j.bspc.2021.102550_bib0160) 2009; 3 Tan (10.1016/j.bspc.2021.102550_bib0230) 2018 Lv (10.1016/j.bspc.2021.102550_bib0280) 2019 Jiang (10.1016/j.bspc.2021.102550_bib0150) 2020; 14 Zhang (10.1016/j.bspc.2021.102550_bib0095) 2015; 255 Fazel-Rezai (10.1016/j.bspc.2021.102550_bib0010) 2012; 5 Yang (10.1016/j.bspc.2021.102550_bib0155) 2012; 7 Cao (10.1016/j.bspc.2021.102550_bib0310) 2019 Malan (10.1016/j.bspc.2021.102550_bib0025) 2020 Pfurtscheller (10.1016/j.bspc.2021.102550_bib0030) 2001; 89 Ang (10.1016/j.bspc.2021.102550_bib0085) 2012; 6 Tangermann (10.1016/j.bspc.2021.102550_bib0200) 2012; 6 Wei (10.1016/j.bspc.2021.102550_bib0140) 2013 Blankertz (10.1016/j.bspc.2021.102550_bib0065) 2008; 25 Müller (10.1016/j.bspc.2021.102550_bib0070) 2007 Shawe-Taylor (10.1016/j.bspc.2021.102550_bib0190) 2011; 74 Zhou (10.1016/j.bspc.2021.102550_bib0275) 2015; 48 Blankertz (10.1016/j.bspc.2021.102550_bib0195) 2006; 14 Song (10.1016/j.bspc.2021.102550_bib0100) 2007; 2007 Akay (10.1016/j.bspc.2021.102550_bib0170) 1997; vol. 6 Soni (10.1016/j.bspc.2021.102550_bib0020) 2019 Li (10.1016/j.bspc.2021.102550_bib0290) 2019; 31 Thomas (10.1016/j.bspc.2021.102550_bib0090) 2009; 56 Pfurtscheller (10.1016/j.bspc.2021.102550_bib0040) 1999; 110 Akay (10.1016/j.bspc.2021.102550_bib0165) 1995; 23 Zhang (10.1016/j.bspc.2021.102550_bib0270) 2019; 49 Liu (10.1016/j.bspc.2021.102550_bib0260) 2016; 46 |
References_xml | – volume: 38 start-page: 302 year: 2017 end-page: 311 ident: bib0110 article-title: Subject-specific time-frequency selection for multi-class motor imagery-based BCIs using few Laplacian EEG channels publication-title: Biomed. Signal Process. Control – volume: 14 start-page: 250 year: 2006 end-page: 254 ident: bib0120 article-title: An enhanced time-frequency-spatial approach for motor imagery classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 61 start-page: 1425 year: 2014 end-page: 1435 ident: bib0045 article-title: Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives publication-title: IEEE Trans. Biomed. Eng. – volume: 28 start-page: 1750039 year: 2018 ident: bib0305 article-title: A novel multilayer correlation maximization model for improving CCA-based frequency recognition in SSVEP brain-computer interface publication-title: Int. J. Neural Syst. – start-page: 56 year: 2019 end-page: 59 ident: bib0020 article-title: CCA model with training approach to improve recognition rate of SSVEP in Real time publication-title: Proceedings of the 2019 3rd International Conference on Artificial Intelligence and Virtual Reality, Association for Computing Machinery – volume: 225 start-page: 103 year: 2017 end-page: 110 ident: bib0295 article-title: Sparse Bayesian multiway canonical correlation analysis for EEG pattern recognition publication-title: Neurocomputing – start-page: 204 year: 2007 end-page: 207 ident: bib0080 article-title: Sub-band common spatial pattern (SBCSP) for brain-computer interface publication-title: 3rd International IEEE/EMBS Conference On Neural Engineering, 2007. CNE’07 – volume: 12 year: 2018 ident: bib0235 article-title: EEG-based BCI control schemes for lower-limb assistive-robots publication-title: Front. Hum. Neurosci. – volume: 14 year: 2020 ident: bib0150 article-title: Temporal combination pattern optimization based on feature selection method for motor imagery BCIs publication-title: Front. Hum. Neurosci. – volume: 21 start-page: 435 year: 2013 end-page: 443 ident: bib0015 article-title: Discrimination between control and Idle States in asynchronous SSVEP-based brain switches: a pseudo-key-based approach publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 45 start-page: 2137 year: 2012 end-page: 2144 ident: bib0115 article-title: Mutual information-based selection of optimal spatial–temporal patterns for single-trial EEG-based BCIs publication-title: Pattern Recognit. – start-page: 365 year: 2013 end-page: 374 ident: bib0225 article-title: Motor imagery classification for BCI using common spatial patterns and feature relevance analysis publication-title: Natural and Artificial Computation in Engineering and Medical Applications – volume: 27 year: 2017 ident: bib0075 article-title: Sparse bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification publication-title: Int. J. Neural Syst. – volume: 49 start-page: 3322 year: 2019 end-page: 3332 ident: bib0240 article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI publication-title: IEEE Trans. Cybern. – start-page: 168 year: 2020 end-page: 197 ident: bib0025 article-title: Introduction to motor imagery-based brain-computer interface: time, frequency, and phase analysis-based feature extraction for Two class MI classification publication-title: Biomedical and Clinical Engineering for Healthcare Advancement – year: 2019 ident: bib0280 article-title: Multi-view Subspace Clustering Via Partition Fusion, ArXiv:1912.01201 [Cs, Stat] – volume: 107 start-page: 118 year: 2019 end-page: 126 ident: bib0130 article-title: Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals publication-title: Comput. Biol. Med. – volume: 102 start-page: 87 year: 2018 end-page: 95 ident: bib0245 article-title: Towards correlation-based time window selection method for motor imagery BCIs publication-title: Neural Netw. – volume: 28 start-page: 1263 year: 2017 end-page: 1275 ident: bib0250 article-title: Robust joint graph sparse coding for unsupervised spectral feature selection publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 49 start-page: 1123 year: 2019 end-page: 1136 ident: bib0265 article-title: 3-d fully convolutional networks for multimodal isointense infant brain image segmentation publication-title: IEEE Trans. Cybern. – volume: 89 start-page: 1123 year: 2001 end-page: 1134 ident: bib0030 article-title: Motor imagery and direct brain-computer communication publication-title: Proc. IEEE – volume: 7 start-page: 161 year: 2012 end-page: 168 ident: bib0155 article-title: Neighborhood component feature selection for high-dimensional data publication-title: JCP – volume: 102 start-page: 87 year: 2018 end-page: 95 ident: bib0185 article-title: Towards correlation-based time window selection method for motor imagery BCIs publication-title: Neural Netw. – volume: 8 start-page: 441 year: 2000 end-page: 446 ident: bib0205 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans. Rehabil. Eng. – volume: 110 start-page: 1842 year: 1999 end-page: 1857 ident: bib0040 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol. – year: 2021 ident: bib0135 article-title: Motor imagery EEG spectral-spatial feature optimization using dual-tree complex wavelet and neighbourhood component analysis publication-title: IRBM – volume: vol. 6 start-page: 2688 year: 1997 end-page: 2691 ident: bib0170 article-title: Wavelets for biomedical signal processing publication-title: Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. “Magnificent Milestones and Emerging Opportunities in Medical Engineering” (Cat. No.97CH36136) – volume: 46 start-page: 450 year: 2016 end-page: 461 ident: bib0255 article-title: Block-row sparse multiview multilabel learning for image classification publication-title: IEEE Trans. Cybern. – volume: 46 start-page: 298 year: 2016 end-page: 310 ident: bib0260 article-title: Pairwise constraint-guided sparse learning for feature selection publication-title: IEEE Trans. Cybern. – volume: 8 start-page: 025002 year: 2011 ident: bib0060 article-title: Critical issues in state-of-the-art brain–computer interface signal processing publication-title: J. Neural Eng. – volume: 18 year: 2017 ident: bib0145 article-title: An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information publication-title: BMC Bioinformatics – volume: 17 year: 2017 ident: bib0050 article-title: Feature selection for motor imagery EEG classification based on firefly algorithm and learning automata publication-title: Sensors (Basel) – volume: 25 start-page: 41 year: 2008 end-page: 56 ident: bib0065 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Process. Mag. – volume: 31 start-page: 1863 year: 2019 end-page: 1883 ident: bib0290 article-title: A survey of multi-view representation learning publication-title: IEEE Trans. Knowl. Data Eng. – year: 2008 ident: bib0285 article-title: Multiple feature fusion by subspace learning publication-title: CIVR’ 08 – year: 2013 ident: bib0140 article-title: Classification of EEG signals using filter bank common spatial pattern based on fisher and laplacian criteria publication-title: Appl. Mech. Mater. – volume: 6 year: 2012 ident: bib0085 article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b publication-title: Front. Neurosci. – volume: 255 start-page: 85 year: 2015 end-page: 91 ident: bib0095 article-title: Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface publication-title: J. Neurosci. Methods – volume: 74 start-page: 3609 year: 2011 end-page: 3618 ident: bib0190 article-title: A review of optimization methodologies in support vector machines publication-title: Neurocomputing – volume: 14 start-page: 153 year: 2006 end-page: 159 ident: bib0195 article-title: The BCI competition III: validating alternative approaches to actual BCI problems publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 2013 year: 2013 ident: bib0105 article-title: Common spatio-time-frequency patterns for motor imagery-based brain machine interfaces publication-title: Comput. Intell. Neurosci. – volume: 12 start-page: 513 year: 2016 end-page: 525 ident: bib0005 article-title: Brain-computer interfaces for communication and rehabilitation publication-title: Nat. Rev. Neurol. – volume: 53 start-page: 2274 year: 2006 end-page: 2281 ident: bib0210 article-title: Combined optimization of spatial and temporal filters for improving brain-computer interfacing publication-title: IEEE Trans. Biomed. Eng. – volume: 3 start-page: 2 year: 2009 ident: bib0160 article-title: Everything you wanted to ask about EEG but were afraid to get the right answer publication-title: Nonlinear Biomed. Phys. – volume: 60 start-page: 1100 year: 2013 end-page: 1110 ident: bib0215 article-title: Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification publication-title: IEEE Trans. Biomed. Eng. – volume: 2018 year: 2018 ident: bib0220 article-title: Decoding motor imagery through common spatial pattern filters at the EEG source space publication-title: Comput. Intell. Neurosci. – start-page: 705 year: 2007 end-page: 714 ident: bib0070 article-title: Machine learning and applications for brain-computer interfacing publication-title: Human Interface and the Management of Information. Methods, Techniques and Tools in Information Design – volume: 56 start-page: 2730 year: 2009 end-page: 2733 ident: bib0090 article-title: A new discriminative common spatial pattern method for motor imagery brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. – volume: 65 start-page: 2720 year: 2018 end-page: 2730 ident: bib0300 article-title: Medical image synthesis with deep convolutional adversarial networks publication-title: IEEE Trans. Biomed. Eng. – volume: 38 start-page: 6190 year: 2011 end-page: 6201 ident: bib0175 article-title: Wavelet basis functions in biomedical signal processing publication-title: Expert Syst. Appl. – volume: 6 start-page: 55 year: 2012 ident: bib0200 article-title: Review of the BCI competition IV publication-title: Front. Neurosci. – volume: 48 start-page: 2459 year: 2015 end-page: 2473 ident: bib0275 article-title: Robust visual tracking via efficient manifold ranking with low-dimensional compressive features publication-title: Pattern Recognit. – volume: 114 start-page: 1265 year: 2007 end-page: 1278 ident: bib0035 article-title: Motor imagery and action observation: cognitive tools for rehabilitation publication-title: J. Neural Transm. – volume: 5 year: 2012 ident: bib0010 article-title: P300 brain computer interface: current challenges and emerging trends publication-title: Front. Neuroeng. – start-page: 94 year: 2018 end-page: 99 ident: bib0180 article-title: Removal of ocular atrifacts from single channel EEG signal using DTCWT with quantum inspired adaptive threshold publication-title: 2018 2nd International Conference on Biomedical Engineering (IBIOMED) – start-page: 2423 year: 2019 end-page: 2427 ident: bib0310 article-title: Tensor decomposition for EEG signal retrieval publication-title: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC) – volume: 49 start-page: 662 year: 2019 end-page: 674 ident: bib0270 article-title: Longitudinally guided super-resolution of neonatal brain magnetic resonance images publication-title: IEEE Trans. Cybern. – year: 2018 ident: bib0230 article-title: Spatial and Spectral Features Fusion for EEG Classification During Motor Imagery in BCI, ArXiv:1808.04443 [Eess, q-Bio] – start-page: 1 year: 2018 end-page: 11 ident: bib0055 article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI publication-title: IEEE Trans. Cybern. – volume: 104 start-page: 310 year: 2016 end-page: 331 ident: bib0125 article-title: Linked component analysis from matrices to high-order tensors publication-title: Appl. Biomed. Data Proc. IEEE – volume: 2007 year: 2007 ident: bib0100 article-title: Classifying EEG for brain-computer interface: learning optimal filters for dynamical system features publication-title: Comput. Intell. Neurosci. – volume: 23 start-page: 531 year: 1995 end-page: 542 ident: bib0165 article-title: Wavelets in biomedical engineering publication-title: Ann. Biomed. Eng. – volume: 8 start-page: 025002 year: 2011 ident: 10.1016/j.bspc.2021.102550_bib0060 article-title: Critical issues in state-of-the-art brain–computer interface signal processing publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/2/025002 – year: 2018 ident: 10.1016/j.bspc.2021.102550_bib0230 – volume: 102 start-page: 87 year: 2018 ident: 10.1016/j.bspc.2021.102550_bib0245 article-title: Towards correlation-based time window selection method for motor imagery BCIs publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.02.011 – volume: vol. 6 start-page: 2688 year: 1997 ident: 10.1016/j.bspc.2021.102550_bib0170 article-title: Wavelets for biomedical signal processing publication-title: Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. “Magnificent Milestones and Emerging Opportunities in Medical Engineering” (Cat. No.97CH36136) doi: 10.1109/IEMBS.1997.756888 – volume: 8 start-page: 441 year: 2000 ident: 10.1016/j.bspc.2021.102550_bib0205 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.895946 – volume: 65 start-page: 2720 year: 2018 ident: 10.1016/j.bspc.2021.102550_bib0300 article-title: Medical image synthesis with deep convolutional adversarial networks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2814538 – start-page: 204 year: 2007 ident: 10.1016/j.bspc.2021.102550_bib0080 article-title: Sub-band common spatial pattern (SBCSP) for brain-computer interface – volume: 31 start-page: 1863 year: 2019 ident: 10.1016/j.bspc.2021.102550_bib0290 article-title: A survey of multi-view representation learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2872063 – volume: 38 start-page: 6190 year: 2011 ident: 10.1016/j.bspc.2021.102550_bib0175 article-title: Wavelet basis functions in biomedical signal processing publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.11.050 – volume: 38 start-page: 302 year: 2017 ident: 10.1016/j.bspc.2021.102550_bib0110 article-title: Subject-specific time-frequency selection for multi-class motor imagery-based BCIs using few Laplacian EEG channels publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.06.016 – start-page: 365 year: 2013 ident: 10.1016/j.bspc.2021.102550_bib0225 article-title: Motor imagery classification for BCI using common spatial patterns and feature relevance analysis – start-page: 94 year: 2018 ident: 10.1016/j.bspc.2021.102550_bib0180 article-title: Removal of ocular atrifacts from single channel EEG signal using DTCWT with quantum inspired adaptive threshold publication-title: 2018 2nd International Conference on Biomedical Engineering (IBIOMED) doi: 10.1109/IBIOMED.2018.8534915 – volume: 6 start-page: 55 year: 2012 ident: 10.1016/j.bspc.2021.102550_bib0200 article-title: Review of the BCI competition IV publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00055 – volume: 110 start-page: 1842 year: 1999 ident: 10.1016/j.bspc.2021.102550_bib0040 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(99)00141-8 – volume: 2013 year: 2013 ident: 10.1016/j.bspc.2021.102550_bib0105 article-title: Common spatio-time-frequency patterns for motor imagery-based brain machine interfaces publication-title: Comput. Intell. Neurosci. doi: 10.1155/2013/537218 – volume: 45 start-page: 2137 year: 2012 ident: 10.1016/j.bspc.2021.102550_bib0115 article-title: Mutual information-based selection of optimal spatial–temporal patterns for single-trial EEG-based BCIs publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.04.018 – year: 2013 ident: 10.1016/j.bspc.2021.102550_bib0140 article-title: Classification of EEG signals using filter bank common spatial pattern based on fisher and laplacian criteria publication-title: Appl. Mech. Mater. – start-page: 56 year: 2019 ident: 10.1016/j.bspc.2021.102550_bib0020 article-title: CCA model with training approach to improve recognition rate of SSVEP in Real time – volume: 14 start-page: 250 year: 2006 ident: 10.1016/j.bspc.2021.102550_bib0120 article-title: An enhanced time-frequency-spatial approach for motor imagery classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2006.875567 – start-page: 168 year: 2020 ident: 10.1016/j.bspc.2021.102550_bib0025 article-title: Introduction to motor imagery-based brain-computer interface: time, frequency, and phase analysis-based feature extraction for Two class MI classification – volume: 28 start-page: 1263 year: 2017 ident: 10.1016/j.bspc.2021.102550_bib0250 article-title: Robust joint graph sparse coding for unsupervised spectral feature selection publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2521602 – volume: 53 start-page: 2274 year: 2006 ident: 10.1016/j.bspc.2021.102550_bib0210 article-title: Combined optimization of spatial and temporal filters for improving brain-computer interfacing publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.883649 – volume: 49 start-page: 662 year: 2019 ident: 10.1016/j.bspc.2021.102550_bib0270 article-title: Longitudinally guided super-resolution of neonatal brain magnetic resonance images publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2786161 – start-page: 2423 year: 2019 ident: 10.1016/j.bspc.2021.102550_bib0310 article-title: Tensor decomposition for EEG signal retrieval publication-title: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC) doi: 10.1109/SMC.2019.8914076 – volume: 48 start-page: 2459 year: 2015 ident: 10.1016/j.bspc.2021.102550_bib0275 article-title: Robust visual tracking via efficient manifold ranking with low-dimensional compressive features publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.03.008 – start-page: 1 year: 2018 ident: 10.1016/j.bspc.2021.102550_bib0055 article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI publication-title: IEEE Trans. Cybern. – start-page: 705 year: 2007 ident: 10.1016/j.bspc.2021.102550_bib0070 article-title: Machine learning and applications for brain-computer interfacing – volume: 74 start-page: 3609 year: 2011 ident: 10.1016/j.bspc.2021.102550_bib0190 article-title: A review of optimization methodologies in support vector machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.06.026 – volume: 60 start-page: 1100 year: 2013 ident: 10.1016/j.bspc.2021.102550_bib0215 article-title: Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2215960 – volume: 255 start-page: 85 year: 2015 ident: 10.1016/j.bspc.2021.102550_bib0095 article-title: Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.08.004 – volume: 18 year: 2017 ident: 10.1016/j.bspc.2021.102550_bib0145 article-title: An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1964-6 – volume: 114 start-page: 1265 year: 2007 ident: 10.1016/j.bspc.2021.102550_bib0035 article-title: Motor imagery and action observation: cognitive tools for rehabilitation publication-title: J. Neural Transm. doi: 10.1007/s00702-007-0763-z – volume: 3 start-page: 2 year: 2009 ident: 10.1016/j.bspc.2021.102550_bib0160 article-title: Everything you wanted to ask about EEG but were afraid to get the right answer publication-title: Nonlinear Biomed. Phys. doi: 10.1186/1753-4631-3-2 – volume: 61 start-page: 1425 year: 2014 ident: 10.1016/j.bspc.2021.102550_bib0045 article-title: Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2312397 – volume: 28 start-page: 1750039 year: 2018 ident: 10.1016/j.bspc.2021.102550_bib0305 article-title: A novel multilayer correlation maximization model for improving CCA-based frequency recognition in SSVEP brain-computer interface publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065717500393 – volume: 49 start-page: 3322 year: 2019 ident: 10.1016/j.bspc.2021.102550_bib0240 article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2841847 – volume: 17 year: 2017 ident: 10.1016/j.bspc.2021.102550_bib0050 article-title: Feature selection for motor imagery EEG classification based on firefly algorithm and learning automata publication-title: Sensors (Basel) doi: 10.3390/s17112576 – volume: 14 start-page: 153 year: 2006 ident: 10.1016/j.bspc.2021.102550_bib0195 article-title: The BCI competition III: validating alternative approaches to actual BCI problems publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2006.875642 – volume: 21 start-page: 435 year: 2013 ident: 10.1016/j.bspc.2021.102550_bib0015 article-title: Discrimination between control and Idle States in asynchronous SSVEP-based brain switches: a pseudo-key-based approach publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2253801 – volume: 2007 year: 2007 ident: 10.1016/j.bspc.2021.102550_bib0100 article-title: Classifying EEG for brain-computer interface: learning optimal filters for dynamical system features publication-title: Comput. Intell. Neurosci. doi: 10.1155/2007/57180 – volume: 12 start-page: 513 year: 2016 ident: 10.1016/j.bspc.2021.102550_bib0005 article-title: Brain-computer interfaces for communication and rehabilitation publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2016.113 – volume: 14 year: 2020 ident: 10.1016/j.bspc.2021.102550_bib0150 article-title: Temporal combination pattern optimization based on feature selection method for motor imagery BCIs publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2020.00231 – volume: 7 start-page: 161 year: 2012 ident: 10.1016/j.bspc.2021.102550_bib0155 article-title: Neighborhood component feature selection for high-dimensional data publication-title: JCP – volume: 225 start-page: 103 year: 2017 ident: 10.1016/j.bspc.2021.102550_bib0295 article-title: Sparse Bayesian multiway canonical correlation analysis for EEG pattern recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.11.008 – volume: 12 year: 2018 ident: 10.1016/j.bspc.2021.102550_bib0235 article-title: EEG-based BCI control schemes for lower-limb assistive-robots publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00312 – volume: 23 start-page: 531 year: 1995 ident: 10.1016/j.bspc.2021.102550_bib0165 article-title: Wavelets in biomedical engineering publication-title: Ann. Biomed. Eng. doi: 10.1007/BF02584453 – volume: 107 start-page: 118 year: 2019 ident: 10.1016/j.bspc.2021.102550_bib0130 article-title: Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.02.009 – volume: 102 start-page: 87 year: 2018 ident: 10.1016/j.bspc.2021.102550_bib0185 article-title: Towards correlation-based time window selection method for motor imagery BCIs publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.02.011 – volume: 89 start-page: 1123 year: 2001 ident: 10.1016/j.bspc.2021.102550_bib0030 article-title: Motor imagery and direct brain-computer communication publication-title: Proc. IEEE doi: 10.1109/5.939829 – volume: 46 start-page: 450 year: 2016 ident: 10.1016/j.bspc.2021.102550_bib0255 article-title: Block-row sparse multiview multilabel learning for image classification publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2403356 – volume: 5 year: 2012 ident: 10.1016/j.bspc.2021.102550_bib0010 article-title: P300 brain computer interface: current challenges and emerging trends publication-title: Front. Neuroeng. doi: 10.3389/fneng.2012.00014 – volume: 104 start-page: 310 year: 2016 ident: 10.1016/j.bspc.2021.102550_bib0125 article-title: Linked component analysis from matrices to high-order tensors publication-title: Appl. Biomed. Data Proc. IEEE – volume: 27 year: 2017 ident: 10.1016/j.bspc.2021.102550_bib0075 article-title: Sparse bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500325 – year: 2008 ident: 10.1016/j.bspc.2021.102550_bib0285 article-title: Multiple feature fusion by subspace learning – volume: 2018 year: 2018 ident: 10.1016/j.bspc.2021.102550_bib0220 article-title: Decoding motor imagery through common spatial pattern filters at the EEG source space publication-title: Comput. Intell. Neurosci. doi: 10.1155/2018/7957408 – volume: 46 start-page: 298 year: 2016 ident: 10.1016/j.bspc.2021.102550_bib0260 article-title: Pairwise constraint-guided sparse learning for feature selection publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2401733 – volume: 6 year: 2012 ident: 10.1016/j.bspc.2021.102550_bib0085 article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00039 – volume: 25 start-page: 41 year: 2008 ident: 10.1016/j.bspc.2021.102550_bib0065 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2008.4408441 – volume: 56 start-page: 2730 year: 2009 ident: 10.1016/j.bspc.2021.102550_bib0090 article-title: A new discriminative common spatial pattern method for motor imagery brain–computer interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2026181 – year: 2021 ident: 10.1016/j.bspc.2021.102550_bib0135 article-title: Motor imagery EEG spectral-spatial feature optimization using dual-tree complex wavelet and neighbourhood component analysis publication-title: IRBM – year: 2019 ident: 10.1016/j.bspc.2021.102550_bib0280 – volume: 49 start-page: 1123 year: 2019 ident: 10.1016/j.bspc.2021.102550_bib0265 article-title: 3-d fully convolutional networks for multimodal isointense infant brain image segmentation publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2797905 |
SSID | ssj0048714 |
Score | 2.3822188 |
Snippet | •A novel multi-view feature selection to optimize time windows and frequency bands.•Proposed method preserves structure of multi-view EEG.•Neural response to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102550 |
SubjectTerms | Brain-computer interface Dual-tree complex wavelet transform Electroencephalogram Motor imagery Neighbourhood component analysis |
Title | Time window and frequency band optimization using regularized neighbourhood component analysis for Multi-View Motor Imagery EEG classification |
URI | https://dx.doi.org/10.1016/j.bspc.2021.102550 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqssCAeIryqDywIdM4745V1dKC2gWKukV27KAgmlShqCoDn8A3c28eVZFQB7YkshPL17kP65xjQq41hk0ehcxQtmQo2MWkB1eoNW5wobh2kSg8GruDiX0_daY10q24MAirLH1_4dNzb10-aZWz2ZrHcesRcmnXh-rERBkh20PZbdv2UD__9msN84B8PNf3xsYMW5fEmQLjJd_nKGNoclQwcJB7_1dw2gg4_QOyX2aKtFMM5pDUdHJE9jb0A4_JNxI46BLK6nRJRaJolBXI6BWVeJuCP5iVREuKCPcXmuVnz2fxp1Y0wW1R3NVEaWOK4PI0gRgEbyqESigktDRn6LLnWC_pKIUCnQ5nKHuxor3eHQ0x90awUf6JEzLp9566A1YesMBCyzAWTJu-IdsSihZHSSuCv991tQodn7vCCKUt_NCyI1d5SpgKXIGMuKO4oR2Uifd9bZ2SegIjOyO0HUUQDoVlWkLBnCspYG3wUCrBbW0Is0F4NbNBWKqP4yEYb0EFM3sN0BoBWiMorNEgN-s-80J7Y2trpzJY8GsFBRActvQ7_2e_C7KLdwX48ZLUF9mHvoIEZSGb-Qpskp3O8GEw_gHtNugs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOQAHxCrK6gM3FBpn7xFVLS20vdCi3iI7dlAQTapQVJUDn8A3M5OlKhLqgVsWO7Y8k1msN8-EXCt0mywMNF1aQkPCLk24cIVc4zrjkikHC4X7A6czsh7G9rhCmmUtDMIqC9uf2_TMWhdP6sVq1qdRVH-CWNrxIDsxkEbIcp0NsmnZpouqffu1xHlAQJ4RfGNrDZsXlTM5yEu8T5HH0GBIYWBj8f1f3mnF47T3yG4RKtK7fDb7pKLiA7KzQiB4SL6xgoPOIa9O5pTHkoZpDo1eUIG3CRiESVFpSRHi_kLT7PD5NPpUksa4L4rbmshtTBFdnsTghOBLOVMJhYiWZiW62nOk5rSfQIZOuxPkvVjQVuueBhh8I9ooG-KIjNqtYbOjFScsaIGp6zNNGZ4uGgKyFlsKM4Tf33GUDGyPOVwPhMW9wLRCR7qSGxJsgQiZLZmubOSJ9zxlHpNqDDM7IbQRhuAPuWmYXMKaS8FBOVggJGeW0rlRI6xcWT8o6MfxFIw3v8SZvfooDR-l4efSqJGbZZ9pTr6xtrVdCsz_pUI-eIc1_U7_2e-KbHWG_Z7f6w4ez8g2vsmRkOekOks_1AVEKzNxmWnjD11J6cI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+window+and+frequency+band+optimization+using+regularized+neighbourhood+component+analysis+for+Multi-View+Motor+Imagery+EEG+classification&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Singh+Malan%2C+Nitesh&rft.au=Sharma%2C+Shiru&rft.date=2021-05-01&rft.issn=1746-8094&rft.volume=67&rft.spage=102550&rft_id=info:doi/10.1016%2Fj.bspc.2021.102550&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_102550 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |