Time window and frequency band optimization using regularized neighbourhood component analysis for Multi-View Motor Imagery EEG classification

•A novel multi-view feature selection to optimize time windows and frequency bands.•Proposed method preserves structure of multi-view EEG.•Neural response to motor imagery task is subject-specific.•Obtained classification accuracy 82.1 %, 91.7 %, and 84.5 % for three BCI datasets. Spatial features o...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 67; p. 102550
Main Authors Singh Malan, Nitesh, Sharma, Shiru
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2021
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2021.102550

Cover

Loading…
Abstract •A novel multi-view feature selection to optimize time windows and frequency bands.•Proposed method preserves structure of multi-view EEG.•Neural response to motor imagery task is subject-specific.•Obtained classification accuracy 82.1 %, 91.7 %, and 84.5 % for three BCI datasets. Spatial features optimized at frequency bands have been widely used in motor imagery (MI) based brain-computer interface (BCI) systems. However, using a fixed time window of electroencephalogram (EEG) to extract discriminatory features results in suboptimal MI classification performance because time latency during MI tasks is inconsistent between different subjects. Thus, apart from frequency band optimization, time window optimization is equally important to develop a subject-specific MI-BCI. With time windows, extracted feature space becomes a higher-order tensor problem that requires multi-view learning approaches to optimize features. This study proposes a novel multi-view feature selection method based on regularized neighbourhood component analysis to simultaneously optimize time windows and frequency bands. In the experiment, we extracted spatial features using common spatial patterns (CSP) from MI related EEG data at multiple time windows and frequency bands and optimized them using the proposed feature selection method. A support vector machine is trained to classify optimized CSP features to identify MI tasks. The proposed method achieved classification accuracies on three public BCI datasets (BCI competition IV dataset 2a, BCI competition III dataset IIIa, and BCI competition IV dataset 2b), which are 82.1 %, 91.7 %, and 84.5 %, respectively. Obtained results are superior to those obtained using standard competing algorithms. Hence, the proposed multi-view learning approach for simultaneous optimization of time windows and frequency bands of MI signals shows the potential to enhance a practical MI BCI device's performance.
AbstractList •A novel multi-view feature selection to optimize time windows and frequency bands.•Proposed method preserves structure of multi-view EEG.•Neural response to motor imagery task is subject-specific.•Obtained classification accuracy 82.1 %, 91.7 %, and 84.5 % for three BCI datasets. Spatial features optimized at frequency bands have been widely used in motor imagery (MI) based brain-computer interface (BCI) systems. However, using a fixed time window of electroencephalogram (EEG) to extract discriminatory features results in suboptimal MI classification performance because time latency during MI tasks is inconsistent between different subjects. Thus, apart from frequency band optimization, time window optimization is equally important to develop a subject-specific MI-BCI. With time windows, extracted feature space becomes a higher-order tensor problem that requires multi-view learning approaches to optimize features. This study proposes a novel multi-view feature selection method based on regularized neighbourhood component analysis to simultaneously optimize time windows and frequency bands. In the experiment, we extracted spatial features using common spatial patterns (CSP) from MI related EEG data at multiple time windows and frequency bands and optimized them using the proposed feature selection method. A support vector machine is trained to classify optimized CSP features to identify MI tasks. The proposed method achieved classification accuracies on three public BCI datasets (BCI competition IV dataset 2a, BCI competition III dataset IIIa, and BCI competition IV dataset 2b), which are 82.1 %, 91.7 %, and 84.5 %, respectively. Obtained results are superior to those obtained using standard competing algorithms. Hence, the proposed multi-view learning approach for simultaneous optimization of time windows and frequency bands of MI signals shows the potential to enhance a practical MI BCI device's performance.
ArticleNumber 102550
Author Sharma, Shiru
Singh Malan, Nitesh
Author_xml – sequence: 1
  givenname: Nitesh
  surname: Singh Malan
  fullname: Singh Malan, Nitesh
  email: niteshsm.rs.bme16@itbhu.ac.in
– sequence: 2
  givenname: Shiru
  surname: Sharma
  fullname: Sharma, Shiru
  email: shiru.bme@itbhu.ac.in
BookMark eNp9kEtu2zAQQInCARq7uUBXvIDcob4M0E1huGmABN243RIUOXLGkEiXpGo4h8iZK8fpJguv5gO8-bw5mznvkLHPApYCRP1lt2zj3ixzyMXUyKsKPrBr0ZR1JgXI2f8cbsuPbB7jDqCUjSiv2cuGBuQHctYfuHaWdwH_jOjMkben0u8TDfSsE3nHx0huywNux14HekbLHdL2qfVjePLecuOH_XSXS9Mk3R8jRd75wB_HPlH2m_DAH32aGveD3mI48vX6jptex0gdmdcVn9hVp_uIN29xwX59X29WP7KHn3f3q28PmSkAUoa5hPa2rUpZ2bbooIG6RmsqKWoNpi21NEXZ1baxOrdNAW0nKisAK5B5LiUWC5af55rgYwzYqX2gQYejEqBORtVOnYyqk1F1NjpB8h1kKL2enYKm_jL69Yzi9NRfwqCiockyWgpokrKeLuH_AGCUl5w
CitedBy_id crossref_primary_10_1088_1741_2552_ac74e0
crossref_primary_10_2139_ssrn_4068457
crossref_primary_10_1109_JIOT_2023_3312407
crossref_primary_10_1109_ACCESS_2024_3410036
crossref_primary_10_1088_1741_2552_ad0a01
crossref_primary_10_1007_s11517_024_03103_1
crossref_primary_10_1080_10255842_2023_2301421
crossref_primary_10_1002_asjc_3267
crossref_primary_10_3390_bdcc8120169
crossref_primary_10_1007_s10548_021_00883_9
crossref_primary_10_1016_j_brainres_2025_149484
crossref_primary_10_1007_s44174_023_00082_z
crossref_primary_10_1016_j_bspc_2021_103327
crossref_primary_10_1016_j_bspc_2022_103825
crossref_primary_10_1016_j_bspc_2022_103835
crossref_primary_10_1016_j_engappai_2024_109256
crossref_primary_10_1016_j_jneumeth_2021_109378
crossref_primary_10_1109_TNSRE_2023_3299355
crossref_primary_10_1016_j_bspc_2022_103618
crossref_primary_10_1088_1741_2552_ac9338
crossref_primary_10_4103_2773_2398_348253
crossref_primary_10_1145_3663669
Cites_doi 10.1088/1741-2560/8/2/025002
10.1016/j.neunet.2018.02.011
10.1109/IEMBS.1997.756888
10.1109/86.895946
10.1109/TBME.2018.2814538
10.1109/TKDE.2018.2872063
10.1016/j.eswa.2010.11.050
10.1016/j.bspc.2017.06.016
10.1109/IBIOMED.2018.8534915
10.3389/fnins.2012.00055
10.1016/S1388-2457(99)00141-8
10.1155/2013/537218
10.1016/j.patcog.2011.04.018
10.1109/TNSRE.2006.875567
10.1109/TNNLS.2016.2521602
10.1109/TBME.2006.883649
10.1109/TCYB.2017.2786161
10.1109/SMC.2019.8914076
10.1016/j.patcog.2015.03.008
10.1016/j.neucom.2011.06.026
10.1109/TBME.2012.2215960
10.1016/j.jneumeth.2015.08.004
10.1186/s12859-017-1964-6
10.1007/s00702-007-0763-z
10.1186/1753-4631-3-2
10.1109/TBME.2014.2312397
10.1142/S0129065717500393
10.1109/TCYB.2018.2841847
10.3390/s17112576
10.1109/TNSRE.2006.875642
10.1109/TNSRE.2013.2253801
10.1155/2007/57180
10.1038/nrneurol.2016.113
10.3389/fnhum.2020.00231
10.1016/j.neucom.2016.11.008
10.3389/fnhum.2018.00312
10.1007/BF02584453
10.1016/j.compbiomed.2019.02.009
10.1109/5.939829
10.1109/TCYB.2015.2403356
10.3389/fneng.2012.00014
10.1142/S0129065716500325
10.1155/2018/7957408
10.1109/TCYB.2015.2401733
10.3389/fnins.2012.00039
10.1109/MSP.2008.4408441
10.1109/TBME.2009.2026181
10.1109/TCYB.2018.2797905
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2021.102550
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2021_102550
S1746809421001476
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-e280b9b5485db3f07066edc5816a0cb4a8c34f6d7da2d730bf15d10e5082288e3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Apr 24 23:03:08 EDT 2025
Tue Jul 01 01:34:09 EDT 2025
Fri Feb 23 02:43:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Brain-computer interface
Motor imagery
Electroencephalogram
Neighbourhood component analysis
Dual-tree complex wavelet transform
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-e280b9b5485db3f07066edc5816a0cb4a8c34f6d7da2d730bf15d10e5082288e3
ParticipantIDs crossref_primary_10_1016_j_bspc_2021_102550
crossref_citationtrail_10_1016_j_bspc_2021_102550
elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102550
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Krusienski, Grosse-Wentrup, Galán, Coyle, Miller, Forney, Anderson (bib0060) 2011; 8
Feng, Yin, Jin, Saab, Daly, Wang, Hu, Cichocki (bib0245) 2018; 102
Zhou, Zhao, Zhang, Adalı, Xie, Cichocki (bib0125) 2016; 104
Akay, Mello (bib0170) 1997; vol. 6
Zhang, Nam, Zhou, Jin, Wang, Cichocki (bib0240) 2019; 49
Zhu, Li, Zhang, Ju, Wu (bib0250) 2017; 28
Higashi, Tanaka (bib0105) 2013; 2013
Zhang, Zhou, Jin, Zhang, Wang, Cichocki (bib0295) 2017; 225
Velásquez-Martínez, Álvarez-Meza, Castellanos-Domínguez (bib0225) 2013
Chaudhary, Birbaumer, Ramos-Murguialday (bib0005) 2016; 12
Wei, Wan, Lu (bib0140) 2013
Pfurtscheller, Neuper (bib0030) 2001; 89
Jiang, Wang, Wu, Qin, Xu, Yin (bib0150) 2020; 14
Zhang, Zhou, Jin, Wang, Cichocki (bib0095) 2015; 255
Lv, Kang, Wang, Ji, Xu (bib0280) 2019
Rafiee, Rafiee, Prause, Schoen (bib0175) 2011; 38
Tan, Sun, Zhang, Liu, Liu (bib0230) 2018
Mulder (bib0035) 2007; 114
Blankertz, Tomioka, Lemm, Kawanabe, Muller (bib0065) 2008; 25
Liu, Zhang (bib0260) 2016; 46
Xygonakis, Athanasiou, Pandria, Kugiumtzis, Bamidis (bib0220) 2018; 2018
Jiao, Zhang, Wang, Wang, Jin, Wang (bib0305) 2018; 28
Tariq, Trivailo, Simic (bib0235) 2018; 12
Malan, Sharma (bib0025) 2020
Ang, Chin, Zhang, Guan (bib0115) 2012; 45
Liu, Chen, Liu, Ai, Xie, Chen (bib0050) 2017; 17
Blankertz, Muller, Krusienski, Schalk, Wolpaw, Schlogl, Pfurtscheller, Millan, Schroder, Birbaumer (bib0195) 2006; 14
Malan, Sharma (bib0135) 2021
Zhu, Li, Zhang (bib0255) 2016; 46
Malan, Sharma (bib0130) 2019; 107
Zhang, Wang, Jin, Wang (bib0075) 2017; 27
Nie, Wang, Adeli, Lao, Lin, Shen (bib0265) 2019; 49
Zhou, He, Xie, Fu, Zhang, Yang (bib0275) 2015; 48
Li, Yang, Zhang (bib0290) 2019; 31
Malan, Sharma (bib0180) 2018
Song, Epps (bib0100) 2007; 2007
Akay (bib0165) 1995; 23
Feng, Yin, Jin, Saab, Daly, Wang, Hu, Cichocki (bib0185) 2018; 102
Thomas, Guan, Lau, Vinod, Ang (bib0090) 2009; 56
Kumar, Sharma, Tsunoda (bib0145) 2017; 18
Higashi, Tanaka (bib0215) 2013; 60
Klonowski (bib0160) 2009; 3
Dornhege, Blankertz, Krauledat, Losch, Curio, Muller (bib0210) 2006; 53
Fazel-Rezai, Allison, Guger, Sellers, Kleih, Kübler (bib0010) 2012; 5
Müller, Krauledat, Dornhege, Curio, Blankertz (bib0070) 2007
Yuan, He (bib0045) 2014; 61
Cao, Prasad, Tanveer, Lin (bib0310) 2019
Zhang, Shi, Cheng, Wang, Yap, Shen (bib0270) 2019; 49
Fu, Cao, Guo, Huang (bib0285) 2008
Nie, Trullo, Lian, Wang, Petitjean, Ruan, Wang, Shen (bib0300) 2018; 65
Tangermann, Müller, Aertsen, Birbaumer, Braun, Brunner, Leeb, Mehring, Miller, Mueller-Putz (bib0200) 2012; 6
Pan, Li, Zhang, Gu, Li (bib0015) 2013; 21
Shawe-Taylor, Sun (bib0190) 2011; 74
Ramoser, Muller-Gerking, Pfurtscheller (bib0205) 2000; 8
Ang, Chin, Wang, Guan, Zhang (bib0085) 2012; 6
Yamawaki, Wilke, Liu, He (bib0120) 2006; 14
Yang, Chevallier, Wiart, Bloch (bib0110) 2017; 38
Novi, Guan, Dat, Xue (bib0080) 2007
Zhang, Nam, Zhou, Jin, Wang, Cichocki (bib0055) 2018
Soni, Malan, Sharma (bib0020) 2019
Pfurtscheller, Da Silva (bib0040) 1999; 110
Yang, Wang, Zuo (bib0155) 2012; 7
Zhang (10.1016/j.bspc.2021.102550_bib0295) 2017; 225
Fu (10.1016/j.bspc.2021.102550_bib0285) 2008
Jiao (10.1016/j.bspc.2021.102550_bib0305) 2018; 28
Ang (10.1016/j.bspc.2021.102550_bib0115) 2012; 45
Malan (10.1016/j.bspc.2021.102550_bib0130) 2019; 107
Xygonakis (10.1016/j.bspc.2021.102550_bib0220) 2018; 2018
Mulder (10.1016/j.bspc.2021.102550_bib0035) 2007; 114
Higashi (10.1016/j.bspc.2021.102550_bib0105) 2013; 2013
Malan (10.1016/j.bspc.2021.102550_bib0135) 2021
Yang (10.1016/j.bspc.2021.102550_bib0110) 2017; 38
Zhou (10.1016/j.bspc.2021.102550_bib0125) 2016; 104
Tariq (10.1016/j.bspc.2021.102550_bib0235) 2018; 12
Zhu (10.1016/j.bspc.2021.102550_bib0250) 2017; 28
Krusienski (10.1016/j.bspc.2021.102550_bib0060) 2011; 8
Zhu (10.1016/j.bspc.2021.102550_bib0255) 2016; 46
Ramoser (10.1016/j.bspc.2021.102550_bib0205) 2000; 8
Liu (10.1016/j.bspc.2021.102550_bib0050) 2017; 17
Higashi (10.1016/j.bspc.2021.102550_bib0215) 2013; 60
Zhang (10.1016/j.bspc.2021.102550_bib0055) 2018
Novi (10.1016/j.bspc.2021.102550_bib0080) 2007
Dornhege (10.1016/j.bspc.2021.102550_bib0210) 2006; 53
Nie (10.1016/j.bspc.2021.102550_bib0300) 2018; 65
Feng (10.1016/j.bspc.2021.102550_bib0245) 2018; 102
Chaudhary (10.1016/j.bspc.2021.102550_bib0005) 2016; 12
Yuan (10.1016/j.bspc.2021.102550_bib0045) 2014; 61
Rafiee (10.1016/j.bspc.2021.102550_bib0175) 2011; 38
Feng (10.1016/j.bspc.2021.102550_bib0185) 2018; 102
Velásquez-Martínez (10.1016/j.bspc.2021.102550_bib0225) 2013
Zhang (10.1016/j.bspc.2021.102550_bib0240) 2019; 49
Pan (10.1016/j.bspc.2021.102550_bib0015) 2013; 21
Yamawaki (10.1016/j.bspc.2021.102550_bib0120) 2006; 14
Malan (10.1016/j.bspc.2021.102550_bib0180) 2018
Zhang (10.1016/j.bspc.2021.102550_bib0075) 2017; 27
Kumar (10.1016/j.bspc.2021.102550_bib0145) 2017; 18
Nie (10.1016/j.bspc.2021.102550_bib0265) 2019; 49
Klonowski (10.1016/j.bspc.2021.102550_bib0160) 2009; 3
Tan (10.1016/j.bspc.2021.102550_bib0230) 2018
Lv (10.1016/j.bspc.2021.102550_bib0280) 2019
Jiang (10.1016/j.bspc.2021.102550_bib0150) 2020; 14
Zhang (10.1016/j.bspc.2021.102550_bib0095) 2015; 255
Fazel-Rezai (10.1016/j.bspc.2021.102550_bib0010) 2012; 5
Yang (10.1016/j.bspc.2021.102550_bib0155) 2012; 7
Cao (10.1016/j.bspc.2021.102550_bib0310) 2019
Malan (10.1016/j.bspc.2021.102550_bib0025) 2020
Pfurtscheller (10.1016/j.bspc.2021.102550_bib0030) 2001; 89
Ang (10.1016/j.bspc.2021.102550_bib0085) 2012; 6
Tangermann (10.1016/j.bspc.2021.102550_bib0200) 2012; 6
Wei (10.1016/j.bspc.2021.102550_bib0140) 2013
Blankertz (10.1016/j.bspc.2021.102550_bib0065) 2008; 25
Müller (10.1016/j.bspc.2021.102550_bib0070) 2007
Shawe-Taylor (10.1016/j.bspc.2021.102550_bib0190) 2011; 74
Zhou (10.1016/j.bspc.2021.102550_bib0275) 2015; 48
Blankertz (10.1016/j.bspc.2021.102550_bib0195) 2006; 14
Song (10.1016/j.bspc.2021.102550_bib0100) 2007; 2007
Akay (10.1016/j.bspc.2021.102550_bib0170) 1997; vol. 6
Soni (10.1016/j.bspc.2021.102550_bib0020) 2019
Li (10.1016/j.bspc.2021.102550_bib0290) 2019; 31
Thomas (10.1016/j.bspc.2021.102550_bib0090) 2009; 56
Pfurtscheller (10.1016/j.bspc.2021.102550_bib0040) 1999; 110
Akay (10.1016/j.bspc.2021.102550_bib0165) 1995; 23
Zhang (10.1016/j.bspc.2021.102550_bib0270) 2019; 49
Liu (10.1016/j.bspc.2021.102550_bib0260) 2016; 46
References_xml – volume: 38
  start-page: 302
  year: 2017
  end-page: 311
  ident: bib0110
  article-title: Subject-specific time-frequency selection for multi-class motor imagery-based BCIs using few Laplacian EEG channels
  publication-title: Biomed. Signal Process. Control
– volume: 14
  start-page: 250
  year: 2006
  end-page: 254
  ident: bib0120
  article-title: An enhanced time-frequency-spatial approach for motor imagery classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 61
  start-page: 1425
  year: 2014
  end-page: 1435
  ident: bib0045
  article-title: Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 28
  start-page: 1750039
  year: 2018
  ident: bib0305
  article-title: A novel multilayer correlation maximization model for improving CCA-based frequency recognition in SSVEP brain-computer interface
  publication-title: Int. J. Neural Syst.
– start-page: 56
  year: 2019
  end-page: 59
  ident: bib0020
  article-title: CCA model with training approach to improve recognition rate of SSVEP in Real time
  publication-title: Proceedings of the 2019 3rd International Conference on Artificial Intelligence and Virtual Reality, Association for Computing Machinery
– volume: 225
  start-page: 103
  year: 2017
  end-page: 110
  ident: bib0295
  article-title: Sparse Bayesian multiway canonical correlation analysis for EEG pattern recognition
  publication-title: Neurocomputing
– start-page: 204
  year: 2007
  end-page: 207
  ident: bib0080
  article-title: Sub-band common spatial pattern (SBCSP) for brain-computer interface
  publication-title: 3rd International IEEE/EMBS Conference On Neural Engineering, 2007. CNE’07
– volume: 12
  year: 2018
  ident: bib0235
  article-title: EEG-based BCI control schemes for lower-limb assistive-robots
  publication-title: Front. Hum. Neurosci.
– volume: 14
  year: 2020
  ident: bib0150
  article-title: Temporal combination pattern optimization based on feature selection method for motor imagery BCIs
  publication-title: Front. Hum. Neurosci.
– volume: 21
  start-page: 435
  year: 2013
  end-page: 443
  ident: bib0015
  article-title: Discrimination between control and Idle States in asynchronous SSVEP-based brain switches: a pseudo-key-based approach
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 45
  start-page: 2137
  year: 2012
  end-page: 2144
  ident: bib0115
  article-title: Mutual information-based selection of optimal spatial–temporal patterns for single-trial EEG-based BCIs
  publication-title: Pattern Recognit.
– start-page: 365
  year: 2013
  end-page: 374
  ident: bib0225
  article-title: Motor imagery classification for BCI using common spatial patterns and feature relevance analysis
  publication-title: Natural and Artificial Computation in Engineering and Medical Applications
– volume: 27
  year: 2017
  ident: bib0075
  article-title: Sparse bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification
  publication-title: Int. J. Neural Syst.
– volume: 49
  start-page: 3322
  year: 2019
  end-page: 3332
  ident: bib0240
  article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI
  publication-title: IEEE Trans. Cybern.
– start-page: 168
  year: 2020
  end-page: 197
  ident: bib0025
  article-title: Introduction to motor imagery-based brain-computer interface: time, frequency, and phase analysis-based feature extraction for Two class MI classification
  publication-title: Biomedical and Clinical Engineering for Healthcare Advancement
– year: 2019
  ident: bib0280
  article-title: Multi-view Subspace Clustering Via Partition Fusion, ArXiv:1912.01201 [Cs, Stat]
– volume: 107
  start-page: 118
  year: 2019
  end-page: 126
  ident: bib0130
  article-title: Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals
  publication-title: Comput. Biol. Med.
– volume: 102
  start-page: 87
  year: 2018
  end-page: 95
  ident: bib0245
  article-title: Towards correlation-based time window selection method for motor imagery BCIs
  publication-title: Neural Netw.
– volume: 28
  start-page: 1263
  year: 2017
  end-page: 1275
  ident: bib0250
  article-title: Robust joint graph sparse coding for unsupervised spectral feature selection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 49
  start-page: 1123
  year: 2019
  end-page: 1136
  ident: bib0265
  article-title: 3-d fully convolutional networks for multimodal isointense infant brain image segmentation
  publication-title: IEEE Trans. Cybern.
– volume: 89
  start-page: 1123
  year: 2001
  end-page: 1134
  ident: bib0030
  article-title: Motor imagery and direct brain-computer communication
  publication-title: Proc. IEEE
– volume: 7
  start-page: 161
  year: 2012
  end-page: 168
  ident: bib0155
  article-title: Neighborhood component feature selection for high-dimensional data
  publication-title: JCP
– volume: 102
  start-page: 87
  year: 2018
  end-page: 95
  ident: bib0185
  article-title: Towards correlation-based time window selection method for motor imagery BCIs
  publication-title: Neural Netw.
– volume: 8
  start-page: 441
  year: 2000
  end-page: 446
  ident: bib0205
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng.
– volume: 110
  start-page: 1842
  year: 1999
  end-page: 1857
  ident: bib0040
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol.
– year: 2021
  ident: bib0135
  article-title: Motor imagery EEG spectral-spatial feature optimization using dual-tree complex wavelet and neighbourhood component analysis
  publication-title: IRBM
– volume: vol. 6
  start-page: 2688
  year: 1997
  end-page: 2691
  ident: bib0170
  article-title: Wavelets for biomedical signal processing
  publication-title: Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. “Magnificent Milestones and Emerging Opportunities in Medical Engineering” (Cat. No.97CH36136)
– volume: 46
  start-page: 450
  year: 2016
  end-page: 461
  ident: bib0255
  article-title: Block-row sparse multiview multilabel learning for image classification
  publication-title: IEEE Trans. Cybern.
– volume: 46
  start-page: 298
  year: 2016
  end-page: 310
  ident: bib0260
  article-title: Pairwise constraint-guided sparse learning for feature selection
  publication-title: IEEE Trans. Cybern.
– volume: 8
  start-page: 025002
  year: 2011
  ident: bib0060
  article-title: Critical issues in state-of-the-art brain–computer interface signal processing
  publication-title: J. Neural Eng.
– volume: 18
  year: 2017
  ident: bib0145
  article-title: An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information
  publication-title: BMC Bioinformatics
– volume: 17
  year: 2017
  ident: bib0050
  article-title: Feature selection for motor imagery EEG classification based on firefly algorithm and learning automata
  publication-title: Sensors (Basel)
– volume: 25
  start-page: 41
  year: 2008
  end-page: 56
  ident: bib0065
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process. Mag.
– volume: 31
  start-page: 1863
  year: 2019
  end-page: 1883
  ident: bib0290
  article-title: A survey of multi-view representation learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2008
  ident: bib0285
  article-title: Multiple feature fusion by subspace learning
  publication-title: CIVR’ 08
– year: 2013
  ident: bib0140
  article-title: Classification of EEG signals using filter bank common spatial pattern based on fisher and laplacian criteria
  publication-title: Appl. Mech. Mater.
– volume: 6
  year: 2012
  ident: bib0085
  article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b
  publication-title: Front. Neurosci.
– volume: 255
  start-page: 85
  year: 2015
  end-page: 91
  ident: bib0095
  article-title: Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface
  publication-title: J. Neurosci. Methods
– volume: 74
  start-page: 3609
  year: 2011
  end-page: 3618
  ident: bib0190
  article-title: A review of optimization methodologies in support vector machines
  publication-title: Neurocomputing
– volume: 14
  start-page: 153
  year: 2006
  end-page: 159
  ident: bib0195
  article-title: The BCI competition III: validating alternative approaches to actual BCI problems
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 2013
  year: 2013
  ident: bib0105
  article-title: Common spatio-time-frequency patterns for motor imagery-based brain machine interfaces
  publication-title: Comput. Intell. Neurosci.
– volume: 12
  start-page: 513
  year: 2016
  end-page: 525
  ident: bib0005
  article-title: Brain-computer interfaces for communication and rehabilitation
  publication-title: Nat. Rev. Neurol.
– volume: 53
  start-page: 2274
  year: 2006
  end-page: 2281
  ident: bib0210
  article-title: Combined optimization of spatial and temporal filters for improving brain-computer interfacing
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 3
  start-page: 2
  year: 2009
  ident: bib0160
  article-title: Everything you wanted to ask about EEG but were afraid to get the right answer
  publication-title: Nonlinear Biomed. Phys.
– volume: 60
  start-page: 1100
  year: 2013
  end-page: 1110
  ident: bib0215
  article-title: Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 2018
  year: 2018
  ident: bib0220
  article-title: Decoding motor imagery through common spatial pattern filters at the EEG source space
  publication-title: Comput. Intell. Neurosci.
– start-page: 705
  year: 2007
  end-page: 714
  ident: bib0070
  article-title: Machine learning and applications for brain-computer interfacing
  publication-title: Human Interface and the Management of Information. Methods, Techniques and Tools in Information Design
– volume: 56
  start-page: 2730
  year: 2009
  end-page: 2733
  ident: bib0090
  article-title: A new discriminative common spatial pattern method for motor imagery brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 65
  start-page: 2720
  year: 2018
  end-page: 2730
  ident: bib0300
  article-title: Medical image synthesis with deep convolutional adversarial networks
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 38
  start-page: 6190
  year: 2011
  end-page: 6201
  ident: bib0175
  article-title: Wavelet basis functions in biomedical signal processing
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 55
  year: 2012
  ident: bib0200
  article-title: Review of the BCI competition IV
  publication-title: Front. Neurosci.
– volume: 48
  start-page: 2459
  year: 2015
  end-page: 2473
  ident: bib0275
  article-title: Robust visual tracking via efficient manifold ranking with low-dimensional compressive features
  publication-title: Pattern Recognit.
– volume: 114
  start-page: 1265
  year: 2007
  end-page: 1278
  ident: bib0035
  article-title: Motor imagery and action observation: cognitive tools for rehabilitation
  publication-title: J. Neural Transm.
– volume: 5
  year: 2012
  ident: bib0010
  article-title: P300 brain computer interface: current challenges and emerging trends
  publication-title: Front. Neuroeng.
– start-page: 94
  year: 2018
  end-page: 99
  ident: bib0180
  article-title: Removal of ocular atrifacts from single channel EEG signal using DTCWT with quantum inspired adaptive threshold
  publication-title: 2018 2nd International Conference on Biomedical Engineering (IBIOMED)
– start-page: 2423
  year: 2019
  end-page: 2427
  ident: bib0310
  article-title: Tensor decomposition for EEG signal retrieval
  publication-title: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)
– volume: 49
  start-page: 662
  year: 2019
  end-page: 674
  ident: bib0270
  article-title: Longitudinally guided super-resolution of neonatal brain magnetic resonance images
  publication-title: IEEE Trans. Cybern.
– year: 2018
  ident: bib0230
  article-title: Spatial and Spectral Features Fusion for EEG Classification During Motor Imagery in BCI, ArXiv:1808.04443 [Eess, q-Bio]
– start-page: 1
  year: 2018
  end-page: 11
  ident: bib0055
  article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI
  publication-title: IEEE Trans. Cybern.
– volume: 104
  start-page: 310
  year: 2016
  end-page: 331
  ident: bib0125
  article-title: Linked component analysis from matrices to high-order tensors
  publication-title: Appl. Biomed. Data Proc. IEEE
– volume: 2007
  year: 2007
  ident: bib0100
  article-title: Classifying EEG for brain-computer interface: learning optimal filters for dynamical system features
  publication-title: Comput. Intell. Neurosci.
– volume: 23
  start-page: 531
  year: 1995
  end-page: 542
  ident: bib0165
  article-title: Wavelets in biomedical engineering
  publication-title: Ann. Biomed. Eng.
– volume: 8
  start-page: 025002
  year: 2011
  ident: 10.1016/j.bspc.2021.102550_bib0060
  article-title: Critical issues in state-of-the-art brain–computer interface signal processing
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/2/025002
– year: 2018
  ident: 10.1016/j.bspc.2021.102550_bib0230
– volume: 102
  start-page: 87
  year: 2018
  ident: 10.1016/j.bspc.2021.102550_bib0245
  article-title: Towards correlation-based time window selection method for motor imagery BCIs
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.02.011
– volume: vol. 6
  start-page: 2688
  year: 1997
  ident: 10.1016/j.bspc.2021.102550_bib0170
  article-title: Wavelets for biomedical signal processing
  publication-title: Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. “Magnificent Milestones and Emerging Opportunities in Medical Engineering” (Cat. No.97CH36136)
  doi: 10.1109/IEMBS.1997.756888
– volume: 8
  start-page: 441
  year: 2000
  ident: 10.1016/j.bspc.2021.102550_bib0205
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.895946
– volume: 65
  start-page: 2720
  year: 2018
  ident: 10.1016/j.bspc.2021.102550_bib0300
  article-title: Medical image synthesis with deep convolutional adversarial networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2814538
– start-page: 204
  year: 2007
  ident: 10.1016/j.bspc.2021.102550_bib0080
  article-title: Sub-band common spatial pattern (SBCSP) for brain-computer interface
– volume: 31
  start-page: 1863
  year: 2019
  ident: 10.1016/j.bspc.2021.102550_bib0290
  article-title: A survey of multi-view representation learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2872063
– volume: 38
  start-page: 6190
  year: 2011
  ident: 10.1016/j.bspc.2021.102550_bib0175
  article-title: Wavelet basis functions in biomedical signal processing
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.11.050
– volume: 38
  start-page: 302
  year: 2017
  ident: 10.1016/j.bspc.2021.102550_bib0110
  article-title: Subject-specific time-frequency selection for multi-class motor imagery-based BCIs using few Laplacian EEG channels
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.06.016
– start-page: 365
  year: 2013
  ident: 10.1016/j.bspc.2021.102550_bib0225
  article-title: Motor imagery classification for BCI using common spatial patterns and feature relevance analysis
– start-page: 94
  year: 2018
  ident: 10.1016/j.bspc.2021.102550_bib0180
  article-title: Removal of ocular atrifacts from single channel EEG signal using DTCWT with quantum inspired adaptive threshold
  publication-title: 2018 2nd International Conference on Biomedical Engineering (IBIOMED)
  doi: 10.1109/IBIOMED.2018.8534915
– volume: 6
  start-page: 55
  year: 2012
  ident: 10.1016/j.bspc.2021.102550_bib0200
  article-title: Review of the BCI competition IV
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00055
– volume: 110
  start-page: 1842
  year: 1999
  ident: 10.1016/j.bspc.2021.102550_bib0040
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 2013
  year: 2013
  ident: 10.1016/j.bspc.2021.102550_bib0105
  article-title: Common spatio-time-frequency patterns for motor imagery-based brain machine interfaces
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2013/537218
– volume: 45
  start-page: 2137
  year: 2012
  ident: 10.1016/j.bspc.2021.102550_bib0115
  article-title: Mutual information-based selection of optimal spatial–temporal patterns for single-trial EEG-based BCIs
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.04.018
– year: 2013
  ident: 10.1016/j.bspc.2021.102550_bib0140
  article-title: Classification of EEG signals using filter bank common spatial pattern based on fisher and laplacian criteria
  publication-title: Appl. Mech. Mater.
– start-page: 56
  year: 2019
  ident: 10.1016/j.bspc.2021.102550_bib0020
  article-title: CCA model with training approach to improve recognition rate of SSVEP in Real time
– volume: 14
  start-page: 250
  year: 2006
  ident: 10.1016/j.bspc.2021.102550_bib0120
  article-title: An enhanced time-frequency-spatial approach for motor imagery classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.875567
– start-page: 168
  year: 2020
  ident: 10.1016/j.bspc.2021.102550_bib0025
  article-title: Introduction to motor imagery-based brain-computer interface: time, frequency, and phase analysis-based feature extraction for Two class MI classification
– volume: 28
  start-page: 1263
  year: 2017
  ident: 10.1016/j.bspc.2021.102550_bib0250
  article-title: Robust joint graph sparse coding for unsupervised spectral feature selection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2521602
– volume: 53
  start-page: 2274
  year: 2006
  ident: 10.1016/j.bspc.2021.102550_bib0210
  article-title: Combined optimization of spatial and temporal filters for improving brain-computer interfacing
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.883649
– volume: 49
  start-page: 662
  year: 2019
  ident: 10.1016/j.bspc.2021.102550_bib0270
  article-title: Longitudinally guided super-resolution of neonatal brain magnetic resonance images
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2786161
– start-page: 2423
  year: 2019
  ident: 10.1016/j.bspc.2021.102550_bib0310
  article-title: Tensor decomposition for EEG signal retrieval
  publication-title: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)
  doi: 10.1109/SMC.2019.8914076
– volume: 48
  start-page: 2459
  year: 2015
  ident: 10.1016/j.bspc.2021.102550_bib0275
  article-title: Robust visual tracking via efficient manifold ranking with low-dimensional compressive features
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.03.008
– start-page: 1
  year: 2018
  ident: 10.1016/j.bspc.2021.102550_bib0055
  article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI
  publication-title: IEEE Trans. Cybern.
– start-page: 705
  year: 2007
  ident: 10.1016/j.bspc.2021.102550_bib0070
  article-title: Machine learning and applications for brain-computer interfacing
– volume: 74
  start-page: 3609
  year: 2011
  ident: 10.1016/j.bspc.2021.102550_bib0190
  article-title: A review of optimization methodologies in support vector machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.06.026
– volume: 60
  start-page: 1100
  year: 2013
  ident: 10.1016/j.bspc.2021.102550_bib0215
  article-title: Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2215960
– volume: 255
  start-page: 85
  year: 2015
  ident: 10.1016/j.bspc.2021.102550_bib0095
  article-title: Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.08.004
– volume: 18
  year: 2017
  ident: 10.1016/j.bspc.2021.102550_bib0145
  article-title: An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1964-6
– volume: 114
  start-page: 1265
  year: 2007
  ident: 10.1016/j.bspc.2021.102550_bib0035
  article-title: Motor imagery and action observation: cognitive tools for rehabilitation
  publication-title: J. Neural Transm.
  doi: 10.1007/s00702-007-0763-z
– volume: 3
  start-page: 2
  year: 2009
  ident: 10.1016/j.bspc.2021.102550_bib0160
  article-title: Everything you wanted to ask about EEG but were afraid to get the right answer
  publication-title: Nonlinear Biomed. Phys.
  doi: 10.1186/1753-4631-3-2
– volume: 61
  start-page: 1425
  year: 2014
  ident: 10.1016/j.bspc.2021.102550_bib0045
  article-title: Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2312397
– volume: 28
  start-page: 1750039
  year: 2018
  ident: 10.1016/j.bspc.2021.102550_bib0305
  article-title: A novel multilayer correlation maximization model for improving CCA-based frequency recognition in SSVEP brain-computer interface
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065717500393
– volume: 49
  start-page: 3322
  year: 2019
  ident: 10.1016/j.bspc.2021.102550_bib0240
  article-title: Temporally constrained sparse group spatial patterns for motor imagery BCI
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2841847
– volume: 17
  year: 2017
  ident: 10.1016/j.bspc.2021.102550_bib0050
  article-title: Feature selection for motor imagery EEG classification based on firefly algorithm and learning automata
  publication-title: Sensors (Basel)
  doi: 10.3390/s17112576
– volume: 14
  start-page: 153
  year: 2006
  ident: 10.1016/j.bspc.2021.102550_bib0195
  article-title: The BCI competition III: validating alternative approaches to actual BCI problems
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.875642
– volume: 21
  start-page: 435
  year: 2013
  ident: 10.1016/j.bspc.2021.102550_bib0015
  article-title: Discrimination between control and Idle States in asynchronous SSVEP-based brain switches: a pseudo-key-based approach
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2253801
– volume: 2007
  year: 2007
  ident: 10.1016/j.bspc.2021.102550_bib0100
  article-title: Classifying EEG for brain-computer interface: learning optimal filters for dynamical system features
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2007/57180
– volume: 12
  start-page: 513
  year: 2016
  ident: 10.1016/j.bspc.2021.102550_bib0005
  article-title: Brain-computer interfaces for communication and rehabilitation
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2016.113
– volume: 14
  year: 2020
  ident: 10.1016/j.bspc.2021.102550_bib0150
  article-title: Temporal combination pattern optimization based on feature selection method for motor imagery BCIs
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2020.00231
– volume: 7
  start-page: 161
  year: 2012
  ident: 10.1016/j.bspc.2021.102550_bib0155
  article-title: Neighborhood component feature selection for high-dimensional data
  publication-title: JCP
– volume: 225
  start-page: 103
  year: 2017
  ident: 10.1016/j.bspc.2021.102550_bib0295
  article-title: Sparse Bayesian multiway canonical correlation analysis for EEG pattern recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.11.008
– volume: 12
  year: 2018
  ident: 10.1016/j.bspc.2021.102550_bib0235
  article-title: EEG-based BCI control schemes for lower-limb assistive-robots
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00312
– volume: 23
  start-page: 531
  year: 1995
  ident: 10.1016/j.bspc.2021.102550_bib0165
  article-title: Wavelets in biomedical engineering
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/BF02584453
– volume: 107
  start-page: 118
  year: 2019
  ident: 10.1016/j.bspc.2021.102550_bib0130
  article-title: Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.02.009
– volume: 102
  start-page: 87
  year: 2018
  ident: 10.1016/j.bspc.2021.102550_bib0185
  article-title: Towards correlation-based time window selection method for motor imagery BCIs
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.02.011
– volume: 89
  start-page: 1123
  year: 2001
  ident: 10.1016/j.bspc.2021.102550_bib0030
  article-title: Motor imagery and direct brain-computer communication
  publication-title: Proc. IEEE
  doi: 10.1109/5.939829
– volume: 46
  start-page: 450
  year: 2016
  ident: 10.1016/j.bspc.2021.102550_bib0255
  article-title: Block-row sparse multiview multilabel learning for image classification
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2403356
– volume: 5
  year: 2012
  ident: 10.1016/j.bspc.2021.102550_bib0010
  article-title: P300 brain computer interface: current challenges and emerging trends
  publication-title: Front. Neuroeng.
  doi: 10.3389/fneng.2012.00014
– volume: 104
  start-page: 310
  year: 2016
  ident: 10.1016/j.bspc.2021.102550_bib0125
  article-title: Linked component analysis from matrices to high-order tensors
  publication-title: Appl. Biomed. Data Proc. IEEE
– volume: 27
  year: 2017
  ident: 10.1016/j.bspc.2021.102550_bib0075
  article-title: Sparse bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500325
– year: 2008
  ident: 10.1016/j.bspc.2021.102550_bib0285
  article-title: Multiple feature fusion by subspace learning
– volume: 2018
  year: 2018
  ident: 10.1016/j.bspc.2021.102550_bib0220
  article-title: Decoding motor imagery through common spatial pattern filters at the EEG source space
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2018/7957408
– volume: 46
  start-page: 298
  year: 2016
  ident: 10.1016/j.bspc.2021.102550_bib0260
  article-title: Pairwise constraint-guided sparse learning for feature selection
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2401733
– volume: 6
  year: 2012
  ident: 10.1016/j.bspc.2021.102550_bib0085
  article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00039
– volume: 25
  start-page: 41
  year: 2008
  ident: 10.1016/j.bspc.2021.102550_bib0065
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.4408441
– volume: 56
  start-page: 2730
  year: 2009
  ident: 10.1016/j.bspc.2021.102550_bib0090
  article-title: A new discriminative common spatial pattern method for motor imagery brain–computer interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2026181
– year: 2021
  ident: 10.1016/j.bspc.2021.102550_bib0135
  article-title: Motor imagery EEG spectral-spatial feature optimization using dual-tree complex wavelet and neighbourhood component analysis
  publication-title: IRBM
– year: 2019
  ident: 10.1016/j.bspc.2021.102550_bib0280
– volume: 49
  start-page: 1123
  year: 2019
  ident: 10.1016/j.bspc.2021.102550_bib0265
  article-title: 3-d fully convolutional networks for multimodal isointense infant brain image segmentation
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2797905
SSID ssj0048714
Score 2.3822188
Snippet •A novel multi-view feature selection to optimize time windows and frequency bands.•Proposed method preserves structure of multi-view EEG.•Neural response to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102550
SubjectTerms Brain-computer interface
Dual-tree complex wavelet transform
Electroencephalogram
Motor imagery
Neighbourhood component analysis
Title Time window and frequency band optimization using regularized neighbourhood component analysis for Multi-View Motor Imagery EEG classification
URI https://dx.doi.org/10.1016/j.bspc.2021.102550
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqssCAeIryqDywIdM4745V1dKC2gWKukV27KAgmlShqCoDn8A3c28eVZFQB7YkshPL17kP65xjQq41hk0ehcxQtmQo2MWkB1eoNW5wobh2kSg8GruDiX0_daY10q24MAirLH1_4dNzb10-aZWz2ZrHcesRcmnXh-rERBkh20PZbdv2UD__9msN84B8PNf3xsYMW5fEmQLjJd_nKGNoclQwcJB7_1dw2gg4_QOyX2aKtFMM5pDUdHJE9jb0A4_JNxI46BLK6nRJRaJolBXI6BWVeJuCP5iVREuKCPcXmuVnz2fxp1Y0wW1R3NVEaWOK4PI0gRgEbyqESigktDRn6LLnWC_pKIUCnQ5nKHuxor3eHQ0x90awUf6JEzLp9566A1YesMBCyzAWTJu-IdsSihZHSSuCv991tQodn7vCCKUt_NCyI1d5SpgKXIGMuKO4oR2Uifd9bZ2SegIjOyO0HUUQDoVlWkLBnCspYG3wUCrBbW0Is0F4NbNBWKqP4yEYb0EFM3sN0BoBWiMorNEgN-s-80J7Y2trpzJY8GsFBRActvQ7_2e_C7KLdwX48ZLUF9mHvoIEZSGb-Qpskp3O8GEw_gHtNugs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOQAHxCrK6gM3FBpn7xFVLS20vdCi3iI7dlAQTapQVJUDn8A3M5OlKhLqgVsWO7Y8k1msN8-EXCt0mywMNF1aQkPCLk24cIVc4zrjkikHC4X7A6czsh7G9rhCmmUtDMIqC9uf2_TMWhdP6sVq1qdRVH-CWNrxIDsxkEbIcp0NsmnZpouqffu1xHlAQJ4RfGNrDZsXlTM5yEu8T5HH0GBIYWBj8f1f3mnF47T3yG4RKtK7fDb7pKLiA7KzQiB4SL6xgoPOIa9O5pTHkoZpDo1eUIG3CRiESVFpSRHi_kLT7PD5NPpUksa4L4rbmshtTBFdnsTghOBLOVMJhYiWZiW62nOk5rSfQIZOuxPkvVjQVuueBhh8I9ooG-KIjNqtYbOjFScsaIGp6zNNGZ4uGgKyFlsKM4Tf33GUDGyPOVwPhMW9wLRCR7qSGxJsgQiZLZmubOSJ9zxlHpNqDDM7IbQRhuAPuWmYXMKaS8FBOVggJGeW0rlRI6xcWT8o6MfxFIw3v8SZvfooDR-l4efSqJGbZZ9pTr6xtrVdCsz_pUI-eIc1_U7_2e-KbHWG_Z7f6w4ez8g2vsmRkOekOks_1AVEKzNxmWnjD11J6cI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+window+and+frequency+band+optimization+using+regularized+neighbourhood+component+analysis+for+Multi-View+Motor+Imagery+EEG+classification&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Singh+Malan%2C+Nitesh&rft.au=Sharma%2C+Shiru&rft.date=2021-05-01&rft.issn=1746-8094&rft.volume=67&rft.spage=102550&rft_id=info:doi/10.1016%2Fj.bspc.2021.102550&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2021_102550
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon